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Abstract

In this paper, we study the monotone reducing mechanism of degenerate diffusion equations with time 
delay. We show the monotone dependence of critical wave speed on time delay. Due to the complex dy-
namics arising from degeneracy and time delay, we use a new phase transform approach to analyze the 
delicate local and global behaviors of critical sharp traveling waves and then derive the comparison of 
critical speeds.
© 2022 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the model of degenerate diffusion equation with time delay that describe the pop-
ulation dynamics of single species with age-structure and density-dependent diffusion. Precisely, 
the equation is given by

∂u

∂t
= D(um)xx − d(u) + b(u(t − r, x)), x ∈ R, t > 0. (1.1)

* Corresponding author.

E-mail address: tyxu93@163.com (T. Xu).

https://doi.org/10.1016/j.jde.2022.10.021
0022-0396/© 2022 Elsevier Inc. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2022.10.021&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2022.10.021
http://www.elsevier.com/locate/jde
mailto:tyxu93@163.com
https://doi.org/10.1016/j.jde.2022.10.021


M. Mei, T. Xu and J. Yin Journal of Differential Equations 342 (2023) 490–500
Here, u denotes the total mature population of the species at space x and time t > 0, time de-
lay r ≥ 0 represents the maturation time, b(u(t − r, x)) and d(u) denote the birth rate and the 
death rate respectively. The degenerate diffusion D(um)xx with m > 1 models the density de-
pendent dispersal processes due to the population pressure [16,26] possessing the finite speed of 
propagation property. The reaction term is of Fisher-KPP type such that: there exists two equi-
libria u− = 0 and u+ := K > 0, d(0) = b(0) = 0, d(u+) = b(u+), b(u) > d(u) for u ∈ (0, u+), 
b′(0) > d ′(0) ≥ 0, d ′(u+) > b′(u+) ≥ 0, and d ′(u) > 0, b′(u) > 0 for u ∈ (0, u+). This reaction 
term includes the Nicholson’s blowflies equation, the Mackey-Glass equation, and the delayed 
Fisher-KPP equations derived by [18].

Porous-medium type degenerate diffusion has been observed in ecology [16,26]. Dispersal ve-
locities increase with population density arising from an anti-crowding mechanism and species 
migrate from high density areas to sparse areas [8]. Random diffusion equations possess the 
infinite spreading speed property. However, the solutions of degenerate diffusion equations ex-
hibiting sharp edges can give a realistic description of a moving cohesive swarm of individuals 
with sharp edges, as observed in fish schooling [7] and birds flocking [25].

When m = 1, the equation (1.1) reduces to the random diffusion case. The monotonicity of 
critical wave speed c∗ with respect to time delay r was proved by Wei-Wu-Mei [33,34] and 
Trofimchuk in [30]. Further, Gomez and Trofimchuk [15] established efficient existence criteria 
for monotone traveling fronts by a variant of the Hale-Lin functional-analytic approach. For the 
reaction-diffusion equation with nonlocal delay, Wang-Li-Ruan [32] showed that the delay can 
slow the critical wave speed and the nonlocality can increase the speed. While for the case m > 1, 
(1.1) is degenerate in diffusion. Note that the critical wave speed is nonlinear speed determinacy 
due to the degenerate diffusion. Recently, the authors in [37] proved that the linear wave speed 
c0 determined by the linearizing of (1.1), i.e. characteristic equation, equals to zero; while the 
critical wave speed of (1.1) is nonlinear selected such that c∗ > c0 = 0. The dependence of critical 
wave speed c∗ on time delay can not be calculated by analyzing the characteristic equations 
directly. Via the variational approach, the authors in [38] further proved that

c∗(m,D, r) < c∗(m,D,0), ∀r > 0, (1.2)

which says that the time delay slows down the critical wave speed. But it is not clear how the 
dependence of the critical speed on different time delays.

This paper can be regarded as a continuity of our previous studies [37,38]. The goal of the 
present paper is to prove the strictly monotone dependence of the critical wave speed on time 
delay. Our main results show that time delay r monotonically slows down the minimal admissible 
wave speed of traveling waves. A new phase transform approach is proposed for the proof.

Theorem 1.1. The critical wave speed c∗(m, D, r) is strictly monotone decreasing with respect 
to the time delay r , i.e.,

c∗(m,D, r2) < c∗(m,D, r1), ∀r2 > r1. (1.3)

Here, we focus on the sharp type traveling waves for this degenerate diffusion equations with 
time delay. It is shown in [38] that there exists a unique critical wave speed c∗ = c∗(m, D, r) > 0
such that (1.1) admits a unique (up to shift) sharp traveling wave φc∗(x + c∗t) satisfying:

(i) φc∗(ξ) is monotone increasing, 0 ≤ φc∗(ξ) ≤ K , φc∗(−∞) = 0, φc∗(+∞) = K ;
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(ii) φc∗ ∈ C(R), φm
c∗ ∈ W

1,2
loc , and φc∗ satisfies the following differential equation in the weak 

sense

c∗φ′
c∗(ξ) = D(φm

c∗(ξ))′′ − d(φc∗(ξ)) + b(φc∗(ξ − c∗r)), ξ ∈R; (1.4)

(iii) φc∗(ξ) is semi-compact, i.e., there exists ξ0 ∈ R, such that φc∗(ξ) ≡ 0 for ξ ≤ ξ0 and 
φc∗(ξ) > 0 for ξ > ξ0.

Moreover, the traveling waves φc(x + ct) exist if and only if the corresponding wave speed 
c ≥ c∗, and for c > c∗ the traveling waves are not semi-compact, instead they are positive for all 
ξ ∈R. Note that the critical wave speed c∗ is also the asymptotic propagation speed as proved in 
[36]. The monotone dependence of the critical wave speed implies the monotone dependence of 
the propagation speed on the time delay, which coincides with the model backgrounds.

For the classical Fisher-KPP equations (i.e. r = 0 and m = 1), there exists a critical wave 
speed c∗ = 2

√
b′(0) − d ′(0) > 0 for all the traveling waves connecting the two constant equilib-

ria [12,19]. Reaction-diffusion models with delayed response are a widely studied topic, we refer 
to the works of So-Wu-Zou [28], Thieme-Zhao [29], Liang-Zhao [21], Faria-Huang-Wu [11], 
Gomez-Trofimchuk [14,15], Alfaro-Ducrot-Giletti [1], Li-Ruan-Wang [20], Ma [22], Mei-Lin-
Lin-So [24], Chern-Mei-Zhang-Yang [9] and the references therein. When m > 1, r = 0, (1.1)
is usually called the Porous Medium Equation with logistic source and has been widely studied 
in the literature, we refer the reader to the book [31,35] for general references on this topic and 
to [2,6,10,13,23,27] for the study of traveling wave solutions. When r > 0, m > 1, there has, 
however, been relatively rare researches on the traveling wave solutions of degenerate diffusion 
equations with time delay. In the recent paper [17], Huang-Jin-Mei-Yin proved the existence 
and stability of traveling waves for (1.1) with small delays and sufficiently fast wave speeds. 
In [37,38], the authors proved that (1.1) admits a unique critical sharp type (semi-compactly 
supported) traveling wave φ(x + c∗t) corresponding to the critical wave speed c∗ = c∗(m, r). 
Moreover, it was proved in [39] there exist sharp-oscillatory traveling waves for some special 
wave speed and time delay. For the study of traveling waves for more general cases of degener-
ate doubly nonlinear diffusion equations, we refer the readers to [3–5].

Different from the linear diffusion case where the critical wave speed can be determined by 
the characteristic equations directly, the critical wave speed for delayed degenerate diffusion 
equations via variation approach satisfies

c∗(m,D, r) =2
√

D

K∫
0

√
−msm−1ĝ(s)ĝ′(s)(b(s) − d(s))ds

−
K∫

0

ĝ(φ)
Dmφm−1(b(φ) − b(φ̃cr (φ)))

ψ̃
dφ, (1.5)

from which it follows that c∗(m, D, r) < c∗(m, D, 0) for any r > 0, however, we are not able to 
derive the monotone dependence (1.3) according to the above variational characteristic expres-
sion. Here, ĝ is a special function in D , D is the subset of C1[0, K] with functions g(K) = 0, ∫ K

0 g(s)ds = 1, g′(s) < 0, and more specifically, ψ̃ is the phase function depending on all the 
parameters, φ̃cr (φ) is an interpretation of the delayed term φ(ξ − cr) in the generalized phase 
plane. Alternatively, we are able to come back to the phase transform method and formulate the 
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comparison of local properties for waves with different speeds and time delays, and finally, the 
comparison of critical wave speeds is derived by the combination of global properties of sharp 
waves.

We address here how the current work is different from previous works:
• The similar conclusions that time delay slows down the critical wave speed are already 

known for linear diffusion (m = 1) case, see for example the works by Zou [40], Li-Ruan-Wang 
[20], and also Wang-Li-Ruan [32]. However, all these critical speeds c∗ are determined by the 
characteristic equation �c(λ), which is the linearized problem near the zero equilibrium, see 
Lemma 3.5 and Lemma 3.14 in [20], Lemma 2.2 in [32], Remark 2.2 in [40]. As shown by the 
works [37], [38], and [39], for degenerate diffusion (m > 1) case, in which the linearization of 
the second order differential term �um vanishes near u = 0, the characteristic equation does not 
tell us any information on the critical wave speed, and further to some extent it indicates the 
difficulties caused by degenerate diffusion. In fact, the critical wave speed c∗ is determined in a 
more complicated fashion, and the verification of monotone reducing mechanism in this paper 
requires new framework.

• The previous work [38] on the critical wave speed c∗ for degenerate diffusion (m > 1) case 
formulated a variational inequality (1.5) and further deduced the comparison of critical speeds 
between delayed case and non-delayed case. However, it fails to compare the critical speeds for 
different time delays. Thanks to the delicate structure of delayed degenerate diffusion equation 
such that the degeneracy (the support of the critical wave is semi-compact) and the time delay 
(the evolution of Cauchy problem can be regarded as propagating step by step), we can describe 
the sharp wave by its local property and global property. Together with the precise comparison of 
different waves via a phase transform method, we then show the monotone reducing mechanism 
for all delays.

Our proofs of monotone dependence of critical wave speed on time delay rely on a new phase 
transform method. The classical phase plane analysis does not work now due to the infinite di-
mension of phase spaces in the time-delayed cases. By a delicate phase transform, we establish 
the comparison of local properties for waves with different speeds and time delays, and analyze 
the global properties of sharp waves to get the monotone dependence of critical wave speed on 
the time delay. In the linear diffusion case, monotone dependence of critical wave speed on time 
delay can be determined by the characteristic equation; however, due to the increased complexity 
of degenerate diffusion equations, the waves speed is nonlinearly selected for degenerate diffu-
sion equations, we are unable to establish the dependence of wave speed on time delay by a 
simple characteristic equation. To overcome these difficulties, we give a detailed examination 
of the construction of sharp traveling waves and precisely analyze the local property and global 
property of critical sharp waves.

2. Proof of the main result

The idea of the proof lies in the examination of the construction of sharp traveling waves 
based on the local property and global property. To be more specifically, the unique traveling 
wave φc∗(x + c∗t) and the unique critical wave speed c∗ for degenerate diffusion equation (1.1)
have the following properties besides the differential equation (1.4):

(i) local property: there exists ξ0 ∈ R, such that φc∗(ξ) ≡ 0 for ξ ≤ ξ0 and φc∗(ξ) > 0 for 
ξ > ξ0;

(ii) global property: φc∗(ξ) is monotone increasing and φc∗(+∞) = K .
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Without loss of generality, we may always shift ξ0 to 0 in the following. The local property 
(i) together with the time-delayed structure of (1.4) implies that locally for ξ ∈ (0, c∗r), φc∗(ξ)

satisfies

{
c∗φ′

c∗(ξ) = D(φm
c∗(ξ))′′ − d(φc∗(ξ)), ξ ∈ (0, c∗r),

φc∗(0) = 0, φc∗(ξ) > 0, ξ ∈ (0, c∗r).
(2.1)

As proved in [38], the problem (2.1) has singularity and the solutions are not unique if without 
the condition φc∗(ξ) > 0 for ξ ∈ (0, c∗r). Actually, φc∗(ξ) is the unique maximal solution and

φc∗(ξ) =
( (m − 1)c∗

Dm
ξ
) 1

m−1 + o(ξ
1

m−1 ), ξ → 0+. (2.2)

The local property (i) and the local equation (2.1) do not tell us the value of c∗. In fact, for 
any indefinite speed c > 0, the local equation (2.1) admits a maximal solution φc(x + ct) on 
(0, cr) and then on (cr, 2cr), according to the time-delayed structure again such that φc(ξ − cr)

is already known, we can solve the traveling wave equation (1.4) locally as

{
cφ′

c(ξ) = D(φm
c (ξ))′′ − d(φc(ξ)) + b(φc(ξ − cr)), ξ ∈ (cr,2cr),

φc(cr) and φ′
c(cr) are determined from the left hand side.

(2.3)

Similarly, on (2cr, 3cr), (3cr, 4cr), . . . , we can solve and extend the traveling wave equation 
(1.4) step by step until φc(ξ) decays to zero or blows up. The local solution φc(ξ) will also be 
denoted as φc,r (ξ) in order to emphasize the time delay.

Among all the local solutions {φc(ξ)} corresponding to different wave speeds c > 0, the sharp 
wave φc∗(ξ) is the unique one such that it satisfies the global property (ii); meanwhile, c∗ > 0 is 
the unique speed such that φc∗(ξ) exists globally and φc∗(+∞) = K . Therefore, the combination 
of the local property (i) and the global property (ii) gives rise to the construction of the sharp 
traveling wave φc∗(ξ). Henceforth, we compare the local solutions corresponding to different 
speeds or time delays step by step and formulate the comparison of critical wave speeds.

For the sake of simplicity, we denote

c1 := c∗(m,D, r1) and c2 := c∗(m,D, r2)

for r2 > r1 > 0, and further

φ1(ξ) := φc1(ξ) = φc∗(m,D,r1)(ξ), φ2(ξ) := φc2(ξ) = φc∗(m,D,r2)(ξ),

such that φci
(x + ci t) is the unique sharp traveling wave corresponding to the unique critical 

wave speed c∗(m, D, ri) for time delay ri with i = 1, 2.
In order to prove that c2 < c1 for r2 > r1, it suffices to show that, for the time delay r2, the 

local solution with speed c1 constructed step by step as in the procedures (2.1), (2.3) and so on, 
denoted by φc1,r2(ξ), exceeds K as ξ tends to positive infinity. We state the following auxiliary 
lemma.
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Lemma 2.1. Let φc1,r2(ξ) be the local solution corresponding to the speed c1 = c∗(m, D, r1)

and time delay r2. If φc1,r2(+∞) > K , or equivalently (note that φc1,r2 is nondecreasing), there 
exists ξ1 > 0 such that φc1,r2(ξ1) > K , then c∗(m, D, r2) < c∗(m, D, r1).

Proof. For the time delay r2, the local solution φc2,r2(ξ) is the unique one such that φc2,r2(ξ)

is strictly monotone increasing on [0, +∞) and φc2,r2(+∞) = K since c2 = c∗(m, D, r2) is the 
unique critical wave speed. If the local solution φc1,r2(ξ) with speed c1 exceeds K as ξ tends 
to positive infinity, then the monotone dependence of the local solutions φc,r2(ξ) on different 
speeds c (Lemma 3.6 of [38]) tells us

φc1,r2(ξ) > φc2,r2(ξ) ⇔ c1 > c2.

The proof is completed. �
Lemma 2.1 shows that the comparison of the different behaviors of local solutions with differ-

ent speeds for the same time delay implies the comparison of wave speeds. On the other hand, we 
compare the local solutions with different delays for the same speed, which is the key observation 
of the proof for the monotone dependence property.

Lemma 2.2. Let φc1,r1(ξ) and φc1,r2(ξ) be the local solutions corresponding to the time delays 
r1 < r2 respectively but with the same speed c1 = c∗(m, D, r1). Then φc1,r2(ξ) ≥ φc1,r1(ξ) for 
ξ ∈ (0, ξ̂ ), where, (0, ξ̂ ) is the maximal existence interval of φc1,r2(ξ), and φc1,r1(ξ) is the sharp 
traveling wave for time delay r1 that exists globally. Moreover, the inequality is strict, φc1,r2(ξ) >
φc1,r1(ξ) for ξ ∈ (c1r1, ξ̂ ).

Proof. According to the construction of local solutions as in (2.1), φc1,r1(ξ) and φc1,r2(ξ) satisfy

{
c1φ

′
c1,r1

(ξ) = D(φm
c1,r1

(ξ))′′ − d(φc1,r1(ξ)), ξ ∈ (0, c1r1],
φc1,r1(0) = 0, φc1,r1(ξ) > 0, ξ ∈ (0, c1r1], (2.4)

and {
c1φ

′
c1,r2

(ξ) = D(φm
c1,r2

(ξ))′′ − d(φc1,r2(ξ)), ξ ∈ (0, c1r2],
φc1,r2(0) = 0, φc1,r2(ξ) > 0, ξ ∈ (0, c1r2], (2.5)

respectively. Note that r2 > r1 such that c1r2 > c1r1. Then in (c1r1, 2c1r1), according to (2.3), 
φc1,r1(ξ) satisfies

{
c1φ

′
c1,r1

(ξ) = D(φm
c1,r1

(ξ))′′ − d(φc1,r1(ξ)) + b(φc1,r1(ξ − c1r1)), ξ ∈ (c1r1,2c1r1),

φc1,r1(c1r1) and φ′
c1,r1

(c1r1) are given by (2.4).
(2.6)

While in (c1r2, 2c1r2), φc1,r2(ξ) satisfies

{
c1φ

′
c1,r2

(ξ) = D(φm
c1,r2

(ξ))′′ − d(φc1,r2(ξ)) + b(φc1,r2(ξ − c1r2)), ξ ∈ (c1r2,2c1r2),

φc ,r (c1r2) and φ′ (c1r2) are given by (2.5).
(2.7)
1 2 c1,r2
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The problems (2.4) and (2.5) imply that both φc1,r2(ξ) and φc1,r1(ξ) are the maximal solution 
of the same equation on the joint interval (0, c1r1), such that

φc1,r2(ξ) ≡ φc1,r1(ξ), ξ ∈ (0, c1r1).

We assert that

φc1,r2(ξ) > φc1,r1(ξ), ξ ∈ (c1r1,min{c1r2,2c1r1}).

Actually, on (c1r1, min{c1r2, 2c1r1}), φc1,r1(ξ) satisfies (2.6) while φc1,r2(ξ) satisfies (2.5) with 
the same conditions at c1r1:

φc1,r1(c1r1) = φc1,r2(c1r1), φ′
c1,r1

(c1r1) = φ′
c1,r2

(c1r1), (2.8)

and the only difference is the reaction term b(φc1,r1(ξ − c1r1)) in (2.6). Note that φc1,r1(ξ −
c1r1) > 0 since ξ − c1r1 > 0 for ξ ∈ (c1r1, min{c1r2, 2c1r1}), and then b(φc1,r1(ξ − c1r1)) > 0, 
which behaves as a damping term for the second order differential equation (2.6). The phase 
plane analysis of (2.5) and the generalized phase plane analysis of (2.6) implies that

φc1,r2(ξ) > φc1,r1(ξ) for ξ ∈ (c1r1,min{c1r2,2c1r1}). (2.9)

Here, the generalized phase plane means that we need to rewrite the time-delayed term 
b(φc1,r1(ξ − c1r1)) into a function of φc1,r1 and the phase function ψ̃c1,r1(φc1,r1), which is the 
function

ψc1,r1(ξ) := D(φm
c1,r1

(ξ))′ = Dmφm−1
c1,r1

(ξ) · φ′
c1,r1

(ξ) (2.10)

interpreted as a function of φc1,r1 in the phase plane such that

ψ̃c1,r1(φc1,r1) := ψc1,r1(ξ).

Furthermore, the key ingredient is to rewrite the time-delayed term into

φc1,r1;c1r1(φc1,r1; ψ̃c1,r1) := φc1,r1(ξ − c1r1) = inf
{
θ > 0;

φc1,r1∫
θ

Dmsm−1

ψ̃c1,r1(s)
ds ≤ c1r1

}
. (2.11)

We explain more details about the expression (2.11): (i) if φc1,r1(ξ − c1r1) > 0, then φc1,r1(ξ) >
φc1,r1(ξ − c1r1) and

c1r1 = ξ − (ξ − c1r1) =
φc1,r1 (ξ)∫

φc1,r1 (ξ−c1r1)

dξ

dφ
dφ =

φc1,r1 (ξ)∫
φc1,r1 (ξ−c1r1)

Dmsm−1

ψ̃c1,r1(s)
ds,

such that
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φc1,r1(ξ − c1r1) = min
{
θ > 0;

φc1,r1∫
θ

Dmsm−1

ψ̃c1,r1(s)
ds ≤ c1r1

}
;

(ii) if φc1,r1(ξ − c1r1) = 0, we only focus on the case φc1,r1(ξ) > 0, then there exists a τ0 ∈
(0, c1r1] such that φc1,r1(ξ̂ ) > 0 for all ξ̂ ∈ (ξ − τ0, ξ ] and φc1,r1(ξ̂ ) = 0 for all ξ̂ ∈ [ξ − c1r1, ξ −
τ0], i.e., ξ − τ0 is the edge of the support. Therefore,

τ0 = ξ − (ξ − τ0) =
φc1,r1 (ξ)∫

φc1,r1 (ξ−τ0)

dξ

dφ
dφ =

φc1,r1 (ξ)∫
0

Dmsm−1

ψ̃c1,r1(s)
ds,

and 
∫ φc1,r1
θ

Dmsm−1

ψ̃c1,r1 (s)
ds ≤ c1r1 for all θ > 0, hence

inf
{
θ > 0;

φc1,r1∫
θ

Dmsm−1

ψ̃c1,r1(s)
ds ≤ c1r1

}
= 0 = φc1,r1(ξ − c1r1).

The notations ψc1,r2 , ψ̃c1,r2 , and φc1,r2;c1r2(φc1,r2; ψ̃c1,r2) are defined similarly. Here we note that 
the infimum in (2.11) is attained at a unique φc1,r1;c1r1 > 0 if φc1,r1(ξ) > φc1,r1(c1r1) such that 
φc1,r1(ξ − c1r1) > 0; while we have φc1,r1;c1r1 = 0 if φc1,r1(ξ) ≤ φc1,r1(c1r1) and then φc1,r1(ξ −
c1r1) = 0. Hence the interpretation (2.11) is valid in all cases.

For ξ ∈ (min{c1r2, 2c1r1}, ξ̂ ), we employ the above generalized phase plane analysis method. 
According to the first step comparison (2.9) and the equality (2.8), we see that locally at a right 
neighborhood of c1r1, denoted by (c1r1, ξ̂0), there holds

ψ̃c1,r2(φ) > ψ̃c1,r1(φ). (2.12)

Without loss of generality, we assume that (c1r1, ξ̂0) is the maximal interval with the above 
comparison property. We assert that within the interval (c1r1, ξ̂0)

φc1,r2;c1r2(φc1,r2; ψ̃c1,r2) < φc1,r1;c1r1(φc1,r1; ψ̃c1,r1) (2.13)

at where φc1,r2 = φc1,r1 . In other words, if for some ξ1, ξ2 ∈ (c1r1, ξ̂0) such that φc1,r2(ξ2) =
φc1,r1(ξ1), then

φc1,r2(ξ2 − c1r2) < φc1,r1(ξ1 − c1r1).

Therefore, (2.13) provides the comparison of the time-delayed terms between solutions corre-
sponding to different delays.

The proof of (2.13) lies in the interpretation (2.11) such that

φc1,r1∫
φ

Dmsm−1

ψ̃c1,r1(s)
ds = c1r1,
c1,r1;c1r1
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and

φc1,r2∫
φc1,r2;c1r2

Dmsm−1

ψ̃c1,r2(s)
ds = c1r2.

Observe that r2 > r1 and ψ̃c1,r2(s) ≥ ψ̃c1,r1(s), then φc1,r2;c1r2 < φc1,r1;c1r1 if φc1,r2 = φc1,r1 . The 
comparison of time-delayed terms (2.13) plays an essential role in the following proof.

According to the definition (2.10) and the interpretation (2.11), (φc1,r1, ψc1,r1) satisfies the 
following dynamic system

⎧⎪⎪⎨
⎪⎪⎩

dφc1,r1

dξ
= ψc1,r1

Dmφm−1
c1,r1

,

dψc1,r1

dξ
= c1

ψc1,r1

Dmφm−1
c1,r1

−
(
b(φc1,r1;c1r1) − d(φc1,r1)

)
.

(2.14)

Next, we rewrite the system (2.14) such that ψ̃c1,r1(φc1,r1) := ψc1,r1(ξ) satisfies the following 
differential equation

dψ̃c1,r1

dφ
= c1 − Dmφm−1(b(φc1,r1;c1r1) − d(φ))

ψ̃c1,r1

. (2.15)

Similarly, we have

dψ̃c1,r2

dφ
= c1 − Dmφm−1(b(φc1,r2;c1r2) − d(φ))

ψ̃c1,r2

. (2.16)

Observing the comparison of time-delayed terms in (2.13), according to (2.16), we obtain

dψ̃c1,r2

dφ
> c1 − Dmφm−1(b(φc1,r1;c1r1) − d(φ))

ψ̃c1,r2

. (2.17)

Thus, (2.15) and (2.17) imply that

dψ̃c1,r2

dφ
− dψ̃c1,r1

dφ
>

(
Dmφm−1(b(φc1,r1;c1r1) − d(φ))

)
· ψ̃c1,r2 − ψ̃c1,r1

ψ̃c1,r2ψ̃c1,r1

. (2.18)

Finally, since φc1,r1 is the unique sharp traveling wave for time delay r1 with the unique speed 
c1 = c∗(m, D, r1), we see that φc1,r1 is strictly monotone increasing and then ψ̃c1,r1(φ) > 0
for all φ ∈ (0, K). Therefore, (2.12) tells us that ψ̃c1,r2(φ) > ψ̃c1,r1(φ) > 0. Then locally at 
any closed subinterval of (0, K), both ψ̃c1,r2 and ψ̃c1,r1 have positive infimum. Also note that 
Dmφm−1(b(φc1,r1;c1r1) − d(φ)) in (2.18) is uniformly bounded and ψ̃c1,r2(φ) > ψ̃c1,r1(φ) lo-
cally near c1r1 as in (2.12), it follows from (2.18) that ψ̃c1,r2(φ) > ψ̃c1,r1(φ) holds globally on 
(c1r1, ξ̂0) such that (0, ξ̂0) actually is the maximal existence interval (0, ξ̂ ). The proof is com-
pleted. �
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To finish the proof of Theorem 1.1, we enhance the comparison results in Lemma 2.2 as 
follows.

Lemma 2.3. Under the conditions in Lemma 2.2, there also holds that the difference φc1,r2(ξ) −
φc1,r1(ξ) is increasing for ξ ∈ (0, ξ̂ ).

Proof. The conclusion follows from the proof of Lemma 2.2 with a further explanation. Actually, 
we have already proved that (2.12) is valid on (c1r1, ξ̂0) and then ψ̃c1,r2(φ) ≥ ψ̃c1,r1(φ) holds on 
all (0, ξ̂0) in the proof of Lemma 2.2. It says that at any points that φc1,r2(ξ2) = φc1,r1(ξ1) =: φ, 
the derivatives φ′

c1,r2
(ξ2) ≥ φ′

c1,r1
(ξ1) according to the comparison ψ̃c1,r2(φ) ≥ ψ̃c1,r1(φ) in the 

phase plane. Therefore, the difference φc1,r2(ξ) − φc1,r1(ξ) is increasing for ξ ∈ (0, ξ̂ ). �
Proof of Theorem 1.1. Note that φc1,r1(ξ) is the unique sharp traveling wave such that 
φc1,r1(+∞) = K . Lemma 2.2 implies that φc1,r2(+∞) > φc1,r1(+∞) = K if φc1,r2(ξ) ex-
ists globally, otherwise φc1,r2(ξ) blows up in finite time and there exists ξ1 > 0 such that 
φc1,r2(ξ1) > K . Note that Lemma 2.3 precludes the case that φc1,r2(ξ) > φc1,r1(ξ) on (c1r1, +∞)

but φc1,r2(+∞) = φc1,r1(+∞) = K . According to Lemma 2.1, c∗(m, D, r2) < c∗(m, D, r1) for 
r2 > r1. The proof is completed. �
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