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UNIPOLAR EULER-POISSON EQUATIONS WITH
TIME-DEPENDENT DAMPING:
BLOW-UP AND GLOBAL EXISTENCE*

JIANING XUT, SHAOHUA CHEN?#, MING MEI¢, AND YUMING QINY

Abstract. This paper is concerned with the Cauchy problem for one-dimensional unipolar Euler-
Poisson equations with time-dependent damping, where the time-asymptotically degenerate damping in
the form of fﬁpu for A >0 with x>0 plays a crucial role for the structure of solutions. The main
issue of the paper is to investigate the critical case with A=1. We first prove that, for all cases with
A>0 and p>0 (including the critical case of A=1), once the initial data is steep at a point, then the
solutions are locally bounded but their derivatives will blow up in finite time, by means of the method
of Riemann invariants and the technical convex analysis. Secondly, for the critical case of A=1 with
1>7/3, we prove that there exists a unique global solution, once the initial perturbation around the
constant steady-state is sufficiently small. In particular, we derive the algebraic convergence rates of the
solution to the constant steady-state, which are piecewise, related to the parameter p for 7/3 <pu <3,
3<pu<4 and p>4. The adopted method of proof in this critical case is the technical time-weighted
energy method and the time-weight depends on the parameter y. Finally, we carry out some numerical
simulations in two cases for blow-up and global existence, respectively, which numerically confirm our
theoretical results.

Keywords. Unipolar Euler-Poisson; time-asymptotically degenerate damping; blow-up; global
existence; decay rates; critical.
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1. Introduction

Modeling equations. In this paper, we consider the one-dimensional unipolar hy-
drodynamic model of semiconductor, which is represented by the Euler-Poisson system
with time-dependent damping

Pt+(PU)x =0,
(pu)t+(pu2+p(p))z:pE—ﬁpu, (m,t)eRxR+, (1.1)
E.=p—D(x).

Here, the unknown functions p(z,t) >0, u(x,t) and E(x,t) denote the electronic density,
the electronic velocity, and the electric field, respectively. The given function D(z) >0
denotes the doping profile which is the density of impurities in the semiconductor device,
and p=p(p) is the pressure-density function. The term —ﬁpu with parameters
A>0 and p>0 is the so-called time-asymptotically degenerate damping effect. The
hydrodynamic models of semiconductors are usually used to characterize the motion of
the charged fluid particles, for example, the electrons and holes in semiconductor devices
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[2,23,31]. Recently, the theoretical study and numerical computation on hydrodynamic
models of semiconductors have been one of the hot spots in mathematical physics.

Background of study. When A=0 and x>0, the damping in the system (1.1)
is reduced to the regular damping. There are many results about the existence and
uniqueness of the subsonic/supersonic/transonic solution for the steady-state system of
(1.1) with regular damping, we can refer to [1,5,6,8,9,27,28,32,38,39] and references
therein. There are also many results about the large-time behavior of solutions to the
system (1.1) with regular damping, see [13,16-18,24,29,34,35,41] for details. Among
them, Li-Markowich-Mei [24] showed that the solution to the initial boundary value
problem of (1.1) with regular damping exists globally and tends exponentially to the
corresponding steady-state solution. Luo-Natalini-Xin [29] obtained the global existence
of smooth solutions to the Cauchy problem of (1.1) with regular damping, and showed
that the solutions converge to the stationary solutions of the drift-diffusion equations
when the state constants on the current density and the electric field are zero (switch-off
case). They required such a stiff condition owing to a technical difficulty in reformulating
the perturbed system in L? sense. Later, Huang-Mei-Wang-Yu [18] remarkably showed
that the solutions to the Cauchy problem exist globally and converge to stationary
solutions when the state constants on the current density and the electric field are
nonzero (switch-on case). By technically constructing correction functions, they [18]
released the switch-off requirement to the switch-on case. Regarding the study on the
bipolar hydrodynamic models of semiconductors with regular damping, one can refer
to [7,10,19,20,33] and references therein.

When A >0 and p >0, the damping effect is time-asymptotically degenerate. While,
when A<0 and p>0, the damping effect is time-asymptotically enhancing. In these
cases, Li-Li-Mei-Zhang [26] investigated the Cauchy problem to the one-dimensional
bipolar Euler-Poisson system with time-dependent damping for —1<A<1 and p=1,
and showed that the solutions time-algebraically converge to the corresponding diffusion
waves when the initial perturbation is small enough. Later, Luan-Mei-Rubino-Zhu
[30] proved that the solutions of the bipolar Euler-Poisson system with time-dependent
damping for A=1 and p>2 (the critical case) time-algebraically converge to constant
steady-states, when the initial perturbation is small enough. But the convergence rates
are not sufficient, compared with Euler equations with critical time-dependent damping
[12]. Here, they [26,30] restricted the doping profile to D(x)=0. For the unipolar
case of Euler-Poisson system with time-dependent damping, with the doping profile
D(z)#0, Sun-Mei-Zhang [42] considered the non-critical case A€ (—1,0)U(0,1) with
=1, and showed that the solutions converge to steady-states in the sub-exponential
form for —1 <A <0, and to the constant steady-states in the sub-exponential form for
0 <A <1 if the doping profile is a constant.

To better understand how the time-dependent damping influences the structure of
solutions for the Euler-Poisson equations, let us recall the simpler case of Euler equations
with time-dependent damping:

v —uy =0,
I
uH—p(v)l:—mu, (z,t) eERx Ry, (1.2)

(v,u)(x,0) = (vo,up)(z) = (v4,ut), as x— Foo,

where v(z,t) >0 and wu(z,t) represent the specific volume of the flow and fluid velocity,
respectively. For states constants v, =v_, Pan [36, 37| firstly showed that the critical
exponents for A and g are A=1 and p=2. Precisely, when 0<A<1, u>0 or A=1,



JIANING XU, SHAOHUA CHEN, MING MEI, AND YUMING QIN 183

1> 2, the solutions of (1.2) exist globally in time, while, when A=1, 0<u <2 or A>1,
>0, the solutions of (1.2) will blow up in finite time. Three-dimensional cases were
significantly studied by Hou-Witt-Yin [14,15] and Ji-Mei [21,22], recently. In [11], Geng-
Huang-Wu concerned with the asymptotic behavior of L weak-entropy solutions to
the compressible Euler equations with a vacuum and time-dependent damping. For
vy #v_, the parameters of A and p still play the crucial role for the structure of solu-
tions. In fact, when 0 < A <1 and >0, Cui-Yin-Zhang-Zhu [4] and Li-Li-Mei-Zhang [25]
both independently obtained the convergence rates of the original solutions for (1.2) to
the diffusion waves if the initial perturbation around the diffusion waves and the wave
strength |vy —v_|4 |uy —u_| both are sufficiently small. The convergence rates in [4]
are better than in [25]. Clearly, when 0 <A <1 and p >0, the time-asymptotically de-
generate damping makes (1.2) behave like a degenerate parabolic system with diffusion
phenomena. In the critical case A=1 and p > 2, Geng-Lin-Mei [12] remarkably observed
that the hyperbolicity and the damping effect both play important roles and cannot be
ignored. They [12] further proved that the solutions of (1.2) converge to the solutions
of linear wave equations with critical time-dependent damping. When A=1, 0< <2
or A>1, 4 >0, Sugiyama [40] proved that the derivative blow-up occurs in finite time
with the solution itself and the pressure bounded once the initial data are steep by using
Riemann invariants method. For the case A > 1, the damping effect is so weak that it can
be ignored, which makes the system (1.2) almost behave like a pure hyperbolic system
and the shock waves must form. In particular, Chen-Li-Li-Mei-Zhang [3] showed that
if0<A<1, u>0o0r A=1, u>2, even if the wave strength and the initial perturbation
are big, once the derivatives of the initial data are not big, the solutions of (1.2) exist
globally. However, for all A>0 and x>0, once the derivatives of the initial data are big
enough at some point, the solutions are still bounded but the derivatives of solutions
will blow up in finite time.

Technical difficulties. Talking about the mechanism of blow-up and global exis-
tence of solutions for Euler-Poisson equations with time-dependent damping, the study
is quite limited, and becomes more complicated and challenging due to the strong cou-
pling and nonlinearity of the system (1.1). Our goal of this paper is to investigate
blow-up and global solutions of the system (1.1) subjected to the initial value

(p,u)(.ﬁ,O):(po,Uo)(Z‘)—}(ﬁ,O) as & — %00, (13)

where p > 0 is the state constant. We consider the case that the pressure-density function
p(p) satisfies the Gamma-law:

p(p)=p"/v, v>1

Here are some technical issues we need to point out.

(1) For the blow-up phenomena, different from the previous study [3] on Euler equa-
tions, there is a strong coupling for the system with the electric field E(x,t), which
causes the boundedness of the solutions for the system to be local only, but not
globally uniform. This local boundedness of the solutions enhances difficulties in
the proof of blow-up in the frame of Riemann variants.

(2) For the global existence in the critical case of A=1 with p>7/3, different from
the previous study [30] for bipolar Euler-Poisson system, the doping profile D(x)
is nonzero here. But the nonzero doping profile will cause some essential difficulty
in establishing the energy estimates. In order to overcome it, here we technically
choose the weight functions to be related to the physical parameter 4 and introduce
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some small quantities ¢; (i =1,2,3) when we carry out the energy estimates, then
we can artfully derive the algebraic convergence rates related to p, which are piece-
wise in three parts: 7/3<pu<3, 3<pu<4 and p>4. These rates are much better
than the rates showed in [30]. On the other hand, compared with Euler equations
with critical time-dependent damping [12], the calculation of decay rates for Euler-
Poisson equations with critical time-dependent damping is more complicated and
trickier.

Main results. In summary, we precisely state our main results as below:

et (p,u, )€ x 10, or L >0 be the solutions to the Cauchy problem (1.1),

1) L E)e CYR x [0,L]) for L>0 be the soluti he Cauch bl 1.1
(1.3). Suppose that D(x)=p for < —Ny, where Ny >0 is sufficiently large. If
lim E(x,0)=0 and the initial data satisfy (2.5)—(2.8). Then, the solutions are lo-

r—+oo
cally bounded. Furthermore, for all cases A >0 and p >0, the derivatives of solutions

will blow up in finite time when the derivatives of the initial Riemann invariants
with absolute value are large enough.

(2) For technical reason, we have to restrict the doping profile to D(z)=D for some
positive constant 15, in fact, we need ﬁ:ﬁ. And the expected steady-state is re-
duced to the constant steady-state (ﬁ,0,0). We then prove that the unique solution
(p,JJ,E)(z,t) of (1.1), (1.3) in the critical case A=1 with p >7/3 exists globally and
satisfies:

e When 7/3 < <3, then

1+ (IO +IE@) + (14D (llo(t) = Dl
H| T2 ()1 + ] B () [12) < CPo;

e When 3< <4, then

A+ TN+ IEDN) + 1 +8) 2 (lp(t) = D2+ 19 ()1 + | Eo (2)]]2) < Co;
e When 1> 4, then

A+ IO+ IEDN) + 1+ (llo(8) = Do+ (011 + [ Eo (t)]]2) < CPo,

provided that the initial perturbation ® is sufficiently small and (3.4) holds, where
J=pu, ®g:=||wolls+]Joll2, and wp is defined in (3.9).

REMARK 1.1. Note that, for Euler equations studied in [3,12,14,15,36,37,40], A=1
with > 2 is the critical case for the global existence of the solutions. However, here we
have to restrict p>7/3 when A=1. Tt seems that u>7/3 is not optimal for the global
existence, but we could not test the global existence once A=1 and 2 < < 7/3, because
the system coupling with the electric field E(z,t) and with the non-zero doping profile
D(z) makes the modeling equations totally different from the previous studies. Indeed,
some obstacles exist in the proof.

Notations. Throughout this paper, C' always denotes a generic positive constant
which is independent of x and ¢, and may be different in different lines. L?(R) is the space
of square-integrable real-valued functions defined on R, with the norm || f||:= || f||z>®)-
L>°(R) is the space of bounded measurable functions defined on R, with the norm
| fllzee == || fllLoe (r) =esssup|f|. H™(R) (m >0) is the usual Sobolev space whose norm

z€R

is abbreviated as || f||m = pe, 10% f]|.
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The rest of this paper is organized as follows. In Section 2, we prove that for all
A>0 and p >0, the derivatives of solutions to the Cauchy problem (1.1), (1.3) will blow
up in finite time. The global existence and large-time behavior of the solutions to the
Cauchy problem (1.1), (1.3) in critical case A=1 with u>7/3 are obtained in Section
3.

2. Blow up for the steep initial data

In this section, for all cases of A >0 and p >0, we show that the derivatives of the
solutions to Cauchy problem (1.1) and (1.3) will blow up in finite time if the derivatives
of the initial data are sufficiently large.

We introduce the Riemann invariants to the system (1.1):

2 2 -

r(x,t)::ﬁ(p%(x,t)—ﬁ%)—u(x,t), s(x,t)::ﬁ(pT(x,t)—ﬁ%)—i—u(amt).
(2.1)
Then (r,s) satisfy the following system
-t H
Tt+7'm(u—p 2 )__E+W(S_T),
O S A
i+ 8z (u+p w)_l 2(1+t)A(8 7) 22)
r(2,0) =27 (py® (2)—p = ) —uo(z) =:ro(2),
s(2,0)= =21 (py? (2) =T ) +uo(x)=:s0(x)
Denote
Yo "o
Ai(t)= ——d As(t)= —d *=supD
0 exp(/o TR T)’ (0 exp(/o 27 T)’ i
and

1

0=§(u+ u2+227/(”‘1)ﬁ)7 (2:3)
22/(v-15 1

Mo=7p=§( M2+22"//(’Y—1)[)—‘u>. (2.4)

0
We state the main result of this section as follows.

THEOREM 2.1.  Let (p,u,E) € CY(Rx[0,L]) for L >0 be the solutions to the Cauchy
problem (1.1) and (1.3). Suppose that D(x)=p for x < —Ny, where No >0 is sufficiently
large. If Elin E(x,0)=0 and the initial data satisfy

“+o0
/_ (I0(z) — 71+ u0()| + |po(x) — D(&) ) dax < +00, (2.5)
11 (0) + s (0) — 25+ o4 (0)) — o (— (0))] < 2K, (2.6)
14 (0) — i (0) g (2 (0)) +uo 4 (0))] < 2K, (2.7)
and
\ | (PO—D)(y)dy‘ < KMy, (2.8)
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for any K € (0,h), where x4 (t) are the characteristic curves satisfying

%xi(t):u(xi() )+p"T (2 (t),8),

and ha(t) and h are defined by

2 4

hy(t)= ﬁﬂ (z£(t),t), h=—=p=.

Then, the solutions (p,u,E) are uniformly bounded for 0<t<t*:= 1ln . Further-
more, for all cases A>0 and >0, there exists a sufficiently large posztwe constant
N=N(v,u,\,C*,p,K) such that, if r,(x,0) >N or s,(z,0) <—N, then the derivatives
of the solutions will blow up before t=t, := %, that is

im || (pa,ue)(t)]| Lo =400
t—t—

In order to obtain the blow-up result, we first need to derive the uniform bound-
edness of the solutions to (1.1), (1.3). We prepare the following two lemmas for the
boundedness of the solutions.

LEmMA 2.1. Let (p,u,E)€ C*(Rx[0,L]) be the solutions to the Cauchy problem

(1.1) and (1.3), p and u be uniformly bounded in R x [0,L] and p>dp>0. Suppose that

D(z)=p for x < —Ny, where Ny >0 is sufficiently large. If grin E(x,0)=0 and (2.5)
x oo

holds, then

lim E(z,t)=0, lim p(x,t)=p, lim wu(z,t)=0. (2.9)

rz—+oo r—+oo r—too

Proof.  Let x4(t) be the plus and minus characteristic curves which satisfy the
following differential equations:

L ()=l (6),0)%0"T (r2(0),1) (2.10)

Differentiating r(z_(t),t)A;(t) with respect to t to get

e 00401 =410 Fr(o- 0.0+ B 0.
pA; (1)

:Al(t)(rt—krm (u pL)) i (1+t))\r

A1) (p"7 pr =+ (077 pr—tia) (u—p 7))
pAL(t) (2 e s
MREER <v—1(p T )“)
_ 1z pALt) (2 o oy
_Al(t)(—E+(1+t))\u)+(1+t))\(7_1(p —p ) u)

— OB+ EES (0 ), (2.11)

Analogous to (2.11), we obtain

%[5($+(t)7t)141(t)]=A1(t)E+ pAl) 2 e ety

(2.12)
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Denote
2 a-1 - 2 a=1
hi(t)=——p 2 t),t h=——p2.
:l:() ’y—lp 2 (xﬂ:( )7 )7 7_110 2

Integrating (2.11) and (2.12) over [0,t], respectively, one has

r(z—(t),8) =A7 (t)r(2-(0),0) — Afl(t)/o A(T)E(z—(7),7)dT

+A;1(t)/0 éﬁ:gl (h_(7) —h)dr, (2.13)

s(@4(t),t) =A7" (t)s(2+4(0),0) + A7 (t)/o A(T)E(2(1),7)dT

+ATY() /O éﬁlgl (hy () — Rh)dr. (2.14)

Recalling that, at each point, we have two characteristic curves intersecting at (z,t),
namely, z_(t) =z (t) for fixed t. Adding (2.13) to (2.14) yields

he(t)—h= Afl(t)(r(wf(())vo)+8($+(0),0))+%Afl(t)/o Ar(r)(E(z4.(7),7)

= Bla- ()t 3470 [ B (7)< R) (b () e

SAT O (0) Rt R (0) B+ o4 (0)) ~ ol (0))]

5470 [ APl (7).7) = Bla- (7). 7))dr
1 _ ¢ A1T - -
oA 1(t)/0 ﬁ+£)2\[(h_(r)—h)+(h+(r)—h)}dr, (2.15)

and subtracting (2.13) from (2.14) leads

u(z£(t),t)= *A ()[4 (0) =~ (h—(0) = h) +uo (2 (0)) +uo(2+.(0))]

#3A70 [ At 7+ B (7),m)dr
FZAT ) /0 (lﬁ_li)?\[(m(r)—h)—(h_(r)—h)]dr. (2.16)

We first prove lim E(z,t)=0, lim p(z,t)=p and lim wu(x,t)=0. For any
T—r—00 T——00 T——00

point (z,t1), there are two characteristic curves

ra(t)=as(r)+ / (u(as(5),5) £ T (2 (5), ) ds,

where 0 <7<t <t;. Since x4 (t;)=z_(t1), we have

x+<¢>—x7<7>=/1<<u TV o (o) — (Ut 07 s (o)



188 UNIPOLAR EULER-POISSON EQUATIONS

Since p and u are uniformly bounded, there is a constant B >0, such that
|y (T)—z_(7)|<B(t1 — 7). (2.17)

It follows from (1.1), that
z_ (1)
E(x—(T),T)—E(M(T),T):/ . (p(y,7) = D(y))dy

z_ (1)
- / ol —py (2.18)

if 24 (1) <x_(7) <—Np. Note that

ha(r) =2 [ Lt (1—r)p o
+(7)— _ﬁ o P r)p T

1
- / [rp+ (1—1)p) - dr (p((7),7) — ),

then, there is a constant Ny >0, such that

|p(x4(7),7) = p| < Ni|hai(T) = hl, (2.19)
and
p(y,7) =Pl < N1 f(7), (2.20)
where
T)= max h_(r)—h|= max ho(r)—h
1) I(T)G[INT)’ZL’—(T)]I ™ | I(‘F)G[IMT)J—(T)]‘ +(7) |

and x(7) is a characteristic curve between [z4(7),z_(7)].
For simplicity, we denote

w(x)= %Ih—(0)+h+(0) —2h+ug(24(0)) —uo(z—(0))].

Choosing = < —Ng — Bt1, we deduce, from (2.15), (2.18), (2.17) and (2.20), that
_ . N, [t
()= H AT Ou @)+ 5 [ F)la—r)—au(r)ldr

+5 [ hatr) =Rl ()= Fpar

§w(x)+N1Bt1/0 f(T)dT—i—u/O f(r)dr,
£(t) < w(a)+ (Ny Bt + 1) / f(r)dr,

or

f(t) <w(x)eMBhatmt (2.21)
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for t <t;. Hence, from (2.18), (2.20) and (2.21), for any x; <2 < —Ny— Bty,

T2 x2

\p(y,h)—ﬁldySNle(NlBtlJf“)tl/ w(z)de.  (2.22)

x1

|E(x2,t1)—E(x1,t1)|g/

x1

By (2.5), the value in right-hand side can be arbitrary small as long as |zs| is sufficiently
large, which implies that lim FE(z,¢1)=0.
r——00

Now, we prove lim p(x,t)=pand lim wu(x,t)=0. For any ¢; >0(e; <h) and any
rT——00 rT——00

fixed t; >0, let 6; =¢1/(2eM1%1), where M; =2+2u. There exists a positive constant
N5 such that

lug(x)| <61, |ha(0)=h|<8r,  |E(z,t)| <61 /M, (2.23)
for all z < —N5. We claim that
|u(x,t)| <26,eMt, |h(t) — h| < 20,eMt, (2.24)

for all x < —N,. Suppose that (2.24) is not satisfied, then, there exists a point (z3,t2)
with z3 < —Ny— Bty —1 and t, <t7, such that either

lu(zs,t2)|= 26,eMit2 - or |he(t2) —h|= 26,eMitz (2.25)

but (2.24) is true for ¢ <to. There are two characteristic curves intersecting at (z3,t2),
which are denoted by

t
v (tiws) =2 (03) + / () £ T (2,5)) ooy (00115,
0

satisfying x4 (0;23) <x_(0;x3). In fact, we have x_(0;x3) <—Ny. Since p and u are
uniformly bounded, there is a constant B >0 such that
to q—1
oo () o (tzioa) + [ (ulo—(5),8)|+ 0" (2 (5).9))ds
0

<—N,—DBty—1+Bt,
——Np—1.

It follows from (2.15), (2.23) and (2.24) that

_ 12 § ta
|ht(t2) —h| <261 —|—/ 71d7+2,u51/ M7 dr
o M 0

01(142p)
My
<261 46, (eMt2 1)

<26,eMit2,

<20 + (™2 —1)

Similarly, we have

‘U(I37t2)| < 2516M1t2,

which is a contradiction to (2.25). Thus, lim p(x,t)=p and lim wu(z,t)=0.
r——00 T—r—00
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Next, we prove IEIEOOE(J:J) =0, mgrfoop(z,t) =p and (x,t)=0. Integrating

lirf U
Tr—r+00
(1.1), over (0,t) x (—o0,x), and integrating (1.1), over (—oo,x), we get

B)= [ (o= D))y~ [ ey (2.26)

For any 3 >0(e2 <h) and any fixed t3 >0, let

(52 262/(2€M2t3), (2.27)

where My =max{1+24,2((y—1)(h+e2)/2)> =D} +1. Thus, there is a constant N3 >
0 such that

|E(2,0)[<d2,  |ha(0)=h|<d&2,  |uo(z)| <,
for all z > N3. We claim that
|E(x,t)| < aeM2?, |h (t) — h| < 205eM2¢, lu(z,t)| < 269e™M2t, (2.28)

for all > N3. Suppose that (2.28) is not satisfied, then, there is a point (x4,t4) with
x4 > N3+ Bty+1 and t4 <ts, such that either

|E(x4,ts)|=02eM2 or  |ha(ty) —h|=262e™2% or |u(zy,ts)| =262eM2% (2.29)

but (2.28) is true for t <t4.
Note that, at (z4,t4), there are two characteristic curves denoted by

t
v (treg) =2 (0s4) + / (w(,7) 9" (7)) oy (riapy
0

satisfying = (0;24) <x_(0;24). We need to show that 1 (0;z4) > N3. In fact, since p
and u are uniformly bounded, there exists a positive constant B such that

1 (054) >4 (b454) — / (s (1),7)|+ 10T (24 (1)) )dr

>N5+ Bty+1— Bty
=N;+1.

By (2.28),, we have

e <pen< [T )| (2:30)

for all x> N3 and ¢ <t4, From (2.26) and (2.30), we obtain, along two characteristic
curves x4 (t;x4),

Bas(0).0] < B0+ [ o], e

—1 - Tt
<o+ 209 |:72 (h+€2):| /eM2TdTS5geIV[2t, (231)
0
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for all t<t4. By (2.15) and (2.31), we find

B ta ta
|hi(t4)*h‘ <25Q+52/ eMszT+2‘LL52/ eMszT
0 0

d2(1+2p)

=26
2+ M,

(eMzts 1) <25yeM2ta,

Similarly, we have

|u(x4,t4)| < 2(526M2t4,

which is a contradiction to (2.29). Hence, 1i&1 E(z,t)=0, lim p(z,t)=p and
Tr—r+00

T—r+00

lim w(z,t)=0. |

Tr—r+00

Now we are able to prove the uniform boundedness of the solutions to the Cauchy
problem (1.1), (1.3).

LEMMA 2.2.  Suppose that conditions in Lemma 2.1 are satisfied. For any K € (0,h),
if (2.6)—(2.8) hold, then,

|E(z,t)| < MyKe?, |h(t)—h| < Ke%, lu(z,t)] < Ke’, (2.32)
for
0<t<t =11 (2.33)
=—In—. :
0 K

Furthermore, p satisfies

2
it (1 T
(77 - U5 ke) T <2 o<t (234)

Proof.  If (2.32) is not satisfied, then there is a point (xs,t5) with ¢5 € (0,¢*) such
that one of (2.32) is an equality at (z5,t5) and (2.32) holds for 0<t<ts5. We denote
the two characteristic curves by x4 (¢;25) which intersect at (zs,t5).

Note that, by (2.33), we have

Ke’* <h for t<ts.
From |hy (t) —h| < Ke <h for t <ts5, we get
h—Ke <hi(t)<2h, t<ts,
or
(1= 1) (= Ke?)/2)2/ 0D < plars (8,6) < 220D, <t

Using (2.26), (2.8) and (2.4), we deduce

ts
|E(x5,t5)|<KM0+22/(“’_1)ﬁK/ e7dr
0

22/(=1p

=K M,
o+ 9

K (e —1)
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=K My+ K My(e —1)
=K Mye¥ts. (2.35)
From (2.15), (2.6), and (2.4), we obtain

ts t5
|hi(t5)—ﬁ|<K+KM0/ eaTdT-l-uK/ mdr
0 0

K+ LMgﬂ” (et —1)
=Kes, (2.36)
Similarly, it follows from (2.16), (2.7), and (2.4) that
|u(xs,ts5)| < Kebts. (2.37)

This is a contradiction with our assumption that one of (2.32) is an equality at (zs,t5).
Hence, (2.32) holds for t <t*. |

Lemma 2.2 enables us to prove Theorem 2.1.

Proof. (Proof of Theorem 2.1.) Differentiating (2.2); and (2.2), with respect
to = to give

. —1 2
th+r$$(u_pT1)+Tm ua;_Lp 23px>:_Ew+2(1:L_t))\(sm_rﬂc)a

201 . (2.38)
St +Sza(utp 2 )+s, UzJFQPsz)EzM(Ssz)-
Denote z=1r, and w=s,. Since
1 .
umzi(sm 7"91:); stpm:*(sz'i‘rz)v
then, (2.38) can be rewritten as
d v—3 v+1 4 1
Za(a_(t),t)= —2)—E,
iw(x (t) t):7773w277+1w27 o (w—2)+FE .
e D 4 4 2(1+1)> v
From the Equation (1.1),, we get
d
2 Pla=(1),6)=—(pw)(z—(2),1),
(2.40)

d

2@ (1)) = (p2) (24 (1).1).

Multiplying (2.39), and (2.39), by Ag(t)prfa (x_(t),t) and Ag(t)prfg(er(t),t), respec-
tively, then by (2.40), one has

3 (4a0) (0™ 2) - (1).0)
JT“A2@>/TZ +2‘éfj(f))wﬁ w—Az()p"T By,

& (s(0) (0"% 0) (4 (1)) o
——TAa(t)pngJr;glj(tt;Ap T2+ As()p’T By
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Let

Hy(t):=Ax(t) (0T 2) (x—(8).1),  Ha(t):=Aa(t)(p"T w) (w4 (£),1).
It follows from (2.40) and (2.41) that

G0 ="T1 45 00 F (0 - S0 Lo0p)
—A5(1)p"T (p— D(z_(t))),
(2.42)
a0 ==L 0" a2+ 12 000
+A5(H)p™T (p— D(w+ (1)),
where
4
9<p>={73” IR
Inp, y=3
Integrating (2.42), over [0,t] gives
m(O) =m0+ T [ 4720 () par - [ 2220 Lo
- / A5(r)p™T (p—D)dr
_ o pAa(t) " pAa(7) o A
=H1(0)+50(p0) = 2(1+t)A9(p)+/0 2(1+ 1) <2(1+r)A N 1+r>9(p)dT
- [ 4" (o= Dyir+ = [ A7 (i)

For A>0, >0 and t<t,= %, there exist two positive constants C; and C5 which
depend only on A, u,~,p, K, and C* such that

Hl(t)>H1(0)_01+CQAt(H1<T))2dT. (243)

Next we prove that, if r,(2_(0),0) > N is sufficiently large, (2.43) indicates that H (t)
will blow up before t=t,. In fact, we consider the integral equation

1 t
q(t)= +Cy / ¢ (T)dr, (2.44)
CQt* 0

which indicates that

¢ (t)=Caq*(t), q(0)=
That is

1
CQt* - m — 02t7
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which will blow up for £ <t.. We choose H;(0)=Ci+ g4~ +1, subtracting (2.44) from
(2.43) to get

Hy(t) —q(t)>1 +Cz/0 (H1(7) = q(7))(H(7) +q(7))dr,

thus, Hy(t) > q(t). Hence, H;(t) will blow up before t=t,. Similarly, if —s,(z,0)>N
is sufficiently large, one can get that —H(¢) will blow up before t=t.. The proof of
Theorem 2.1 is completed. |

3. Global existence of the solutions in critical case
In this section, we study the global existence and large-time behavior of solutions
to the Cauchy problem (1.1) and (1.3) in the critical case of A=1 with pu>7/3.

3.1. Reformulation of the problem and main results. Let J=pu be the
current density, then the system (1.1) with A=1 becomes

pt+Jz:07

J? o

— =pFE——J t)eRxR 3.1
Jt+<p+p(p)>x PE— 139 (z,t) ER xRy, (3.1)
E,=p—D(x).

For the technical reason (for example, see [42]), we have to restrict D(x)=constant=
D >0 in this section. Then, the asymptotic profile of (3.1) with D(x)=D is constant
steady-state (D,0,0).

Precisely, we consider the system

pt+Jz:07
s (Zs (0)) =pE—-Lt—J (2,t)eRxR (3.2)
t p blp x_p 1+t ) ) 4+ .
Em:p—b,
subjected to the initial value
(p,JJ)(x,0)=(po,Jo)(z) — (p,0) as z— Foo. (3.3)

In what follows, we are going to prove the global existence and large-time behavior
of solutions to the Cauchy problem (3.2)-(3.3) nearby the constant steady-constant
(D,0,0). By Lemma 2.1, if

+oo
p=D,  lm E@0=0, [ (ple)-Dl+lm@)) <o, (4)
then,
ARAPN=D g Jen=0, Ly BE=0

Now, we are able to reformulate the problem (3.2)—(3.3). Let us set

o(x,t)=p(z,t)— D, Y(x,t)=J(z,t) -0, w(z,t)=E(z,t)—0. (3.5)
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Then, we arrive at a new system

Pt +¢L:0a
st (S D +e)) =D+ (36)
D+¢ - 1+t
Wy = .
It is easy to verify that
Y=—wy,  p=wg. (3.7)
Combining (3.6) and (3.7), we have
wit + i+ Dw — (' (D)wa)s = —wwy + (p(D +wy) —p' (D)ws)s + wi (3.8)
tt 1+t t p x)x — T p x p x)x D—f—wz x' .
We integrate (3.2), to get
E@0)= [ (mly) - D)dy=n(o). (39

Therefore, by (3.5), (3.7) and (3.9), we obtain the initial value for the Equation (3.8) as
w(z,0) =wo(z), wi(x,0)=—Jy(x). (3.10)

Next, we state the second result of this paper as follows.

THEOREM 3.1.  Assume that (3.4) holds. Let (wo,Jo)(x) € H3(R) x H*(R), and ®¢:=
llwolls + 1| Joll2 is sufficiently small. Then, the Cauchy problem (3.2)—(3.3) in the critical
case A=1 with u>7/3 admits a unique global solution (p,J,E)(x,t), which satisfies:

o When 7/3<u<3, then

1+ (SN + BN + (1485 (p0) = Dlla+ [T ()l + | Ea(®)]2) Sgcff);

o When 3< <4, then

A+ I OI+IE@) + @+ % (lot) = Do +[17o ()11 + 11 Ex(2)]]2) S%’f{)g)

o When >4, then

@+ (I ON+IEDI) + @+ (lo(t) = Dll2 + [T (1)1 + 1 Ex (1)]]2) S%I’%)

Using Sobolev inequality

1 1
[l <CIfIIZ N fa 2, (3.14)
we can further derive following estimates.

COROLLARY 3.1. Under the conditions of Theorem 3.1, it holds that

) Cdo(1+t)"5, for 7/3<p<3,
Ip(t) = D[ < § CPo(1+1)"2, for 3<pu<4, (3.15)
COo(1+1)72, for u>4,
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and

CO(148)~ 25", for 7/3<pu<3,
[T ()| <{ CR(1+1)""5", for 3<pu<A4, (3.16)
C@O(l—l—t)_%, for u>4.
Let T € (0,+0o0], we define the solution space as
X(T):={w(z,t); dweC(0,T;H*?(R)), j=0,1, 0<t<T}

with the norm

1

3
Ny(T)*:= sup (Z(Ht)“?ﬂll@fw(t)2+Z(1+t)“||3§;w(t)2
=0 i=1

2
+Z<1+t)”||a;wt<t>|2) (3.17)

i=1

for 7/3 < pu<3; and

1 3 2
Ny(T)*:= sup <Z(1 + 620w ()12 + YL+t 0w ()P + ) (1 +t)“||3iwt(t)|2>

0<t<T \ = i—1 i=1
(3.18)

for 3<pu<4; and

0<t<T

N3(T)?:= sup (Z(l (105w (8)]P+ Y (L+ ) st +Z(1 +)H D4 (t) ||2>

=0 i=1

(3.19)
for p>4.

THEOREM 3.2.  Under the conditions of Theorem 3.1. If N;(T)<1(i=1,2,3), then,
the Cauchy problem (3.8), (3.10) in the critical case A=1 with p>7/3 admits a unique
global solution w(x,t), which satisfies:

o When 7/3<u<3, then

1 3 2
S+ FFw )|+ Y1+ F |G b)Y (1+8) 5| Fhwn ()] < Co;

i=0 i=1 i=1
(3.20)
o When 3< <4, then
YA+ Y A+ 20w )]+ D (1+6)% [F5w ()| < CPo; (3.21)
i=0 i=1 i=1

o When >4, then

1

3 2
YA+l + YA+ [hw®) |+ (141 05w ()] < Co. (3.22)

=0 =1 i=1

Proof. (Proof of Theorem 3.1.) Once Theorem 3.2 is proved, we can immediately
obtain Theorem 3.1. ]
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3.2. Proof of Theorem 3.2. We will prove Theorem 3.2 by employing a stan-
dard extension argument based on the local existence and the a priori estimates. The
local existence of the solution to the Cauchy problem (3.8), (3.10) can be obtained by
the iteration method, so we omit its detail. The key step is to establish the a priori
estimates (3.20)—(3.22) and the continuity arguments. The rest of this subsection is to
establish the a priori estimates (3.20)—(3.22).

From (3.17)—(3.19) and Sobolev inequality (3.14), if N;(T) < 1(i=1,2,3), we have,
for u>17/3,

0<D/2<D+w, <2D. (3.23)
We define the norm as follows:
o for 7/3<pu<3, it is
1

3
Nie, (T)* = sup (Z(l +4)"F = e )+ Y (1) [ dhw(®)?

0st<T \i=o i=1

2
3o ok 0], (3:29

where 0<e; < (3u—"7)/8;
o for 3<pu<4, it is

1 3
Naey(T)?:= sup (Z(lﬂ)2||5§w(t)||2JrZ(lth)“_”||5§cw(t)||2
=0 =1
2

£ (1 ||a;wt<t>|2), (3.25)

i=1

where 0 <ey <1/2;
o for >4, it is

1 3
N3e,(T)*:= sup (Z(l + )20+ YL+t 2|

1=0 i=1

2
+Z<1+t>4-83|a;wt<t>||2)7 (3.26)

i=1
where 0 <e3 <1.
LEMMA 3.1. Under the conditions of Theorem 3.2, when 7/3< <3, it holds that
1 utl_o 2 Y, 2 L, 2
SO+ [ (@24 (D)w? + D)
R
t
+€1/ /(1+T)MT_17€1(wt2+p/(b)wg+ﬁw2)dxd7
o JrR
<O ([lwollF + 1 J6]*) + C N1 e, (T, (3:27)

where 0<e1 < (3u—7T)/8.
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Proof.  Multiplying (3.8) by (1+t)%*€1wt+”7+1(1 +t)”771*51w and integrating
the resulting equation with respect to x over R and using integration by parts give

d

pt+1
dt 4

1 R R .
[ (1+6)"F 5 (W} +p' (D)w? + Dw?) + 5= (1+1) 7 = ww,

+((”+1)2+(M+1)€1)(1+t)“23_51w2}dx

16 8

-1 —1 o )
+%m/(l+t)%*flwfdz+%/(Ht)”T’Elp’(D)chdI
R

+/R{2(1+t)—mp_1(u+1)(u 3— 251)(u+1+281)(1+t)_81] widz

32
} dx

41 1 -
R

. . 1

+ [ @D D). (1405 2 2107 500 o

R

2 1 1 1

+/ < i ) [(Ht)”iglwﬁ“(ut)“zElw}dx. (3.28)

R\D+w,/, 4

Integrating (3.28) over [0,t], we get

1 u - A 1 p—

/Rb(l"'t);A_EI(W?‘FP/(D)W?E-FDOFH—MI(1—|—t)21_51wwt

16 8

pw—1 .
+81//1+T N Elwtdde—i——// (1+7)"z ~=1p/(D)wdwdr
€1 p—1 ~
+//{(1+r>2 D
0o Jrl2

- ﬁ(u—i— 1)(u—3—251)(u+1+251)(1+T)“25_51}w2dxd7

+<<M+1>2+<u+1>a)<1+t>u-%z]dm

w1 41 =
(‘|w0||1+||J0|| //wwa:[ 1+7) = Ly +T(1+ ) e :|d$d7'
A~ 10 ptl_ o +1 p=l_ o
+ (p(D+wy) =p'(D)wy)e | (14+7) 2 lwt+T(1+T) T Sy |dadr
0 JR

t 2
1
+//<Awt ) {1—1—7);5%«) +&(1+ )Elw}dxdT
0 JRA\D+w;/ 2 4

=C([|lwollF+ 1 Jol*) + L + L2+ L. (3.29)

Next, we focus on estimating I1, I and I3 as below. From Hoélder inequality, the Sobolev
inequality (3.14), and (3.24), we can estimate I; as

1 (" [ d ] t ;)
11:75/ /d—((lJrT)%*Elwach)dxdT—%/ /(1+T)M7761wmw2dxd7
o JrROT o JrR
1/t ptl 9
+§/ /(1+T)T_Elw$tw dxdr
0o Jr
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2 L‘H_El ¢ “—‘1—51
<Cllwolly+ (1 +1) = ™ lw|[ e [w]l|lwa|| + ; (1+7) 7 " Hwl e wlll|ws | dr
¢ B+l
+/ (14+7)"% = [w]| o |l |zt 1 dr
0

<Cllwolf +C(1+1)"F (L+7) 7 ol # | By

‘o / (1+7) 5 =2 w3 |wa | lwat | dr

=Cflwo[f +C(148) 5T o] 3 (146) 50520 g |2 (1 4-) 7305~

—2¢,

*C/ 1+7)d T =0 o B (1) T =0l || B (14 7) dr

(u+1

+C/ (L) 32D ]| B (L4 ) 5T 0 g | 2

A(147) T Jwae | (L4 7) = dr
<Cllwol|F+CNy ¢, (T)*. (3.30)

It follows from Taylor’s formula, Holder inequality, (3.14), and (3.24) that Iy can be
estimated as

B [ [0 +00) ~p(D) -~ D)y |1 7) F i L )]

// (D+w,)— (ﬁ)p/(ﬁ)wz){(lJrT)H;lElth

—|— (1_’_7.)7751 ]dade
<c// (14 7) 5 gy 4 (14 7) T~ | drdr
<C/ (1+7)% 61||Wz||L°O||Wac||||Wnst||dT+C/ (14+7) %~ lwa || oo [lwa | |2d7
<C/ (14+7)F % |y ||2||wm||2||th||dT+C/ (14+7) T = |wa | flwsal| 2 dr
:C/ (1+T)%(M;rl

+C/ (m) = o (1)

<CONy., (T)3. (3.31)

Su—1—4de;

2147) 7 Jwnl 477 F dr

F(l47) T

3ut9—4eq

l(1—|—7’)_ 5 dr

Now we are going to deal with I3, by Holder inequality, (3.14), (3.23), and (3.24), one
can obtain

/ / [ 1+7)%751th+
D—i—wm

t
ptl p=1_
SC/ (1+7)= “HthLwHwtllethdTJrC/ (147) 7 7 o | poe flor [ dr
0 0

pt1

(14 )Elwz} dxdr
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< [ (+n) B el + [ (1) =2 s el o P

(n—eq) S5p—1—4eq

w2 (1475 dr

:C/ (14+7) 3T =) w2 (147)
0

t —
+C/ (14+7) HEF 0w |2 (14 7)

3u+9—deq

() a2 ) S
<Oy, (). (3.32)

Inserting (3.30)—(3.32) into (3.29) to have

1 n - A 1 =
[ |30+ e e (D) DA+ R 1) R
R

+((“+1)2+(”+1)51>(1+t)“23—61w2}dx

16 8

-1 - .
+€1//1+T T Elwtdach—&——//1—1—7’ T_El p'(D)w?dzdr
+//{1(1+T)“261[)
0o Jrl?2

- 33(/1—1—1)(/;—3— 2e1)(p+ 1+251)(1—|—7')“25_51} widzdr
<C(llwollF +1Jo1*) + CN1.e, (T)°. (3.33)
Noting that

(p+1)?

1 .
B 140" =ww Z(1+t)7*61 w2+ (141)" 2 =102, (3.34)

p+1
1

Since 7/3< <3 and 0<ey < (3 —7)/8, then, the desired estimate (3.27) follows from
(3.33) and (3.34). 0

LEMMA 3.2.  Under the conditions of Theorem 3.2, when 7/3< <3, it holds that
%(Ht)“‘“/R(cﬁt +p/ (D)ws, + Dw})da
—|—€1/0t/R(1+T)“_1_51(w320t+p (D)w?, + Dw?)dzdr
<CQlnll 1ol + 0N (10 [ [ arp—aavar, @39

where 0<e1 <(3u—7)/8.
Proof. Differentiating (3.8) with respect to z yields

Wztt+ 1/j_twmt+Dwz (D)wmzz

. ) 2
——wi—wwxa:—F(P(D—i-wx)—p/(D)wx)m—F( T > . (3.36)
D+w,
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Multiplying (3.36) by (1+¢)* w4+ 4(1+¢)* "1 ~'w, and integrating it over R and
using integration by parts, we obtain

4
dt Jo

e
+7

1 . .
G0 e DN+ D)+ 1409
14+e1)(1 —|—t)“_2_51w3} dx
€1 —1-e1 2 €1 —1=e1,/ ()2
+— [ 1+ 1wztdx+—/(1+t)“ 1 (D)w,dx
2 Jr 2 Jr
—|—/ {621(14—15)“_1_5115—Z(u—2—51)(1—i—al)(l—i—t)”_?’_al}widaz
R

:—/(wi-’-wwzx) |:(1+t)ﬂ51wmt+g(1+t)ﬂ151wx:| dx

R

B R T I

2
wi —e K —1-¢
- 14+ we +=(1+18)* Ywy |dx. 3.37
A B e L
Integrating (3.37) over [0,¢], one has
1 . .
/ {2(1+t)”“(wiﬁp’(D)wiﬁDwiHg(1+t)"“wxth
R
—I—Z(l—i-el)(l—l—t)“_z_“wi]dx
e [ 1 2 e [ 1 AY, 2
—|——/ /(1—&—7‘)“_ _Elwmdde—&——/ /(14—7‘)“‘ —=1p'(D)wy drdT
2 Jo Jr 2 Jo Jr
¢
+/O /R[Zl(lJrT)“lglf)Z(u251)(1+51)(1+7')"Ssl]wfcdzdr

t
<Cllenl+108) = [ [ 6 +tsan) [ (P o dor
0 JR

t
+/ /(p(Derm)—p’(D)wx)m [(1—&—7’)“_51%5,:-%-g(l—i—r)“_l_slww} drdr
0 JR

t 2
—F//(Aw75 ) [(1+T)“_Elwwt+N(l—i—T)”_l_Elwz]dxdT
0 JR\D+ws/ 2z 2
=C(llwoll3+IJol[}) + Lo+ Is + L. (3.38)

Furthermore, Iy, I5 and Is can be estimated as follows. By Holder inequality, (3.14),
and (3.24), we can estimate I as

t t
_ 3 1 _ 1 1
I4SC/ (1+7)" 81||Ww||2||Waca:H2HwactHdTJrC/ (L) w2 Jwe |2 lwze [ [[war | d7
0 0

t t
e / (7)Ao | £ | E i+ © / (L 7)A 1 e ¥ e | e 1
0 0

n—

c 1
i |wee |2 (1+7)

n—

= lwge|(L4+7) " dr

¢ Blu—cy) 3
=C [ (1+7)" 7 |lwal|2(1+7)
0
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+0 [ QR (147 1 47)

3utl—4eq
8

(147) 7 wul(147) dr

—|—C/ (1_"_7)5(#* 1)
0

+c/ (1+7)5 =) w2 (147)
0

pt2—eq

l(1 +7)7 2z dr

é(l—i—T) H*451

(I»L c1)

ooz 12

3pu+

(L47)5F (1+7)" "5 " dr <CNy ., (T)". (3.39)

From Taylor’s formula, Holder inequality, (3.14), and (3.24), I5 can be estimated as
¢
7/ /(p/(DWLwr)*p/(B))wxz (1+T)M761w“3tJrg(lJrT)MiliElwm dudr
o Jr
1 ! d w—e1 (] (1 /(T 2
—5 [ [ D) (D)) dadr
¢
_%/ /(1+T)“‘1‘51(p’(f)+wm)—p’(ﬁ))wizdwdT
o Jr
1t R
+§/O /R(l—i—T)“*elp"(D—|—wx)thw§xdxd7'
¢
<Cllwoll3 +CA+8)" " |wa || * |waa |2 +C/ L+ |wg |2 |wae | dr
0

t
— 1 1
+C/ (1477 watl|2 lwaatl| 2 |wae||*dr

—e1)
=C|lwo|2+C(1+t)" (1+t) wasl| 2 (142)"
+C/ 1—|—7’ (1—|—T) g(1—}—7)_‘L+22751d7'
+C/ A+7) T wat |2 (14+7) T Jlwaa |2 (14+7) 75 w2 (14+7) "2 " dr
<Cllwoll3+CN1 e, (T)?. (3.40)

Before we estimate Ig, we first show the estimate [lwy||?. Multiplying (3.8) by wy and
integrating it over R, we obtain

Wi

2
2 I3 A A
w dm:/ [— wi — Dw —wwy +p(D+w, z—i—( = ) }w dx,
/Rtt . 1+¢ t p( ) Dtw, ), tt

it then follows from Holder inequality and Sobolev inequality (3.14) that

lwre|* <C((1+8) " llwe | + llwll® + ool s | + e ||
Hllwelllwwe P + llwel* lwae | llwse ). (3.41)

Now, we deal with Is. By a direct calculation from Holder inequality, (3.14), (3.23),
(3.24), and (3.41) that

2 2
Wy Wy
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t
d
—1/ /((1—}—7)“_81 e )d.’EdT+/ / 147)p7 =t Pac — 2 _dxdr
dr (D—i—wx + Wy
2
/ / u €1 Wtw;ptwa:w 7/ / 1+T pn—1l—eq _trer  godr
D+w,) (D—i—wz)
/ / [L €1 wtwtthw dxdT-'—/ / 1+T n—e1 wtw (,da;td dr
D+w,)? D+wg)?

—M/ /(1+T)N_1—51Mdl‘d7-
0o Jr D+w,

Cllwoll3 +[1Jol1}) +C (1 + 1) |we |l lwoe [ |wae |

t

+C/ (1+T)#_61watll%llwwth%dT
Ot

40 [ @ r = el el el ool
Ot

O [ (18 ot o Pl
Ot

40 [ @ r e o el P d
Ot

+C/o (7)1 e | gt e

t
*C/ 1+ 7)A 75w | % waell w1 |lwass | 2wl dr
0
<C(||lwoll2+1Jo3) + C Ny, (T)>. (3.42)

Substituting (3.39), (3.40), and (3.42) into (3.38) to get
1 A N
/ [2(1+t)“_51(W3t+p’(D)W§z+Dwi)+g(1+t)“_1_“wmwzt
R

+ Z(1+gl)(1 FEyr2Egy }dw

+ t
W/ A<1+T>M*I*51wztdxd7+%[, A<1+T>“*1*€1p'<b>wzxdxdf

t
+/ / [521(1+T>#—1—sliv—Z(u—z—a)(usl)u+T>ﬂ—3—61 dwdr
0 JR
C([lwoll3+ [ Joll}) +CN1e, (T)* (3.43)

Recalling that

1 2
‘g(l—i—t)“ 11w Z(l—kt)“ Elwmt-i-/:l (1 t)yr27e12) (3.44)
combining (3.27) and (3.43)—(3.44), we get the desired estimate (3.35). ad

LEMMA 3.3. Under the conditions of Theorem 3.2, when T/3<u<3, it holds that

1
S 072 [ (Wt (D, + D, e
R
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t
e / / (Lt 7)P 14 (@2, 4+ (D)2, + Du?, )dardr
0 R
t
<O(wol2+ | Joll2) + CNyey (T)? +C / / (L4324 w2, )dedr,  (345)
0 R

where 0<e; < (3u—7)/8.
Proof.  Differentiating (3.36) in x to obtain

Weatt + szmt + -Dwxm _p/(D)wxzzm

1+t
) ) 2 (3.46)
:_3wwwx$_wwa;wz+(p(D+ww)_p/(D)Ww)xzx+ ( = t ) .
D+wy/ gun

Multiplying (3.46) by (141)* " Wy + 5 (1+6)* 171w, and integrating it over R and
using integration by parts, one can get

d 1 ~ 2
dt Jy [2(1+t)“‘“ (@2t 9 (D) + DeZe) + 5 (10" g

+La+a)a +t)“_2_51w§x] de

+5 [aetrtoddor 3 [ @y (Dt do
R R

+/ {521(1 +tpTimE D g(u —2—¢1)(14e1)(1 +t)“361] w2, dx
R

S / (BwWae + WWegr) [(1 +OP T W + g(l —|—t)"1€1wm} dx
R

+ / (p(D+wz) —p' (D)ws)zze {(1 + )P W + %(1 +t)“_1_51wm] dx
R

2
+/ ( _ ) [(1 —&—t)“_slwmt—l—N(l—i—t)“_l_slwm} dz. (3.47)

Integrating (3.47) over [0,t], we have

1 . A
/ [2(1+t>“‘“(wim+p’<D>wim+Dwim>+’;(Ht)“‘l‘“wmwmt
R

+ %(1 +e1)(1 +t)“_2_51w2$] dx

. ¢
+%1/ /(1+T)“_1_51wiztdxd7'+%l/ /(1 +r)r e (D)w?,  dadr
0o JR 0 /R

t -
+/ / [821(1+T)”_1_€1D—Z(,u—Q—51)(1—1—61)(1-1-7')“_3_61 w2 dxdr
0 Jr

<C(|lwoll3+110l13)

t
f/ /(3wzwm+wwmm){(l+7)"Elwmt+’;(l+7)"lslwm dxdr
o Jr

t
[ [ 0D ) Do | (0P 4 G 1715
0 JR
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S LED).

=C([lwoll3+[1J0l13) + 17+ Is +Io. (3.48)

dxdr

(I+7)*~ Elwmt—i—Q(l—l—T)“ =1y

Next, we estimate I7, Is and Iy as below. Similar to (3.39), it is easy to compute that
t t
1 1 1 1 1 5
B <C [ (@l a7 +C [ (7)1 o |
0 0
t
_ 1 1
+C/ (L) w2 [lwe |12 |waza ||| weat |dr
0
K e 1 3
+C (1+T) w12 |wzz |2 |wzze |dT

l(l{—T)“E 1

=0 [t o)

3ut9—4eq

(4+7)" 5 dr

1+7')

t —_
+0/ (147)
0

2—eq

é(1+7’)7“+2 dr

%(1 +T) 5(u251)

n—cy
)2

t
+C/ (L4 7) 30T ] 3 (1475

Butl—deq

(14+7) 7 w1 47) 7 F dr

+C / (147)"
0
SCNl,al(T)3- (3'49)

'H

P47 T || (14 7) 7 wan | (14 7) " dr

Analogous to (3.40), Is can be estimated as

// (D +wy) = (D))weas + 9" (D +wy)w?,)
{(HT)“ “wmt+2(1+r)*‘ Y W | dadT

L[ [d P Lo

=3 —((1+7) 7 (' (D +ws) =P (D)) w3y, ) dadr
2 0 RdT
¢

5 sy D) —p (D)o
1/ R

+*/ /(1+T)“_Elp”(D—I—wm)wmwgmdxdT

//d (1+7)"=51p" (D +wy )w? weae )dadr
-

2
LT 61/ / (1+7)" 17" (D 4wy w2, wesedrdr
// (I47)r== ’”(Dergc)(,u2 WetWepedrdT

2 / / (L7~ (D 4w Jwsawanitnnadadr
0 R
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— 1 1
<Ollwoll3+C(A+8)" " |ws |12 |wael|? |waaa |

t
1 1 1
+C/ (L7 g [|F |z | e |27
0

— 1 1 — 3 3
4O [ @ el ot | o P+ O |
0

t t
—1— 3 3 —
+C/ (T4r) ElemlPllwmmH"’dT*O/ L+ 1) |was lllwat lwaas |*dr
0 0

t
+C [ el e | et
0
<Cllwoll3+C N1, (T). (3.50)

Before we deal with Iy, we first derive the L? estimate of w,y. We multiply (3.36) by
wz¢ and integrate it over R to get

2
2 H - 2 ~ Wi
W dr = — ——wgt — Dwy —wi —wwge +p(D+wz)aes+ | = wepdr,
/]R " /]R|: 1+t pl ) (D+wx> ] "
then,

[ H2 SC((l +t)_2 Hwa:t”2 + ||w:r||2 +[|ws H3||WM|| + [|w]| [l mex”2 + ||Wm:r||3 |wWeze |
Fllwzea I* + wot | lwzet |+ lwellwae l [waat 12+ lwell[wee | lwee | lwze |
Fllwel ozt |wzea | 4+ Nl I [wor | * oz | lwzeel) - (3.51)

Now, we estimate Iy. By a direct calculation and using Holder inequality, (3.14), (3.23),
(3. 24) and (3.51), we obtain

/ / < 2Wtwmt aites _WiWrrs + 2wiws, )
D—|—ww Dtw, (Dtw.)? (Dtwn)? (Dtwy)?
: [(1+T)“_Elwzmt+g(l—FT)”_l_slwmz} dxdr
D+wr Dtw, (D+wy)? (D+wy)
+5/ / 1+T H—e1 mt ma:tdxd,r 5/ / 1+T n— elwtwmxwmztdxdT
D+w,)?
—6/ / 1+T p—e1 wtwszwzt dedr _4/ / 147 M €1 wtwwtwmzwmtdxdT
D—H}JZ (D+wy)?

—6//14—7’“ Elwﬂw”wmtd dr+ = // ( )M sl%)dmdr
D+Wr dr (D

+wy)?

// 1+7_ p—1—eq wthzm _FtWeze  go.d- // 1+ .U« Elwiwttwmzd dr
(D+w,)? D+wy)?

2
/ / 1+T H—e1 Wt Wzthwzd dT+12/ / 1+ H e1 WitWrtWi Wt WilatWaaWaat 4 0
D+w,)3 (D4 w,)3

+4/ / 1—|—7- H= Elwthﬂcwwxwwxmtdde
(D+w,)?
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<C(llwoll3 +1J0l13) + C N1, (T)°. (3.52)
Putting (3.49), (3.50) and (3.52) into (3.48) gives

1 . R
/ |:2(1 +t)He (wixt +pl(D)w§xz + Dwiz) + g(l +t)u717€1wwwwwwt
R

+ %ﬂ +en)(1 +t)“‘2‘51wix] dx

¢ ¢
+i/ /(1+7)”_1_51w§ztdxd7+il/ /(1+T)“_1_81p’(ﬁ)wzmdazd7’
2 Jo Jr 2 Jo Jr
¢
+/ / [?(1+7)“1Elf)—Z(u—2—61)(1+51)(1+7)"351 w2 dxdr
0o JR
<C(llwoll3 +IITo13) + CNi,e, (T)° (3.53)
Noting that
&
4
Therefore, the desired estimate (3.45) can be derived from (3.35), (3.53) and (3.54). O

1
‘g(lﬂ)“‘l‘%wxwm <O W+ T (L) 2w, (3.54)

PROPOSITION 3.1.  Under the conditions of Theorem 3.2, when 7/3<pu<3, it holds
that

1

3 2
ST+ T 0w ®) |+ YA+t EOw®)] + D (1+6) 5 [0iw ()| < C®o.  (3.55)

i=0 i=1 i=1
Proof. 1t follows from Lemmas 3.1-3.3 that

1 ptl

S0 75 (D D+

N | =

4500 [ (D24 (D)4 DIk, 4 4 (D )
R

t
+51/ /(1+T)MT_1751(wt2+p'(ﬁ)wz+ﬁw2)dxd7'
0 JR
t
+51/ / (1+7)"7 17 (Dw2 + (p'(D) + D)w2, +wly + P (D)w?,, + w2, )dwdr
0 JR

t
<O(lwolZ+ [ Joll2) +CN o, (T)? +C / / (173 (w2 2, )dadr,
0 R

Using Gronwall’s inequality, we have

1 1 N R
5(1 +t)%7€1 /]R(Dw2 +p/(D)w? +wi)dz

(14t /]R (Dw2+(p' (D) + D)w?, + w2, + ' (D)wly, +wley)da

DN | =

¢
+€1/ /(1+7)%_51(wf—i—p'(D)wfc—i—DwQ)da:dT
)

¢
+€1/ /(1—|—7')"717€1(Dw§+(p’(D)+D)w92m—|—w§t—|—p'(D)w§m—|—w§xt)dxdT
o JR

<C([lwoll3+1170]13) +C Ny e, (T)°.
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Then, by taking e; — 0, and due to N1(T) < 1, we can get (3.55). |
LEMMA 3.4. Under the conditions of Theorem 3.2, when 3<pu <4, it holds that

t
%(1+t)2/(wf+p'(ﬁ)w§+bw2)d:r+(u—3)/ /(1+T)(w§+p'(b)w§+Dw2)dxd7
R 0 JR
<C(lwollt +11J0]1*) +CNoye, (T, (3.56)

where 0 <eqg <1/2.

Proof.  Multiplying (3.8) by (1+t)2wt+“771(1+t)w, and applying similar argu-
ment as in Lemma 3.1, we obtain the desired estimate (3.56). 0

LEMMA 3.5. Under the conditions of Theorem 3.2, when 3 <pu<4, it holds that
%(1+t)“_52/R(wf,t—kp’(ﬁ)wiz-i-bwg)dx
+62/0t/R(1+T)“1E2(w§t+p'(f))w§x+f)w§)dxdr
<C(||w0||§+||Jo|f)+CN2,€2(T)3+C/Ot/R(1 +T) 3202 dadr, (3.57)

where 0<eqg <1/2.

Proof.  Multiplying (3.36) by (14t)* 2w+ & (1+1)* 12w, similarly to the
proof of Lemma 3.2, we get (3.57). |

LEMMA 3.6. Under the conditions of Theorem 3.2, when 3 <pu <4, it holds that

1 . .
S0 / (@eor +P (D) + Dy )da

R
t
+““2/ / (7)o (W2, 4 (D), + Dal, ) dadr
0 R
t
<C(llwol2+ [ Tol2) £ C oo, (TY? +C / / (147832 (2 102 Ydadr,  (3.58)
0 R

where 0 <eg <1/2.

Proof. Multiplying (3.46) by (14+¢)* " %2wge + %(l—kt)“_l_”wm, and by a similar
calculation to Lemma 3.3, we have the desired estimate (3.58). d

Combining Lemmas 3.4-3.6 and Gronwall’s inequality, we can prove the following
proposition, whose proof is similar to Proposition 3.1 and we omit it here.

PRrROPOSITION 3.2.  Under the conditions of Theorem 3.2, when 3 < <4, it holds that

1 3 2
DA+ [0+ ) (1+6) % [95wt)l+ D (1+1) 2 [|0hw: (t)]| < C®o. (3.59)
i=0 i=1 i=1

LEMMA 3.7.  Under the conditions of Theorem 3.2, when >4, it holds that
1

§(l+t)2/(wf+p/(ﬁ)wg+[)w2)dx
R

+(u—3)/0 /R(l—l—r)(w?—l—p’(b)wi+l§w2)dmd7
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<C(llwollF+[1Joll*) + CNa e, (T)°, (3.60)

where 0 <ez <1.

Proof.  Multiplying (3.8) by (1+1t)%w;+ “5+(1+¢)w, similarly to the process for
deriving Lemma 3.1, we can get (3.60). O

LEMMA 3.8.  Under the conditions of Theorem 3.2, when >4, it holds that
1 . .
3100 [ (@ (D), + D

t
+83/ /(1—|—T)3753(w£t+p’(f))wﬁx—|—f)w§)dajd7
o Jr
<C(llwoll3+1J0lI3) +C N3, (T)?, (3.61)

where 0 <ez < 1.

Proof. Multiplying (3.36) by (1+t)* 3w, +2(1+1)3"%3w,, and applying similar
argument as in Lemma 3.2, we can obtain the desired estimate (3.61). |

LEMMA 3.9. Under the conditions of Theorem 3.2, when pu>4, it holds that
304077 [ty (Dl + Do
beo [ [0S (Dl + D e
<C(lonll + 1ol + Oy (7 +C t [an et (302

where 0 <ez < 1.

Proof. Multiplying (3.46) by (14+)*"%2w, 0 +2(1+¢)37%2w,,, similarly to the
proof of Lemma 3.3, we have (3.62). |

Combining Lemmas 3.7-3.9 and using Gronwall’s inequality, and applying similar
argument as in Proposition 3.1, we can prove the following proposition. The detail of
proof is also omitted.

PrOPOSITION 3.3.  Under the conditions of Theorem 3.2, when p>4, it holds that

1

3 2
Yo AHDIGfw @+ A+ [0hw®)] + D (L+1)?[05w (1) < Co. (3.63)
i=1

i=0 i=1
Proof. (Proof of Theorem 3.2.) Propositions 3.1-3.3 imply Theorem 3.2. 0

From the Equation (3.8), the inequalities (3.20)—(3.22), and Holder inequality, we
can prove the following lemma and we omit its proof here.

LEMMA 3.10. Suppose that conditions in Theorem 3.2 are satisfied, then,

p41

(L0 (e O+ e O + L+ [wree (D < CBo,  for 7/3<p<3,
(A0 (lwre (8)| + lwrae (B) )+ (1+8)5 wmaa(8)]| < CR0,  for 3<p<4,
(L) (Jwre (Ol + et (O] + (148 lwre(B)]| < CFo,  for >4,

+
+
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4. Numerical Simulations

In this section, we
demonstrate the global

of blow-up solution at a point for some large initial derivatives.

present numerical simulations in the critical case of A\=1 to
solutions for some non-large initial derivatives and the arising
To obtain a stable

numerical solution, we use (2.1), (2.2) and (2.26) to form the following equivalent system:

We use Lax-Friedrichs

A=1,u=3,y=3 and D(x)

W
W(S—T%

(S_T)v

re+7rz(u—p —-E+

)=

1
st+sz<u+p”z> B
(fy 1(3—!—7“

(4.1)

T T )—uo(yc)7

(
(P02 )+u0( )
( z, ) f,oo(po—D)( )

scheme to numerically study the following two examples with
=3.

1/70

Q
o |
,_.

----- &
~-1:0 668
- 1362
—t150

01r

BT

02r

03r

04r

Q5

=)
=1=0.668
--EL%
—t150

(¢) x, u plane

(d) z,E plane

Fic. 4.1. Global solutions for non-large initial derivatives
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EXAMPLE 4.1 (Global solutions for non-large initial derivatives). Here, we choose the
initial data

po(x) =3+exp(—x?)sin(3z), ug(z) = —0.5exp(—2x?)cos(2x).

The computational domain is [—20,20] with Neumann boundary conditions and 100001
uniform mesh points. When ¢ =15, the maximum values of p, |u| and |E| are all less
than 0.0004, which are small enough. The numerical results presented in Figure 4.1
show the global existence of the solutions, which time-asymptotically behave as the
steady-states: (p,u,E)(x,t)— (3,0,0) and (py,us, E:)(x,t) = (0,0,0) as t — 0.

EXAMPLE 4.2 (Blowup solutions for large initial derivatives). We choose initial data
as

po(x) =3+ 3exp(—2?)sin(8z), ug(z) = —0.5exp(—2(z+0.02)?)cos(7x).

The initial data are steep as showed in Figure 4.2. The computational domain is [—5,5]
with Neumann boundary conditions and 500001 uniform mesh points. The solutions
(p,u, E)(z,t) are bounded, but their derivatives (py,us, Fy) will blow up near ¢t~ 0.055.
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