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Abstract

This paper is concerned with the local well-posedness for the free boundary value problem of smooth
solutions to the cylindrical symmetric Euler equations with damping and related models, including the
compressible Euler equations and the Euler-Poisson equations. The free boundary is moving in the radial
direction with the radial velocity, which will affect the angular velocity but does not affect the axial velocity.
However, the compressible Euler equations or Euler-Poisson equations with damping become a degenerate
system at the moving boundary. By setting a suitable weighted Sobolev space and using Hardy’s inequal-
ity, we successfully overcome the singularity at the center point and the vacuum occurring on the moving
boundary, and obtain the well-posedness of local smooth solutions. We also summarize the recent related
results on the free boundary value problem for the Euler equations with damping, compressible Euler equa-
tions and Euler-Poisson equations.
© 2022 Elsevier Inc. All rights reserved.

Keywords: Euler equations with damping; Compressible Euler equations; Euler-Poisson equations; Free boundary;
Vacuum; Local smooth solutions

* Corresponding author.
E-mail addresses: mengrongmy @ 163.com (R. Meng), lasu_mai@ 163.com (L.-S. Mai), ming.mei@mcgill.ca
(M. Mei).

https://doi.org/10.1016/j.jde.2022.03.014
0022-0396/© 2022 Elsevier Inc. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2022.03.014&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2022.03.014
http://www.elsevier.com/locate/jde
mailto:mengrongmy@163.com
mailto:lasu_mai@163.com
mailto:ming.mei@mcgill.ca
https://doi.org/10.1016/j.jde.2022.03.014

R. Meng, L.-S. Mai and M. Mei Journal of Differential Equations 321 (2022) 349-380

1. Introduction

In this paper, we study the well-posedness of local smooth solutions to the free boundary
value problem of the compressible Euler equations with damping:

{8zp+dW(pU)=0, (L

3 (pu) +div(pu @ u) + Vp(p) = —

where p, u, and p denote the density, velocity and pressure, respectively. If the relaxation effect
—pu is neglected in the system (1.1), the system (1.1) is reduced to the standard pure Euler
equations:

{ 3 p +div(pu) =0, (12)

0 (pw) +div(pu®@u) + Vp(p) =0.

If the Poisson effect is considered in the system (1.1), for example, concerning the electrostatic
potential in semiconductor devices, then the system (1.1) becomes the Euler-Poisson equations
with damping relaxation:

0;p +div(pu) =0,
9 (pu) +div(pu®u) + Vp(p) = pVe — pu, (1.3)
Ap=np.

Here, p, u, p(p) and ¢ denote the electron density, the electron velocity, the pressure and

the electrostatic potential for the hydrodynamic models of semiconductors, respectively. For the
more general models, the Poisson equation in (1.3) satisfies

Ap=p—C(x), (1.4)

where C(x) is a given background ion density.
Introducing the cylindrical symmetric transformations:

— 2 2
) r=L/X{+ x5, (1.5)
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where the scalar functions i, U and w represent the radial component, the angular component,
and the axial component of the velocity u, the system (1.1) can be transformed into the following
form:

3;(rp) + 8, (rpu) =0,

~2
~ o~~~ v
p g + ity — — +1) + pr =0,
d (1.6)

~~

~ ~—~ uv ~
vy +uv, + — +v=0,
r

w; +uw, +w=0.

350



R. Meng, L.-S. Mai and M. Mei Journal of Differential Equations 321 (2022) 349-380

The corresponding cylindrical symmetric compressible Euler equations (1.2) and the Euler-
Poisson equations (1.3) respectively satisfy:
0 (rp) + 0, (rpu) =0,

~2
- e U
oy + uu, — 7)+pr =0,

(1.7)
- WU
U +uv, + — +v=0,
r
w; +uw, +w=0,
and
3 (rp) + 8y (rpu) =0,
W 1
p(uy + uny — 7+ﬁ)+pr=p;fp(s)sds,
0 (1.8)

~n~

~ ~—~ uv ~
vy t+uv, + — +v=0,
r

w; +uw, +w=0.

We consider the free boundary value problem of the system (1.6) with the following free
boundary condition and initial data in (0, R(z)) x [0, T']:

p >0, in [0, R(1)),

p(R(1),1) =0,v(0,1) =0,

dR(t)—NRt 1, R(0)=1

(p, U, 0, @) (x,0) = (po, o, Vo, wo), po(x)>0in [0, 1),
—1

Py

X

<0, onr=1,

where the condition (1.9)5 confirms that pg T equivalent to the distance function d(x) of the
boundary near x = 1, and also is very important to obtain the regularities of higher order spatial
derivatives of velocity, which is called the physical vacuum condition (cf. [2,16,18]).

As we know, the free boundary value problem of fluids containing vacuum is one of the most
important and difficult problems in the study of partial differential equations from fluid dynam-
ics. In this case, the moving region of the fluid changes with time along the particle path, and
the system describing the motions of fluids becomes a degenerate system at the free boundary.
Clearly, it is necessary to determine the free boundary, while the solutions of system can be then
determined. In particular, the free boundary value problems for the system (1.1), (1.2) and (1.3)
with vacuum have been paid more attention and made a breakthrough:
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1. Results on the compressible Euler equations (1.2). In the pioneering work [1], Coutand,
Lindblad and Shkoller established the a priori estimates for the local smooth solution, which
was the first result on the free boundary value problem of the three dimensional compressible
Euler equations. In [6], Hao also obtained the similar priori estimates of the local smooth
solution for the more general class of initial density. Furthermore, in [2,3], Coutand and
Shkoller built up the well-posedness of local smooth solutions in Lagrangian coordinates
based on Hardy’s inequalities and the degenerate parabolic regularization for the one di-
mensional and the three dimensional cases, respectively. Independent of these works [2,3],
Jang and Masmoudi [16,17] also studied the same problem for the one dimensional and the
three dimensional cases by the different methods, respectively. Besides the one dimensional
and the three dimensional cases, Luo, Xin and Zeng [19] considered the well-posedness of
local smooth solutions for the spherically symmetric system of (1.2) and the uniqueness of
the three dimensional solutions in the Euler coordinates. For the global smooth solutions,
Sideris [24,25] established the spherically symmetric and the three dimensional global affine
solutions, respectively. Then, HadZi¢ and Jang [8] proved the stability and the large time
asymptotic behavior of the affine solution obtained in [25]. Regarding as the results on the
free boundary value problem to the relativistic motions for the compressible Euler equations
(1.2), we refer to the interesting works [11,15,21,22].

2. Results on the Euler equations with damping (1.1). Xu and Yang [26] proved the local exis-
tence result on the perturbation of a planar wave solution by using Littlewood-Paley theory,
and then, Yang [27] summarized the relevant results on the free boundary of the one di-
mensional Euler equations (1.2) and the Euler equations with damping (1.1). Due to the
relaxation term —pu providing the exponential decay rate with respect to times variable for
global solutions, it is not too hard to prove the global existence of the solution in the different
function spaces, compared to the compressible Euler equations (1.2). In particular, the free
boundary value problem of the Euler equations with damping (1.1) admits the Barenblatt
solutions as shown in [20,28,29]. Therein, Luo and Zeng [20] and Zeng [28,29] studied the
stability and the large time behavior of Barenblatt solutions for the one dimensional, spheri-
cally symmetric and three dimensional cases, respectively. In [18], Liu and Yang established
a class of particular solutions. It is worthy to point out that the results presented in [7] and
[12] show the convergence of weak solutions to Barenblatt solutions for the Cauchy problem
of the one-dimensional compressible Euler equations with damping (1.1) involving vacuum
for the different exponent y, respectively.

3. Results on the Euler-Poisson equations (1.3). For the model of gravitational interaction, the
damping effect —pv is disappeared, and the Euler-Poisson equations (1.3) are reduced to

dp +div- (pv) =0,
0 (pv) +div (pv®V) + Vp(p) = pVo, (1.10)

Ap =4mp.

In [4] and [5], Gu and Lei investigated the well-posedness of local smooth solutions for the
free boundary value problem of the one dimensional and three dimensional system (1.10)
with vacuum, respectively. The well-posedness of local smooth solutions for the spherically
symmetric system of (1.3) was constructed by Luo, Xin and Zeng [19]. In [13] and [14],
Jang showed the instability of Lane-Emden stars for the different y € [g, %), respectively.
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On the other hand, HadZi¢ and Jang [9] obtained the nonlinear stability of expanding star
solutions of the radially symmetric mass-critical Euler-Poisson system. Furthermore, HadZi¢
and Jang [10] proved the existence of global solutions to the three dimensional Euler-Poisson
system (1.3) without any symmetry assumptions in both the gravitational and the plasma
case for some exponent y. Very recently, we [23] first proved the local well-posedness and
the relation between the relativistic Euler-Poisson equations for smooth solutions to the free
boundary value problem of the Euler-Poisson equations (1.3).

Main goal. In this paper, we mainly study the well-posedness of the local smooth solution for
the free boundary value problem (1.6) and (1.9). First of all, by introducing the Lagrangian vari-
able (2.1), we transform the free boundary value problem (1.6) and (1.9) to the initial boundary
value problem (2.11) and (2.12). Then, we establish the a priori estimates for the local smooth
solution, and prove the existence and uniqueness of local smooth solutions by using a degenerate
parabolic approximation and the energy methods (refer to Theorem 2.1 for details), respectively.
We also obtain the parallel results on the free boundary value problem for the compressible Euler
equations (1.7) and the Euler-Poisson equations (1.8) with the initial boundary condition (1.9),
respectively, to see Theorem 2.2 and Remark 2.4.

Technical issue. To prove the main result Theorem 2.1, one of the main difficulties for studying
our problem is how to deal with the degenerate of the systems (1.6), (1.7) and (1.8) near the free
boundary caused by the pressure term, respectively, because the classical theory of Friedrich-
Lax-Kato for quasilinear strictly hyperbolic system can not be directly applied to prove the short
time existence of classical solutions. However, we observe that the physical vacuum condition

(1.9) confirms that the initial data pg s equivalent to the distance function near the boundary.

Thus, the initial data ,og ! plays the weight in the weighted Sobolev embedding inequality (1.11),
which is the connection between L?>— norm and the weighted Sobolev spaces. Especially, the
initial data pg ! plays the basic weight in the coefficient of the Lagrangian form (2.11) of the
system (1.6). This property helps us to overcome the obstacle by using the Hardy’s inequality in a
certain weighted Sobolev space. The another difficulty of our problem is caused by the singularity
at the center point » = 0. We will increase the spatial regularities of fluids velocity near the
center point, and apply the Hardy’s inequality to establish the desired estimates at the singular
point. Compared to the spherically symmetric system of the compressible Euler equations (1.2),
at the center point 0, the degeneracy rate x'/? (fractional order) of the cylindrical symmetric
system makes the estimates for the higher order derivatives more complicated than the spherically
symmetric system (analyzed in [19]), where the rate is x.

The structure of this paper is as follows. In section 2, we transform the free boundary value
problem of the cylindrical symmetric Euler with damping into the initial boundary value problem
in the fixed domain, and state main results in Lagrangian coordinates. In section 3, we make some
a-priori assumptions and computations, which are very crucial to establish the a-priori estimates
of solutions. In section 4 and section 5, we mainly show the uniformly a-priori estimates of
local smooth solutions. The energy estimates for the higher order time derivatives are obtained
in section 4 and the elliptic type estimates are established in section 5, respectively. In section 6,
we prove the existence results by a particular degenerate parabolic regularization with the help
of Hardy’s inequality. Finally, we study the uniqueness in section 7.

Notation and weighted Sobolev spaces. Let H*(0, 1) denote the usual Sobolev spaces with the
norm || - ||, especially, || - lo = [l - Il .2(0,1)- For real number /, the Sobolev spaces H'(0,1) and
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the norm || - ||; are defined by interpolation. The function space L°°(0, 1) is simplified by L*°.
The notation C denotes the generic positive constant and the notation M denotes the generic
constants depending only on maxy¢o,11{00, |00x (X)|, | poxx (X)1}.

Let d(x) be the distance function to boundary I" as d (x) = dist(x, ") for x € I". Forany a > 0
and non-negative b, the weighted Sobolev space H%" is given by

1
HP0,1):={d2F e L*(0, 1) : fdﬂaj;ﬂzdx < 00,0 <k <b},
0
: 2 . b L jaiqk . . .
with the norm ||F||Ha,h =Y i0 fo d“|0y F|dx. Then, it holds the following embedding:

H*b(0,1) = H"=4/2(0, 1), with the estimate || F|[5—a/2 < Co|| F || yya.». In particular, we have

1

IF|I3 < Co/d(x>2(|F(x>|2 +|F' (x)|?)dx, (1.11)
0
1

IFI3 < Co/d(x)(lF(x)lz +|F'(x)[H)dx. (1.12)
0

2. Working problems and main results

The aim of this section is to transform the free boundary value problem (1.6) and (1.9) into
the initial boundary value problem (2.11) and (2.12), and states the main result of this paper in
Theorem 2.1.

For this goal, the Lagrangian variable r (x, t) is defined by

or(x,t)=u(@(x,t),t) fort>0 and r(x,0)=x. 2.1

Define the Lagrangian density and velocity by

ulx,t) =u(r(x,1),t),
2.2)
v(x, ) =00 (x,1),1),

wx,t)=w(r(x,1),1).

The system (1.6) can be transformed into
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3 (rf) +rf‘;—" =0,

v? (f)x
f(8,u—7+u)+T—07 (2.3)

uv
v+ —+v=0,
r

ow+ w=0.

It follows from (2.3); that

f=Em. @4)

so the system (2.3) changes to

X V2 1 x
—po | du——4u )+ |(—=po)” |=0,
r r e 1

X

B,U—i—ﬂ—i—v:O, 2:5)
r
orw~+ w=0.
Similarly, under the new variables in (2.2), the system (1.7) and (1.8) can be respectively rewrit-
ten as
X V2 1 x y
—po| du—— ) +0x [ (—=p0)" | =0,
r r Iy r
31U+E+U=0, 26)
r
orw + w =0,
and
X
X v? x 1 y X
—po|0u——+u)+0|(=—p0)" |=—=p0 | po(y)ydy,
r r rry r
0
wv 2.7
B,U 4+ —+v= 0,
r
orw + w =0,
where we have used
r(x,t) X
/ p(s, t)sds = / po(y)ydy, (2.8)
0 0

which follows from (2.3);.
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Denoting by

o(x):=xp] ", 2.9)

that is a distance function near the center point x = 0 and the boundary point x = 1, the system
(2.5)1 can be rewritten as

2 2
v 1 o° x 1 1
0 (hu — — +u) + s [W—(—)VW—V} e 2< (=) =0. 210
’00 r '00 r r Iy 10() Iy
In this paper, we mainly analyze the case of y =2, then, the system (2.5) reads

2
o (Bt — — + 1) + 0 [ozf(iﬁ} 2( )2 Lo
r r ry

31U+E+U=0, (2.1
r
oyw + w =0.
The initial and boundary conditions (1.9) for y =2 become
po(x) >0, x in [0,1),  po(1)=0,
o0 d (1) <0
—00 < — <0,
dx ™ 2.12)

u(0,t)=0 on {x =0} x (0,T],

(u, v, w)(x,0) = (ug, vy, wo) in (0, 1).

In order to deal with the different singularities at the points x = 0 and x = 1, the interior and
the boundary C* cut-off functions &(x) and n(x) are respectively given by

E(x)=1 on[0,8], &x)=0 on[281], |&(x)| < (2.13)

_0
s’
Co
— 2.14
5 (2.14)

8
nx)=1 on[s1], nx)=0 OH[O’E]’ ' ()] <

where C¢ and § are positive constants, and § will be determined later. Thus, we define the higher-
order weighted energy functional for smooth solutions (r, u, v, w) by:

E(t):=E@)+ E(v), (2.15)

with

E@) =l u®)? + | —=*d.u @) |3 + | —= ”(r)ﬂ%

N N
F 10412 + llou@®I3 + lu@)|3 + H;(r)“?
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T 02u2 + 192u() ] + | Gl (r>||o+||

+1—= NG

(t)IIo

f XX

25+1

o;
+Z (187 @1, + 1=

SO, + IVooE 2 u(@)2)

o3 1 _
+ 2 (1) 207 03 u I + 16007 T u I3, + 107 u®I1T),
s=0

(2.16)
_ 4 4 3 2 2
E(): ||fa RvOIE+ 13 v + 1137 v ()12, +||fa a3
+ (v, 82 v oy  Za0,0, —=030) ()13
v, 0 v, —, —, — v, v 0
! xx Tx Jx ! L
+ [1(vx, 385 v, /T 820, 0) (1) 13 (2.17)

Note that the definition of E(¢) in (2.15) doesn’t involve the higher order energy of the axial
velocity w. The reason of it is that

w= woe_t, (2.18)

which can be derived from (2.5).
For obtaining the existence result, the following compatibility conditions should be satisfied
forl <k<5:

k k—1 vg o
O u(x,0) =0, (= —uo — 20, + —), (2.19)
X X
ok u(x, 0) =95 (= “Cug — w). (2.20)
X

From now on, P denotes a generic polynomial function of its argument.
We state the main result of this paper as follows.

Theorem 2.1 (Main Theorem). Let the initial data (pg, uo, vog) € Cz([O, 11) satisfy (2.12), (2.19),
(2.20) and

E0) < +o0.

Then, there exists a positive constant Ty such that the problem (2.11) and (2.12) has a unique
smooth solution (r,u, v) in [0, 1] x [0, Ty] satisfying

sup E(t) <2Pp. (2.21)
1€[0,Tp]

Here and hereafter, Py = P(E(0)).
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Theorem_2.2. Under the same condition of the initial data (pg, ug, vo), there exists a positive
constant Ty such that ﬁze problem (2.6) (with y =2) and (2.12) has a unique smooth solution
(r,u,v) in [0, 1] x [0, To] satisfying (2.21).

Remark 2.3. It is worth mentioning that the energy E(¢) in (2.15) is as same as the definition of
energy functionals for the radial velocity and the angular velocity energy studying the relativistic
Euler equations in [22], but the energy for the relativistic system involves the axial velocity
energy, which makes the estimates for the relativistic system more complicated.

Remark 2.4. Under the same condition of the initial data (oo, ug, vp), there exists a positive
constant fo such that the problem (2.7) (with y = 2) and (2.12) has a unique smooth solution
(r,u,v)in [0, 1] x [0, f"o] satisfying (2.6). Moreover, we can generalize the similar result to the
Euler-Poisson system (1.10) and (1.3) (with (1.4)).

Remark 2.5. As mentioned above, due to the physical vacuum condition (1.9)s, the value of y
confirms the rate of degeneracy near the vacuum boundary x = 1, but it will not affect the rate
1

of degeneracy near the original point x = 0, since pp ~ (1 —x)¥-T as x — 1. In fact, the rate
of degeneracy is more strong for the smaller value of y. Thus, we divide y into the two cases
Il <y <2and y > 2. Inspired [19], we can prove the well-posedness of local smooth solutions
of system (2.10) by the similar argument to the case for y = 2.

3. Some preliminaries

It is assumed that there exists a smooth solution (7, u, v) to the problem (2.11) and (2.12) on
[0, 1] x [0, T], which satisfies the a-priori assumptions below

u
sup (e, 20| = Mo, (3.1
1€[0,T] X L*>

for some constant My > 0 determined later. Then, a straightforward calculation gives that there
exists a small enough time 0 < 77 < T such that for any (x, t) € (0, ¢) x (0, T1], it holds that

r(x,t) -

< 2, <r'(x,1)<2. (3.2)

| =
N =

X

Lemma 3.1. Let T > 0 and (r, u, v) be a smooth solution to the free boundary problem (2.11)
satisfying (3.1) on [0, 1] x [0, T']. Then, for any 1 < p < 00, the following estimates hold:
o o o

Jx

u 2 2 o 3
—, Uy, 0(X)Uyyx, OrlU, 0;0xut, 07 u, 07 0xu, —=0;u | (1) ;
x oo

S x NG

o] (S St o)
2

o(x) . .» o .3
+| (8,8xu, i 8xu> 0|, =cVEw. (3.3)

By the fundamental theorem of calculus,
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H 0 0;0 0°0 ([)H
—, — Uy, OUl, — U, — 2 u
X x5 Ot \/_ 1 Oy \/_ + Ox

+| (ux,faxu 82u ﬁw@,aﬂ)aﬂ‘u

<Po+C / VE@w)(t)dr. (3.4)
0

Proof. Using H'(0,1) < L>(0, 1), H%(O, 1) — L?(0, 1)(1 < p < 00) and the weighted en-
ergy estimates (1.11) and (1.12), we can prove the estimates in (3.3) and (3.4), with the help of
(2.16) and (2.17), respectively. O

4. Energy estimates

This section is devoted to proof of a higher-order energy estimate of local smooth solutions to
the problem (2.11)-(2.12) on [0, 1] x [0, T'] under the assumption (3.1).

Lemma 4.1. Assume that (r,u, v) is a smooth solution to the problem (2.11)-(2.12) sansfymg
(3.1)on [0, 1] x [0, T']. Then, there exists a small time 0 < T, < Ty, such that for any t € (0, Til,
we have that

o
4,
—=0, ux,

N )(r)

[z

t
o 532

—i—//o(&tu) dxdt <Py+ CtP( sup E(1)). (4.1)
f x o zel0.1]

Proof. It follows that, by taking BlkH over (2.11)y,

2 2 .2 ak
k42 k+1,. Y k+1 o” X" du X ok
00, “u—209, ((77)"‘03, M_[T(_}JFQT‘FZEB, 8)‘”)]):
2 3 qk
0 x> 0fu
+ 0 ——+ e 23"3 u)—}—ZAk (4.2)
=1
where
0' X
Ak = ch —0 (55 - )aax]
k—1 2 2
Ab=3"qf 2—ak ’(—)—+—a" l( )a dyu], (4.3)
i=0
kl

here and thereafter, C; = k=D

In the case of k =4, multiplying (4.2) by 8,5u, integrating the resulting equations over (0, ) x
(0, 1), then the integration by parts gives
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1
84 34 2 t
f{ Fo @ + 7] 2(343 W+ —+x—( " ]}dx
X 0
0
t 1 ) t 1
—//ats(av—)afudxdt+//U(8,5u)2dxdr
r
00 00
t 1
4 34 2
://G— a,( a“a 0= 3)(343 u)2+a[( )( Z) ldxdz
X X
0 0
2 t 1
Z//A udxdr
=1 0
=: B; — B,. 4.4)

Before the estimate of the right hand side (4.4), due to (3.2) we notice the following facts, for
any nonnegative integers m and n,

"“()C )(<ka, k=0, .4, (4.5)
where

Ay = |ﬁ| + ],

ak

W= | = | + 105Uy | + A1 Ao+ Ap oAy, k=1, .4,

with 2; = 0(i < 0). Similar to (3.3), we conclude that, for any 1 < p < oo,

1
[Rlollzoe + 141l + [22llo + [™Asllo + loRA2lr + [loAsllo = CP(E?),

16012, + 121 OIIF + oA (D113, + lloA3(DIIF < Mo + CtP( sup E()). (4.6)
7€(0,t]

Thus, it is easy to observe that
By <C/||9to(r>||mo(||ia4u ||2+||iﬂ||2)dr
—= ﬁ t 4x o ﬁ X 0
0

<CrP( Zl[lopz] E(1)). 4.7

The second term B, in (4.4) can be written as
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t 1 t 1
By = / f AT udxdt + / / A39 udxdr. (4.8)
00 00

We only give the estimate of the first term of (4.8), while the second term of it can be similarly
estimated. Thanks to (4.3), the integration by parts shows

1

t
—//A‘l‘afudxdr

00
3 : 2 gi 2 t
4 X | 0/u 0 4 i, X

i= 0
1

al o’ d4—i( X \ai 4
+Zc4ffat - rz)%) =20 (@)atux]a, dyudxdr

0
=: By |0 + By). 4.9)

The Young’s inequality shows, for any positive constant ¢,

|Bm|<s||fa4ux||o+0(e>z(|| LA (r>||0

+ |20 )

(4.10)

Moreover, it holds that

H —Qlo(t)— (t)

H —=Ao(1)0; 1 (t)

8
= ™o@llgs (‘

ot ||oa,3ux<0>||m)

t
84
+||910(I)I|L°00/(IIT—( )||0+||[84”x(f)||0)
SCtP( sup E(r)).
7€[0,1]
Similarly, we can show that
(H—% l(t) (t) H—% P (£)3] ux (1) >
i=0 0
32
snmluo(‘ o Hfaz )
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3

t
ou
+||2l1||L4/<‘ :
0

oru
+lloAalla (‘ :
X

L + Hoafux(r)HU) dt

+ ||8t”x(0)||L4>
L4

t

+||Um2||L°°0/(||f32”(f)||0+|| NG (t)llo)df

+ o2l (H “of + ||axu<0>||Loo)

t
7
+||om3||o/( ’
0

<Po+ CIP( sup E(r)).
7€(0,7]

+ ||03t3xu(T)IIL°°>dT

LOO

Thus, it derives from (4.10)

0 4 2
|321|5e/||7;a, ux(0)llgdt + C(©)[Po+ CtP( sup E(1))].

7€[0,7]
By the similar analysis, we have for the estimate of B, in (4.9), with the help of (4.6), as

By < CtP( sup E(1)).
7€[0,1]

Thus, we obtain from (4.4)

X Frry r X rry X

1
2 2 (a4d.\2 4
x rx°(0;u) x 0 u
/{ —o@u)’+ ——[5—5 +——at Uy + 2(8t4ux)2]}dx
0

//a (0 — )85udxdr+f/0(85u)2dxdr
0
4 o dtu ?
<Po+CtP( sup E(1))+ a Uy — ). @.11)
7e[0,] ﬁ x o

Since

o2 x [x2 (E)fu)2 X 84

X rrer? x2 rry

814 Uy + 2(34Mx)]
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o x [1 ](8 )+ lx (84u)2+ 184 n 1 xat“u)z]
= — | —— u —_——
x rry2r? th x2 f el 21 x
2 4.7\2
o°1.1 x2 (8 u)
> T @+ o ’
- X 8[}’%( X) + x2 ]
which implies
i - 2 (9tu)?
o? by u
0@ widx + — | —[5 @ u = d
/26( uydx+ ¢ xrx( Tl
0 0
t 1 t 1
—//8?(6—)8,5udxdr+//a(8,5u) dxdt
r
00 00
<Po+CtP( sup E(1)). (4.12)
t€[0,t]

Now we turn to deal with the term of v in (4.12). Taking atk over (2.11), one has

ak
Oy + (1 + H)a,"quu)r—CfT"

——UZCkak l( ) ZC’ak v (——)
Taking k =4, it concludes that

5 XU _ 4 x Otu

Btv+(1+——)atv+ -

3! S
_—UZC434 '(x)—” —cha;‘*’ua;(éz).

Thus, it holds that

r 1
—//af(gfvz)alsudxdt
xr

00
t
00

=]Q

4
X . X .
(S w?) +§Cgaf '()0 )]0} udxdz

X X 4 X
2Z20v+30=Pv+2Y CLTH(E)(wdlv + 0l v) |9 udxd
[rutv+ r’U+ ; 50; (r)(vtv+tv)],ux1:

Il
|
oY
o _
=] Q
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<Po+ CtP( sup E(r)),
t€[0,t]

which in combination with (4.4) yields (4.1) for small enough time 7. This is the end of
proof. O

5. Elliptic estimates

This section is to establish the high-order spatial derivative estimates of the local smooth so-
lution for the problem (2.11)-(2.12) on [0, 1] x [0, T] under the assumption (3.1). As mentioned
above, we need to separate the estimate of each term into the internal estimates and boundary
estimates near the point x = 0 and x = 1, respectively. More precisely, the estimates of u, d;u in
the Subsection 5.1, the estimate of 37u in the Subsection 5.2 and the estimate of 3 in the Sub-
section 5.3 are constructed, respectively. Finally, we obtain the estimate of E () in the Subsection
54.

To obtain the desired estimates, we rewrite the system (4.2) as

k

9
o 0K02u + 26" 0k 0 .u — o' T2 = — pogxdkdeu — 20,0k u + B, (5.1)
X
where
¥ 4
k .__ Ak k
B ._AS—}—%ZA , (5.2)
=1

with AF(1 =1,2) given by (4.3),

2
k. k+2 k1. Y k+1
A3:=00; "u— 9 (07)+08t u,

2 2 k
k. o x ofu X k
A = —0, {7[(—r2r§ ) +2(—rr3 — 19, 8xu]},
o. x3 oku 1 x2
Ak == — D)L= 4+ S (=— — Dakdul. 53
5 X [(r3rx ) X + 2(}"2}’% ) t Xu] ( )

We first determine the constant § in (2.13) and (2.14). Because p(0) > 0 and ¢’(0) > 0, then
there exists a positive constant §p such that for any x € (0, §p),

00(0) -y - 300(0)

<o'(x) < > (5.4)

Then, we take § as 0 < 26 < §p.
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5.1. Estimates for u, d:u

Lemma 5.1. Assume that (r,u, v) is a smooth solution to the problem 2.11)-(2.12) satlsfylng
(3.1)on [0, 1] x [0, T']. Then, there exists a small time 0 < Ts < Ty, such that for any t € (0, 73],

it holds that

u u u
||saata£(;>||%; + ||aata§(;)||§ + ||oxa,ax<;)||%

<Po+CtP( sup E(1)),
t€[0,1]

3 1
Ino28,3ull3 + Ino2o.8,02ul

<Po+ CtP( sup E(v))+ Mollno'/?8}d,ull3,
7€[0,1]

and

3.2 2112
Ino a2l + Inoxd?ull}

<Po+ CtP( sup E(v))+ Mollnddsull.
7€[0,1]

Proof. We divide the proof into two steps.
Step 1. Interior estimates of u and 0,u.

In this step, we prove the interior estimate in (5.5). Note that

ku k

a,"a){u:zxa){(’T)ﬂa,{*‘(a;—”), i=12,--

the equations in (5.1) can be transformed into

xaatkﬁg(%) + 568{‘8%(;) 4 3axa§<ax(g)

oky

u u
= —2x2 Py 8K 02 (=) — 0 0¥ By (=) — Oy ——
X X X
— 3 (p0xx3f 1) — 85 (20005 u) + BE.

From now on, My denotes the general positive constant depending only on

max {00, |0ox (X)1, | poxx (X)[}-
x€[0,1]
Multiplying (5.9) by £ and taking L?-norm, for k = 1, one has

2
Hg[ma,aﬁ(ﬁ) +500,02(%) + 30,0, ()] H
X X X 0

8[1/!] 2

< |&[ —2x2 p0xata( )—oxxata( )= o

0
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+ |16 {95 (Poxxdidyu) + x (2p0rdru) Yo + 1EBLIZ, (5.10)

where a straightforward calculation gives

2
"s[—2x2p0x8,8§(5>—axxatax(f)—ama’—”]
X x x o
+ ”é {ax [pOxxataxu] + 0y [2,00):3:%]} ||§
<Po+CrP( sup E(1)). (5.1D

t€[0,1]

The left-hand side of (5.10) can be estimated as follows,

3 U o U u 4|2
Hé[x08,8x(—) +508,02(%) + 3@8@(—)]”
X X X 0

FPUNE o U
- ngoa,ax(—)H +25 Hsaa,ax(—)
X 10 X

2 u 2
| +9eoaa )|
0 X 10
1 1

3 u 2 u 3 u u
+10 [ £x099] ()50 8,03 ()dx +6 [ £xo8,03()E0ndyde()dx
0 0

1
+30/gaataﬁ(f)gaxatax(ﬁ)dx. (5.12)
X X
0

The integration by parts shows

1
3,U 2.4

10 | £x00,3;(—)€03,0;(—)dx

X X

0
1

U |2 AP

=—15|g00,02())| —10/$sxxo 8,02 dx
x llo X
0

2
0035 dx,
X

1
— 10/$2a(xax —0)
0
and

] I
6/$x08t83(%)$ax8;8x(;)dx+30/568;83(%)5@3:&(%)61}5
0 0

1

1
u 2 u 2 u 2 u
=—12 %’%’xxo'axﬁtax(;)atax(;)dx +24 | & O'Uxatax()—c)atf)x(;)dx
0 0
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1 1
—6/52xa§atax(5)ata§(5)dx —6/gzxoaxxa,ax(f)ataf(f)dx
X X X X
0 0

—6/152a(xa/—a) ataf(z)‘zdx—6)(503,35(5)”2.
0 X x o

Similarly, we can get

1
/ £200"8,0%(2) 0,0 (=)dx
X X
0
1
:—/52(0/)2(8[8x(;))2dx
0

1
- 2/$§xaa’(at8x(%))2dx
0
1

_ / 5200/'(8,8x(;))2dx.

0

Thus, we can obtain from (5.12), for any positive constant ¢, that
3 U o U u 2

Hg [xoatax(—) +508,02(%) + 30x8t8x(—)] H
X X x dllo

u N2 u N2 u 12
= |exonol | +3[eoaal] —esoxna ]

—Po—CtP( sup E(r)). (5.13)

7€[0,¢]

In particular, we have used by (5.4)
1
—/g%a”(atax(ﬁ)fdx
X
0
3o
5 o R
:—/‘f;‘ o —0'(8:0x(=)) dx
o X
0

1
_ fgzoa”(atax(%))zdx
o
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t€[0,t]

1
8/&2 (90 (= )) dx + Mo(e) <P0+Ct7>( sup E(t))). (5.14)
0

We turn to handle the last term || €8 )1( ||(2) on the right-hand side of (5.10). Due to (4.3) and (5.3),
A} and Aé are equivalent to 0, the highest-order terms with respect to ¢ and x are ||£ 9, (55 A%) ||(2)
and || & 8x(%A}‘) ||%, respectively. Thus, we only give the estimates for these two terms, while the
other terms in ||£B }C ||% can be similarly estimated. From (5.3), it follows

X112
|I§3x(ZA3)|Io

2uvUy

= ||$%[8,3u+x8t38xu—8l2(1)72)— 32 ( :—jrx)+a,2u+afaxu]||g
= Mo (Ig07ul} + 1007 aulld + ||fsa,2u||O + 16097 0,ull})
+ Mo = I + 1= 1) (1 @rtt. 30) I3 + 1100y 0 070,0) )
+ Mo e + 13 31 i+ 1520130 2 e + 100031 22 ), 515)

and

X
1£0: (5~ ADIG

o x2 oru X
=|—&0 (Ux_a)[( B % 1)74—2(@—1)8;3)614]
o x2 oru 5
+E[(W—1)—+2(—x 1)9,0, u] }||0

t
< Mol|&o (3;0;u, ( )xx)”()/”(a u, =) ()l dt

+ Moll&o (3,7u, ( )x)”LOO||(rxX78x( NG
8t 2 2
+ Mo |& (3 Oxu, T)HLDO lo (rexx, 8xx(;))||0

U X 5
+ Mo||& (0 0xu, 7)||Loo I (Fxxs 8x(;))”0

t
0:u u
+Mo||s<a,a§u,<’7>)x||%/ (@, ;)(r)ﬂ%mdr

+ Mo |59 dxu, )IILoo/II(ax (@) lxdr. (5.16)
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Finally, we obtain (5.5) from (5.13)-(5.16).
Step 2. Boundary estimates of z and 0,u.

In this step, we prove the boundary estimate in (5.6), while the estimate in (5.7) can be similarly
treated. For this goal, we write (5.1), with k =1, as

5 ou o oru 1
00;05U + 20, 0;0xut =0y — + —0;0xu —2p0x— + B . (5.17)
X X X
Taking 3, over (5.17) and multiplying it by ./, one has

Inv/o (00:07u + 30,:0:97u) 1§

oru o _ou 2
nﬁ{—2oxx8,8xu+8x[ x’—+ ataxu—z(ox— —)‘—]}
0
+ Inv/a B, 13- (5.18)
Due to 6/(1) < 0, there exists a positive constant o > 0 such that for any §; > >3 5, —00 < 0y(x) <

0, Vx € (8, 1], then the integration by parts shows

1N/ (0003 u + 30,0, 97u) 1§
1
= lno 3 8,03ul3 + 1300 20, 8,9%u? + 6/ 003 8,93uno 20, 8,92udx
0

> | 35,9312 ] 2,012 _
> [Ino 29,0ullg + 2llno 200, d5ullg — [Po + CtP( sup E(1))]. (5.19)
7€(0,t]

The first term on the right-hand side of (5.18) can be bounded by

2

0

10 1 10y —0/X 1 Orlt
NO2—0:0xU — 200 2050 0x U + N0 2 —————0;0x U + NO 205 0x(—)
X X X

ou o o _oru
Hn\/g{_Zo'xxalaxu + ax[ax;_ + ;ataxu —2(0x — _)l_]}
10y —O0/X 0ru 2

B) 0
- 2770%(0;( - z)ax(t_u) - UG%Gxxl—u +2no?
X X X X X

0

<Po+CtP( sup E(1)). (5.20)
t€(0,¢]

For the estimate of ||nﬁ%}c||% in (5.18), the main difficult terms are ||nﬁ8x(%Aé)||(% and
Inv/0dx (5= AD|3. Similar to (5.15) and (5.16), we have
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X 2
||nﬁax(gA§>no

2vv v?
b r—zrx) + 8%u + xd70,u]l3

= ||77\/E%[8t3u +x3t38Xu — Btz(UTz) — x8t2(
< Mo|| (U«/Eaf’axu, N0 u, /o8 0,u, ggatzaxv) 12

+ Moll (009} 870, 0, 0)[F<[1 + | B CIG]

+ Mo (|| 31t 8;0) |2 o0 | (3 Bxtt, ;35 V)IZ + 1012118012 0 + WO 0, 0[12),  (5.21)

and

X o1y2
||U«/EBX(ZA4) ||0

t
3 u
sMonnoz(a,aiu,azaiu,ataxu,amn%/ I, ) i
0

t
1 2 u
+ Mo [0t @002, a0, 0 + 1 @t 30 | [ 10su, 0l
0

1 2 X 2 du o 2
+ Mo 102 @rse, 3|10 e () I+ Moll @t =) oo

1 2 X
+ Mo |10 @rds, )| 10w 0IB: (5:22)
From (5.19) to (5.22), we can conclude the estimate in (5.6). O
5.2. Estimates for Btzu

Lemma 5.2. Let (r, u, v) be a smooth solution to the problem (2.11)-(2.12) satisfying (3.1) on

[0, 1] x [0, T]. Then, there exists a small time 0 < Ty < T}, such that for any t € (0, T1], it holds
that

1 ?u ||
Hg—(aa,zagu,oxafaxu,ox’—”) <Py+CtP( sup E(7)), (5.23)
Jx x o €[0,1]
and
Ino8292ull} + noxd2dcully < Po+ CrP( sup E(1)). (5.24)

7€[0,7]
Proof. Clearly, the boundary estimate in (5.24) can be obtained by the same fashion in (5.7).

Thus, we omit it in details. But the interior estimate of Blzu is more complicated than its boundary
estimate.
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By analogy with (4.5), for any nonnegative integers m and #, it holds that

—)x| <CH, k=0,1,2, (5.25)
where
u
So = |(—)x| + |uxx| +=AoHo,
3k—|(—)x|+|3 2u] + W Ho + Ae—1Fo + We—aF1, k=1,2, (5.26)

with 2; = 0(i < 0) given by (4.5) and Ho = |(§)x| =+ |rxx|. Similar to the estimate (4.6), we can
obtain that

Hollo + lloHollLe + 1E0F 117 + l0F2ll§ < Po+ CtP( sup E(x)).  (5.27)

t€[0,¢]
Multiplying (5.l)by§%,we have, for k = 2, that
1 5, 1, 1 3
Sﬁaat Bxu—i—STaxal 8xu—$7c7x7
1 2 2 2
= —gﬁpoxxat Bxu 2§[P0x8 M+§7_% (528)
Using (5.8), in the similar way carried in (5.10), one has
|I§—x8 ( )+3$ 88( G
[ «/_ 0
1 u 1 8u 1
< || — 26 —=xp0x 920 (=) — 36 — por —— || — 822, 5.29
<| Sﬁxmx, x(x) Sﬁmx » II0+I|§ﬁ o (5.29)
where the first term has a bound as
Il = 2§ —=xpo aza( )= 36— a’2—”||2<7>0+cn>( sup E(r)).  (5.30)
X X = . .
\/_ \/)_C x 0 7€[0,7]
By the analogy with (5.13), it yields that
o u o u_|?
——x320%(=) 4 36 —=020,(—
”éﬁX, "(x)+ Sﬁt x(x) .

—[Po+CtP( sup E(D))]. (5.31)

2+”§i828 “
N Tx 7€[0,1]

O 2.2
ﬁx,ax

For the estimate of || I‘BZ ||0 on the right side of (5.29), the main difficult term is ||§ N A2 ||0,
which can be estimated as, from (4.3),
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1 2 2
T A2 = 200,92 929, 7922
éﬁgz‘l]— 2¢—[ Pox 9y ( 2 2) +to ( 2, 2) +; z(@)”x]
1 2 x? 2 x? 2 x? 2
- gﬁ[ZPOxat (@)Mx +09; ax(@)“x +00; (@)3; M]
1 ) x2 ou o x2 oru x2
—57[ poxat(m>7+;a,ax(m)7 +oa,<m)a,axu]
—257[2p0x3z( )01 0xu + 00;0x ( )3z3 M+G3z( )3r32 ]
(5.32)
Furthermore, ||$ﬁ08t28x(%)ux ||% and ||.§ﬁc78t8x(rx7)8,28xu||% can be estimated as
1 5 x2 2
Hsﬁaat aX(rzr%)ux ”0
< CllETF1 (D 1700 Nuxll7 o0
< Mo+ CrP( sup E(1)),
T€[0.7]
and
1€~ 8, (1320,
Jx ! rr3 ! o
2
<C||9lo(t)I|Loo||§\/—a Foullg
§M0+Ct73( sup E(r)).
7€[0,1]
Similarly, we can estimate the other terms of ||§ Tio = A2||0 and have
|giiA%||3<7>o+Ct7>( sup E(1)).
Vx 20 - el0,1]
Finally, we can obtain from (5.29)
O o242 ? 9 2 ?
E—x070:(— —i—HSS— =) <Moo+ CtP( sup E(1)). (5.33)
H N N 0 (te[O,t] )

Because of o/ (x) = xpox + po = Xpox + % we have

2
O 924 M
)
= |&(ox — xpox NG x\/_
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: 823 u  ou e (aza o 02u |’
= o X,
x( \/— [ POx ﬁ x[
32du 07
>CH$ o (2 42
Jx o xJx
and
O 2a2 ?
E—x0;702(— <Po+ CtP( sup E(1)),
H N 0 (‘L’E[O,t] )
which in combination with (5.33) shows
: a dyu 82
u u
—18 | &2 ——dx
/S O Jx xf
0
o
< 3sﬁafaxu 0+Mo||<saafaxu,sa?u)||%
< Mo+ CtP( sup E(1)). (5.34)

7€[0,¢]

Thus, we can obtain (5.23). This completes the proof. O

5.3. Estimates for 3} u

Lemma 5.3. Let (v, u, v) be a smooth solution to the problem (2.11)-(2.12) satlsfymg (3.1) on

[0, 1] x [0, T'). Then, there exists a small time O < Ts < Ty, such that for any t € (0, Ts), it holds
that

Bu |”
"5(0838214 o 0w, 0“0y | < Po+ CrP( sup E(x)), (5.35)
X 0 7€[0,1]
and
||na%afa§?u||3+ ||no%oxafa§u||357>o+cm( sup E(1)). (5.36)
7€[0,7]

Proof. Similar to the estimates for 8,214, we only give the interior estimate (5.35), while the
boundary estimate in (5.36) can be obtained by the same way in (5.7). For this goal, we have
from (5.1) for k = 3 that

PBu |’
”s(aafafu + 0,030 — oy
X o
o o du
<My [ns(ox —~ ;)a?axuné + (128 (0 — ;)fTH% + IIE‘B3II6] : (5.37)
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Similar to (5.13), we have

3 2

3
£0939%u + E0y 03 0yu — £y S
X

0

1 1 93
> &0930%ul3 + ZIISUX838XMII%+ 6||gox’7”||§ —[Po+CtP( Sl[lop]E(‘r))]. (5.38)
7€(0,¢

For the estimate of ||&53 ||(2) on the right side of (5.37), we only give the estimate of ||§%A? ||(2),
while the others can be similarly bounded. Thus, we can obtain

1EB3 12 < Po+ CtP( sup E(1)).
t€l0,1]

By (4.5) and (5.27), it holds that
X
&5 ATlG

2

i O- 3 i u 3—i i
Zg—c (22)—+2—a ( )a iy

0
u
< Mol(o22, a5 1311E(@2u, u,, ;)(0>||%oo

o:u
+Mo||(omz,a&z>||%f 1€ (3, 82u, 3, dyu, ’7>(r)n3dr
oru
+ Moll(o2Ay, o FDIZIE @, 82u, 8 yu, t7)(0)||im
t
+Mo||(om1,asl)||%/||s(a,2 u, —><r>|| dt + S, (5.39)

where S is

92u
S :=Mp||(oco, oF0)IF 150 (8702u, 870, u, '7)(0>||im

3u
+ Mo || (o200, oF0) 13 / €0 (3 92u, 87 dyu, ’7><r>||%dr

2 O;u 2 \ atzu 2
+ Mol (052, 05Dy IIE(ux,7)(0)||Loo+/llé(8t3xu,T)(T)Ilodt

3 0
+ Mol Go. oFDIR | 160 f” ‘—”)<0>||Lw /nswa dyut, ><r>|| ,
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where 2(; and §;, i =0, 1, 2, are given by (5.25) and (5.26), respectively. From (5.38) and (5.39),
the estimate (5.35) can be obtained. O

5.4. Estimates for E(t)

Lemma 5.4. Let (r, u, v) be a smooth solution of the free boundary value problem (2.11)-(2.12)
on [0, 1] x [0, T'] under the assumption (3.1). Then, for any t € (0, T), (2.21) is satisfied.

Proof. According to (5.5)-(5.7), (5.23), (5.35) and (5.36), we can get

E@w) <Po+CtP( sup E(x)). (5.40)
t€[0,1]

By analogy with the estimate of u#, we can conclude that the estimate of v

E(v) <Po+ CtP( sup E(1)). (5.41)
7€[0,7]

Combining (5.40) with (5.41) shows (2.21), where we have used a polynomial-type inequality
introduced in [1]. This ends the proof. O

6. Existence results

This section is to investigate the existence of smooth solutions to the problem (2.11)-(2.12)
by applying a degenerate parabolic regularization based on the priori estimate in (3.1). First,
the degenerate parabolic approximation system can be constructed by the approach similar to the
analysis of the cylindrical symmetric relativistic Euler system in [22] and the spherical symmetric
system in [19]. Then, the existence of solutions of the regularized problem can be obtained by
the similar analysis in [2,4,22] using the fixed point theorem. Then the estimate of solutions
independent of  be similarly obtained by applying the Lemma 3.2 on the page 336 in [2] due to
our estimates in (2.21).

7. Uniqueness results

This section is to show the uniqueness of smooth solutions to the problem (2.11)-(2.12) on
[0, 1] x [0, T'] obtained in Theorem (2.1).

Lemma 7.1. Let (r, u, v) be smooth solutions of the problem (2.11)-(2.12) on [0, 1] x [0, T]
given by Theorem (2.1) satisfying (2.21) with

t
r,-:x—i—/ui(x,t)dt, i=1,2. (7.1)
0

Then, there exists a positive time 0 < T < T such that, for any [0, 1] x [0, T], the solution
(r, u, v) is unique corresponding to (po, Ug, Vo).
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Proof. Set

R=rp—ri, Ri=U:=uy—uy, V:=vy—vj.
From the system (2.11), a direct calculation gives

2 R 2 R R
U = [ (L1 R+ L29)], + S (LR + L4=) + HU, V, =) =0, (7.2)
X X X X X

where
x 1 1 1 1 1 ,x x
Li=—(—+—)——, Ly=(—)>",
n Tix x Fix Nx Fix T r
X 1 1 1 x X X Xx
L3:= (=) ——, Ly=—(—+—)——, (7.3)
2 Tix x Fix 11 rn rnr
v% v12 U% v+ V2
HU,V, )—o[ —(Z2-D]=0cW+-—2R- V).
rn ri rir r
Multiplying (7.2) by U and integrating over (0, 1) x (0, ), we have
1 1
U? o? R R?
/J(x)—dx+/—[£1R3+(£2+£3)—Rx+£4—2]dx
2 X X X
0 0
t 1 )
R U
:/ U—(8t£1R)%+£1Rxe+8,E2—RX+E2—RX)dxdr
X X X
00
! 2
R UR
+f/a— 3,£3R —~|—£3Ux ~|—3;[,4 +£4——)dxd‘l:
X
00
1
//H(U v, )dedr, (7.4)
00

where

R
‘H(U,V,—)U'

X

U22 v + vy
=lo(U+ —R VU

rir ri

R? 21 +V U

<olU+Zi 034+ v‘ hdl

ryr x r X
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From (2.1), there exists a positive constant K, depending on Py, such that

[0, L;i| + |Li| < Ko, i=2,3,4. (7.5)
Thus,

1 1
U2 2 R R2
/a(x)—dx+/G—(£1R§+£2—Rx+ﬁ4—)dx
2 X X x2
0 0

1
2 2 2
o R U
< C(Ko) f [ 7(R§ + 5+ U+ —5)dxdr

t 1
+C(K0)//a(x) [U%+ ) + R+ (g)z]dxdr. (7.6)
0

0

Differentiating (7.2) with respect to ¢ and multiplying it by U;, the similar procedure of (7.6)
shows

1 1
U2 2 U U2
/a(x)—tdx+/G—(£1U3+2£2—Ux+£4—)dx
2 x X x2
0 0

t 1
U
5//02(52—£3)—’Uxaudr
X
0 0

R2
+ C(Ko)//o(x)(U2 +VZ4+ ?)dxdr

o2 U? R?
2 2 2
+ C(Kyp) // —(U?+ U+ = + R} + —)dxdr. (7.7)
X X X

Moreover, a straightforward computation yields, with the help of (7.3),

|£2 — L3] = C(Ko)(IR| + U, (7.8)

which implies

t 1
U
/faz(ﬁz—.cg)—tuxdxdr
X
0 0
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t

1
U2
< C(Ko) / / o} (RI+ U + x—z)dxdt. (7.9)
00

Based on some straightforward calculations, there exist positive constants T]* and ery, such that
0<T<Tandforany 0 <t <T},

1 X 1
<—<—- 1—epx<rix<l+4er, i=1,2, 7.10
1+8T1* T 1_8T1* T ix T; ( )

where limTl*_,O ery = 0, then for any r =ry + w(r; — rp) and ry = roy + pu(rix — ray)

—2egy X x X ey
+- S - S -+ )
(] —ET]*)(] +87"]*) r ry r (1 —STI*)(] —|—28T1>s<)
Fax — &7y STx SToc + 267y (7.11)

For the second term on the left side of (7.7). From (7.3), £1 > G(u, ‘971*)’ where

1
1

G( ) / a Zory | d
, ETx) = —_— ,
M, e, r (11— aTl*)(l + 811*) (rox + 25T1*)3 r=ratuir—ry)
0

which implies
lim G(u, erx) = L7,
T —0 !
with

1
X

* —
’Cl _f rr3 |r:r2+M(r1—r2)d'u“'
0 2x

So, there is a positive constant T satisfying 0 < 7;* < T}, such that for € (0, 7]

U U? U U?
L1UZ+2L0— U+ La—5 > LiUT +2Lo— Uy + L4— .
X X X X
Due to (7.3), there exists a positive constant M* such that
U U? U?
LiUT 4+ 2Ly — Uy + La— = M* (U7 + —5).
x X X
Finally, for any 0 < ¢ < min{7}*, T}, it follows that
U U? U?
L1UF +2Ly—Us + La—5 = M*U7 + ). (7.12)
X X X
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From (7.6)-(7.12), we can obtain U = R = 0 by using Gronwall’s inequality. The proof is com-
plete. O
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