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UNIPOLAR EULER-POISSON EQUATIONS WITH
TIME-DEPENDENT DAMPING:

BLOW-UP AND GLOBAL EXISTENCE∗

JIANING XU† , SHAOHUA CHEN‡ , MING MEI§ , AND YUMING QIN¶

Abstract. This paper is concerned with the Cauchy problem for one-dimensional unipolar Euler-
Poisson equations with time-dependent damping, where the time-asymptotically degenerate damping in
the form of − µ

(1+t)λ
ρu for λ>0 with µ>0 plays a crucial role for the structure of solutions. The main

issue of the paper is to investigate the critical case with λ=1. We first prove that, for all cases with
λ>0 and µ>0 (including the critical case of λ=1), once the initial data is steep at a point, then the
solutions are locally bounded but their derivatives will blow up in finite time, by means of the method
of Riemann invariants and the technical convex analysis. Secondly, for the critical case of λ=1 with
µ>7/3, we prove that there exists a unique global solution, once the initial perturbation around the
constant steady-state is sufficiently small. In particular, we derive the algebraic convergence rates of the
solution to the constant steady-state, which are piecewise, related to the parameter µ for 7/3<µ≤3,
3<µ≤4 and µ>4. The adopted method of proof in this critical case is the technical time-weighted
energy method and the time-weight depends on the parameter µ. Finally, we carry out some numerical
simulations in two cases for blow-up and global existence, respectively, which numerically confirm our
theoretical results.

Keywords. Unipolar Euler-Poisson; time-asymptotically degenerate damping; blow-up; global
existence; decay rates; critical.
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1. Introduction
Modeling equations. In this paper, we consider the one-dimensional unipolar hy-

drodynamic model of semiconductor, which is represented by the Euler-Poisson system
with time-dependent damping

ρt+(ρu)x=0,

(ρu)t+(ρu2+p(ρ))x=ρE− µ

(1+ t)λ
ρu, (x,t)∈R×R+,

Ex=ρ−D(x).

(1.1)

Here, the unknown functions ρ(x,t)>0, u(x,t) and E(x,t) denote the electronic density,
the electronic velocity, and the electric field, respectively. The given function D(x)>0
denotes the doping profile which is the density of impurities in the semiconductor device,
and p=p(ρ) is the pressure-density function. The term − µ

(1+t)λ
ρu with parameters

λ>0 and µ>0 is the so-called time-asymptotically degenerate damping effect. The
hydrodynamic models of semiconductors are usually used to characterize the motion of
the charged fluid particles, for example, the electrons and holes in semiconductor devices
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[2,23,31]. Recently, the theoretical study and numerical computation on hydrodynamic
models of semiconductors have been one of the hot spots in mathematical physics.

Background of study. When λ=0 and µ>0, the damping in the system (1.1)
is reduced to the regular damping. There are many results about the existence and
uniqueness of the subsonic/supersonic/transonic solution for the steady-state system of
(1.1) with regular damping, we can refer to [1, 5, 6, 8, 9, 27, 28, 32, 38, 39] and references
therein. There are also many results about the large-time behavior of solutions to the
system (1.1) with regular damping, see [13, 16–18, 24, 29, 34, 35, 41] for details. Among
them, Li-Markowich-Mei [24] showed that the solution to the initial boundary value
problem of (1.1) with regular damping exists globally and tends exponentially to the
corresponding steady-state solution. Luo-Natalini-Xin [29] obtained the global existence
of smooth solutions to the Cauchy problem of (1.1) with regular damping, and showed
that the solutions converge to the stationary solutions of the drift-diffusion equations
when the state constants on the current density and the electric field are zero (switch-off
case). They required such a stiff condition owing to a technical difficulty in reformulating
the perturbed system in L2 sense. Later, Huang-Mei-Wang-Yu [18] remarkably showed
that the solutions to the Cauchy problem exist globally and converge to stationary
solutions when the state constants on the current density and the electric field are
nonzero (switch-on case). By technically constructing correction functions, they [18]
released the switch-off requirement to the switch-on case. Regarding the study on the
bipolar hydrodynamic models of semiconductors with regular damping, one can refer
to [7, 10,19,20,33] and references therein.

When λ>0 and µ>0, the damping effect is time-asymptotically degenerate. While,
when λ<0 and µ>0, the damping effect is time-asymptotically enhancing. In these
cases, Li-Li-Mei-Zhang [26] investigated the Cauchy problem to the one-dimensional
bipolar Euler-Poisson system with time-dependent damping for −1<λ<1 and µ=1,
and showed that the solutions time-algebraically converge to the corresponding diffusion
waves when the initial perturbation is small enough. Later, Luan-Mei-Rubino-Zhu
[30] proved that the solutions of the bipolar Euler-Poisson system with time-dependent
damping for λ=1 and µ>2 (the critical case) time-algebraically converge to constant
steady-states, when the initial perturbation is small enough. But the convergence rates
are not sufficient, compared with Euler equations with critical time-dependent damping
[12]. Here, they [26, 30] restricted the doping profile to D(x)=0. For the unipolar
case of Euler-Poisson system with time-dependent damping, with the doping profile
D(x) ̸=0, Sun-Mei-Zhang [42] considered the non-critical case λ∈ (−1,0)∪(0,1) with
µ=1, and showed that the solutions converge to steady-states in the sub-exponential
form for −1<λ<0, and to the constant steady-states in the sub-exponential form for
0<λ<1 if the doping profile is a constant.

To better understand how the time-dependent damping influences the structure of
solutions for the Euler-Poisson equations, let us recall the simpler case of Euler equations
with time-dependent damping:

vt−ux=0,

ut+p(v)x=− µ

(1+ t)λ
u, (x,t)∈R×R+,

(v,u)(x,0)=(v0,u0)(x)→ (v±,u±), as x→±∞,

(1.2)

where v(x,t)>0 and u(x,t) represent the specific volume of the flow and fluid velocity,
respectively. For states constants v+=v−, Pan [36, 37] firstly showed that the critical
exponents for λ and µ are λ=1 and µ=2. Precisely, when 0≤λ<1, µ>0 or λ=1,
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µ>2, the solutions of (1.2) exist globally in time, while, when λ=1, 0≤µ≤2 or λ>1,
µ≥0, the solutions of (1.2) will blow up in finite time. Three-dimensional cases were
significantly studied by Hou-Witt-Yin [14,15] and Ji-Mei [21,22], recently. In [11], Geng-
Huang-Wu concerned with the asymptotic behavior of L∞ weak-entropy solutions to
the compressible Euler equations with a vacuum and time-dependent damping. For
v+ ̸=v−, the parameters of λ and µ still play the crucial role for the structure of solu-
tions. In fact, when 0<λ<1 and µ>0, Cui-Yin-Zhang-Zhu [4] and Li-Li-Mei-Zhang [25]
both independently obtained the convergence rates of the original solutions for (1.2) to
the diffusion waves if the initial perturbation around the diffusion waves and the wave
strength |v+−v−|+ |u+−u−| both are sufficiently small. The convergence rates in [4]
are better than in [25]. Clearly, when 0<λ<1 and µ>0, the time-asymptotically de-
generate damping makes (1.2) behave like a degenerate parabolic system with diffusion
phenomena. In the critical case λ=1 and µ>2, Geng-Lin-Mei [12] remarkably observed
that the hyperbolicity and the damping effect both play important roles and cannot be
ignored. They [12] further proved that the solutions of (1.2) converge to the solutions
of linear wave equations with critical time-dependent damping. When λ=1, 0≤µ≤2
or λ>1, µ≥0, Sugiyama [40] proved that the derivative blow-up occurs in finite time
with the solution itself and the pressure bounded once the initial data are steep by using
Riemann invariants method. For the case λ>1, the damping effect is so weak that it can
be ignored, which makes the system (1.2) almost behave like a pure hyperbolic system
and the shock waves must form. In particular, Chen-Li-Li-Mei-Zhang [3] showed that
if 0<λ<1, µ>0 or λ=1, µ>2, even if the wave strength and the initial perturbation
are big, once the derivatives of the initial data are not big, the solutions of (1.2) exist
globally. However, for all λ>0 and µ>0, once the derivatives of the initial data are big
enough at some point, the solutions are still bounded but the derivatives of solutions
will blow up in finite time.

Technical difficulties. Talking about the mechanism of blow-up and global exis-
tence of solutions for Euler-Poisson equations with time-dependent damping, the study
is quite limited, and becomes more complicated and challenging due to the strong cou-
pling and nonlinearity of the system (1.1). Our goal of this paper is to investigate
blow-up and global solutions of the system (1.1) subjected to the initial value

(ρ,u)(x,0)=(ρ0,u0)(x)→ (ρ̄,0) as x→±∞, (1.3)

where ρ̄>0 is the state constant. We consider the case that the pressure-density function
p(ρ) satisfies the Gamma-law:

p(ρ)=ργ/γ, γ >1.

Here are some technical issues we need to point out.

(1) For the blow-up phenomena, different from the previous study [3] on Euler equa-
tions, there is a strong coupling for the system with the electric field E(x,t), which
causes the boundedness of the solutions for the system to be local only, but not
globally uniform. This local boundedness of the solutions enhances difficulties in
the proof of blow-up in the frame of Riemann variants.

(2) For the global existence in the critical case of λ=1 with µ>7/3, different from
the previous study [30] for bipolar Euler-Poisson system, the doping profile D(x)
is nonzero here. But the nonzero doping profile will cause some essential difficulty
in establishing the energy estimates. In order to overcome it, here we technically
choose the weight functions to be related to the physical parameter µ and introduce
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some small quantities εi (i=1,2,3) when we carry out the energy estimates, then
we can artfully derive the algebraic convergence rates related to µ, which are piece-
wise in three parts: 7/3<µ≤3, 3<µ≤4 and µ>4. These rates are much better
than the rates showed in [30]. On the other hand, compared with Euler equations
with critical time-dependent damping [12], the calculation of decay rates for Euler-
Poisson equations with critical time-dependent damping is more complicated and
trickier.

Main results. In summary, we precisely state our main results as below:

(1) Let (ρ,u,E)∈C1(R× [0,L]) for L>0 be the solutions to the Cauchy problem (1.1),
(1.3). Suppose that D(x)= ρ̄ for x<−N0, where N0>0 is sufficiently large. If
lim

x→±∞
E(x,0)=0 and the initial data satisfy (2.5)–(2.8). Then, the solutions are lo-

cally bounded. Furthermore, for all cases λ>0 and µ>0, the derivatives of solutions
will blow up in finite time when the derivatives of the initial Riemann invariants
with absolute value are large enough.

(2) For technical reason, we have to restrict the doping profile to D(x)= D̂ for some
positive constant D̂, in fact, we need D̂= ρ̄. And the expected steady-state is re-
duced to the constant steady-state (D̂,0,0). We then prove that the unique solution
(ρ,J,E)(x,t) of (1.1), (1.3) in the critical case λ=1 with µ>7/3 exists globally and
satisfies:

• When 7/3<µ≤3, then

(1+ t)
µ+1
4

(
∥J(t)∥+∥E(t)∥

)
+(1+ t)

µ
2

(
∥ρ(t)−D̂∥2
+∥Jx(t)∥1+∥Ex(t)∥2

)
≤CΦ0;

• When 3<µ≤4, then

(1+ t)
(
∥J(t)∥+∥E(t)∥

)
+(1+ t)

µ
2

(
∥ρ(t)−D̂∥2+∥Jx(t)∥1+∥Ex(t)∥2

)
≤CΦ0;

• When µ>4, then

(1+ t)
(
∥J(t)∥+∥E(t)∥

)
+(1+ t)2

(
∥ρ(t)−D̂∥2+∥Jx(t)∥1+∥Ex(t)∥2

)
≤CΦ0,

provided that the initial perturbation Φ0 is sufficiently small and (3.4) holds, where
J =ρu, Φ0 :=∥ω0∥3+∥J0∥2, and ω0 is defined in (3.9).

Remark 1.1. Note that, for Euler equations studied in [3, 12, 14, 15, 36, 37, 40], λ=1
with µ>2 is the critical case for the global existence of the solutions. However, here we
have to restrict µ>7/3 when λ=1. It seems that µ>7/3 is not optimal for the global
existence, but we could not test the global existence once λ=1 and 2<µ≤7/3, because
the system coupling with the electric field E(x,t) and with the non-zero doping profile
D(x) makes the modeling equations totally different from the previous studies. Indeed,
some obstacles exist in the proof.

Notations. Throughout this paper, C always denotes a generic positive constant
which is independent of x and t, and may be different in different lines. L2(R) is the space
of square-integrable real-valued functions defined on R, with the norm ∥f∥ :=∥f∥L2(R).
L∞(R) is the space of bounded measurable functions defined on R, with the norm
∥f∥L∞ :=∥f∥L∞(R)=esssup

x∈R
|f |. Hm(R) (m≥0) is the usual Sobolev space whose norm

is abbreviated as ∥f∥m :=
∑m

k=0∥∂kxf∥.
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The rest of this paper is organized as follows. In Section 2, we prove that for all
λ>0 and µ>0, the derivatives of solutions to the Cauchy problem (1.1), (1.3) will blow
up in finite time. The global existence and large-time behavior of the solutions to the
Cauchy problem (1.1), (1.3) in critical case λ=1 with µ>7/3 are obtained in Section
3.

2. Blow up for the steep initial data
In this section, for all cases of λ>0 and µ>0, we show that the derivatives of the

solutions to Cauchy problem (1.1) and (1.3) will blow up in finite time if the derivatives
of the initial data are sufficiently large.

We introduce the Riemann invariants to the system (1.1):

r(x,t) :=
2

γ−1

(
ρ

γ−1
2 (x,t)− ρ̄

γ−1
2

)
−u(x,t), s(x,t) :=

2

γ−1

(
ρ

γ−1
2 (x,t)− ρ̄

γ−1
2

)
+u(x,t).

(2.1)

Then (r,s) satisfy the following system

rt+rx
(
u−ρ

γ−1
2

)
=−E+

µ

2(1+ t)λ
(s−r),

st+sx
(
u+ρ

γ−1
2

)
=E− µ

2(1+ t)λ
(s−r),

r(x,0)= 2
γ−1

(
ρ

γ−1
2

0 (x)− ρ̄
γ−1
2

)
−u0(x)=: r0(x),

s(x,0)= 2
γ−1

(
ρ

γ−1
2

0 (x)− ρ̄
γ−1
2

)
+u0(x)=:s0(x).

(2.2)

Denote

A1(t)=exp

(∫ t

0

µ

(1+τ)λ
dτ

)
, A2(t)=exp

(∫ t

0

µ

2(1+τ)λ
dτ

)
, C∗=sup

x∈R
D(x),

and

θ=
1

2

(
µ+

√
µ2+22γ/(γ−1)ρ̄

)
, (2.3)

M0=
22/(γ−1)ρ̄

θ
=

1

2

(√
µ2+22γ/(γ−1)ρ̄−µ

)
. (2.4)

We state the main result of this section as follows.

Theorem 2.1. Let (ρ,u,E)∈C1(R× [0,L]) for L>0 be the solutions to the Cauchy
problem (1.1) and (1.3). Suppose that D(x)= ρ̄ for x<−N0, where N0>0 is sufficiently
large. If lim

x→±∞
E(x,0)=0 and the initial data satisfy

∫ +∞

−∞
(|ρ0(x)− ρ̄|+ |u0(x)|+ |ρ0(x)−D(x)|)dx<+∞, (2.5)

|h−(0)+h+(0)−2h̄+u0(x+(0))−u0(x−(0))|≤2K, (2.6)

|h+(0)−h−(0)+u0(x−(0))+u0(x+(0))|≤2K, (2.7)

and ∣∣∣∣∫ x

−∞
(ρ0−D)(y)dy

∣∣∣∣<KM0, (2.8)
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for any K ∈ (0,h̄), where x±(t) are the characteristic curves satisfying

d

dt
x±(t)=u(x±(t),t)±ρ

γ−1
2 (x±(t),t),

and h±(t) and h̄ are defined by

h±(t)=
2

γ−1
ρ

γ−1
2 (x±(t),t), h̄=

2

γ−1
ρ̄

γ−1
2 .

Then, the solutions (ρ,u,E) are uniformly bounded for 0<t<t∗ := 1
θ ln

h̄
K . Further-

more, for all cases λ>0 and µ>0, there exists a sufficiently large positive constant
N =N(γ,µ,λ,C∗, ρ̄,K) such that, if rx(x,0)≥N or sx(x,0)≤−N , then the derivatives
of the solutions will blow up before t= t∗ :=

t∗

2 , that is

lim
t→t∗−

∥(ρx,ux)(t)∥L∞ =+∞.

In order to obtain the blow-up result, we first need to derive the uniform bound-
edness of the solutions to (1.1), (1.3). We prepare the following two lemmas for the
boundedness of the solutions.

Lemma 2.1. Let (ρ,u,E)∈C1(R× [0,L]) be the solutions to the Cauchy problem
(1.1) and (1.3), ρ and u be uniformly bounded in R× [0,L] and ρ≥ δ0>0. Suppose that
D(x)= ρ̄ for x<−N0, where N0>0 is sufficiently large. If lim

x→±∞
E(x,0)=0 and (2.5)

holds, then

lim
x→±∞

E(x,t)=0, lim
x→±∞

ρ(x,t)= ρ̄, lim
x→±∞

u(x,t)=0. (2.9)

Proof. Let x±(t) be the plus and minus characteristic curves which satisfy the
following differential equations:

d

dt
x±(t)=u(x±(t),t)±ρ

γ−1
2 (x±(t),t). (2.10)

Differentiating r(x−(t),t)A1(t) with respect to t to get

d

dt
[r(x−(t),t)A1(t)]=A1(t)

d

dt
r(x−(t),t)+

µA1(t)

(1+ t)λ
r(x−(t),t)

=A1(t)
(
rt+rx

(
u−ρ

γ−1
2

))
+
µA1(t)

(1+ t)λ
r

=A1(t)
(
ρ

γ−3
2 ρt−ut+

(
ρ

γ−3
2 ρx−ux

)(
u−ρ

γ−1
2

))
+
µA1(t)

(1+ t)λ

(
2

γ−1

(
ρ

γ−1
2 − ρ̄

γ−1
2

)
−u
)

=A1(t)

(
−E+

µ

(1+ t)λ
u

)
+
µA1(t)

(1+ t)λ

(
2

γ−1

(
ρ

γ−1
2 − ρ̄

γ−1
2

)
−u
)

=−A1(t)E+
µA1(t)

(1+ t)λ
2

γ−1

(
ρ

γ−1
2 − ρ̄

γ−1
2

)
. (2.11)

Analogous to (2.11), we obtain

d

dt
[s(x+(t),t)A1(t)]=A1(t)E+

µA1(t)

(1+ t)λ
2

γ−1

(
ρ

γ−1
2 − ρ̄

γ−1
2

)
. (2.12)
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Denote

h±(t)=
2

γ−1
ρ

γ−1
2 (x±(t),t), h̄=

2

γ−1
ρ̄

γ−1
2 .

Integrating (2.11) and (2.12) over [0,t], respectively, one has

r(x−(t),t)=A
−1
1 (t)r(x−(0),0)−A−1

1 (t)

∫ t

0

A1(τ)E(x−(τ),τ)dτ

+A−1
1 (t)

∫ t

0

µA1(τ)

(1+τ)λ
(h−(τ)− h̄)dτ, (2.13)

s(x+(t),t)=A
−1
1 (t)s(x+(0),0)+A

−1
1 (t)

∫ t

0

A1(τ)E(x+(τ),τ)dτ

+A−1
1 (t)

∫ t

0

µA1(τ)

(1+τ)λ
(h+(τ)− h̄)dτ. (2.14)

Recalling that, at each point, we have two characteristic curves intersecting at (x,t),
namely, x−(t)=x+(t) for fixed t. Adding (2.13) to (2.14) yields

h±(t)− h̄=
1

2
A−1

1 (t)(r(x−(0),0)+s(x+(0),0))+
1

2
A−1

1 (t)

∫ t

0

A1(τ)(E(x+(τ),τ)

−E(x−(τ),τ))dτ+
1

2
A−1

1 (t)

∫ t

0

µA1(τ)

(1+τ)λ
[(h−(τ)− h̄)+(h+(τ)− h̄)]dτ

=
1

2
A−1

1 (t)[h−(0)− h̄+h+(0)− h̄+u0(x+(0))−u0(x−(0))]

+
1

2
A−1

1 (t)

∫ t

0

A1(τ)(E(x+(τ),τ)−E(x−(τ),τ))dτ

+
1

2
A−1

1 (t)

∫ t

0

µA1(τ)

(1+τ)λ
[(h−(τ)− h̄)+(h+(τ)− h̄)]dτ, (2.15)

and subtracting (2.13) from (2.14) leads

u(x±(t),t)=
1

2
A−1

1 (t)[h+(0)− h̄−(h−(0)− h̄)+u0(x−(0))+u0(x+(0))]

+
1

2
A−1

1 (t)

∫ t

0

A1(τ)(E(x−(τ),τ)+E(x+(τ),τ))dτ

+
1

2
A−1

1 (t)

∫ t

0

µA1(τ)

(1+τ)λ
[(h+(τ)− h̄)−(h−(τ)− h̄)]dτ. (2.16)

We first prove lim
x→−∞

E(x,t)=0, lim
x→−∞

ρ(x,t)= ρ̄ and lim
x→−∞

u(x,t)=0. For any

point (x,t1), there are two characteristic curves

x±(t)=x±(τ)+

∫ t

τ

(u(x±(s),s)±ρ
γ−1
2 (x±(s),s))ds,

where 0≤ τ <t≤ t1. Since x+(t1)=x−(t1), we have

x+(τ)−x−(τ)=
∫ t1

τ

((u−ρ
γ−1
2 )|x=x−(s)−(u+ρ

γ−1
2 )|x=x+(s))ds.
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Since ρ and u are uniformly bounded, there is a constant B>0, such that

|x+(τ)−x−(τ)|≤B(t1−τ). (2.17)

It follows from (1.1)3 that

E(x−(τ),τ)−E(x+(τ),τ)=

∫ x−(τ)

x+(τ)

(ρ(y,τ)−D(y))dy

=

∫ x−(τ)

x+(τ)

(ρ(y,τ)− ρ̄)dy, (2.18)

if x+(τ)<x−(τ)<−N0. Note that

h±(τ)− h̄=
2

γ−1

∫ 1

0

d

dr
[rρ+(1−r)ρ̄]

γ−1
2 dr

=

∫ 1

0

[rρ+(1−r)ρ̄]
γ−3
2 dr(ρ(x±(τ),τ)− ρ̄),

then, there is a constant N1>0, such that

|ρ(x±(τ),τ)− ρ̄|≤N1|h±(τ)− h̄|, (2.19)

and

|ρ(y,τ)− ρ̄|≤N1f(τ), (2.20)

where

f(τ)= max
x(τ)∈[x+(τ),x−(τ)]

|h−(τ)− h̄|= max
x(τ)∈[x+(τ),x−(τ)]

|h+(τ)− h̄|

and x(τ) is a characteristic curve between [x+(τ),x−(τ)].
For simplicity, we denote

w(x)=
1

2
|h−(0)+h+(0)−2h̄+u0(x+(0))−u0(x−(0))|.

Choosing x<−N0−Bt1, we deduce, from (2.15), (2.18), (2.17) and (2.20), that

|h±(t)− h̄|≤A−1
1 (t)w(x)+

N1

2

∫ t

0

f(τ)|x−(τ)−x+(τ)|dτ

+
µ

2

∫ t

0

(|h+(τ)− h̄|+ |h−(τ)− h̄|)dτ

≤w(x)+N1Bt1

∫ t

0

f(τ)dτ+µ

∫ t

0

f(τ)dτ,

or

f(t)≤w(x)+(N1Bt1+µ)

∫ t

0

f(τ)dτ,

or

f(t)≤w(x)e(N1Bt1+µ)t, (2.21)
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for t≤ t1. Hence, from (2.18), (2.20) and (2.21), for any x1<x2<−N0−Bt1,

|E(x2,t1)−E(x1,t1)|≤
∫ x2

x1

|ρ(y,t1)− ρ̄|dy≤N1e
(N1Bt1+µ)t1

∫ x2

x1

w(x)dx. (2.22)

By (2.5), the value in right-hand side can be arbitrary small as long as |x2| is sufficiently
large, which implies that lim

x→−∞
E(x,t1)=0.

Now, we prove lim
x→−∞

ρ(x,t)= ρ̄ and lim
x→−∞

u(x,t)=0. For any ε1>0(ε1<h̄) and any

fixed t1>0, let δ1=ε1/(2e
M1t1), where M1=2+2µ. There exists a positive constant

N2 such that

|u0(x)|≤ δ1, |h±(0)− h̄|≤ δ1, |E(x,t)|≤ δ1/M1, (2.23)

for all x<−N2. We claim that

|u(x,t)|<2δ1e
M1t, |h±(t)− h̄|<2δ1e

M1t, (2.24)

for all x<−N2. Suppose that (2.24) is not satisfied, then, there exists a point (x3,t2)
with x3≤−N2−Bt2−1 and t2<t1, such that either

|u(x3,t2)|=2δ1e
M1t2 , or |h±(t2)− h̄|=2δ1e

M1t2 , (2.25)

but (2.24) is true for t<t2. There are two characteristic curves intersecting at (x3,t2),
which are denoted by

x±(t;x3)=x±(0;x3)+

∫ t

0

(u(x,s)±ρ
γ−1
2 (x,s))|x=x±(s;x3)ds,

satisfying x+(0;x3)<x−(0;x3). In fact, we have x−(0;x3)<−N2. Since ρ and u are
uniformly bounded, there is a constant B>0 such that

x−(0;x3)≤x−(t2;x3)+
∫ t2

0

(|u(x−(s),s)|+ |ρ
γ−1
2 (x−(s),s)|)ds

≤−N2−Bt2−1+Bt2

=−N2−1.

It follows from (2.15), (2.23) and (2.24) that

|h±(t2)− h̄|<2δ1+
∫ t2

0

δ1
M1

dτ+2µδ1

∫ t2

0

eM1τdτ

≤2δ1+
δ1(1+2µ)

M1
(eM1t2 −1)

≤2δ1+δ1(e
M1t2 −1)

≤2δ1e
M1t2 .

Similarly, we have

|u(x3,t2)|<2δ1e
M1t2 ,

which is a contradiction to (2.25). Thus, lim
x→−∞

ρ(x,t)= ρ̄ and lim
x→−∞

u(x,t)=0.
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Next, we prove lim
x→+∞

E(x,t)=0, lim
x→+∞

ρ(x,t)= ρ̄ and lim
x→+∞

u(x,t)=0. Integrating

(1.1)1 over (0,t)×(−∞,x), and integrating (1.1)3 over (−∞,x), we get

E(x,t)=

∫ x

−∞
(ρ0−D)(y)dy−

∫ t

0

(ρu)(x,τ)dτ. (2.26)

For any ε2>0(ε2<h̄) and any fixed t3>0, let

δ2=ε2/(2e
M2t3), (2.27)

where M2=max{1+2µ,2((γ−1)(h̄+ε2)/2)
2/(γ−1)}+1. Thus, there is a constant N3>

0 such that

|E(x,0)|≤ δ2, |h±(0)− h̄|≤ δ2, |u0(x)|≤ δ2,

for all x>N3. We claim that

|E(x,t)|<δ2eM2t, |h±(t)− h̄|<2δ2e
M2t, |u(x,t)|<2δ2e

M2t, (2.28)

for all x>N3. Suppose that (2.28) is not satisfied, then, there is a point (x4,t4) with
x4≥N3+Bt4+1 and t4<t3, such that either

|E(x4,t4)|= δ2eM2t4 , or |h±(t4)− h̄|=2δ2e
M2t4 , or |u(x4,t4)|=2δ2e

M2t4 , (2.29)

but (2.28) is true for t<t4.
Note that, at (x4,t4), there are two characteristic curves denoted by

x±(t;x4)=x±(0;x4)+

∫ t

0

(u(x,τ)±ρ
γ−1
2 (x,τ))|x=x±(τ ;x4)dτ,

satisfying x+(0;x4)<x−(0;x4). We need to show that x+(0;x4)>N3. In fact, since ρ
and u are uniformly bounded, there exists a positive constant B such that

x+(0;x4)≥x+(t4;x4)−
∫ t4

0

(|u(x+(τ),τ)|+ |ρ
γ−1
2 (x+(τ),τ)|)dτ

≥N3+Bt4+1−Bt4
=N3+1.

By (2.28)2, we have[
γ−1

2
(h̄−ε2)

] 2
γ−1

<ρ(x,t)<

[
γ−1

2
(h̄+ε2)

] 2
γ−1

, (2.30)

for all x>N3 and t<t4, From (2.26) and (2.30), we obtain, along two characteristic
curves x±(t;x4),

|E(x±(t),t)|≤ |E(x±(0),0)|+
∫ t

0

|ρu|
∣∣
x=x±(τ)

dτ

<δ2+2δ2

[
γ−1

2
(h̄+ε2)

] 2
γ−1
∫ t

0

eM2τdτ ≤ δ2eM2t, (2.31)



JIANING XU, SHAOHUA CHEN, MING MEI, AND YUMING QIN 191

for all t≤ t4. By (2.15) and (2.31), we find

|h±(t4)− h̄|<2δ2+δ2

∫ t4

0

eM2τdτ+2µδ2

∫ t4

0

eM2τdτ

=2δ2+
δ2(1+2µ)

M2
(eM2t4 −1)≤2δ2e

M2t4 .

Similarly, we have

|u(x4,t4)|<2δ2e
M2t4 ,

which is a contradiction to (2.29). Hence, lim
x→+∞

E(x,t)=0, lim
x→+∞

ρ(x,t)= ρ̄ and

lim
x→+∞

u(x,t)=0.

Now we are able to prove the uniform boundedness of the solutions to the Cauchy
problem (1.1), (1.3).

Lemma 2.2. Suppose that conditions in Lemma 2.1 are satisfied. For any K ∈ (0,h̄),
if (2.6)–(2.8) hold, then,

|E(x,t)|<M0Keθt, |h±(t)− h̄|<Keθt, |u(x,t)|<Keθt, (2.32)

for

0<t<t∗=
1

θ
ln
h̄

K
. (2.33)

Furthermore, ρ satisfies(
ρ̄

γ−1
2 − (γ−1)

2
Keθt

) 2
γ−1

<ρ(x,t)<2
2

γ−1 ρ̄, 0<t<t∗. (2.34)

Proof. If (2.32) is not satisfied, then there is a point (x5,t5) with t5∈ (0,t∗) such
that one of (2.32) is an equality at (x5,t5) and (2.32) holds for 0<t<t5. We denote
the two characteristic curves by x±(t;x5) which intersect at (x5,t5).

Note that, by (2.33), we have

Keθt<h̄ for t≤ t5.

From |h±(t)− h̄|<Keθt<h̄ for t<t5, we get

h̄−Keθt<h±(t)<2h̄, t< t5,

or

((γ−1)(h̄−Keθt)/2)2/(γ−1)<ρ(x±(t),t)<22/(γ−1)ρ̄, t< t5.

Using (2.26), (2.8) and (2.4), we deduce

|E(x5,t5)|<KM0+22/(γ−1)ρ̄K

∫ t5

0

eθτdτ

=KM0+
22/(γ−1)ρ̄

θ
K(eθt5 −1)
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=KM0+KM0(e
θt5 −1)

=KM0e
θt5 . (2.35)

From (2.15), (2.6), and (2.4), we obtain

|h±(t5)− h̄|<K+KM0

∫ t5

0

eθτdτ+µK

∫ t5

0

eθτdτ

=K+
K(M0+µ)

θ
(eθt5 −1)

=Keθt5 . (2.36)

Similarly, it follows from (2.16), (2.7), and (2.4) that

|u(x5,t5)|<Keθt5 . (2.37)

This is a contradiction with our assumption that one of (2.32) is an equality at (x5,t5).
Hence, (2.32) holds for t<t∗.

Lemma 2.2 enables us to prove Theorem 2.1.

Proof. (Proof of Theorem 2.1.) Differentiating (2.2)1 and (2.2)2 with respect
to x to give

rxt+rxx
(
u−ρ

γ−1
2 )+rx

(
ux−

γ−1

2
ρ

γ−3
2 ρx

)
=−Ex+

µ

2(1+ t)λ
(sx−rx),

sxt+sxx
(
u+ρ

γ−1
2 )+sx

(
ux+

γ−1

2
ρ

γ−3
2 ρx

)
=Ex−

µ

2(1+ t)λ
(sx−rx).

(2.38)

Denote z= rx and w=sx. Since

ux=
1

2
(sx−rx), ρ

γ−3
2 ρx=

1

2
(sx+rx),

then, (2.38) can be rewritten as
d

dt
z(x−(t),t)=

γ−3

4
wz+

γ+1

4
z2+

µ

2(1+ t)λ
(w−z)−Ex,

d

dt
w(x+(t),t)=−γ−3

4
wz− γ+1

4
w2− µ

2(1+ t)λ
(w−z)+Ex.

(2.39)

From the Equation (1.1)1, we get
d

dt
ρ(x−(t),t)=−(ρw)(x−(t),t),

d

dt
ρ(x+(t),t)=(ρz)(x+(t),t).

(2.40)

Multiplying (2.39)1 and (2.39)2 by A2(t)ρ
γ−3
4 (x−(t),t) and A2(t)ρ

γ−3
4 (x+(t),t), respec-

tively, then by (2.40), one has

d

dt

(
A2(t)

(
ρ

γ−3
4 z
)
(x−(t),t)

)
=
γ+1

4
A2(t)ρ

γ−3
4 z2+

µA2(t)

2(1+ t)λ
ρ

γ−3
4 w−A2(t)ρ

γ−3
4 Ex,

d

dt

(
A2(t)

(
ρ

γ−3
4 w

)
(x+(t),t)

)
=−γ+1

4
A2(t)ρ

γ−3
4 w2+

µA2(t)

2(1+ t)λ
ρ

γ−3
4 z+A2(t)ρ

γ−3
4 Ex.

(2.41)
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Let

H1(t) :=A2(t)
(
ρ

γ−3
4 z
)
(x−(t),t), H2(t) :=A2(t)

(
ρ

γ−3
4 w

)
(x+(t),t).

It follows from (2.40) and (2.41) that

d

dt
H1(t)=

γ+1

4
A−1

2 (t)ρ
3−γ
4 (H1(t))

2− µA2(t)

2(1+ t)λ
d

dt
θ(ρ)

−A2(t)ρ
γ−3
4 (ρ−D(x−(t))),

d

dt
H2(t)=−γ+1

4
A−1

2 (t)ρ
3−γ
4 (H2(t))

2+
µA2(t)

2(1+ t)λ
d

dt
θ(ρ)

+A2(t)ρ
γ−3
4 (ρ−D(x+(t))),

(2.42)

where

θ(ρ)=


4

γ−3
ρ

γ−3
4 , γ ̸=3,

lnρ, γ=3.

Integrating (2.42)1 over [0,t] gives

H1(t)=H1(0)+
γ+1

4

∫ t

0

A−1
2 (τ)ρ

3−γ
4 (H1(τ))

2dτ−
∫ t

0

µA2(τ)

2(1+τ)λ
d

dτ
θ(ρ)dτ

−
∫ t

0

A2(τ)ρ
γ−3
4 (ρ−D)dτ

=H1(0)+
µ

2
θ(ρ0)−

µA2(t)

2(1+ t)λ
θ(ρ)+

∫ t

0

µA2(τ)

2(1+τ)λ

(
µ

2(1+τ)λ
− λ

1+τ

)
θ(ρ)dτ

−
∫ t

0

A2(τ)ρ
γ−3
4 (ρ−D)dτ+

γ+1

4

∫ t

0

A−1
2 (τ)ρ

3−γ
4 (H1(τ))

2dτ.

For λ>0, µ>0 and t≤ t∗= t∗

2 , there exist two positive constants C1 and C2 which
depend only on λ, µ, γ,ρ̄, K, and C∗ such that

H1(t)>H1(0)−C1+C2

∫ t

0

(H1(τ))
2dτ. (2.43)

Next we prove that, if rx(x−(0),0)≥N is sufficiently large, (2.43) indicates that H1(t)
will blow up before t= t∗. In fact, we consider the integral equation

q(t)=
1

C2t∗
+C2

∫ t

0

q2(τ)dτ, (2.44)

which indicates that

q′(t)=C2q
2(t), q(0)=

1

C2t∗
.

That is

C2t∗−
1

q(t)
=C2t,
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which will blow up for t≤ t∗. We choose H1(0)=C1+
1

C2t∗
+1, subtracting (2.44) from

(2.43) to get

H1(t)−q(t)>1+C2

∫ t

0

(H1(τ)−q(τ))(H1(τ)+q(τ))dτ,

thus, H1(t)>q(t). Hence, H1(t) will blow up before t= t∗. Similarly, if −sx(x,0)≥N
is sufficiently large, one can get that −H2(t) will blow up before t= t∗. The proof of
Theorem 2.1 is completed.

3. Global existence of the solutions in critical case
In this section, we study the global existence and large-time behavior of solutions

to the Cauchy problem (1.1) and (1.3) in the critical case of λ=1 with µ>7/3.

3.1. Reformulation of the problem and main results. Let J =ρu be the
current density, then the system (1.1) with λ=1 becomes

ρt+Jx=0,

Jt+

(
J2

ρ
+p(ρ)

)
x

=ρE− µ

1+ t
J, (x,t)∈R×R+,

Ex=ρ−D(x).

(3.1)

For the technical reason (for example, see [42]), we have to restrict D(x)≡ constant=
D̂>0 in this section. Then, the asymptotic profile of (3.1) with D(x)= D̂ is constant
steady-state (D̂,0,0).

Precisely, we consider the system
ρt+Jx=0,

Jt+

(
J2

ρ
+p(ρ)

)
x

=ρE− µ

1+ t
J, (x,t)∈R×R+,

Ex=ρ−D̂,

(3.2)

subjected to the initial value

(ρ,J)(x,0)=(ρ0,J0)(x)→ (ρ̄,0) as x→±∞. (3.3)

In what follows, we are going to prove the global existence and large-time behavior
of solutions to the Cauchy problem (3.2)–(3.3) nearby the constant steady-constant
(D̂,0,0). By Lemma 2.1, if

ρ̄= D̂, lim
x→±∞

E(x,0)=0,

∫ +∞

−∞
(|ρ0(x)−D̂|+ |u0(x)|)<+∞, (3.4)

then,

lim
x→±∞

ρ(x,t)= D̂, lim
x→±∞

J(x,t)=0, lim
x→±∞

E(x,t)=0.

Now, we are able to reformulate the problem (3.2)–(3.3). Let us set

φ(x,t)=ρ(x,t)−D̂, ψ(x,t)=J(x,t)−0, ω(x,t)=E(x,t)−0. (3.5)
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Then, we arrive at a new system
φt+ψx=0,

ψt+

(
ψ2

D̂+φ
+p(D̂+φ)

)
x

=(D̂+φ)ω− µ

1+ t
ψ,

ωx=φ.

(3.6)

It is easy to verify that

ψ=−ωt, φ=ωx. (3.7)

Combining (3.6) and (3.7), we have

ωtt+
µ

1+ t
ωt+D̂ω−(p′(D̂)ωx)x=−ωωx+(p(D̂+ωx)−p′(D̂)ωx)x+

(
ω2
t

D̂+ωx

)
x

. (3.8)

We integrate (3.2)3 to get

E(x,0)=

∫ x

−∞
(ρ0(y)−D̂)dy=:ω0(x). (3.9)

Therefore, by (3.5), (3.7) and (3.9), we obtain the initial value for the Equation (3.8) as

ω(x,0)=ω0(x), ωt(x,0)=−J0(x). (3.10)

Next, we state the second result of this paper as follows.

Theorem 3.1. Assume that (3.4) holds. Let (ω0,J0)(x)∈H3(R)×H2(R), and Φ0 :=
∥ω0∥3+∥J0∥2 is sufficiently small. Then, the Cauchy problem (3.2)–(3.3) in the critical
case λ=1 with µ>7/3 admits a unique global solution (ρ,J,E)(x,t), which satisfies:

• When 7/3<µ≤3, then

(1+ t)
µ+1
4

(
∥J(t)∥+∥E(t)∥

)
+(1+ t)

µ
2

(
∥ρ(t)−D̂∥2+∥Jx(t)∥1+∥Ex(t)∥2

)
≤CΦ0;
(3.11)

• When 3<µ≤4, then

(1+ t)
(
∥J(t)∥+∥E(t)∥

)
+(1+ t)

µ
2

(
∥ρ(t)−D̂∥2+∥Jx(t)∥1+∥Ex(t)∥2

)
≤CΦ0;

(3.12)

• When µ>4, then

(1+ t)
(
∥J(t)∥+∥E(t)∥

)
+(1+ t)2

(
∥ρ(t)−D̂∥2+∥Jx(t)∥1+∥Ex(t)∥2

)
≤CΦ0.

(3.13)

Using Sobolev inequality

∥f∥L∞ ≤C∥f∥ 1
2 ∥fx∥

1
2 , (3.14)

we can further derive following estimates.

Corollary 3.1. Under the conditions of Theorem 3.1, it holds that

∥ρ(t)−D̂∥L∞ ≤

CΦ0(1+ t)
−µ

2 , for 7/3<µ≤3,

CΦ0(1+ t)
−µ

2 , for 3<µ≤4,
CΦ0(1+ t)

−2, for µ>4,

(3.15)
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and

∥J(t)∥L∞ ≤


CΦ0(1+ t)

− 3µ+1
8 , for 7/3<µ≤3,

CΦ0(1+ t)
−µ+2

4 , for 3<µ≤4,

CΦ0(1+ t)
− 3

2 , for µ>4.

(3.16)

Let T ∈ (0,+∞], we define the solution space as

X(T ) :={ω(x,t); ∂jtω∈C(0,T ;H3−j(R)), j=0,1, 0≤ t≤T}

with the norm

N1(T )
2 := sup

0≤t≤T

( 1∑
i=0

(1+ t)
µ+1
2 ∥∂itω(t)∥2+

3∑
i=1

(1+ t)µ∥∂ixω(t)∥2

+

2∑
i=1

(1+ t)µ∥∂ixωt(t)∥2
)

(3.17)

for 7/3<µ≤3; and

N2(T )
2 := sup

0≤t≤T

(
1∑

i=0

(1+ t)2∥∂itω(t)∥2+
3∑

i=1

(1+ t)µ∥∂ixω(t)∥2+
2∑

i=1

(1+ t)µ∥∂ixωt(t)∥2
)

(3.18)

for 3<µ≤4; and

N3(T )
2 := sup

0≤t≤T

(
1∑

i=0

(1+ t)2∥∂itω(t)∥2+
3∑

i=1

(1+ t)4∥∂ixω(t)∥2+
2∑

i=1

(1+ t)4∥∂ixωt(t)∥2
)

(3.19)

for µ>4.

Theorem 3.2. Under the conditions of Theorem 3.1. If Ni(T )≪1(i=1,2,3), then,
the Cauchy problem (3.8), (3.10) in the critical case λ=1 with µ>7/3 admits a unique
global solution ω(x,t), which satisfies:

• When 7/3<µ≤3, then

1∑
i=0

(1+ t)
µ+1
4 ∥∂itω(t)∥+

3∑
i=1

(1+ t)
µ
2 ∥∂ixω(t)∥+

2∑
i=1

(1+ t)
µ
2 ∥∂ixωt(t)∥≤CΦ0;

(3.20)

• When 3<µ≤4, then

1∑
i=0

(1+ t)∥∂itω(t)∥+
3∑

i=1

(1+ t)
µ
2 ∥∂ixω(t)∥+

2∑
i=1

(1+ t)
µ
2 ∥∂ixωt(t)∥≤CΦ0; (3.21)

• When µ>4, then

1∑
i=0

(1+ t)∥∂itω(t)∥+
3∑

i=1

(1+ t)2∥∂ixω(t)∥+
2∑

i=1

(1+ t)2∥∂ixωt(t)∥≤CΦ0. (3.22)

Proof. (Proof of Theorem 3.1.) Once Theorem 3.2 is proved, we can immediately
obtain Theorem 3.1.
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3.2. Proof of Theorem 3.2. We will prove Theorem 3.2 by employing a stan-
dard extension argument based on the local existence and the a priori estimates. The
local existence of the solution to the Cauchy problem (3.8), (3.10) can be obtained by
the iteration method, so we omit its detail. The key step is to establish the a priori
estimates (3.20)–(3.22) and the continuity arguments. The rest of this subsection is to
establish the a priori estimates (3.20)–(3.22).

From (3.17)–(3.19) and Sobolev inequality (3.14), if Ni(T )≪1(i=1,2,3), we have,
for µ>7/3,

0<D̂/2≤ D̂+ωx≤2D̂. (3.23)

We define the norm as follows:

• for 7/3<µ≤3, it is

N1,ε1(T )
2 := sup

0≤t≤T

( 1∑
i=0

(1+ t)
µ+1
2 −ε1∥∂itω(t)∥2+

3∑
i=1

(1+ t)µ−ε1∥∂ixω(t)∥2

+

2∑
i=1

(1+ t)µ−ε1∥∂ixωt(t)∥2
)
, (3.24)

where 0<ε1< (3µ−7)/8;

• for 3<µ≤4, it is

N2,ε2(T )
2 := sup

0≤t≤T

( 1∑
i=0

(1+ t)2∥∂itω(t)∥2+
3∑

i=1

(1+ t)µ−ε2∥∂ixω(t)∥2

+

2∑
i=1

(1+ t)µ−ε2∥∂ixωt(t)∥2
)
, (3.25)

where 0<ε2<1/2;

• for µ>4, it is

N3,ε3(T )
2 := sup

0≤t≤T

( 1∑
i=0

(1+ t)2∥∂itω(t)∥2+
3∑

i=1

(1+ t)4−ε3∥∂ixω(t)∥2

+

2∑
i=1

(1+ t)4−ε3∥∂ixωt(t)∥2
)
, (3.26)

where 0<ε3<1.

Lemma 3.1. Under the conditions of Theorem 3.2, when 7/3<µ≤3, it holds that

1

2
(1+ t)

µ+1
2 −ε1

∫
R
(ω2

t +p
′(D̂)ω2

x+D̂ω
2)dx

+ε1

∫ t

0

∫
R
(1+τ)

µ−1
2 −ε1(ω2

t +p
′(D̂)ω2

x+D̂ω
2)dxdτ

≤C(∥ω0∥21+∥J0∥2)+CN1,ε1(T )
3, (3.27)

where 0<ε1< (3µ−7)/8.
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Proof. Multiplying (3.8) by (1+ t)
µ+1
2 −ε1ωt+

µ+1
4 (1+ t)

µ−1
2 −ε1ω and integrating

the resulting equation with respect to x over R and using integration by parts give

d

dt

∫
R

[
1

2
(1+ t)

µ+1
2 −ε1(ω2

t +p
′(D̂)ω2

x+D̂ω
2)+

µ+1

4
(1+ t)

µ−1
2 −ε1ωωt

+

(
(µ+1)2

16
+

(µ+1)ε1
8

)
(1+ t)

µ−3
2 −ε1ω2

]
dx

+
µ−1+ε1

2

∫
R
(1+ t)

µ−1
2 −ε1ω2

t dx+
ε1
2

∫
R
(1+ t)

µ−1
2 −ε1p′(D̂)ω2

xdx

+

∫
R

[
ε1
2
(1+ t)

µ−1
2 −ε1D̂− 1

32
(µ+1)(µ−3−2ε1)(µ+1+2ε1)(1+ t)

µ−5
2 −ε1

]
ω2dx

=−
∫
R
ωωx

[
(1+ t)

µ+1
2 −ε1ωt+

µ+1

4
(1+ t)

µ−1
2 −ε1ω

]
dx

+

∫
R
(p(D̂+ωx)−p′(D̂)ωx)x

[
(1+ t)

µ+1
2 −ε1ωt+

µ+1

4
(1+ t)

µ−1
2 −ε1ω

]
dx

+

∫
R

(
ω2
t

D̂+ωx

)
x

[
(1+ t)

µ+1
2 −ε1ωt+

µ+1

4
(1+ t)

µ−1
2 −ε1ω

]
dx. (3.28)

Integrating (3.28) over [0,t], we get∫
R

[
1

2
(1+ t)

µ+1
2 −ε1(ω2

t +p
′(D̂)ω2

x+D̂ω
2)+

µ+1

4
(1+ t)

µ−1
2 −ε1ωωt

+

(
(µ+1)2

16
+

(µ+1)ε1
8

)
(1+ t)

µ−3
2 −ε1ω2

]
dx

+
µ−1+ε1

2

∫ t

0

∫
R
(1+τ)

µ−1
2 −ε1ω2

t dxdτ+
ε1
2

∫ t

0

∫
R
(1+τ)

µ−1
2 −ε1p′(D̂)ω2

xdxdτ

+

∫ t

0

∫
R

[
ε1
2
(1+τ)

µ−1
2 −ε1D̂

− 1

32
(µ+1)(µ−3−2ε1)(µ+1+2ε1)(1+τ)

µ−5
2 −ε1

]
ω2dxdτ

≤C(∥ω0∥21+∥J0∥2)−
∫ t

0

∫
R
ωωx

[
(1+τ)

µ+1
2 −ε1ωt+

µ+1

4
(1+τ)

µ−1
2 −ε1ω

]
dxdτ

+

∫ t

0

∫
R
(p(D̂+ωx)−p′(D̂)ωx)x

[
(1+τ)

µ+1
2 −ε1ωt+

µ+1

4
(1+τ)

µ−1
2 −ε1ω

]
dxdτ

+

∫ t

0

∫
R

(
ω2
t

D̂+ωx

)
x

[
(1+τ)

µ+1
2 −ε1ωt+

µ+1

4
(1+τ)

µ−1
2 −ε1ω

]
dxdτ

=C(∥ω0∥21+∥J0∥2)+I1+I2+I3. (3.29)

Next, we focus on estimating I1, I2 and I3 as below. From Hölder inequality, the Sobolev
inequality (3.14), and (3.24), we can estimate I1 as

I1=− 1

2

∫ t

0

∫
R

d

dτ
((1+τ)

µ+1
2 −ε1ωxω

2)dxdτ− ε1
2

∫ t

0

∫
R
(1+τ)

µ−1
2 −ε1ωxω

2dxdτ

+
1

2

∫ t

0

∫
R
(1+τ)

µ+1
2 −ε1ωxtω

2dxdτ
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≤C∥ω0∥21+(1+ t)
µ+1
2 −ε1∥ω∥L∞∥ω∥∥ωx∥+

∫ t

0

(1+τ)
µ−1
2 −ε1∥ω∥L∞∥ω∥∥ωx∥dτ

+

∫ t

0

(1+τ)
µ+1
2 −ε1∥ω∥L∞∥ω∥∥ωxt∥dτ

≤C∥ω0∥21+C(1+ t)
µ+1
2 −ε1∥ω∥ 3

2 ∥ωx∥
3
2 +C

∫ t

0

(1+τ)
µ−1
2 −ε1∥ω∥ 3

2 ∥ωx∥
3
2 dτ

+C

∫ t

0

(1+τ)
µ+1
2 −ε1∥ω∥ 3

2 ∥ωx∥
1
2 ∥ωxt∥dτ

=C∥ω0∥21+C(1+ t)
3
4 (

µ+1
2 −ε1)∥ω∥ 3

2 (1+ t)
3
4 (

µ+1
2 −ε1)∥ωx∥

3
2 (1+ t)−

1
2 (

µ+1
2 −ε1)

+C

∫ t

0

(1+τ)
3
4 (

µ+1
2 −ε1)∥ω∥ 3

2 (1+τ)
3
4 (

µ+1
2 −ε1)∥ωx∥

3
2 (1+τ)−

µ+5−2ε1
4 dτ

+C

∫ t

0

(1+τ)
3
4 (

µ+1
2 −ε1)∥ω∥ 3

2 (1+τ)
1
4 (

µ+1
2 −ε1)∥ωx∥

1
2

·(1+τ)
µ−ε1

2 ∥ωxt∥(1+τ)−
µ−ε1

2 dτ

≤C∥ω0∥21+CN1,ε1(T )
3. (3.30)

It follows from Taylor’s formula, Hölder inequality, (3.14), and (3.24) that I2 can be
estimated as

I2=

∫ t

0

∫
R
(p(D̂+ωx)−p(D̂)−p′(D̂)ωx)x

[
(1+τ)

µ+1
2 −ε1ωt+

µ+1

4
(1+τ)

µ−1
2 −ε1ω

]
dxdτ

=−
∫ t

0

∫
R
(p(D̂+ωx)−p(D̂)−p′(D̂)ωx)

[
(1+τ)

µ+1
2 −ε1ωxt

+
µ+1

4
(1+τ)

µ−1
2 −ε1ωx

]
dxdτ

≤C
∫ t

0

∫
R
ω2
x

[
(1+τ)

µ+1
2 −ε1 |ωxt|+(1+τ)

µ−1
2 −ε1 |ωx|

]
dxdτ

≤C
∫ t

0

(1+τ)
µ+1
2 −ε1∥ωx∥L∞∥ωx∥∥ωxt∥dτ+C

∫ t

0

(1+τ)
µ−1
2 −ε1∥ωx∥L∞∥ωx∥2dτ

≤C
∫ t

0

(1+τ)
µ+1
2 −ε1∥ωx∥

3
2 ∥ωxx∥

1
2 ∥ωxt∥dτ+C

∫ t

0

(1+τ)
µ−1
2 −ε1∥ωx∥

5
2 ∥ωxx∥

1
2 dτ

=C

∫ t

0

(1+τ)
3
4 (

µ+1
2 −ε1)∥ωx∥

3
2 (1+τ)

µ−ε1
4 ∥ωxx∥

1
2 (1+τ)

µ−ε1
2 ∥ωxt∥(1+τ)−

5µ−1−4ε1
8 dτ

+C

∫ t

0

(1+τ)
5
4 (

µ+1
2 −ε1)∥ωx∥

5
2 (1+τ)

µ−ε1
4 ∥ωxx∥

1
2 (1+τ)−

3µ+9−4ε1
8 dτ

≤CN1,ε1(T )
3. (3.31)

Now we are going to deal with I3, by Hölder inequality, (3.14), (3.23), and (3.24), one
can obtain

I3=−
∫ t

0

∫
R

ω2
t

D̂+ωx

[
(1+τ)

µ+1
2 −ε1ωxt+

µ+1

4
(1+τ)

µ−1
2 −ε1ωx

]
dxdτ

≤C
∫ t

0

(1+τ)
µ+1
2 −ε1∥ωt∥L∞∥ωt∥∥ωxt∥dτ+C

∫ t

0

(1+τ)
µ−1
2 −ε1∥ωx∥L∞∥ωt∥2dτ
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≤C
∫ t

0

(1+τ)
µ+1
2 −ε1∥ωt∥

3
2 ∥ωxt∥

3
2 dτ+C

∫ t

0

(1+τ)
µ−1
2 −ε1∥ωx∥

1
2 ∥ωxx∥

1
2 ∥ωt∥2dτ

=C

∫ t

0

(1+τ)
3
4 (

µ+1
2 −ε1)∥ωt∥

3
2 (1+τ)

3(µ−ε1)
4 ∥ωxt∥

3
2 (1+τ)−

5µ−1−4ε1
8 dτ

+C

∫ t

0

(1+τ)
1
4 (

µ+1
2 −ε1)∥ωx∥

1
2 (1+τ)

µ−ε1
4 ∥ωxx∥

1
2

·(1+τ)
µ+1
2 −ε1∥ωt∥2(1+τ)−

3µ+9−4ε1
8 dτ

≤CN1,ε1(T )
3. (3.32)

Inserting (3.30)–(3.32) into (3.29) to have∫
R

[
1

2
(1+ t)

µ+1
2 −ε1(ω2

t +p
′(D̂)ω2

x+D̂ω
2)+

µ+1

4
(1+ t)

µ−1
2 −ε1ωωt

+

(
(µ+1)2

16
+

(µ+1)ε1
8

)
(1+ t)

µ−3
2 −ε1ω2

]
dx

+
µ−1+ε1

2

∫ t

0

∫
R
(1+τ)

µ−1
2 −ε1ω2

t dxdτ+
ε1
2

∫ t

0

∫
R
(1+τ)

µ−1
2 −ε1p′(D̂)ω2

xdxdτ

+

∫ t

0

∫
R

[
ε1
2
(1+τ)

µ−1
2 −ε1D̂

− 1

32
(µ+1)(µ−3−2ε1)(µ+1+2ε1)(1+τ)

µ−5
2 −ε1

]
ω2dxdτ

≤C(∥ω0∥21+∥J0∥2)+CN1,ε1(T )
3. (3.33)

Noting that∣∣∣∣µ+1

4
(1+ t)

µ−1
2 −ε1ωωt

∣∣∣∣≤ 1

4
(1+ t)

µ+1
2 −ε1ω2

t +
(µ+1)2

16
(1+ t)

µ−3
2 −ε1ω2. (3.34)

Since 7/3<µ≤3 and 0<ε1< (3µ−7)/8, then, the desired estimate (3.27) follows from
(3.33) and (3.34).

Lemma 3.2. Under the conditions of Theorem 3.2, when 7/3<µ≤3, it holds that

1

2
(1+ t)µ−ε1

∫
R
(ω2

xt+p
′(D̂)ω2

xx+D̂ω
2
x)dx

+ε1

∫ t

0

∫
R
(1+τ)µ−1−ε1(ω2

xt+p
′(D̂)ω2

xx+D̂ω
2
x)dxdτ

≤C(∥ω0∥22+∥J0∥21)+CN1,ε1(T )
3+C

∫ t

0

∫
R
(1+τ)µ−3−ε1ω2

xdxdτ, (3.35)

where 0<ε1< (3µ−7)/8.

Proof. Differentiating (3.8) with respect to x yields

ωxtt+
µ

1+ t
ωxt+D̂ωx−p′(D̂)ωxxx

=−ω2
x−ωωxx+(p(D̂+ωx)−p′(D̂)ωx)xx+

(
ω2
t

D̂+ωx

)
xx

. (3.36)
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Multiplying (3.36) by (1+ t)µ−ε1ωxt+
µ
2 (1+ t)

µ−1−ε1ωx and integrating it over R and
using integration by parts, we obtain

d

dt

∫
R

[
1

2
(1+ t)µ−ε1(ω2

xt+p
′(D̂)ω2

xx+D̂ω
2
x)+

µ

2
(1+ t)µ−1−ε1ωxωxt

+
µ

4
(1+ε1)(1+ t)

µ−2−ε1ω2
x

]
dx

+
ε1
2

∫
R
(1+ t)µ−1−ε1ω2

xtdx+
ε1
2

∫
R
(1+ t)µ−1−ε1p′(D̂)ω2

xxdx

+

∫
R

[
ε1
2
(1+ t)µ−1−ε1D̂− µ

4
(µ−2−ε1)(1+ε1)(1+ t)µ−3−ε1

]
ω2
xdx

=−
∫
R
(ω2

x+ωωxx)

[
(1+ t)µ−ε1ωxt+

µ

2
(1+ t)µ−1−ε1ωx

]
dx

+

∫
R
(p(D̂+ωx)−p′(D̂)ωx)xx

[
(1+ t)µ−ε1ωxt+

µ

2
(1+ t)µ−1−ε1ωx

]
dx

+

∫
R

(
ω2
t

D̂+ωx

)
xx

[
(1+ t)µ−ε1ωxt+

µ

2
(1+ t)µ−1−ε1ωx

]
dx. (3.37)

Integrating (3.37) over [0,t], one has∫
R

[
1

2
(1+ t)µ−ε1(ω2

xt+p
′(D̂)ω2

xx+D̂ω
2
x)+

µ

2
(1+ t)µ−1−ε1ωxωxt

+
µ

4
(1+ε1)(1+ t)

µ−2−ε1ω2
x

]
dx

+
ε1
2

∫ t

0

∫
R
(1+τ)µ−1−ε1ω2

xtdxdτ+
ε1
2

∫ t

0

∫
R
(1+τ)µ−1−ε1p′(D̂)ω2

xxdxdτ

+

∫ t

0

∫
R

[
ε1
2
(1+τ)µ−1−ε1D̂− µ

4
(µ−2−ε1)(1+ε1)(1+τ)µ−3−ε1

]
ω2
xdxdτ

≤C(∥ω0∥22+∥J0∥21)−
∫ t

0

∫
R
(ω2

x+ωωxx)

[
(1+τ)µ−ε1ωxt+

µ

2
(1+τ)µ−1−ε1ωx

]
dxdτ

+

∫ t

0

∫
R
(p(D̂+ωx)−p′(D̂)ωx)xx

[
(1+τ)µ−ε1ωxt+

µ

2
(1+τ)µ−1−ε1ωx

]
dxdτ

+

∫ t

0

∫
R

(
ω2
t

D̂+ωx

)
xx

[
(1+τ)µ−ε1ωxt+

µ

2
(1+τ)µ−1−ε1ωx

]
dxdτ

=C(∥ω0∥22+∥J0∥21)+I4+I5+I6. (3.38)

Furthermore, I4, I5 and I6 can be estimated as follows. By Hölder inequality, (3.14),
and (3.24), we can estimate I4 as

I4≤C
∫ t

0

(1+τ)µ−ε1∥ωx∥
3
2 ∥ωxx∥

1
2 ∥ωxt∥dτ+C

∫ t

0

(1+τ)µ−ε1∥ω∥ 1
2 ∥ωx∥

1
2 ∥ωxx∥∥ωxt∥dτ

+C

∫ t

0

(1+τ)µ−1−ε1∥ωx∥
5
2 ∥ωxx∥

1
2 dτ+C

∫ t

0

(1+τ)µ−1−ε1∥ω∥ 1
2 ∥ωx∥

3
2 ∥ωxx∥dτ

=C

∫ t

0

(1+τ)
3(µ−ε1)

4 ∥ωx∥
3
2 (1+τ)

µ−ε1
4 ∥ωxx∥

1
2 (1+τ)

µ−ε1
2 ∥ωxt∥(1+τ)−

µ−ε1
2 dτ
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+C

∫ t

0

(1+τ)
1
4 (

µ+1
2 −ε1)∥ω∥ 1

2 (1+τ)
µ−ε1

4 ∥ωx∥
1
2 (1+τ)

µ−ε1
2 ∥ωxx∥

·(1+τ)
µ−ε1

2 ∥ωxt∥(1+τ)−
3µ+1−4ε1

8 dτ

+C

∫ t

0

(1+τ)
5(µ−ε1)

4 ∥ωx∥
5
2 (1+τ)

µ−ε1
4 ∥ωxx∥

1
2 (1+τ)−

µ+2−ε1
2 dτ

+C

∫ t

0

(1+τ)
1
4 (

µ+1
2 −ε1)∥ω∥ 1

2 (1+τ)
3(µ−ε1)

4 ∥ωx∥
3
2

·(1+τ)
µ−ε1

2 ∥ωxx∥(1+τ)−
3µ+9−4ε1

8 dτ ≤CN1,ε1(T )
3. (3.39)

From Taylor’s formula, Hölder inequality, (3.14), and (3.24), I5 can be estimated as

I5=−
∫ t

0

∫
R
(p′(D̂+ωx)−p′(D̂))ωxx

[
(1+τ)µ−ε1ωxxt+

µ

2
(1+τ)µ−1−ε1ωxx

]
dxdτ

=− 1

2

∫ t

0

∫
R

d

dτ
((1+τ)µ−ε1(p′(D̂+ωx)−p′(D̂))ω2

xx)dxdτ

− ε1
2

∫ t

0

∫
R
(1+τ)µ−1−ε1(p′(D̂+ωx)−p′(D̂))ω2

xxdxdτ

+
1

2

∫ t

0

∫
R
(1+τ)µ−ε1p′′(D̂+ωx)ωxtω

2
xxdxdτ

≤C∥ω0∥22+C(1+ t)µ−ε1∥ωx∥
1
2 ∥ωxx∥

5
2 +C

∫ t

0

(1+τ)µ−1−ε1∥ωx∥
1
2 ∥ωxx∥

5
2 dτ

+C

∫ t

0

(1+τ)µ−ε1∥ωxt∥
1
2 ∥ωxxt∥

1
2 ∥ωxx∥2dτ

=C∥ω0∥22+C(1+ t)
µ−ε1

4 ∥ωx∥
1
2 (1+ t)

5(µ−ε1)
4 ∥ωxx∥

5
2 (1+ t)−

µ−ε1
2

+C

∫ t

0

(1+τ)
µ−ε1

4 ∥ωx∥
1
2 (1+τ)

5(µ−ε1)
4 ∥ωxx∥

5
2 (1+τ)−

µ+2−ε1
2 dτ

+C

∫ t

0

(1+τ)
µ−ε1

4 ∥ωxt∥
1
2 (1+τ)

µ−ε1
4 ∥ωxxt∥

1
2 (1+τ)µ−ε1∥ωxx∥2(1+τ)−

µ−ε1
2 dτ

≤C∥ω0∥22+CN1,ε1(T )
3. (3.40)

Before we estimate I6, we first show the estimate ∥ωtt∥2. Multiplying (3.8) by ωtt and
integrating it over R, we obtain∫

R
ω2
ttdx=

∫
R

[
− µ

1+ t
ωt−D̂ω−ωωx+p(D̂+ωx)x+

(
ω2
t

D̂+ωx

)
x

]
ωttdx,

it then follows from Hölder inequality and Sobolev inequality (3.14) that

∥ωtt∥2≤C
(
(1+ t)−2∥ωt∥2+∥ω∥2+∥ω∥∥ωx∥3+∥ωxx∥2

+∥ωt∥∥ωxt∥3+∥ωt∥2∥ωxt∥2∥ωxx∥2
)
. (3.41)

Now, we deal with I6. By a direct calculation from Hölder inequality, (3.14), (3.23),
(3.24), and (3.41) that

I6=−
∫ t

0

∫
R

(
2ωtωxt

D̂+ωx

− ω2
tωxx

(D̂+ωx)2

)[
(1+τ)µ−ε1ωxxt+

µ

2
(1+τ)µ−1−ε1ωxx

]
dxdτ
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=
1

2

∫ t

0

∫
R

d

dτ

(
(1+τ)µ−ε1

ω2
tω

2
xx

(D̂+ωx)2

)
dxdτ+

∫ t

0

∫
R
(1+τ)µ−ε1

ω3
xt

D̂+ωx

dxdτ

−
∫ t

0

∫
R
(1+τ)µ−ε1

ωtω
2
xtωxx

(D̂+ωx)2
dxdτ+

ε1
2

∫ t

0

∫
R
(1+τ)µ−1−ε1

ω2
tω

2
xx

(D̂+ωx)2
dxdτ

−
∫ t

0

∫
R
(1+τ)µ−ε1

ωtωttω
2
xx

(D̂+ωx)2
dxdτ+

∫ t

0

∫
R
(1+τ)µ−ε1

ω2
tω

2
xxωxt

(D̂+ωx)3
dxdτ

−µ
∫ t

0

∫
R
(1+τ)µ−1−ε1

ωtωxtωxx

D̂+ωx

dxdτ

≤C(∥ω0∥22+∥J0∥21)+C(1+ t)µ−ε1∥ωt∥∥ωxt∥∥ωxx∥2

+C

∫ t

0

(1+τ)µ−ε1∥ωxt∥
5
2 ∥ωxxt∥

1
2 dτ

+C

∫ t

0

(1+τ)µ−ε1∥ωt∥
1
2 ∥ωxt∥

5
2 ∥ωxx∥

1
2 ∥ωxxx∥

1
2 dτ

+C

∫ t

0

(1+τ)µ−1−ε1∥ωt∥∥ωxt∥∥ωxx∥2dτ

+C

∫ t

0

(1+τ)µ−ε1∥ωt∥∥ωxt∥
3
2 ∥ωxx∥2∥ωxxt∥

1
2 dτ

+C

∫ t

0

(1+τ)µ−1−ε1∥ωt∥
1
2 ∥ωxt∥

3
2 ∥ωxx∥dτ

+C

∫ t

0

(1+τ)µ−ε1∥ωt∥
1
2 ∥ωxt∥

1
2 ∥ωxx∥

3
2 ∥ωxxx∥

1
2 ∥ωtt∥dτ

≤C(∥ω0∥22+∥J0∥21)+CN1,ε1(T )
3. (3.42)

Substituting (3.39), (3.40), and (3.42) into (3.38) to get∫
R

[
1

2
(1+ t)µ−ε1(ω2

xt+p
′(D̂)ω2

xx+D̂ω
2
x)+

µ

2
(1+ t)µ−1−ε1ωxωxt

+
µ

4
(1+ε1)(1+ t)

µ−2−ε1ω2
x

]
dx

+
ε1
2

∫ t

0

∫
R
(1+τ)µ−1−ε1ω2

xtdxdτ+
ε1
2

∫ t

0

∫
R
(1+τ)µ−1−ε1p′(D̂)ω2

xxdxdτ

+

∫ t

0

∫
R

[
ε1
2
(1+τ)µ−1−ε1D̂− µ

4
(µ−2−ε1)(1+ε1)(1+τ)µ−3−ε1

]
ω2
xdxdτ

≤C(∥ω0∥22+∥J0∥21)+CN1,ε1(T )
3. (3.43)

Recalling that∣∣∣∣µ2 (1+ t)µ−1−ε1ωxωxt

∣∣∣∣≤ 1

4
(1+ t)µ−ε1ω2

xt+
µ2

4
(1+ t)µ−2−ε1ω2

x, (3.44)

combining (3.27) and (3.43)–(3.44), we get the desired estimate (3.35).

Lemma 3.3. Under the conditions of Theorem 3.2, when 7/3<µ≤3, it holds that

1

2
(1+ t)µ−ε1

∫
R
(ω2

xxt+p
′(D̂)ω2

xxx+D̂ω
2
xx)dx
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+ε1

∫ t

0

∫
R
(1+τ)µ−1−ε1(ω2

xxt+p
′(D̂)ω2

xxx+D̂ω
2
xx)dxdτ

≤C(∥ω0∥23+∥J0∥22)+CN1,ε1(T )
3+C

∫ t

0

∫
R
(1+τ)µ−3−ε1(ω2

x+ω
2
xx)dxdτ, (3.45)

where 0<ε1< (3µ−7)/8.

Proof. Differentiating (3.36) in x to obtain

ωxxtt+
µ

1+ t
ωxxt+D̂ωxx−p′(D̂)ωxxxx

=−3ωxωxx−ωωxxx+(p(D̂+ωx)−p′(D̂)ωx)xxx+

(
ω2
t

D̂+ωx

)
xxx

.
(3.46)

Multiplying (3.46) by (1+ t)µ−ε1ωxxt+
µ
2 (1+ t)

µ−1−ε1ωxx and integrating it over R and
using integration by parts, one can get

d

dt

∫
R

[
1

2
(1+ t)µ−ε1(ω2

xxt+p
′(D̂)ω2

xxx+D̂ω
2
xx)+

µ

2
(1+ t)µ−1−ε1ωxxωxxt

+
µ

4
(1+ε1)(1+ t)

µ−2−ε1ω2
xx

]
dx

+
ε1
2

∫
R
(1+ t)µ−1−ε1ω2

xxtdx+
ε1
2

∫
R
(1+ t)µ−1−ε1p′(D̂)ω2

xxxdx

+

∫
R

[
ε1
2
(1+ t)µ−1−ε1D̂− µ

4
(µ−2−ε1)(1+ε1)(1+ t)µ−3−ε1

]
ω2
xxdx

=−
∫
R
(3ωxωxx+ωωxxx)

[
(1+ t)µ−ε1ωxxt+

µ

2
(1+ t)µ−1−ε1ωxx

]
dx

+

∫
R
(p(D̂+ωx)−p′(D̂)ωx)xxx

[
(1+ t)µ−ε1ωxxt+

µ

2
(1+ t)µ−1−ε1ωxx

]
dx

+

∫
R

(
ω2
t

D̂+ωx

)
xxx

[
(1+ t)µ−ε1ωxxt+

µ

2
(1+ t)µ−1−ε1ωxx

]
dx. (3.47)

Integrating (3.47) over [0,t], we have∫
R

[
1

2
(1+ t)µ−ε1(ω2

xxt+p
′(D̂)ω2

xxx+D̂ω
2
xx)+

µ

2
(1+ t)µ−1−ε1ωxxωxxt

+
µ

4
(1+ε1)(1+ t)

µ−2−ε1ω2
xx

]
dx

+
ε1
2

∫ t

0

∫
R
(1+τ)µ−1−ε1ω2

xxtdxdτ+
ε1
2

∫ t

0

∫
R
(1+τ)µ−1−ε1p′(D̂)ω2

xxxdxdτ

+

∫ t

0

∫
R

[
ε1
2
(1+τ)µ−1−ε1D̂− µ

4
(µ−2−ε1)(1+ε1)(1+τ)µ−3−ε1

]
ω2
xxdxdτ

≤C(∥ω0∥23+∥J0∥22)

−
∫ t

0

∫
R
(3ωxωxx+ωωxxx)

[
(1+τ)µ−ε1ωxxt+

µ

2
(1+τ)µ−1−ε1ωxx

]
dxdτ

+

∫ t

0

∫
R
(p(D̂+ωx)−p′(D̂)ωx)xxx

[
(1+τ)µ−ε1ωxxt+

µ

2
(1+τ)µ−1−ε1ωxx

]
dxdτ
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+

∫ t

0

∫
R

(
ω2
t

D̂+ωx

)
xxx

[
(1+τ)µ−ε1ωxxt+

µ

2
(1+τ)µ−1−ε1ωxx

]
dxdτ

=C(∥ω0∥23+∥J0∥22)+I7+I8+I9. (3.48)

Next, we estimate I7, I8 and I9 as below. Similar to (3.39), it is easy to compute that

I7≤C
∫ t

0

(1+τ)µ−1−ε1∥ω∥ 1
2 ∥ωx∥

1
2 ∥ωxx∥∥ωxxx∥dτ+C

∫ t

0

(1+τ)µ−1−ε1∥ωx∥
1
2 ∥ωxx∥

5
2 dτ

+C

∫ t

0

(1+τ)µ−ε1∥ω∥ 1
2 ∥ωx∥

1
2 ∥ωxxx∥∥ωxxt∥dτ

+C

∫ t

0

(1+τ)µ−ε1∥ωx∥
1
2 ∥ωxx∥

3
2 ∥ωxxt∥dτ

=C

∫ t

0

(1+τ)
1
4 (

µ+1
2 −ε1)∥ω∥ 1

2 (1+τ)
µ−ε1

4 ∥ωx∥
1
2 (1+τ)

µ−ε1
2 ∥ωxx∥

·(1+τ)
µ−ε1

2 ∥ωxxx∥(1+τ)−
3µ+9−4ε1

8 dτ

+C

∫ t

0

(1+τ)
µ−ε1

4 ∥ωx∥
1
2 (1+τ)

5(µ−ε1)
4 ∥ωxx∥

5
2 (1+τ)−

µ+2−ε1
2 dτ

+C

∫ t

0

(1+τ)
1
4 (

µ+1
2 −ε1)∥ω∥ 1

2 (1+τ)
µ−ε1

4 ∥ωx∥
1
2 (1+τ)

µ−ε1
2 ∥ωxxx∥

·(1+τ)
µ−ε1

2 ∥ωxxt∥(1+τ)−
3µ+1−4ε1

8 dτ

+C

∫ t

0

(1+τ)
µ−ε1

4 ∥ωx∥
1
2 (1+τ)

3(µ−ε1)
4 ∥ωxx∥

3
2 (1+τ)

µ−ε1
2 ∥ωxxt∥(1+τ)−

µ−ε1
2 dτ

≤CN1,ε1(T )
3. (3.49)

Analogous to (3.40), I8 can be estimated as

I8=−
∫ t

0

∫
R

(
(p′(D̂+ωx)−p′(D̂))ωxxx+p

′′(D̂+ωx)ω
2
xx

)
·
[
(1+τ)µ−ε1ωxxxt+

µ

2
(1+τ)µ−1−ε1ωxxx

]
dxdτ

=− 1

2

∫ t

0

∫
R

d

dτ
((1+τ)µ−ε1(p′(D̂+ωx)−p′(D̂))ω2

xxx)dxdτ

− ε1
2

∫ t

0

∫
R
(1+τ)µ−1−ε1(p′(D̂+ωx)−p′(D̂))ω2

xxxdxdτ

+
1

2

∫ t

0

∫
R
(1+τ)µ−ε1p′′(D̂+ωx)ωxtω

2
xxxdxdτ

−
∫ t

0

∫
R

d

dτ
((1+τ)µ−ε1p′′(D̂+ωx)ω

2
xxωxxx)dxdτ

+
µ−2ε1

2

∫ t

0

∫
R
(1+τ)µ−1−ε1p′′(D̂+ωx)ω

2
xxωxxxdxdτ

+

∫ t

0

∫
R
(1+τ)µ−ε1p′′′(D̂+ωx)ω

2
xxωxtωxxxdxdτ

+2

∫ t

0

∫
R
(1+τ)µ−ε1p′′(D̂+ωx)ωxxωxxtωxxxdxdτ
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≤C∥ω0∥23+C(1+ t)µ−ε1∥ωx∥
1
2 ∥ωxx∥

1
2 ∥ωxxx∥2

+C

∫ t

0

(1+τ)µ−1−ε1∥ωx∥
1
2 ∥ωxx∥

1
2 ∥ωxxx∥2dτ

+C

∫ t

0

(1+τ)µ−ε1∥ωxt∥
1
2 ∥ωxxt∥

1
2 ∥ωxxx∥2dτ+C(1+ t)µ−ε1∥ωxx∥

3
2 ∥ωxxx∥

3
2

+C

∫ t

0

(1+τ)µ−1−ε1∥ωxx∥
3
2 ∥ωxxx∥

3
2 dτ+C

∫ t

0

(1+τ)µ−ε1∥ωxx∥∥ωxt∥∥ωxxx∥2dτ

+C

∫ t

0

(1+τ)µ−ε1∥ωxx∥
1
2 ∥ωxxx∥

3
2 ∥ωxxt∥dτ

≤C∥ω0∥23+CN1,ε1(T )
3. (3.50)

Before we deal with I9, we first derive the L2 estimate of ωxtt. We multiply (3.36) by
ωxtt and integrate it over R to get∫

R
ω2
xttdx=

∫
R

[
− µ

1+ t
ωxt−D̂ωx−ω2

x−ωωxx+p(D̂+ωx)xx+

(
ω2
t

D̂+ωx

)
xx

]
ωxttdx,

then,

∥ωxtt∥2≤C
(
(1+ t)−2∥ωxt∥2+∥ωx∥2+∥ωx∥3∥ωxx∥+∥ω∥∥ωx∥∥ωxx∥2+∥ωxx∥3∥ωxxx∥
+∥ωxxx∥2+∥ωxt∥3∥ωxxt∥+∥ωt∥∥ωxt∥∥ωxxt∥2+∥ωt∥∥ωxt∥2∥ωxx∥2∥ωxxt∥
+∥ωt∥2∥ωxt∥2∥ωxxx∥2+∥ωt∥2∥ωxt∥2∥ωxx∥3∥ωxxx∥

)
. (3.51)

Now, we estimate I9. By a direct calculation and using Hölder inequality, (3.14), (3.23),
(3.24), and (3.51), we obtain

I9=−
∫ t

0

∫
R

(
2ω2

xt

D̂+ωx

+
2ωtωxxt

D̂+ωx

− 4ωtωxtωxx

(D̂+ωx)2
− ω2

tωxxx

(D̂+ωx)2
+

2ω2
tω

2
xx

(D̂+ωx)3

)
·
[
(1+τ)µ−ε1ωxxxt+

µ

2
(1+τ)µ−1−ε1ωxxx

]
dxdτ

=− µ

2

∫ t

0

∫
R

(
2ω2

xt

D̂+ωx

+
2ωtωxxt

D̂+ωx

− 4ωtωxtωxx

(D̂+ωx)2
+

2ω2
tω

2
xx

(D̂+ωx)3

)
(1+τ)µ−1−ε1ωxxxdxdτ

+5

∫ t

0

∫
R
(1+τ)µ−ε1

ωxtω
2
xxt

D̂+ωx

dxdτ−5

∫ t

0

∫
R
(1+τ)µ−ε1

ωtωxxω
2
xxt

(D̂+ωx)2
dxdτ

−6

∫ t

0

∫
R
(1+τ)µ−ε1

ω2
xtωxxωxxt

(D̂+ωx)2
dxdτ−4

∫ t

0

∫
R
(1+τ)µ−ε1

ωtωxtωxxxωxxt

(D̂+ωx)2
dxdτ

−6

∫ t

0

∫
R
(1+τ)µ−ε1

ω2
tω

3
xxωxxt

(D̂+ωx)4
dxdτ+

1

2

∫ t

0

∫
R

d

dτ

(
(1+τ)µ−ε1

ω2
tω

2
xxx

(D̂+ωx)2

)
dxdτ

+
ε1
2

∫ t

0

∫
R
(1+τ)µ−1−ε1

ω2
tω

2
xxx

(D̂+ωx)2
dxdτ−

∫ t

0

∫
R
(1+τ)µ−ε1

ωtωttω
2
xxx

(D̂+ωx)2
dxdτ

+

∫ t

0

∫
R
(1+τ)µ−ε1

ω2
tωxtω

2
xxx

(D̂+ωx)3
dxdτ+12

∫ t

0

∫
R
(1+τ)µ−ε1

ωtωxtω
2
xxωxxt

(D̂+ωx)3
dxdτ

+4

∫ t

0

∫
R
(1+τ)µ−ε1

ω2
tωxxωxxxωxxt

(D̂+ωx)3
dxdτ
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≤C(∥ω0∥23+∥J0∥22)+CN1,ε1(T )
3. (3.52)

Putting (3.49), (3.50) and (3.52) into (3.48) gives∫
R

[
1

2
(1+ t)µ−ε1(ω2

xxt+p
′(D̂)ω2

xxx+D̂ω
2
xx)+

µ

2
(1+ t)µ−1−ε1ωxxωxxt

+
µ

4
(1+ε1)(1+ t)

µ−2−ε1ω2
xx

]
dx

+
ε1
2

∫ t

0

∫
R
(1+τ)µ−1−ε1ω2

xxtdxdτ+
ε1
2

∫ t

0

∫
R
(1+τ)µ−1−ε1p′(D̂)ω2

xxxdxdτ

+

∫ t

0

∫
R

[
ε1
2
(1+τ)µ−1−ε1D̂− µ

4
(µ−2−ε1)(1+ε1)(1+τ)µ−3−ε1

]
ω2
xxdxdτ

≤C(∥ω0∥23+∥J0∥22)+CN1,ε1(T )
3. (3.53)

Noting that∣∣∣∣µ2 (1+ t)µ−1−ε1ωxxωxxt

∣∣∣∣≤ 1

4
(1+ t)µ−ε1ω2

xxt+
µ2

4
(1+ t)µ−2−ε1ω2

xx. (3.54)

Therefore, the desired estimate (3.45) can be derived from (3.35), (3.53) and (3.54).

Proposition 3.1. Under the conditions of Theorem 3.2, when 7/3<µ≤3, it holds
that

1∑
i=0

(1+ t)
µ+1
4 ∥∂itω(t)∥+

3∑
i=1

(1+ t)
µ
2 ∥∂ixω(t)∥+

2∑
i=1

(1+ t)
µ
2 ∥∂ixωt(t)∥≤CΦ0. (3.55)

Proof. It follows from Lemmas 3.1–3.3 that

1

2
(1+ t)

µ+1
2 −ε1

∫
R
(D̂ω2+p′(D̂)ω2

x+ω
2
t )dx

+
1

2
(1+ t)µ−ε1

∫
R
(D̂ω2

x+(p′(D̂)+D̂)ω2
xx+ω

2
xt+p

′(D̂)ω2
xxx+ω

2
xxt)dx

+ε1

∫ t

0

∫
R
(1+τ)

µ−1
2 −ε1(ω2

t +p
′(D̂)ω2

x+D̂ω
2)dxdτ

+ε1

∫ t

0

∫
R
(1+τ)µ−1−ε1(D̂ω2

x+(p′(D̂)+D̂)ω2
xx+ω

2
xt+p

′(D̂)ω2
xxx+ω

2
xxt)dxdτ

≤C(∥ω0∥23+∥J0∥22)+CN1,ε1(T )
3+C

∫ t

0

∫
R
(1+τ)µ−3−ε1(ω2

x+ω
2
xx)dxdτ.

Using Gronwall’s inequality, we have

1

2
(1+ t)

µ+1
2 −ε1

∫
R
(D̂ω2+p′(D̂)ω2

x+ω
2
t )dx

+
1

2
(1+ t)µ−ε1

∫
R
(D̂ω2

x+(p′(D̂)+D̂)ω2
xx+ω

2
xt+p

′(D̂)ω2
xxx+ω

2
xxt)dx

+ε1

∫ t

0

∫
R
(1+τ)

µ−1
2 −ε1(ω2

t +p
′(D̂)ω2

x+D̂ω
2)dxdτ

+ε1

∫ t

0

∫
R
(1+τ)µ−1−ε1(D̂ω2

x+(p′(D̂)+D̂)ω2
xx+ω

2
xt+p

′(D̂)ω2
xxx+ω

2
xxt)dxdτ

≤C(∥ω0∥23+∥J0∥22)+CN1,ε1(T )
3.
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Then, by taking ε1→0, and due to N1(T )≪1, we can get (3.55).

Lemma 3.4. Under the conditions of Theorem 3.2, when 3<µ≤4, it holds that

1

2
(1+ t)2

∫
R
(ω2

t +p
′(D̂)ω2

x+D̂ω
2)dx+(µ−3)

∫ t

0

∫
R
(1+τ)(ω2

t +p
′(D̂)ω2

x+D̂ω
2)dxdτ

≤C(∥ω0∥21+∥J0∥2)+CN2,ε2(T )
3, (3.56)

where 0<ε2<1/2.

Proof. Multiplying (3.8) by (1+ t)2ωt+
µ−1
2 (1+ t)ω, and applying similar argu-

ment as in Lemma 3.1, we obtain the desired estimate (3.56).

Lemma 3.5. Under the conditions of Theorem 3.2, when 3<µ≤4, it holds that

1

2
(1+ t)µ−ε2

∫
R
(ω2

xt+p
′(D̂)ω2

xx+D̂ω
2
x)dx

+ε2

∫ t

0

∫
R
(1+τ)µ−1−ε2(ω2

xt+p
′(D̂)ω2

xx+D̂ω
2
x)dxdτ

≤C(∥ω0∥22+∥J0∥21)+CN2,ε2(T )
3+C

∫ t

0

∫
R
(1+τ)µ−3−ε2ω2

xdxdτ, (3.57)

where 0<ε2<1/2.

Proof. Multiplying (3.36) by (1+ t)µ−ε2ωxt+
µ
2 (1+ t)

µ−1−ε2ωx, similarly to the
proof of Lemma 3.2, we get (3.57).

Lemma 3.6. Under the conditions of Theorem 3.2, when 3<µ≤4, it holds that

1

2
(1+ t)µ−ε2

∫
R
(ω2

xxt+p
′(D̂)ω2

xxx+D̂ω
2
xx)dx

+ε2

∫ t

0

∫
R
(1+τ)µ−1−ε2(ω2

xxt+p
′(D̂)ω2

xxx+D̂ω
2
xx)dxdτ

≤C(∥ω0∥23+∥J0∥22)+CN2,ε2(T )
3+C

∫ t

0

∫
R
(1+τ)µ−3−ε2(ω2

x+ω
2
xx)dxdτ, (3.58)

where 0<ε2<1/2.

Proof. Multiplying (3.46) by (1+ t)µ−ε2ωxxt+
µ
2 (1+ t)

µ−1−ε2ωxx, and by a similar
calculation to Lemma 3.3, we have the desired estimate (3.58).

Combining Lemmas 3.4–3.6 and Gronwall’s inequality, we can prove the following
proposition, whose proof is similar to Proposition 3.1 and we omit it here.

Proposition 3.2. Under the conditions of Theorem 3.2, when 3<µ≤4, it holds that

1∑
i=0

(1+ t)∥∂itω(t)∥+
3∑

i=1

(1+ t)
µ
2 ∥∂ixω(t)∥+

2∑
i=1

(1+ t)
µ
2 ∥∂ixωt(t)∥≤CΦ0. (3.59)

Lemma 3.7. Under the conditions of Theorem 3.2, when µ>4, it holds that

1

2
(1+ t)2

∫
R
(ω2

t +p
′(D̂)ω2

x+D̂ω
2)dx

+(µ−3)

∫ t

0

∫
R
(1+τ)(ω2

t +p
′(D̂)ω2

x+D̂ω
2)dxdτ
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≤C(∥ω0∥21+∥J0∥2)+CN3,ε3(T )
3, (3.60)

where 0<ε3<1.

Proof. Multiplying (3.8) by (1+ t)2ωt+
µ−1
2 (1+ t)ω, similarly to the process for

deriving Lemma 3.1, we can get (3.60).

Lemma 3.8. Under the conditions of Theorem 3.2, when µ>4, it holds that

1

2
(1+ t)4−ε3

∫
R
(ω2

xt+p
′(D̂)ω2

xx+D̂ω
2
x)dx

+ε3

∫ t

0

∫
R
(1+τ)3−ε3(ω2

xt+p
′(D̂)ω2

xx+D̂ω
2
x)dxdτ

≤C(∥ω0∥22+∥J0∥21)+CN3,ε3(T )
3, (3.61)

where 0<ε3<1.

Proof. Multiplying (3.36) by (1+ t)4−ε3ωxt+2(1+ t)3−ε3ωx, and applying similar
argument as in Lemma 3.2, we can obtain the desired estimate (3.61).

Lemma 3.9. Under the conditions of Theorem 3.2, when µ>4, it holds that

1

2
(1+ t)4−ε3

∫
R
(ω2

xxt+p
′(D̂)ω2

xxx+D̂ω
2
xx)dx

+ε3

∫ t

0

∫
R
(1+τ)3−ε3(ω2

xxt+p
′(D̂)ω2

xxx+D̂ω
2
xx)dxdτ

≤C(∥ω0∥23+∥J0∥22)+CN3,ε3(T )
3+C

∫ t

0

∫
R
(1+τ)1−ε3ω2

xxdxdτ, (3.62)

where 0<ε3<1.

Proof. Multiplying (3.46) by (1+ t)4−ε3ωxxt+2(1+ t)3−ε3ωxx, similarly to the
proof of Lemma 3.3, we have (3.62).

Combining Lemmas 3.7–3.9 and using Gronwall’s inequality, and applying similar
argument as in Proposition 3.1, we can prove the following proposition. The detail of
proof is also omitted.

Proposition 3.3. Under the conditions of Theorem 3.2, when µ>4, it holds that

1∑
i=0

(1+ t)∥∂itω(t)∥+
3∑

i=1

(1+ t)2∥∂ixω(t)∥+
2∑

i=1

(1+ t)2∥∂ixωt(t)∥≤CΦ0. (3.63)

Proof. (Proof of Theorem 3.2.) Propositions 3.1–3.3 imply Theorem 3.2.

From the Equation (3.8), the inequalities (3.20)–(3.22), and Hölder inequality, we
can prove the following lemma and we omit its proof here.

Lemma 3.10. Suppose that conditions in Theorem 3.2 are satisfied, then,

(1+ t)
µ+1
4 (∥ωtt(t)∥+∥ωttt(t)∥)+(1+ t)

µ
2 ∥ωxtt(t)∥≤CΦ0, for 7/3<µ≤3,

(1+ t)(∥ωtt(t)∥+∥ωttt(t)∥)+(1+ t)
µ
2 ∥ωxtt(t)∥≤CΦ0, for 3<µ≤4,

(1+ t)(∥ωtt(t)∥+∥ωttt(t)∥)+(1+ t)2∥ωxtt(t)∥≤CΦ0, for µ>4.
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4. Numerical Simulations
In this section, we present numerical simulations in the critical case of λ=1 to

demonstrate the global solutions for some non-large initial derivatives and the arising
of blow-up solution at a point for some large initial derivatives. To obtain a stable
numerical solution, we use (2.1), (2.2) and (2.26) to form the following equivalent system:

rt+rx
(
u−ρ

γ−1
2

)
=−E+

µ

2(1+ t)λ
(s−r),

st+sx
(
u+ρ

γ−1
2

)
=E− µ

2(1+ t)λ
(s−r),

Et=− (s−r)

2

(
γ−1)(s+r)

4
+ ρ̄

γ−1
2

) 2
γ−1

r(x,0)=
2

γ−1

(
ρ

γ−1
2

0 (x)− ρ̄
γ−1
2

)
−u0(x),

s(x,0)=
2

γ−1

(
ρ

γ−1
2

0 (x)− ρ̄
γ−1
2

)
+u0(x)

E(x,0)=
∫ x

−∞(ρ0−D)(y)dy.

(4.1)

We use Lax-Friedrichs scheme to numerically study the following two examples with
λ=1,µ=3,γ=3 and D(x)≡3.
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Fig. 4.1. Global solutions for non-large initial derivatives
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Fig. 4.2. Blowup solutions for large initial derivatives
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Example 4.1 (Global solutions for non-large initial derivatives). Here, we choose the
initial data

ρ0(x)=3+exp(−x2)sin(3x), u0(x)=−0.5exp(−2x2)cos(2x).

The computational domain is [−20,20] with Neumann boundary conditions and 100001
uniform mesh points. When t=15, the maximum values of ρ, |u| and |E| are all less
than 0.0004, which are small enough. The numerical results presented in Figure 4.1
show the global existence of the solutions, which time-asymptotically behave as the
steady-states: (ρ,u,E)(x,t)→ (3,0,0) and (ρx,ux,Ex)(x,t)→ (0,0,0) as t→∞.

Example 4.2 (Blowup solutions for large initial derivatives). We choose initial data
as

ρ0(x)=3+3exp(−x2)sin(8x), u0(x)=−0.5exp(−2(x+0.02)2)cos(7x).

The initial data are steep as showed in Figure 4.2. The computational domain is [−5,5]
with Neumann boundary conditions and 500001 uniform mesh points. The solutions
(ρ,u,E)(x,t) are bounded, but their derivatives (ρx,ux,Ex) will blow up near t≈0.055.
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