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ARTICLE INFO ABSTRACT

Keywords: In this paper, we study an advection-reaction—diffusion equation, where the nonlinear advection
Traveling wavefronts has neither monotonicity nor variational structure. For all wavefronts with the speed ¢ > ¢,
Stability where ¢, is the minimal wave speed, we use the technical weighted energy method to prove

Advection-reaction—diffusion equation

. that these wavefronts are exponentially stable, when the initial perturbations are small in a
Minimal wave speed

weighted Sobolev space.

1. Introduction

In this paper, we focus on the stability of traveling wavefronts for the following an advection-reaction—diffusion equation in the
form

ot ox
u(x,0) =uy(x), x €R.

{M Q) _ ) 4 f(y(x, ), x €R, 1> 0 wn
This model describes pattern formation and chemotaxis phenomena in biology, physiology, physics and chemistry, for example,
see [1-4] and references. Here, J(u) and f(u) satisfy the following hypothesis
(H1) f(0)=f(1)=0,'(0)>0> f'(1), f(u)>0, for ue(0,1);
(H2) f € C*R,R), f'(w) < f'(0) for u € [0,1] and @ is bounded on R for i = 1,2,...,4;
(H3) J € COR,R), J"(u) <0 for u € [0,1]; and J® are bounded on R for k = 1,2,...,5.

When J(u) = guz and f(u) = u(l — u), the first equation in Eq. (1.1) is reduced to the Burgers-KPP-Fisher equation

ou(x, 1) Au(x,1)  0%u(x,1)
+ pu =
ot 0x ox?

where p is a real physical constant. The model (1.2) was studied and the minimal speed was obtained based on the formal stability
analysis and the existence of some exact solutions [5,6]. In fact, Eq. (1.1) covers plenty of classical models, which can be founded
in the section of applications in [7] and references. Furthermore, traveling wavefronts for Eq. (1.1) were established, wherein they

constructed an invariant region with a lower cure smoothly connecting two fixed points where a heteroclinic orbit exists [7].
As mentioned before, the primary aim of this paper is to examine the stability of traveling wavefronts in relation to Eq. (1.1). The
lack of monotonicity in Eq. (1.1) precludes the application of the comparison principle [8]. Additionally, the nonlinear advection

+u(x,t)(1 —u(x,1), xeR, t>0, (1.2)

* Corresponding author.
E-mail address: xieruijun@aufe.edu.cn (R. Xie).

https://doi.org/10.1016/j.aml.2024.109075
Received 14 February 2024; Received in revised form 18 March 2024; Accepted 18 March 2024

Available online 22 March 2024
0893-9659/© 2024 Elsevier Ltd. All rights reserved.


https://www.elsevier.com/locate/aml
https://www.elsevier.com/locate/aml
mailto:xieruijun@aufe.edu.cn
https://doi.org/10.1016/j.aml.2024.109075
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aml.2024.109075&domain=pdf
https://doi.org/10.1016/j.aml.2024.109075

M. Mei and R. Xie Applied Mathematics Letters 154 (2024) 109075

term in Eq. (1.1) presents considerable challenges when deriving energy estimates. In order to overcome these difficulties, we will
construct the energy estimates in the weighted Sobolev space Hi(R) with the weighted function w(¢) > 1 (see (2.4)).

Throughout this paper, C > 0 denotes a generic constant, while C; > 0(i = 0, 1,2, ...) represents a specific constant. Let L>(R) is
the space of the integrable functions, and H*(R) the Sobolev space. Let T > 0 be a number and 8 be a Banach space. We denote
by C([0, T], B) the space of the B-valued continuous functions on [0, T, L*([0, T], B) as the space of the B-valued L?-functions on [0, T.

The rest of the paper is organized as follows. In the next section, we give the existence and uniqueness of traveling wavefronts
shown in [7] and state the nonlinear stability theorem. In Section 3, we prove the nonlinear stability by a priori estimates.

2. Preliminaries and stability theorem

The traveling wavefronts for (1.1) connecting with 0 and 1 at far fields are the monotone solution, we mean a solution
u(x,t) = ¢p(&), &= x—ct, where c is the wave speed and ¢(¢) satisfies

"o ' ’_
{¢> =—cd/ + T (D — (), 21

P(—0) =1, ¢P(+00)=0.
Notice that, the existence and uniqueness of traveling wavefronts to (2.1) was shown by Ma-Ou by the constructing an invariant
region [7].

Proposition 2.1 (Existence of Traveling Wavefronts [7]). If f () < f'(O)u and J'(u) < J'(0) for u € [0, 1], then for any ¢ > ¢,, (1.1) has a
unique(up to a translation by a constant) decreasing traveling wave, where ¢ is the minimal speed and A; = A,(c) < 0 and 4, = 4,(c) <0,
as the negative roots of the corresponding characteristic equation to (1.1)

Pt (c=TO) A4+ f(0)=0i=12 (2.2)
satisfying
P+ (c=JO) A+ f10) <0, for 2; < A< 4. (2.3)
Throughout this paper, we define a weight function as
w() = {Q_MHO)’ Y @4
1, &<,

where £, <0 and |£)| > 1; and A is a negative number satisfying 4, < 1 < 4,.
Now we can state our main theorem.

Theorem 2.1 (Nonlinear Stability). Suppose (H1)-(H3) hold. For any given wavefront ¢(x — ct) with the speed ¢ > ¢, to (1.1), suppose
that uy(x) — ¢p(x) € Hli(R). There exists some constants 5, > 0, u; = p(c,4) > 0, and 0 < u = u(c,A) < uy, all independent of
x, t, and u(x,t), when the initial perturbation is small:

fluo - ¢||le0 <&, (2.5)
then the solution u(x,t) of (1.1) satisfies

u(x, 1) = ¢(x — ct) € C ([0, 00); HA(R)) N L? ([0, 00); H2 (R)) (2.6)
and

sup lu(x, 1) = p(x —en)| < Ce™, 1> 0. 2.7)

Remark 2.1. The weighted Sobolev Space Hi,(]R) with w(é) > 1 for ¢ € R implies |v()|1 < ||ﬁv||cl < o) 2 (see (3.11)),
which is crucial in order to overcome the nonlinear advection term. The nonlinear stability theorem, Theorem 2.1 directly implies
the exponential convergence of the solution u(x, ) to the traveling wavefront ¢(x — ct).

3. Proof of main theorem

The perturbed equation. In order to prove the stability of the traveling wavefronts to (1.1), we reformulate them to a perturbed
equation. Let ¢(x — ct) = ¢(£) be a given traveling wavefront with speed ¢ > ¢, and

(&, 1) == ulx,t) — Pp(x —c1), (&) 1= uy(x) — P(x).
Then, from (1.1) and (2.1), v(&, 1) satisfies
{% + (S @+d) =) L - T - f@+ TGP @ = 0w,
vo(§) = v(£,0), £€R,

3.1
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where

0W) := f+d) = f(d) = (@ -+ @)= J ()= T (Pv)¢ (&), (3.2
with v = v(&, 1), ¢ = Pp(&). We define the solution space as

X0,7) = {vlv(&, 1) € C(0,T); H2) n L*([0,T); H2)} (3.3)
with

M(T)? = e loI1? 3.4)

HZ(R)

As we known, by using the continuity extension method [9,10], the global existence of v(¢, 1) and its exponential decay estimate
directly follow from the local existence result and a priori estimate given below. The proof for the local existence of the solution
is standard, because it can be proved by the iteration technique [11,12]. Consequently, the a priori estimates of the solution holds
paramount significance in corroborating Theorem 2.1.

Proposition 3.1 (A Priori Estimates). Under the assumption in Theorem 2.1, let v(é,t) € X(0,T) be a local solution of (3.1) for a given
constant T > 0. Then there exist positive constant 5, > 0, C, > 1, and u > 0 independent of T and v(¢,t) such that, when M (T) < §,,

1
”U(I)”i{i +/0 e—zu(t—s)||u(s)||i[ids < Ce 2 ||UO(0)||2'%, (3.5)

First of all, we will establish the energy estimates for v(¢, t) in the weighted Sobolev space HLZU(R) with some techniques.

Lemma 3.1. Let v(&,1) € X(0,T). Then there exists a constant u; > 0, such that, for 0 < u < p,, it holds that

lo®I?, + / I, ds < CeH JugO) 3 (3.6)
w 0

provided M (T) < 1.

Proof. Multiplying (3.1) by ¢**'w(&)v(&, 1), where u > 0, we get
{ %ez”’wu2 }; + { %ez’” (J'w+¢)—c) wo? — ez"’wuué }g + ez"'wué + ez”’w’vvé

N {_M

5 -l P+= J"(¢)¢ (6)} 24y

(3.7)
21"<u+¢>e2”’wv5u + (J”(qb) T+ ) ¢ ©uwo
qu(U)A

By the Cauchy-Schwarz inequality, we have
w/
w U/: . E

2
| e2H w' v ) = 2t v| < ez’”wvé + i <—> e w2, (3.8)

Applying (3.8) to (3.7), we obtain

{ lez‘”wv2 }
2

{ L 2w (J'@+ ) — ¢) wo* — e o, }E
/N 2
+ {—" —lDw 1 (ﬁ> —u= '@+ lJ”(¢)¢’(§)} Hwe? — 11" (0 + B wog? 3.9)
w w 2 2

4

+ % (J"(p) = T"(0+$)) ¢ ©wv? + = (J (@) - (v+¢)) %wvz < e woQ(v).
Integrating (3.9) over R x [0, ] with respect to & and ¢ yields

2 2
”'llv(f)ll

2us w(f) 1 w,(é) : ’ " / 2
/ / # { -J'(¢) we 2 <W§)> =2u =21+ I () (f)} w(v~(€, s)déds

- / / T (0 + G & V(& $)déds - / / P IO@ )P ©Ow@)u(E, )0 (&, 5)déds (310
o Jr 0 JR
t !

- / / 1D, ) ey, ). s)deds
o Jr w(é)

< JeoOlf3; +2 /0 /R S w(EV(E, $)QW(E, $)dEds,

where ¢,, ¢, between ¢ and ¢+ v.
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On the other hand, by the definition of M (T)(see (3.4)) and v € C([0, T);Hi), we obtain \/Eu € H?. Using the Sobolev
inequality H2 < C!, we get |[y/woll,1 < Cllvll 2 - Due to w(&) > 1 for & € R, so we obtain

loller < 1Vwolla < Clloll 2. (3.11)
which implies

[0, D] < CM,,(), ‘vg(f, z)‘ <CM,(n fort€[0,T], ¢€R, (3.12)
and using the Taylor expansion

0| = fw+d) = () — f@w— (I w+¢)—J' (@) — I ($)v) < Clvf,

where C > 0 is independent of v, we can estimate the nonlinear term as

t 2us t 2us
’/ / w(@v(€, )0, s)déds| < CMU(T)/ / w(@v* (&, s)d&ds. (3.13)
0 JR 0 JR

By (H3) and applying (3.12) and (3.13) to (3.10), we obtain

1
L COTAE / / &S (A, (&) — CM, (1)) w(&)v*(&, s)dEds
w o JRr

(3.14)
< leo 3 -
where
W@ 1 (w©\ ) Mg st
A, ., =(c—-J = —) -2u-2 J .
ww® 1= (e =) —= we 2 ( e ) u=2f" @+ T (®¢ &
By the definition of w(¢) in (2.4), when ¢ < &), f'(¢) — f'(1), then we have f/(¢) < %f’(l) < 0. We obtain
A w@ ==2u=2f"()+J" ()& > =2u— f'(1) :=C; 20, (3.15)

by selecting 0 < u < —%f’(l). When ¢ > &, then we have

A, @ = (c= T (@) (=24 - 222 =211() = 2u + T ()¢ (&)
(¢ = J'(0) (=22) = 222 = 2f"(0) — 2u (3.16)
=2 (2 + (c =T () A+ f(0)) —2u :=C, > 0,

\%

by selecting 0 < y < py :=— (42 + (¢ = J'(0)) A+ f'(0)), where

24 (c=J0) 2+ £1(0) < 0 see (2.3)).
Applying (3.15), (3.16) to (3.14) and letting M, (T) < 1, then the proof of this Lemma is complete.
Lemma 3.2. Let v(é,1) € X(0,T). Then it holds that

t
D u(—s _ 2

”vé(,)”z% +/0 o-2u A)||U§||2levds < Ce 2 lloo @Il - (3.17)
provided M (T) < 1.
Proof. Differentiating (3.1) with respect to ¢ and multiplying by ez“’w(f)u,:(f, 1), then we have

1o 2 12 22
{Ee ‘“wué}t +{§e HA(J v+ @) —c) wu; —e mWUg”gg}é

! / / 2
+ {—C mEAC2R S (ﬁ> —u= )+ §J"(¢)¢’}e2’"wv§
w 2

2w 4 (3.18)
-5 .I”(v + ¢)e2'"wu +2 (J”(u +¢) = J" () P w (J @ -Tw+¢) 2‘"wv§
+ (LD - fw+d)e 2”’ v} = Cye? wlovg| < Cye ww|%|u .
By the Cauchy-Schwarz inequality
w ‘ng‘ < r]wué + iwuz, (3.19)

4n
where 7 is sufficiently small. Integrating (3.18) over R x [0, ¢] with respect to & and ¢ yields and applying Lemma 3.1 and (3.12),
we obtain

2;4!

v;(l)H / / 25 (B, (&) = Cs M,(1) — n) w(@vA(E. s)déd s
(3.20)

<G ||UO(O)||HL](} ,
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where

NG <w’(«:) )2 ) e

B =(c—-J — —=|—= ) -2u-2 3J . 3.21

0 () (¢ (@) e 2\ we H=2f(d)+ (D)’ () ( )
Similarly, we have B, ,(§) > Cq > 0. Letting M, (T) < 1, then the proof of this Lemma is complete.

Similarly, by taking

t
/0 /R 2B X 0(E)vge(&, 5)déds

applying Lemmas 3.1 and 3.2 and (3.12), we obtain the energy estimates for ve,.

Lemma 3.3. Let v(&,t) € X(0,T). Then it holds that

t
||U.f.g(f)||2Lz +'/0 e-zu(t—s>||u§§||2L2 ds < Ce™2Ht ||U0(O)”ili , (3.22)
provided M(T) < 1.

Combining Lemmas 3.1-3.3, the proof of Proposition 3.1 is complete.
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