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Abstract

In this paper, we aim at studying the asymptotic behavior for the time-delayed nonlocal reaction-diffusion 
equation for population dynamics with Dirichlet boundary condition in Ω ⊂ RN . We recognize that there 
are threshold convergence results of the solutions which depend on the ecological parameters: the spatial 
diffusion coefficient D > 0, the death rate coefficient δ > 0, the birth rate coefficient p > 0, and two princi
pal eigenvalues 0 < λi < 1 (i = 1,2) of the linear nonlocal dispersion operators induced by the two different 
kernels with Dirichlet boundaries, respectively. Precisely, when 0 <

(1−λ2)p
Dλ1+δ < 1, we prove that the solution 

globally converges to the trivial steady state 0 at the exponential rate. When 1 <
(1−λ2)p
Dλ1+δ ≤ e, we further 

prove that the solution globally converges to the non-trivial steady state φ(x) at the exponential rate, and yet 
this convergence locally holds if e <

(1−λ2)p
Dλ1+δ < e2. The convergence rates are also time-exponential. The 

proof is based on the Fourier transform and the energy method involving the eigenvalue problems for nonlo
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cal dispersion equations. Some new techniques and skills for treating the nonlocality and non-monotonicity 
with restriction in bounded domain are also proposed. Finally, a number of numerical simulations are car

ried out, which confirm our theoretical results. For (1−λ2)p
Dλ1+δ > e2, the solutions are numerically tested to be 

oscillating.
© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and 
similar technologies. 
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1. Introduction

Modeling equations. Of concern is the asymptotic behavior for the Dirichlet problem of 
the nonlocal reaction-diffusion equation with a time delay arising from population dynamics in 
ecology [2,21,22,25,27,33]:⎧⎪⎨⎪⎩

∂u(t,x)
∂t − D(J1 ∗ u − u)(t, x) + δu(t, x) = (J2 ∗ b(u))(t − r, x), t > 0, x ∈ Ω,

u(t, x) ≡ 0, t > 0, x ∈RN \ Ω,

u(s, x) = u0(s, x), s ∈ [−r,0], x ∈ Ω,

(1.1)

where u(t, x) stands for the mature population of single species (after the maturation age r > 0); 
the spatial range Ω ⊂ RN is a bounded and convex domain with a smooth boundary ∂Ω; the 
constants D > 0 and δ > 0 represent the diffusion rate and death rate for the mature population 
of the species; (J1 ∗ u − u)(t, x) is the linear nonlocal diffusion operator,

(J1 ∗ u)(t, x) =
∫
RN

J1(x − y)u(t, y)dy, (1.2)

and J1(x − y) is thought of as the probability distribution of jumping from y-site to x-site; 
(J2 ∗ b(u))(t − r, x) is the nonlocal term of birth rate with the time delay r , which is defined as

(J2 ∗ b(u))(t − r, x) =
∫
RN

J2(x − y)b(u(t − r, y))dy, (1.3)

the birth function b(·) is of the Nicholson’s blowflies form

b(u) = pue−au, p > 0, a > 0. (1.4)

From the ecological point of view, the nonlocal birth term (J2 ∗ b(u))(t − r, x) allows for some 
mobility among the immature population of the species. The typical choice about the kernel 
J2(x) is the heat kernel (see [33]); however, we are interested in the more general case. In fact, 
the kernel J1(x) in the nonlocal diffusion term and the one J2(x) in the nonlocal birth term 
satisfy the following hypothesis
2 
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Ji ∈ C(RN,R) are nonnegative,with J (0) > 0, and 
∫
RN

J (x)dx = 1, i = 1,2. (1.5)

Remarkably, different from the previous studies [3,4], [10--16], [21--27], [31--34], [38,39], the 
kernels Ji(x) (i = 1,2) may not be restricted to be radial and symmetric.

The boundary condition in (1.1)2 is similar to the classical Dirichlet boundary condition and 
indicates that the exterior of the area Ω inhabited by the species is hostile. To put it another way, 
this is the case when individuals of the species land in RN \ Ω, they die immediately, thereby 
resulting in u(t, x) ≡ 0, x ∈ RN \ Ω; in contrast to the classical Dirichlet boundary condition, 
here we do not prescribe the boundary value on ∂Ω, and we accept that the solution u(t, x)

might have a discontinuity on ∂Ω.
Background of study. The nonlocal diffusion problems have been used to model very dif

ferent applied situations, for example in nonlocal anisotropic models for phase transition [1,5], 
mathematical finances using optimal control theory [7,26], particle systems [8], biology [9,30], 
coagulation models [18], image processing [20,28], etc. For the non-delayed nonlocal diffusion 
equations, these equations have been extensively studied in [2,4,6,17,24,25] for the existence, 
uniqueness and asymptotic behavior of the solutions in bounded/unbounded domains, and in 
[19,37] for the blowup phenomenon, as well as in [3,12--16] for the structure of traveling waves 
and their stability, respectively. For the time-delayed nonlocal dispersion equations, the exis
tence of monotone/non-monotone traveling waves were established in [31,38], respectively. The 
asymptotic stability of these wavefronts were shown in [31] for the case with large wave speed 
by the weighted energy method, and in [21] for the case of critical waves by the technique com
bining the weighted energy method and the Fourier transform. When the targeted equation lacks 
the monotonicity, the traveling waves were proved to be oscillating once the time-delay is large 
(cf. [23,38]). The global stability of these oscillating critical/non-critical waves with optimal 
convergence rates were further technically proved by the anti-weighted energy method and the 
Green function method in [21,32,36,39], independently. The threshold results for the solutions 
with the local birth rate term in unbounded domain was studied recently in [22]. When the sub
jected domain is bounded, the asymptotic behavior of the solutions to the time-delayed nonlocal 
dispersion equations was first studied in [34] for the local case only, and recently investigated in 
[27] where the term for the birth rate is also isolated locally in one point x only, and the birth rate 
was restricted to be monotonic.

Main purpose and difficulties. In this paper, we study the dispersion equation (1.1) with 
nonlocality for both the spatial diffusion and the birth rate, where the birth rate function b(u)

can be allowed to be non-monotonic. We are going to prove the threshold convergence results 
of the solutions according to different values of parameters for the birth rate coefficient p, the 
death rate coefficient δ, the nonlocal space dispersion coefficient D, and two principal eigen
values 0 < λi < 1 related to the kernels Ji(x) for i = 1,2. Namely, when 0 <

(1−λ2)p
Dλ1+δ < 1, the 

solution globally converges to the trivial steady state 0 at the exponential rate. This means the 
single species will become extinct after long time. When (1−λ2)p

Dλ1+δ > 1, we prove that there exists 

a non-trivial steady-state φ(x) of (1.1). Then we further prove that, when 1 <
(1−λ2)p
Dλ1+δ ≤ e, the 

solution globally converges to the non-trivial steady state φ(x) at the exponential rate, and yet 
this convergence locally holds if e <

(1−λ2)p
Dλ1+δ < e2. This means that the population of the single 

species will become steady-state after long time. The adopted proof approach is the Fourier trans
form with the energy estimates. The main difficulties for the study come from two sides. One is 
from the non-monotonicity of the birth rate function, and the other is from the nonlocalities of 
3 
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the spatial dispersion and the birth rate term. To overcome these difficulties, we treat the prob
lem based on the monotonic/non-monotonic cases of the birth rate, and adopt the energy method 
with the help of the monotonic technique for the monotonic case to get the global convergence 
result, and adopt the Fourier analysis and the compactness analysis for the non-monotonic case to 
show the local convergence result. Furthermore, we use the numerical integration and numerical 
differentiation techniques to carry out some numerical computations in different cases. These nu
merical simulations confirm our theoretical results. This is first frame work to show the threshold 
convergence of the solution to the nonlocal dispersion equations in the bounded domain, which 
involves the principal eigenvalues. Regarding the case of (1−λ2)p

Dλ1+δ ≥ e2, as numerically showed in 
[11,29,36], when the time-delay r is large, we expect that the solutions occur Hopf bifurcation 
with infinitely many oscillations. But this case is more challenging, and still keeps open.

It is interesting to compare our threshold results for the initial-boundary value problem in 
the bounded domain with the results obtained in [22] for the Cauchy problem in full space 
RN . There are three different technical issues from [22]. The first issue is about the kernels 
Ji(x). The kernels are usually assumed to be symmetric and radial in the previous studies in
cluding [22], however, such restrictions are removed in this paper. The second issue is about 
the asymptotic profiles. The threshold asymptotic states in [22] are trivial: u = 0 for 0 <

p
δ

< 1
and u = 1 

a
ln p

δ
> 0 for 1 <

p
δ

< e2. Of course, these states are differentiable in RN . However, 
the expected asymptotic profiles considered in this paper for the bounded domain are u = 0 for 
0 <

(1−λ2)p
Dλ1+δ < 1 and

u = φ(x) =
{

1 
a

ln (1−λ2)p
Dλ1+δ , x ∈ Ω,

0, x ∈ RN/Ω,

for 1 <
(1−λ2)p
Dλ1+δ < e2. Obviously, the steady state φ(x) is non-trivial, and it is discontinuous on 

the boundary ∂Ω. The third issue is that, the Fourier transform adopted in [22] in the full space 
RN cannot be directly applied to the bounded domain Ω ⊂ RN . To do so, here we heuristi
cally extend the solutions to be zero in the outer region of RN/Ω. Such bounded solutions with 
discontinuity on the boundary are in L1(RN) and their Fourier transforms can be well-defined, 
however, their inverse Fourier transforms do not exist. This makes the treatment used in the case 
of full space RN in [22] cannot be applied. In order to overcome it, we technically establish the 
desired energy estimates by the Plancherel equality. We note that, to carry out the energy esti
mates related to eigenvalues in the bounded domain Ω is more complicated than the case of the 
full space RN . So, this paper can be regarded as a significant development to the previous study 
[22].

The rest of the paper is organized as follows. In Section 2, we first give some preliminaries 
which will be frequently used in the proofs of the main theorems. In Section 3, we show the 
existence and uniqueness of the non-trivial steady state if (1−λ2)p

Dλ1+δ > 1. In Section 4, we prove that 

the trivial steady state 0 is globally attractive if 0 <
(1−λ2)p
Dλ1+δ < 1. In Section 5, we further consider 

the asymptotic stability of the non-trivial steady state if 1 <
(1−λ2)p
Dλ1+δ < e2. Section 6 provides the 

reader with some numerical simulations in order to better understand our theoretical results. 
In the end, we will have some discussions on the obtained theoretical and numerical results 
which can perfectly interpret the ecological phenomena to the dynamical model of populations 
in Section 7.
4 
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2. Preliminaries

In this section, we begin with some preliminaries concerning the Fourier transform. We as
sume that the reader is familiar with them and hence we refer to [35] for details. In what follows, 
f̂ denotes the Fourier transform of f ∈ L1(RN), which is given by the following definition

F [f ](ξ) = f̂ (ξ) =
∫
RN

e−ix·ξ f (x)dx, i = √−1. (2.1)

Moreover, if f̂ ∈ L1(RN), then the inverse Fourier transform is given by

F−1[f̂ ](x) = 1 
(2π)N

∫
RN

eix·ξ f̂ (ξ)dξ. (2.2)

In the following proposition we list some of the main properties of the Fourier transform and its 
inverse transform.

Proposition 2.1. 

(1) ˆ︁f ∗ g = f̂ · ĝ.
(2) (Fourier Inversion Theorem) For f ∈ L1(RN) such that f̂ ∈ L1(RN), the inversion formula

f (x) = F−1[f̂ ](x)

holds for almost every x ∈ RN .

Also, we state a useful result (see [10]) related to the following eigenvalue problem with the 
homogeneous Dirichlet boundary condition:{

−(J ∗ φ − φ)(x) = λφ(x), x ∈ Ω,

φ(x) = 0, x ∈ RN \ Ω.
(2.3)

Proposition 2.2. Let Ω ⊂ RN be a bounded and convex domain with a smooth boundary, and 
assume that the kernel J (x) satisfies the hypothesis (1.5). Then the principle eigenvalue of (2.3)
can be represented by

λp(Ω) = inf 
u∈L2(Ω)

1
2

∫
RN

∫
RN J (x − y)(ū(x) − ū(y))2dxdy∫

Ω
u2dx 

, (2.4)

where ū(x) is the zero-padding of u(x) outside Ω. Moreover, denote by φp(x) a corresponding 
non-negative function. Then φp(x) is strictly positive in Ω and λp is a positive simple eigenvalue 
with 0 < λp < 1.

Remark 2.1. Observe that the first eigenfunction φp(x) is strictly positive in Ω (with a positive 
continuous extension to Ω) and vanishes outside Ω. Therefore a discontinuity occurs on ∂Ω and 
the boundary value is not taken in the usual ``classical'' sense.
5 
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3. Steady-state solutions

Note that the corresponding steady state problem of (1.1) is given by{
−D(J1 ∗ φ − φ)(x) + δφ(x) = [J2 ∗ b(φ)](x), x ∈ Ω,

φ(x) = 0, x ∈ RN \ Ω.
(3.1)

Obviously, the constant equilibrium φ(x) ≡ 0 is a trivial solution of (3.1). Here we are mainly 
interested in the non-trivial steady state.

First of all, let us look at the following two eigenvalue problems associated by the steady state 
problem (3.1): for i = 1,2,{

−(Ji ∗ φi − φi)(x) = λiφi(x), x ∈ Ω,

φi(x) = 0, x ∈ RN \ Ω.
(3.2)

Applying the result in Proposition 2.2 to the eigenvalue problem (3.2), we know that for i = 1,2
there is a principal eigenpair (λi, φi(x)) with 0 < λi < 1 and φi(x) > 0 in Ω.

We are now in a position to state our main result about the non-trivial steady state.

Theorem 3.1 (Steady states). Except the trivial solution φ(x) ≡ 0 to (3.1), there exists a nontriv
ial steady-state to (3.1):

φ(x) =
{

1 
a

ln (1−λ2)p
Dλ1+δ , x ∈ Ω,

0, x ∈RN \ Ω,
(3.3)

provided with

(1 − λ2)p

Dλ1 + δ 
> 1. (3.4)

Proof. As similarly showed in [27], the solution φ(x) of the equation (3.1) is bounded for x ∈ Ω. 
So φ ∈ L1(RN), because φ(x) ≡ 0 for x ∈RN/Ω.

Taking the Fourier transform, the steady state problem (3.1) and the corresponding eigenvalue 
problem (3.2) can be recast as

−D(Ĵ1 − 1)φ̂ + δφ̂ = Ĵ2b̂(φ), (3.5)

and

−(Ĵi − 1)φ̂i = λiφ̂i , for i = 1,2, (3.6)

where (λi, φi) is the principal eigenpair of (3.2), and we also make no distinction between solu
tions and their zero-paddings.

Multiplying (3.5) by φ̂1φ̂2, then we have

−D(Ĵ1 − 1)φ̂1φ̂2φ̂ + δφ̂1φ̂2φ̂ = Ĵ2φ̂2φ̂1b̂(φ),
6 
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which in turn gives us

Dλ1φ̂1φ̂2φ̂ + δφ̂1φ̂2φ̂ = (1 − λ2)φ̂2φ̂1b̂(φ) (3.7)

by using (3.6).
Since φ̂1 	= 0 and φ̂2 	= 0, then

(Dλ1 + δ)φ̂ = (1 − λ2)b̂(φ). (3.8)

Since φ̂ 	∈ L1(RN), the inverse Fourier transform of φ̂ may not exist, and we cannot take the 
inverse Fourier transform to (3.8). We need to treat it in a different way. Let us square both sides 
of (3.8), and integrate it over RN , then we have

(Dλ1 + δ)2
∫
RN

|φ̂(ξ)|2dξ = (1 − λ2)
2p2

∫
RN

|ˆ︂φe−aφ |2dξ. (3.9)

By the Plancherel Theorem: ‖f̂ ‖L2 = ‖f ‖L2 , from (3.9) we have

(Dλ1 + δ)2
∫
RN

|φ(x)|2dx = (1 − λ2)
2p2

∫
RN

|φ(x)e−aφ(x)|2dx. (3.10)

Namely, it is ∫
RN

|φ(x)|2
[
(Dλ1 + δ)2 − (1 − λ2)

2p2e−2aφ(x)
]
dx = 0. (3.11)

Obviously, it can be checked that φ(x) ≡ 0 is a trivial solution to (3.11), and a non-trivial solution 
to (3.11) is

φ(x) =
{

1 
a

ln (1−λ2)p
Dλ1+δ , x ∈ Ω,

0, x ∈RN \ Ω,

provided with (1−λ2)p
Dλ1+δ > 1. The proof is complete. �

4. Case of 0 <
(1−λ2)p
Dλ1+δ < 1: global convergence to 0

In this section, we start to consider the large time behavior of solutions to the time-dependent 
problem (1.1). To this end, we first state the existence and uniqueness of global solutions to the 
problem (1.1). We will omit the proof, because it is exactly in the same way as [27] (P5690, 
Theorem 3.1).

Lemma 4.1 (Global existence and uniqueness). Let u0 ∈ C+([−r,0] × Ω). Then the unique so
lution to the problem (1.1) globally exists in the function space:

u ∈ C+(R+ × Ω), ut ∈ C(R+ × Ω). (4.1)
7 
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Next we can state our main result in the case of 0 <
(1−λ2)p
Dλ1+δ < 1.

Theorem 4.1 (Global convergence to the trivial steady state). If u0 ∈ C+([−r,0] × Ω) and 0 <
(1−λ2)p
Dλ1+δ < 1, then the solution u(t, x) to the problem (1.1) globally converges to 0 as follows:

‖u(t)‖L2(Ω) ≤ C
(‖u0(0)‖L2(Ω) + ‖u0‖L2([−r,0];L2(Ω))

)
e−μt , (4.2)

where C > 0 and μ > 0 are constants, and μ satisfies

0 < μ < (Dλ1 + δ) − (1 − λ2)p.

Proof. We prove (4.2) when 0 <
(1−λ2)p
Dλ1+δ < 1. From Lemma 4.1, the solution u ∈ C+(R+×Ω) of 

the equation (1.1) is bounded. Note that u(t, x) ≡ 0 for x ∈RN \ Ω and t > 0, then u ∈ L1(RN). 
Taking the Fourier transform to the problem (1.1), we have

dû

dt 
− D(Ĵ1 − 1)û + δû = Ĵ2b̂(u). (4.3)

Multiplying through (4.3) by φ̂1φ̂2, (λi, φi) are the principal eigenpairs of (3.2) for i = 1,2, we 
calculate that

dû

dt 
φ̂1φ̂2 − D(Ĵ1 − 1)ûφ̂1φ̂2 + δûφ̂1φ̂2 = Ĵ2b̂(u)φ̂1φ̂2

dû

dt 
φ̂1φ̂2 −D(Ĵ1 − 1)φ̂1︸ ︷︷ ︸ ûφ̂2 + δûφ̂1φ̂2 = Ĵ2φ̂2︸︷︷︸ b̂(u)φ̂1

dû

dt 
φ̂1φ̂2 + (Dλ1 + δ)ûφ̂1φ̂2 = (1 − λ2)b̂(u)φ̂1φ̂2,

where we have used the fact that −D(Ĵ1 − 1)φ̂1 = Dλ1φ̂1 and Ĵ2φ̂2 = (1 − λ2)φ̂2. Note that 
φ̂1 	= 0 and φ̂2 	= 0, we further get

dû

dt 
+ (Dλ1 + δ)û = (1 − λ2)b̂(u). (4.4)

Multiplying (4.4) by e2μt û with some constant μ > 0 to be determined later, and integrating the 
resultant equation over [0, t] ×RN , we have

e2μt‖û(t)‖2
L2(RN)

+ 2(Dλ1 + δ − μ)

t∫
0 

e2μs‖û(s)‖2
L2(RN)

ds

= ‖û0(0)‖2
L2(RN)

+ 2(1 − λ2)p

t∫
e2μs

∫
N

û(s, ξ)ˆ︂ue−au(s − r, ξ)dξds. (4.5)
0 R

8 
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Using the Cauchy-Schwarz inequality, the Plancherel equality, the positiveness of u ≥ 0, and the 
change of variable s − r → s, we can estimate the last term of (4.5) as

2(1 − λ2)p

∣∣∣ t∫
0 

e2μs

∫
RN

û(s, ξ)ˆ︂ue−au(s − r, ξ)dξds

∣∣∣
≤ 2(1 − λ2)p

t∫
0 

e2μs

∫
RN

[
1

2
|û(s, ξ)|2 + 1

2
|ˆ︂ue−au(s − r, ξ)|2

]
dξds

= (1 − λ2)p

t∫
0 

e2μs
[
‖û(s)‖2

L2(RN)
+ ‖ˆ︂ue−au(s − r)‖2

L2(RN)

]
ds

= (1 − λ2)p

t∫
0 

e2μs
[
‖u(s)‖2

L2(RN)
+ ‖ue−au(s − r)‖2

L2(RN)

]
ds

= (1 − λ2)p

t∫
0 

e2μs‖u(s)‖2
L2(Ω)

ds + (1 − λ2)p

t∫
0 

e2μs

∫
Ω 

u2(s − r, x)e−2au(s−r,x)dxds

≤ (1 − λ2)p

t∫
0 

e2μs‖u(s)‖2
L2(Ω)

ds + (1 − λ2)p

t∫
0 

e2μs

∫
Ω 

u2(s − r, x)dxds

= (1 − λ2)p

t∫
0 

e2μs‖u(s)‖2
L2(Ω)

ds + (1 − λ2)p

t−r∫
−r 

e2μ(s+r)

∫
Ω 

u2(s, x)dxds

≤ (1 − λ2)p(1 + e2μr)

t∫
0 

e2μs‖u(s)‖2
L2(Ω)

ds + (1 − λ2)p

0 ∫
−r 

e2μ(s+r)‖u0(s)‖2
L2(Ω)

ds. (4.6)

Substituting (4.6) to (4.5), and applying the Plancherel equality ‖û(t)‖2
L2(RN)

= ‖u(t)‖2
L2(RN)

=
‖u(t)‖2

L2(Ω)
because of u ≡ 0 for x ∈RN \ Ω, then we obtain

e2μt‖u(t)‖2
L2(Ω)

+ A(μ)

t∫
0 

e2μs‖u(s)‖2
L2(Ω)

ds

≤ ‖u0(0)‖2
L2(Ω)

+ (1 − λ2)p

0 ∫
−r 

e2μ(s+r)‖u0(s)‖2
L2(Ω)

ds, (4.7)

where

A(μ) := 2(Dλ1 + δ) − μ − (1 − λ2)p(1 + e2μr).
9 
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Since (Dλ1 + δ) > (1 − λ2)p, then a small number of μ > 0 can be solved from the equation

A(μ) = 2(Dλ1 + δ) − μ − (1 − λ2)p(1 + e2μr) = 0.

Thus, (4.7) implies

‖u(t)‖L2(Ω) ≤ C
(‖u0(0)‖L2(Ω) + ‖u0‖L2([−r,0];L2(Ω))

)
e−μt .

The proof is complete. �
5. Case of 1 <

(1−λ2)p
Dλ1+δ < e2: convergence to the non-trivial steady state

In this section, we further consider the large time behavior of solutions to the problem (1.1) in 
the case of 1 <

(1−λ2)p
Dλ1+δ < e2. Up to now, we have showed there exists a unique non-trivial steady 

state (see (3.3))

φ(x) =
{

u+, x ∈ Ω,

0, x ∈RN \ Ω,
(5.1)

where u+ := 1 
a

ln (1−λ2)p
Dλ1+δ > 0.

We are now in a position to state our main result in the case of 1 <
(1−λ2)p
Dλ1+δ < e2. In fact, it 

consists of two parts: one is for the global convergence; the other is for local convergence.

Theorem 5.1. Assume that u0 ∈ C+([−r,0] × Ω) and 0 ≤ u0 ≤ 1 
a

.

• If 1 <
(1−λ2)p
Dλ1+δ ≤ e, then the solution u(t, x) to the problem (1.1) globally converges to the 

non-trivial steady state φ(x) at the exponential decay rate

‖(u − φ)(t)‖L2(Ω) ≤ Ce−ηt , (5.2)

where C and η are positive constants.
• If e <

(1−λ2)p
Dλ1+δ < e2, then the solution u(t, x) locally converges to the non-trivial steady state 

φ(x) in the exponential form

‖(u − φ)(t)‖L2(Ω) ≤ Ce−γ t (5.3)

provided ‖(u0 −φ)(0)‖L2(Ω) +‖u0 −φ‖L2([−r,0];L2(Ω)) is small enough, where C and γ are 
positive constants.

Proof. We first prove the global convergence result (5.2) in the case of 1 <
(1−λ2)p
Dλ1+δ ≤ e. Noting 

that 0 ≤ u0(s, x) ≤ 1 
a

, we can easily know that

0 ≤ u(t, x) ≤ 1 
, ∀t ≥ −r, x ∈ Ω.
a

10 
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Now, we set

u+
0 (s, x) := max 

x∈Ω 
s∈[−r,0]

{u0(s, x), u+} , u−
0 (s, x) := min 

x∈Ω 
s∈[−r,0]

{u0(s, x), u+} .

Then u+
0 (s, x) and u−

0 (s, x) satisfy

0 ≤ u−
0 (s, x) ≤ u+ ≤ u+

0 (s, x) ≤ 1 
a
, ∀(s, x) ∈ [−r,0] × Ω.

Replacing the initial value u0(s, x) in the problem (1.1) by u+
0 (s, x) and u−

0 (s, x), and denoting 
the corresponding solutions by U+(t, x) and U−(t, x), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂U±(t,x)
∂t − D(J1 ∗ U± − U±)(t, x) + δU±(t, x)

= J2 ∗ b
(
U±(t − r, x)

)
, t > 0, x ∈ Ω,

U±(t, x) ≡ 0, t > 0, x ∈ RN \ Ω,

U±(s, x) = u±
0 (s, x), s ∈ [−r,0], x ∈ Ω.

(5.4)

From the comparison theorem [22,27], it is easy to see that{
0 ≤ U−(t, x) ≤ u+ ≤ U+(t, x) ≤ 1 

a
,

0 ≤ U−(t, x) ≤ u(t, x) ≤ U+(t, x) ≤ 1 
a
.

(5.5)

Similarly to (4.4), we can also reduce (5.4) for U+(t, x) to the following form:

∂Û+(t, ξ)

∂t 
+ (Dλ1 + δ)Û+(t, ξ) = (1 − λ2)ˆ︂b(U+)(t − r, ξ), t > 0, ξ ∈ RN. (5.6)

Besides, it is obvious that

(Dλ1 + δ)u+ = (1 − λ2)b(u+), (5.7)

and

(Dλ1 + δ)φ(x) = (1 − λ2)b(φ(x)), x ∈RN. (5.8)

Taking Fourier transform to (5.8), we have

(Dλ1 + δ)φ̂(ξ) = (1 − λ2)b̂(φ)(ξ), ξ ∈ RN. (5.9)

Defining

V +(t, x) := U+(t, x) − φ(x) =
{

U+(t, x) − u+, for x ∈ Ω,

0, for x ∈RN \ Ω
(5.10)

and subtract (5.9) from (5.6), we have
11 
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∂V̂ +(t, ξ)

∂t 
+ (Dλ1 + δ)V̂ +(t, ξ) = (1 − λ2)F[b(φ + V +) − b(φ)](t − r, ξ), t > 0, ξ ∈ RN.

(5.11)
Here, we denote F[b(φ + V +) − b(φ)] as Fourier transform of b(φ + V +) − b(φ).

Multiplying (5.11) by e2ηt V̂ + with some constant η > 0 to be determined later, integrating it 
over [0, t] ×RN , and using Hölder inequality, we have

e2ηt‖V̂ +(t)‖2
L2(RN)

+ 2(Dλ1 + δ − η)

t∫
0 

e2ηs‖V̂ +(s)‖2
L2(RN)

ds

= ‖V̂ +(0)‖2
L2(RN)

+ 2(1 − λ2)

t∫
0 

e2ηs

∫
RN

V̂ +(s, ξ)F[b(φ + V +) − b(φ)](s − r, ξ)dξds

≤ ‖V̂ +(0)‖2
L2(RN)

+2(1 − λ2)

t∫
0 

e2ηs‖V̂ +(s)‖L2(RN)‖F[b(φ + V +) − b(φ)](s − r)‖L2(RN)ds. (5.12)

Applying the Plancherel equality to (5.12), we obtain

e2ηt‖V +(t)‖2
L2(RN)

+ 2(Dλ1 + δ − η)

t∫
0 

e2ηs‖V +(s)‖2
L2(RN)

ds

≤ ‖V +(0)‖2
L2(RN)

+2(1 − λ2)

t∫
0 

e2ηs‖V +(s)‖L2(RN)‖[b(φ + V +) − b(φ)](s − r)‖L2(RN)ds. (5.13)

By Taylor’s expansion, we have

b(φ + V +(t − r, x)) − b(φ) = b′(φ)V +(t − r, x) + 1

2
b′′ (ũ) [V +(t − r, x)]2, (5.14)

where ũ is between φ and U+(t − r, x), which in turn implies 0 ≤ ũ ≤ 1 
a

and b′′ (ũ) ≤ 0.

When 1 <
(1−λ2)p
Dλ1+δ ≤ e, from (5.5), we have U+(t, x) ≥ φ(x), and we reduce (5.14) to the 

following inequality

0 ≤ b(φ(x) + V +(t − r, x)) − b(φ(x))

≤ b′(φ(x))V +(t − r, x)

= p(1 − aφ(x))e−aφ(x)V +(t − r, x)

=
{

p(1 − au+)e−au+V +(t − r, x), x ∈ Ω,

0, x ∈RN \ Ω
12 
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=
{

Dλ1+δ
1−λ2

(
1 − ln (1−λ2)p

Dλ1+δ 

)
V +(t − r, x), x ∈ Ω,

0, x ∈RN \ Ω.
(5.15)

Thus, we have

‖(b(φ+V +)−b(φ))(s−r)‖L2(RN) ≤ Dλ1 + δ

1 − λ2

(
1 − ln

(1 − λ2)p

Dλ1 + δ 

)
‖V +(s−r)‖L2(Ω). (5.16)

From (5.10), we have

‖V +(t)‖L2(RN) = ‖V +(t)‖L2(Ω).

Substituting this with (5.16) together to (5.13), we have

e2ηt‖V +(t)‖2
L2(Ω)

+ 2(Dλ1 + δ − η)

t∫
0 

e2ηs‖V +(s)‖2
L2(Ω)

ds

≤ ‖V +(0)‖2
L2(Ω)

+2(Dλ1 + δ)

(
1 − ln

(1 − λ2)p

Dλ1 + δ 

) t∫
0 

e2ηs‖V +(s)‖L2(Ω)‖V +(s − r)‖L2(Ω)ds. (5.17)

Using the Cauchy-Schwarz inequality, and the change of variables s − r → s, we have

t∫
0 

e2ηs‖V +(s)‖L2(Ω)‖V +(s − r)‖L2(Ω)ds

≤ 1

2

t∫
0 

e2ηs‖V +(s)‖2
L2(Ω)

ds + 1

2

t∫
0 

e2ηs‖V +(s − r)‖2
L2(Ω)

ds

= 1

2

t∫
0 

e2ηs‖V +(s)‖2
L2(Ω)

ds + 1

2

t−r∫
−r 

e2η(s+r)‖V +(s)‖2
L2(Ω)

ds

≤
t∫

0 

e2ηs‖V +(s)‖2
L2(Ω)

ds + 1

2

0 ∫
−r 

e2η(s+r)‖V +(0)‖2
L2(Ω)

ds. (5.18)

Substituting (5.18) into (5.17), we have

e2ηt‖V +(t)‖2
L2(Ω)

+ B(η)

t∫
0 

e2ηs‖V +(s)‖2
L2(Ω)

ds

≤ C(‖V +(0)‖2
2 + ‖V +‖L2([−r,0];L2(Ω))), (5.19)
0 L (Ω) 0

13 
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where

B(η) : = 2

[
(Dλ1 + δ) − (Dλ1 + δ)

(
1 − ln

(1 − λ2)p

Dλ1 + δ 

)

−η − 1

2
(Dλ1 + δ)

(
1 − ln

(1 − λ2)p

Dλ1 + δ 

)(
e2ηr − 1

)]

= 2

[
(Dλ1 + δ) ln

(1 − λ2)p

Dλ1 + δ 

−η − 1

2
(Dλ1 + δ)

(
1 − ln

(1 − λ2)p

Dλ1 + δ 

)(
e2ηr − 1

)]
. (5.20)

Since 1 <
(1−λ2)p
Dλ1+δ ≤ e, then we have 0 < ln (1−λ2)p

Dλ1+δ ≤ 1 and 0 ≤ 1 − ln (1−λ2)p
Dλ1+δ < 1. Thus, we 

can choose η > 0 which is the unique root of the equation B(η) = 0 such that (5.19) gives

‖U+(t) − φ‖2
L2(Ω)

= ‖V +(t)‖2
L2(Ω)

≤ C
(
‖V +

0 (0)‖2
L2(Ω)

+ ‖V +
0 ‖2

L2([−r,0];L2(Ω))

)
e−2ηt .

(5.21)

Namely,

‖U+(t) − φ‖L2(Ω) ≤ Ce−ηt . (5.22)

Besides, in the same way, we can establish the following result in much the same way as in 
(5.22):

‖U−(t) − φ‖L2(Ω) ≤ Ce−ηt . (5.23)

From (5.5), we have the squeezing relation

0 ≤ |u(t, x) − φ| ≤ U+(t, x) − U−(t, x), t > 0, x ∈ Ω. (5.24)

Therefore, it is easy to see that

‖(u − φ)(t)‖L2(Ω) ≤ ‖(U+ − U−)(t)‖L2(Ω)

= ‖(U+ − φ + φ − U−)(t)‖L2(Ω)

≤ ‖(U+ − φ)(t)‖L2(Ω) + ‖(U− − φ)(t)‖L2(Ω)

≤ Ce−ηt . (5.25)

Next, we are going to prove the local convergence result (5.3) when e <
(1−λ2)p
Dλ1+δ < e2. To this 

end, we let
14 
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v(t, x) := u(t, x) − φ(x) =
{

u(t, x) − u+, x ∈ Ω,

0, x ∈RN \ Ω.

Thus, v(t, x) satisfies

∂v(t, x)

∂t 
− D(J1 ∗ v − v) + δv(t, x) = J2 ∗ [b(φ + v(t − r, x)) − b(φ)]. (5.26)

Similarly to (5.11), taking Fourier transform to (5.26), we have

∂v̂(t, ξ)

∂t 
+ (Dλ1 + δ)v̂(t, ξ) = (1 − λ2)F[b(φ + v) − b(φ)](t − r, ξ), (5.27)

where F[b(φ + v(t − r, x)) − b(φ)] is the Fourier transform of b(φ + v(t − r, x)) − b(φ).
Multiplying (5.27) by e2γ t v̂(t, ξ) with some constant γ > 0 to be determined later, integrating 

the resultant over [0, t] ×RN , and using the Hölder inequality, we obtain

e2γ t‖v̂(t)‖2
L2(RN)

+ 2(Dλ1 + δ − γ )

t∫
0 

e2γ s‖v̂(s)‖2
L2(RN)

ds

= ‖v̂(0)‖2
L2(RN)

+ 2(1 − λ2)

t∫
0 

e2γ s

∫
RN

v̂(s, ξ)F[b(φ + v) − b(φ)](s − r, ξ)dξds

≤ ‖v̂(0)‖2
L2(RN)

+2(1 − λ2)

t∫
0 

e2γ s‖v̂(s)‖L2(RN)‖F[b(φ + v) − b(φ)](s − r)‖L2(RN)ds. (5.28)

Applying the Plancherel equality to (5.28), we have

e2γ t‖v(t)‖2
L2(RN)

+ 2(Dλ1 + δ − γ )

t∫
0 

e2γ s‖v(s)‖2
L2(RN)

ds

≤ ‖v(0)‖2
L2(RN)

+2(1 − λ2)

t∫
0 

e2γ s‖v(s)‖L2(RN)‖[b(φ + v) − b(φ)](s − r)‖L2(RN)ds. (5.29)

When e <
(1−λ2)p
Dλ1+δ < e2, the birth rate function b(u) becomes concave upward, which cannot 

guarantees the global convergence. Here, we have to estimate b(φ + v) − b(φ) by the Taylors’s 
expansion as follows, and we may have the local convergence only.

|b(φ + v) − b(φ)| =
∣∣∣b′(φ)v + 1

2
b′′(ũ)v2

∣∣∣ ≤ |b′(φ)v| + C|v|2,

where ũ is a function between φ and φ + v, and |b′′(ũ)| ≤ C.
15 
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Note that,

b′(u+) = Dλ1 + δ

1 − λ2

(
1 − ln

(1 − λ2)p

Dλ1 + δ 

)
< 0, (5.30)

for e <
(1−λ2)p
Dλ1+δ < e2, we estimate

‖(b(φ + v) − b(φ))(s − r)‖L2(RN)

≤ ‖b′(φ)v(s − r)‖L2(RN) + C‖v(s − r)‖2
L2(RN)

= ‖b′(φ)v(s − r)‖L2(Ω) + C‖v(s − r)‖2
L2(Ω)

= |b′(u+)|‖v(t − r)‖L2(Ω) + C‖v(s − r)‖2
L2(Ω)

=
∣∣∣1 − ln

(1 − λ2)p

Dλ1 + δ 

∣∣∣‖v(t − r)‖L2(Ω) + C‖v(s − r)‖2
L2(Ω)

. (5.31)

Substituting (5.31) into (5.28), noting ‖v(t)‖L2(RN) = ‖v(t)‖L2(Ω), and applying Cauchy
Schwarz inequality and the change of variable s − r → s, we have

e2γ t‖v(t)‖2
L2(Ω)

+ 2(Dλ1 + δ − γ )

t∫
0 

e2γ s‖v(s)‖2
L2(Ω)

ds

≤ ‖v0(0)‖2
L2(Ω)

+2

∣∣∣∣1 − ln
(1 − λ2)p

Dλ1 + δ 

∣∣∣∣ (Dλ1 + δ)

t∫
0 

e2γ s‖v(s)‖L2(Ω)‖v(s − r)‖L2(Ω)ds

+C

t∫
0 

e2γ s‖v(s)‖L2(Ω)‖v2(t − r)‖L2(Ω)

≤
∣∣∣∣1 − ln

(1 − λ2)p

Dλ1 + δ 

∣∣∣∣ (Dλ1 + δ)

t∫
0 

e2γ s[‖v(s)‖2
L2(Ω)

+ ‖v(s − r)‖2
L2(Ω)

]ds

+CN(T )

t∫
0 

e2γ s[‖v(s)‖2
L2(Ω)

+ ‖v(s − r)‖2
L2(Ω)

]ds + ‖v0(0)‖2
L2(Ω)

≤
∣∣∣∣1 − ln

(1 − λ2)p

Dλ1 + δ 

∣∣∣∣ (Dλ1 + δ)

t∫
0 

e2γ s‖v(s)‖2
L2(Ω)

ds

+
∣∣∣∣1 − ln

(1 − λ2)p

Dλ1 + δ 

∣∣∣∣ (Dλ1 + δ)

t∫
e2γ (s+r)‖v(s)‖2

L2(Ω)
ds
0 

16 
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+C

0 ∫
−r 

e2γ (s+r)‖v0(s)‖2
L2(Ω)

ds + ‖v0(0)‖2
L2(Ω)

+CN(T )

t∫
0 

e2γ s‖v(s)‖2
L2(Ω)

ds + CN(T )

0 ∫
−r 

e2γ (s+r)‖v0(s)‖2
L2(Ω)

ds

≤
[∣∣∣∣1 − ln

(1 − λ2)p

Dλ1 + δ 

∣∣∣∣ (Dλ1 + δ)(1 + e2γ r ) + CN(T )

] t∫
0 

e2γ s‖v(s)‖2
L2(Ω)

ds

+‖v0(0)‖2
L2(Ω)

+ ‖v0‖2
L2([−r,0];L2(Ω))

, (5.32)

where

N(T ) := sup 
(t,x)∈[0,T ]×Ω

|v(t, x)|.

Organizing (5.32), we have

e2γ t‖v(t)‖2
L2(Ω)

+ [G(γ ) − CN(T )]
t∫

0 

e2γ s‖v(s)‖2
L2(Ω)

ds

≤ C
(
‖v0(0)‖2

L2(Ω)
+ ‖v0‖2

L2([−r,0];L2(Ω))

)
, (5.33)

where

G(γ ) : = (Dλ1 + δ)

[
1 −

∣∣∣∣1 − ln
(1 − λ2)p

Dλ1 + δ 

∣∣∣∣] (5.34)

−2γ − 2(Dλ1 + δ)

∣∣∣∣1 − ln
(1 − λ2)p

Dλ1 + δ 

∣∣∣∣ (e2γ r − 1
)

. (5.35)

Note that e <
(1−λ2)p
Dλ1+δ < e2, then one can easily see that 0 <

∣∣∣1 − ln (1−λ2)p
Dλ1+δ 

∣∣∣ < 1, which in turn 
implies

(Dλ1 + δ)

[
1 −

∣∣∣∣1 − ln
(1 − λ2)p

Dλ1 + δ 

∣∣∣∣] > 0, 2(Dλ1 + δ)

∣∣∣∣1 − ln
(1 − λ2)p

Dλ1 + δ 

∣∣∣∣ > 0. (5.36)

Thus, we can take 0 < γ � 1 sufficiently small, such that

G(γ ) > 0.

Furthermore, let N(T ) � 1 be sufficiently small, we can guarantee

G(γ ) − CN(T ) > 0.
17 
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This combining (5.33) gives

‖v(t)‖2
L2(Ω)

≤ Ce−2γ t
(
‖v0(0)‖2

L2(Ω)
+ ‖v0‖2

L2([−r,0];L2(Ω))

)
. (5.37)

By the standard continuation argument, we know that the ansatz N(T ) � 1 can be guaranteed 
by assuming that the initial data

‖(u0 − φ)(0)‖L2(Ω) + ‖u0 − φ‖L2([−r,0];L2(Ω))

is small enough. The proof is complete. �
6. Numerical simulations

In this section, we conduct numerical simulations to support the theoretical results obtained 
above. Here, we will start by presenting the algorithmic section.

6.1. Algorithms

We would like to consider the 1-dimensional case in the following experiments. In this case, 
N = 1 will be utilized in (1.1). In the computational process, we primarily utilize numerical 
integration and numerical differentiation techniques. Let {xj }mj=1 and {yk}mk=1 be sets of points 
obtained from the equidistant partition of the interval [−M,M] = [−10,10] (position subinter
vals have equal lengths of Δx = Δy = 0.01) and {ti}ni=1 (t0 = 0) represent a collection of the 
equidistant partition points within finite time [0, T ], T > 0 (time subintervals have equal lengths 
of Δt = 0.01). The initialization is as follows,

u0(x, t) =
{

(x − 5)(x + 5) + (t − r)(t + r), if − 5 < x ≤ 5 and − r < t ≤ r,

0, otherwise.
(6.1)

The forms of the kernels J1 and J2 in the two convolution terms of (1.1) are as follows,

J1(y) = 1 
1 + y2 , J2(y) = e−y2

, y ∈R. (6.2)

We begin by discretizing the temporal dimension, opting for a forward-difference method due 
to the absence of spatial derivatives in the equation. i.e., at a moment t > 0,

∂u(t, x)

∂t 
≈ u(t + Δt,x) − u(t, x)

Δt 
. (6.3)

Since the data is obtained within a finite interval [−M,M], the discretization of the two integrals 
in the model is as follows,

M∫
J1(x − y)[u(t, y) − u(t, x)]dy ≈

m ∑
k=1 

J1(x − yk)[u(t, yk) − u(t, x)] · Δy, (6.4)
−M

18 
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and

M∫
−M

J2(x − y)f (u(t − r, y))dy ≈
m ∑

k=1 
J2(x − yk)f (u(t − r, yk)) · Δy. (6.5)

Let u(t, x) = u0(t, x), t ∈ [−r,0]. According to (6.4)--(6.5), we obtain the following approximate 
iterative process, for i = 0,1, . . . , n, j = 1, . . . ,m,

u(ti+1, xj ) = u(ti , xj ) + Δt · (D · I1(ti , xj ) + I2(ti , xj ) − δu(ti , xj )), (6.6)

where

I1(ti , xj ) =
m ∑

k=1 
J1(xj − yk)[u(ti , yk) − u(ti, xj )] · Δy,

I2(ti , xj ) =
m ∑

k=1 
J2(xj − yk)f (u(ti − r, yk)) · Δy,

and r > 0 denotes the time-delay. So far, we have provided the iterative format for numerically 
solving the forward problem. The following subsection is devoted to the analysis of numerical 
results. All notations in our experiments remind the same as the contexts, i.e., we denote a as the 
coefficient in the birth function (1.4), D as the diffusion rate, and p, δ as the birth/death rates.

6.2. Numerical results

We employ various birth rates p and death rates δ, ensuring the solutions to the diffusion 
equations eventually reach different convergence states. In terms of background significance, if 
the solution converges to a zero steady state, it signifies the eventual extinction of the biological 
population. On the other hand, convergence to a non-trivial steady state indicates that the popu
lation density tends to stabilize. In the following figures, a = log(2) denotes the parameter in the 
birth function b(u) = pue−au, while D = 1 represents the diffusion coefficient of the biological 
population. Additionally, it is worth explaining that, in the crucial term p(1 − λ2)(Dλ1 + δ)−1, 
determining the specific values of the eigenvalues λ1 and λ2 in numerical simulations poses 
considerable challenges. This is due to the fact that they are associated with a variational min
imization problem related to the spatial region of position x and kernel functions J1 and J2. 
Nevertheless, we are aware that these eigenvalues remain less than 1.

We first consider the smaller time delay r = 3. Fig. 1 is the three-dimensional representations 
of the solution u with respect to time t and position x with 0 < p(1 − λ2)(Dλ1 + δ)−1 < 1 and 
1 < p(1 − λ2)(Dλ1 + δ)−1 ≤ e2, respectively. The terminal moments are T = 10 and T = 30, 
respectively. When t ∈ [−r,0), it represents that the biological individuals are still in an immature 
state, i.e., the time delay. By comparing the two sets of experiments, despite the same initial 
value is applied, the left graph of Fig. 1 ultimately converges to the zero steady state under the 
condition of 0 < p(1 − λ2)(Dλ1 + δ)−1 < 1, where p = 1 and δ = 5. However, as the birth rate 
p = 1.5 and death rate δ = 0.5 satisfying 1 < p(1 − λ2)(Dλ1 + δ)−1 < e2 in the right graph of 
Fig. 1, the system ultimately reaches a non-trivial steady state. According to these results, it is 
evident that the ultimate equilibrium of the biological population is minimally affected by the 
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Fig. 1. Two types of convergence in 3D: the left is the convergence to the zero steady state, once 0 < p(1 − λ2)(Dλ1 +
δ)−1 < 1; and the right is the convergence to the non-trivial steady state, once 1 < p(1 − λ2)(Dλ1 + δ)−1 ≤ e2.

Fig. 2. Two types of convergence in 2D: the left is the convergence to the zero steady state, once 0 < p(1 − λ2)(Dλ1 +
δ)−1 < 1; and the right is the convergence to the non-trivial steady state, once 1 < p(1 − λ2)(Dλ1 + δ)−1 < e2. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

initial conditions u0(t, x). The crucial determinants lie in the parameters p and δ, corresponding 
to the birth and death rates. If p and δ are in relative equilibrium, the population would maintain 
a positive constant. When δ is significantly larger than p, it results in the population density 
tending towards zero, corresponding to the fact of biological extinction.

In Fig. 2, we extract several time points to study the steady states to which solutions eventually 
converge under different birth and death rates. Each of subfigures in Fig. 2 displays the conver
gence tendency by blue lines. We illustrate the relationship between u and x at different time 
points. Both solutions reach different converged states after certain periods, with the red line rep
resenting the final steady state in Figs. 2. The left graph of Figs. 2 represents the case where the 
solution converges to the trivial steady state under the condition 0 < p(1 − λ2)(Dλ1 + δ)−1 < 1, 
where p = 1 and δ = 4.5. In this scenario, it implies that the population eventually leads to 
extinction. The right graph of Figs. 2 illustrates the case where the solution to the equation con
verges to a non-trivial steady state when p = 1, δ = 0.1 and 1 < p(1 − λ2)(Dλ1 + δ)−1 < e2, 
signifying that the population density stabilizes at a non-zero state. In order to demonstrate the 
convergence process more explicitly, the states in several moments are provided in Fig. 3.
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Fig. 3. Different converging tendencies under different thresholds: the left is the solution u converging to the zero steady 
state, once 0 < p(1 − λ2)(Dλ1 + δ)−1 < 1; the right is the solution u converging to a non-trivial steady state, once 
1 < p(1 − λ2)(Dλ1 + δ)−1 < e2.

Fig. 4. A larger birth rate causes the solution to oscillate, when p(1 − λ2)(Dλ1 + δ)−1 ≥ e2 with a small time-delay 
r = 3.

Considering the case of further increasing p(1 − λ2)(Dλ1 + δ)−1, the convergence of the 
solution is no longer guaranteed. We have experimented with larger birth rates and smaller death 
rates in Figs. 4 and Fig. 5. As can be seen in the figures, the solution oscillates when p = 80, 
δ = 0.1 such that p(1−λ2)(Dλ1 + δ)−1 > e2. Fig. 4 gives the numerical solution of the equation 
under t ∈ [−3,50], while Fig. 5 enables a more intuitive view of the oscillations. The practical 
implication is that the large birth rate leads to population densities falling out of the steady state.

Even after increasing the time delay, the solution u does not converge under the same initial 
value. The experiment in Fig. 6 builds on Fig. 7 by increasing the time delay to r = 16. As can 
be observed, the amplitude of the solution is more drastic.

7. Discussion

In this section, we are going to use the above theoretical and numerical results to interpret 
the population dynamics represented by the nonlocal reaction-diffusion equation (1.1). The birth 
rate p and the death rate δ play the crucial roles for the population dynamics. When the death 
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Fig. 5. Oscillation of the solution u(t, x) in different time, when p(1 − λ2)(Dλ1 + δ)−1 ≥ e2 with a small time-delay 
r = 3: the left is the relationships between u and x at several moments; the right is the detailed evolution of u when the 
birth rate is significantly larger than the death rate.

Fig. 6. The solution u under the larger birth and the small death rate in 3D, when p(1 − λ2)(Dλ1 + δ)−1 ≥ e2 with a 
large time-delay r = 16.

rate δ is bigger than the birth rate p such that 0 < p(1 − λ2)(Dλ1 + δ)−1 < 1, then, no matter 
how large the initial data u0(x) are, no matter what size the mature age (delay time) r is for the 
single species, the solution u(t, x) will time-exponentially converge to zero for any initial data, 
namely, the population of the single species will gradually perish, where the domain Ω for single 
species to live and the probabilities J1 and J2 of single species moving-in and moving-out make 
some minor affection, because the principal eigenvalues λi = λi(Ω,Ji) for i = 1,2 depend on 
Ω and Ji(x). On the other hand, when the birth rate p is a bit larger than the death rate δ such 
that 1 < p(1 − λ2)(Dλ1 + δ)−1 ≤ e, the solution u(t, x) will globally converge to the non-trivial 
steady-state φ(x) in (3.3), namely, the population of single species will gradually tend to the 
non-trivial steady-state, where the population becomes a constant u+ = 1 

a
ln (1−λ2)p

Dλ1+δ > 0 in the 
interior domain of Ω, and it is zero on the boundary ∂Ω because the zero boundary condition 
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Fig. 7. Oscillatory solutions with a large time delay r = 16 in 2D, once p(1 − λ2)(Dλ1 + δ)−1 ≥ e2: the left is the 
solution u to the zero steady state; the right is the solution u to a non-trivial steady state.

means there is a close fence on the boundary to stop the single species to move out. When 
e < p(1 − λ2)(Dλ1 + δ)−1 < e2, we theoretically proved that, once the initial population is 
not a big change around u+, then the population u(t, x) will still behave like the steady-state 
u+ in the interior domain Ω after a long time. However, our numerical results indicate that, 
even the distribution of the initial population around u+ is chaotic and big, the population of 
the single species will finally tend to the steady-state u+ in the inside domain Ω. Moreover, once 
p(1−λ2)(Dλ1 +δ)−1 > e2, the numerical results demonstrate that the distribution of population 
will be chaotic and oscillatory in the domain Ω all the time, and the oscillations for the population 
distribution will be large if the delay-time (mature age) r is big, no matter how stable the initial 
distribution of population is.
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