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Abstract

In this paper, we study the well-posedness, ill-posedness and uniqueness of the stationary 3-D radial
solution to the bipolar isothermal hydrodynamic model for semiconductors. The density of electron is im-
posed with sonic boundary and interiorly subsonic case and the density of hole is fully subsonic case. It
is difficult to estimate the upper and lower bounds of the holes due to the coupling of electrons and holes
and the degeneracy of electrons at the boundary. Thus, we use the topological degree method to prove the
well-posedness of solution. We prove the ill-posedness of subsonic solution under some conditions by direct
mathematical analysis and contradiction method. The ill-posedness property shows significant difference to
the unipolar model. Another highlight of this paper is the application of specific energy method to obtain
the uniqueness of solution in two cases. One case is the relaxation time T = oo, namely, the pure Euler-
Poisson case; the other case is % < 1, which means that, when the current flow is sufficiently small and the
relaxation time is sufficiently large both can satisfy.
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1. Introduction

The bipolar hydrodynamic (HD) model, proposed first by Blgtekjer in [5], is usually de-
scribed for the charged fluid particles such as electrons and holes in semiconductor devices
[5,23,28], which is written as the following system of Euler-Poisson equations:

pr +div(pu) =0,

-

L . i
(p”)t+le(,0u®u)+VP1(p)=pE_'0?’

n; +div(nv) =0, (1.1)
- R, - nv
(nv); +divinv @ v) + VP,(n) = —nE — —,
T

V.-E=p—n—bx).

Here, p, n, i, v and E represent the electron density, the hole density, the electron velocity,
the hole velocity and the electric field, respectively. P1(p) and P>(n) are given functions which
denote the pressure of electron and the pressure of hole. When the system is isothermal, the
physical representation of the pressure functions are

Pi(p)=Tp, Pr(n)=Tn, (1.2)

where T > 0 is the constant temperature. The function b(x) > 0 is the doping profile denoting
the density of impurities in semiconductor devices. The constant t > 0 stands for the relaxation
time.

The corresponding steady-state equation of (1.1) is as follows

div(pit) =0,
s e o - pu
div(pu @ u) + VPi(p) = pE — e
div(nd) =0, (1.3)

div(nd ® 9) + VP, (n) = —nE — @’
T

V-E:p—n—b(x).

There are many researches on the stationary solution for the HD model of semiconduc-
tors. In 1990, Degond and Markowich [12] first proved the existence of subsonic solution for
one-dimensional case, and obtained the uniqueness of solution with small electric current. Sub-
sequently, lots of attention has been paid to the steady subsonic flows with different boundary
conditions as well as the higher dimensional case in [3,4,13,20-22,29,31,32]. For the supersonic
flows, Peng and Violet [33] showed the existence and uniqueness of supersonic solution with a
strong supersonic background for one-dimensional model. Bae et al. [2] extended this work to
two-dimensional case for pure Euler-Poisson equation, namely, the semiconductor effect is zero.
The transonic flows have also been extensively studied in [1,14,17,18,26,27,37]. Li-Mei-Zhang-
Zhang [24,25] proved in great depth the structure of all types with the sonic boundary when the
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doping profile is subsonic and supersonic, respectively. The sonic boundary condition means the
system has degeneracy effect, which makes the system has strong singularity. Chen-Mei-Zhang-
Zhang [6] extended the corresponding results to the transonic doping profile. Also, Chen et al.
[7-9] studied the radial or the spiral radial subsonic, supersonic and transonic solutions in two
and three dimensional spaces. Further, the existence and the regularity of smooth transonic so-
lutions are also investigated by Wei et al. in [39]. Recently, Feng et al. showed the structural
stability of different types of solutions in [15,16], respectively. Asymptotic limits of subsonic or
sonic-subsonic solutions were studied in [10,11,34-36].

However, the corresponding results for bipolar model are very limited. For isentropic case,
Zhou and Li [41] proved the existence and uniqueness of stationary solution with Dirichlet
boundary conditions in one-dimensional space when the doping profile is zero. For isothermal
case, Tsuge [38] obtained the existence and uniqueness of the subsonic stationary solution in
one-dimensional space for the electrostatic potential is small enough. Yu [40] studied the exis-
tence and uniqueness of the subsonic stationary solution with insulating boundary conditions by
the calculus of variations. Recently, Mu-Mei-Zhang [30] used the topological degree method to
prove the well-posedness and ill-posedness of stationary subsonic and supersonic solutions with
the electrons sonic boundary. The existence obtained in [30] relies strongly on the hole far from
the sonic line, and the ill-posedness is partially given only for the case of © = oo and the density
of hole is close enough to the sonic value. Moreover, the uniqueness of this kind of solution is
still unclear and it will be very difficult to prove. This shows the bipolar model is significantly
different to the unipolar model. As known to all, the bipolar model has more importance in phys-
ical practice. In this paper, we are devoted to studying the well-posedness, ill-posedness and
uniqueness of radial solution to the steady-state equation (1.3) in the domain of 3-D hollow ball.

Let us denote

r=xl=vxi1? +x? +x3?,

p=p(x))=p), n=n(x]))=n(r),

N X N X
u=u@) -—, v=v()-—,
r r
E=E(r)- L,
-
b(x) =b(r),

X X .
—, the current density of electrons,
,

J = pii = p(ryu(r) - = = ()

- - X
K :=nv=n()v(r) -

=K(r)- f, the current density of holes.
r

Then the system (1.3) becomes
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2.] jl
Jr + — =0, namely, J = =
r r

1 [J? J
5P\ =) tPi(p)r=pE——,
p r T

2
2K j

K,—l——:O,namely,K:J—i, (1.4)
r r

1 (K? K

n|— | +Pm)r=—-nkE—-—,

2 \n*/, T

2
E,+>E=p—n—b),
r

where j; and j, denote two constants. We can see that r = 0 is the singular point, so we consider
the system in hollow ball, namely, r € [gg, 1] for any given gy > 0 in this paper.

According to the terminology from gas dynamics, we call ¢, := ,/ P{(p) = VT > 0 the sound

speed of electron and cj := \/% = /T > 0 the sound speed of hole by (1.2). Thus, the

corresponding electron velocity u and hole velocity v of the system (1.4) are said to be subsonic
(or sonic) if

|J| / |K| /
u=—" < (or =)= Pl(,o)=ﬁandv=7<(0r =)en =/ Py(n) =NT. (1.5)

Without loss of generality, we assume that j; = j, jo = —j in (1.4), and take j =1, T = 1.
Now dividing (1.4), and (1.4)4 by p and n, respectively, we obtain

O U W |
zp r4p2 . pr - p 7:r2 ’
1 1 1 (1.6)
2" <—) trr=mnbr o
(r*E), =r*(p —n—b(r)).
For the sake of simplicity, we introduce two new variables
g(r)=r’p(r), m@r):=r’n(r) (1.7)
and define
B(r) :=r’b(r). (1.8)
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Substituting (1.7)-(1.8) into (1.6), we have

1 1 1 2
-5 )e+—-==E,
8§ 8 g r

(l_i)mr_L_%z_E, (1.9)

m m3 Tm

(r2E>r =g—m— B(r).

Now from (1.5), itis clear by a series of simple calculations that the stationary flow of electron
and hole to (1.9) are called to be subsonic (or sonic) if

u < (or =)1, orequivalently, g > (or =)1 (1.10)
and
v < (or =)1, orequivalently, m > (or =)1. (1.11)
By (1.10)-(1.11), we impose the sonic boundary conditions to (1.9) with electron
gleo) =g =1, (1.12)
and a given boundary condition to hole is proposed as
m(&o) = no, (1.13)
where the value of ng will be specified later.
Next, we need to study the well-posedness, ill-posedness and uniqueness of solution to (1.9)
with boundary conditions (1.12)-(1.13), and the density of electron is considered interiorly sub-
sonic case (namely, g > 1on(gg, 1)) and the density of hole is considered fully subsonic case

(namely, m > 1on|[gg, 1]).
Multiplying (1.9); and (1.9), by r2 and taking the derivative with respect to r, then according

to (1.9)3, we get
(1 1 r?
Fl-—— g +——2r| =g—m— B(r),
8§ & 8 r

2
[r2 <i—i)m,—r——2rj| =m+ B(r) — g, (1.14)

™m

g(ep) = g(1) =1, m(gp) = no.

Adding equations (1.14); to (1.14),, and dividing both sides by 2 for the resultant equation, we

derive
1 1 1 1 1/1 1 4 c
puiion: ) 72 ol Wi 3 K700 bl Wil Bt &
g g m m T\g m ror
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Integrating the above equation on [gg, 1], we obtain

1
€0

w(m(l))—w(no)—i-%/<l—l>dr+4ln80=c- - , (1.15)
g

m €0

€0

where w(h) :=1Inh + 2}%2
By (1.9); and (1.9),, we can get

1 1 1 1 1/1 1 4
—— e+ )m+-(--=)--=0 (1.16)
g g m m T\g m r

The equation (1.9) is equivalent to the equation (1.14) if and only if ¢ = 0. Now let us define

1
w(nl)—w(no)—i—l/(l—i)dr + 4Ingg = 0. (1.17)
T g m

€0

Therefore, the equations (1.9) and (1.14) are equivalent if and only if

m(l) =n;. (1.18)

Notice that the model (1.14) is degenerate at the sonic boundary g(g9) = g(1) = 1, the solution
of (1.14) will lose certain regularity, and have to be in the weak form. Thus, we give the following
definition of weak solution by [24].

Definition 1.1. (g(r), m(r)) is called a pair of subsonic solutions, which means that interiorly
subsonic solution g(r) coupled with fully subsonic solution m(r) of system (1.14) with g(gp) =
g(1) = 1,m(e0) = no, (g(r) — > € H} (0, 1), m(r) € W>*(eg, 1), and for any ¢ € H] (g9, 1)
it holds that

1
2
/[rz (é_$>gr+;_g_2ri|.(prdr+/(g—m—B(r))(pdr=0 (1.19)

€0 €0

and

m m3

(1 1 r? :
f|:r <———>mr—%—2r:|-(prdr+/(m~|—B(r)—g)(pdr=0. (1.20)

&0 0

Remark 1.1. The identity (1.19) is well-defined for (g(r) — H?e H(} (g0, 1) and p € H(} (g0, 1),
which is equivalent to

1 5 !
/ |:7'2 . g+31 ((g _ 1)2)r + r_ _2ri| ¢rdr+/(g —m — B(}"))(pd}" =0.
2g 8

€0 €0
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Once (g(r), m(r)) is obtained in equation (1.14), then (p(r), n(r)) can be determined by (1.7).
According to (1.9), we can further get the solution of the electric field E(r)

11 12 Die—12, 1 2
E(r)=<___3)r+___=(g+)[(g3 Pr, 12
8 g r 2g g r

Therefore, solving (1.6) amounts to finding the solution to (1.14) satisfying (1.17)-(1.18).

Throughout the paper we assume that the doping profile B(r) € L*(gg, 1) and denote

B := essinf B(r) and B:= esssup B(r).

T reeoD) re(eo.1)
Our main results are stated below.

Theorem 1.1. For any B(r) € L*(gp, 1), T > 0and m > 1, there exists a constant n*(m, B,7) >
1 which only depends on m, B and t, such that for any no > n*, there are the pair of subsonic so-
lutions (g, m) € C%[ao, 1] x W% (go, 1) and m > m —+ 3 on [eg, 1] to (1.14) with the conditions

of (1.17)-(1.18).

Theorem 1.2. For any 1) > 1, there exists B* = B*(]) > 1 such that if no < n and i(nfﬁ)B > B*,
re(a,
1—egg

there is no subsonic solution to (1.9), (1.12)-(1.13). Here « =9 + —*, B = €0 + m.

Theorem 1.3. The solution obtained in Theorem 1.1 for (1.6) and thus for (1.4) will be unique
when T = o0 and £ < 1.

Remark 1.2. 1. In this paper, we focus on the well-posedness, ill-posedness and uniqueness of
the radial solution to (1.3) in 3-D hollow ball. In fact, the results are also applicable to 2-D case.

2. We prove the ill-posedness of solution to (1.9) by direct mathematical analysis and contra-
diction method. It is totally different from the result of ill-posedness in [30, Theorem 2.2]. The
relaxation time 7 is arbitrarily given constant in this paper. Our result show in great depth that
the ill-posedness does not require 7o close to 1 or 7 = +o0.

3. We prove the uniqueness of solution in two cases. For the case of T = 0o, namely, the semi-
conductor effect is zero, we use the simple energy method to prove the uniqueness of solution.
For the second case, the main difficulty lies on that the electron is degenerate at the boundary and
the non-local terms caused by coupling of electrons and holes. To do this, we apply the method
of exponential variation in [19, Theorem 10.7] and make specific modifications based on the
degeneracy of electrons at the boundary.

This paper is arranged as follows. In Section 2, we show the well-posedness of the solution
utilizing the topological degree method when the model (1.14) satisfying the boundary conditions
(1.17)-(1.18). In Section 3, we apply direct mathematical analysis and contradiction method to
prove the ill-posedness of solution when the doping profile B(r) is sufficiently large and the
holes boundary no < 7 for the system (1.9) with boundary conditions (1.12)-(1.13). In Section 4,
we are devoted to prove the uniqueness of solution for the two cases of T = oo and % < 1.
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2. The well-posedness of subsonic solution

Estimating the upper and lower bounds of the holes are difficult due to the couping of the sys-
tem for electrons and holes. We apply the topological degree method to prove the well-posedness
of solution to (1.14), which is used in [30]. To do this, we first consider the following approximate

system
1k r?
r'\——=5)@r| +|=—) =8 —mr—B(r)+2,
8k & , T8k / »

1 | 2 (2.1)
|:r (— - —3> (mk)rj| - <—) =mi+ B(r) — gk +2,
nmip mk - Tk J

gk(e0) = gr(1) =1, my(g0) = no, me (1) = n1,

where r € [gg, 1] and k € (0, 1) is a constant. Here, 1 satisfies (1.17) with g = g; and m = my.

Lemma 2.1. For any B(r) € L*®(gp, 1), T >0, k € (0,1) and m > 1, there exists a constant
n*(m, B, t) > 1 which only depends on m, B and t, such that for any ng > n*, the system (2.1)
admits a pair of subsonic solutions (g, m) € Wz'oo(eo, 1) x Wz’oo(so, 1) and m > m + 3 on
[eo, 1].

Proof. Define

U ={(g,m) € Cleo, 1] x C[eo, 11},
V={(gmeXr<g<Al<m<L},

where

_ Vk+1
2

A

-2
s A=m+B+—-+3,l=m+2, L=m+2,
T
and the value of m will be given later. V is a bounded and open subset of U, and we have

V={(gmeU rA<g<A,I<m<L, and3I x € [ep, 1],
st:gx)y=rorgx)=Aorm(x)=I[lorm(x)=L}.

For given T > 0, B > 0 and m > 1, there exists a unique 7* > 1 such that

(1 —eo)
T

4 -2 k
w®n®) —wm+3) = —81n80+wk(m+B+;+5)—5, (2.2)

where the functions w(h) :=Inh + # and wy (h) :=1nh + 2];!—2 We will prove there exists a pair

of subsonic solutions to equation (2.1) when ng > n*. For any ng > n*, it yields

(1 —20)
T

4 _ 2 k
w(no) — w(m + 3) > —81neo+wk(m+B+;+5)— 3" (2.3)
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Now we take m > nq satisfying

- 4(1 —€o) 1 11
w(m) —w(ng) > —— — 12Ingg > —4lngg — — —— —)dn, 2.4)
T T g m
£0
for any (g, ) € V. There exists a unique 7; € [m + 3, m] such that
1
R 1 1 1
w(n1) — w(no) = —4lngp — — =~ — = )dr. (2.5)
T g m

&0

Now define the operator I : V — U, that is, (g, m) — (gk, mg) by solving the following
linearized equation

(1 k r? . 2r
"\ 353 )@ | @ =8 —m = B(r) +2 - —,
§ & r T8 T8

(1 1 r? R R 2r 2.6)
rl=— =) mr| + —m)y=m+Br)—g+2+—,
mom . Tm T

gr(0) = gr(1) =1, mp(g0) = no, m(1) =11,

where 7 is defined in (2.5). According to the theory of linear elliptic equations, [': V — U is a
compact and continuous operator. Let § = (é, nﬁ) and ¢ = (gg, my) =T@.

Set & : V x [0,1] — U is binary compact and continuous operator with ®(¢,y) = ¢ —
yI'§ =@ — y . Obviously, if ®($, 1) =0, then ¢ is a solution of (2.1). We take g = (1,n9) € V
andlet p(y) = (1 —y)g,where y € [0, 1].If p(y) ¢ @AV, y) for any y € [0, 1], then according
to the topological degree theory, it holds

deg (®(-,1),V,0)=deg (P(-,0),V,q)=deg (id,V,q) =1,
thus ®(¢, 1) = 0 gives a solution ¢ € V.

Next, we only need to prove that p(y) ¢ ®(dV, y) for any y € [0, 1]. Assume there exists
y €10, 1] and ¢ € 3V such that

Py)=0-y)g=(@,.y)=¢ —yo.

We will show a contradiction. If y = 0, we have ¢ = ¢, which is impossible duetog € V, ¢ € 3V
and V is an open subset of U. If y € (0, 1], we have

1, 11—y
p=—9——4gq,
14 14

that is, (gx), = %g,, (mp), = %n%r, then by (2.6) we derive
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(1 k. o o 2r
"\ x—=723 )& | — -8 =Y g—m—Br)+2—-—),
g 8 T8 T8

(1 1. r? . 2r 2.7)
e R + 2mr_y m+ B(r) — =)
mo m p m

8(e0) = &(1) =1, 1(e0) = no, (1) = no + y (f1 — no) =: 1,

where 7] is between ng and 7;. Next, we prove that A < g < A and [ <m < L.
First, the upper and lower bounds of g are to be estimated. Taking respectively w; = (g — 1)~

andwy = (§ — (m+ B+ 2+ 2))+ as the test function to (2.7);, and utilizing the standard weak
maximum principle, we can obtain that w; < 0 and wy < 0, which gives

_ 2
A<l<@g<m+B+=+2<A. 2.8)
T

Here and after (k)™ := —min {h, 0}, (k)™ := max {h, 0}. Next, we will carefully estimate the
upper and lower bounds of . From (2.7), we have

(1 &k r? . 2r
Nz )&+ —2r| =v@-—m—=Br)+U-y)—+2 -1,
Tg , Tg

&8 2.9
(1 1Y\, r? .
r\=— =3 )mr— = =y@n+B(r)—g —(1— — 1.
m m ™Tm r
Adding (2.9); to (2.9),, it yields
(1 k (1 1N, 2 2
N\ et )t - A
g & m w3 8 T ,
1/1 1
=2(1-p)r--|z—=|+4—D.
T\g m
Integrating the above equation on (go, ) and dividing by 2, then we obtain
1 kY. 1 1Y . 1 1 4
3z |& T\ Tzt
g g m m Tg TmMm r
,
c 1 171 1
==+ 2(1 —yp)s - +4(y — 1) |ds. (2.10)
r2 2 §(s) (s

€0

Once again, integrating the above equation on [gg, 1], by (2.5) we get

1
/l
r2
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1
1 1 1
=[w(@) — w)] —f / |:2(1 y)s - ( >:| dsdr — / —24()/ — Ddsdr
§(s) (s r

&0

=:A;1+ Ay + As. 2.11)
It is easy to calculate that
1
1 1-— €0
c —zdrzc- 2.12)
r €0
€0
and
|ALl = |w(@) — wo) — (W) — wno))|
<|w@) — w(no)|
1 1 1 1
= —/7 — —dr + 4lngy
t) g m
€0
1—¢gp
— 4lngy, (2.13)
T
due to 7; is between 19 and 71. Also, we have
1 r
L1 11
[Az2| < =7 2(1—y)s| = — = ) ds|dr
r2 g m
80 £0
1 1 1
—r / 02— edydr < — 2 (2.14)
r T

and

1

1
|A3] < / /4dsdr = / (r —eg)dr < 4/ ;dr = —4Ingy. (2.15)

€0

Combining (2.11)-(2.15), we get

&0 &0

el < |A1| +1 |A2| + |A3]
1— 1—¢o
11— 1—
< . £0 —4lngg ) + . 0 __% - 4lngg
1—¢g T 1—¢9 T 1—¢g
2¢e 8¢
=20 20 png. (2.16)
T 1—2¢p
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Now we are ready to estimate the upper bound of 7. Integrating (2.10) on (eo, r), we have

k 1 r
wk(g)—§+w(ﬁ1) w(no) + — f

2E)  mE)
=c (— — —) /52 /2(1 y)s - ( 0 m(s)>dsdé+/ £2 /4()/ — Ddsdé,
2.17)
and then
w(ii) — w(ng) = E—w()—l/< ! ! >d§—|—4lnr—4ln5 —i—c(l—l)
o K8 2E) M) 0 Ne T r
=00
r 3 r 3
/i/Z(l— )s‘l<1 — ! )dsd§+/i/4( — Ddsdé
e M9 T\3e A g ) '
&0 €0 £0 &0
(2.18)

Through a series of simple calculations, it yields

1 (1 | 1 — &0
_/A__A dt| < : (2.19)
) g&) m@é) T
£0
r &
/ /2(1— )s - < ! )dsdg <1_—y/i/2sdsds
g2 e T ) - )&
£0 £0
l—y [ 1
- TV/$—2($2—83)dE
€0
1—¢p
- (2.20)
T
and
rl 3
/5—2/4(7/—1)dsd§§0. (2.21)

Notice that wi(g) > % due to ¢ > 1 on [gg, 1]. Substituting (2.16) and (2.19)-(2.21) into (2.18),
we derive
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2 8 1— 1—
— 4lngg + < f0_ %0 lngo) ( 80) + £0
T 1—¢9 &0 T

<4(1 — &0)

1-
w(m) —w(no) <

— 12Iney. (2.22)
T

So we obtain that i1 < m < L by (2.4) and (2.22).
Next, we estimate the lower bound of 7. From (2.17), we have

k 1 (/1 U\ e wa 11
wk(g)—z—w(ﬁo)—w(m) /(g(é) ($)> & +4Inr — n80+c(g—;)
€0
1
21 — sd A(y — Ddsd
st/ (1=7)s: (g(s) m(s)) “/52/ (v = Ddsds.
(2.23)

Since

r & r £
/32/4(;/—1)51“15 5/%2[4(1“15
£0 £0 &0 €0

r

1
_ / 546 —eoyde
€0

r

<4fld$
_Sg

=4lnr — 4lney. (2.24)

Thus, plugging (2.16), (2.19)-(2.20) and (2.24) into (2.23) gives

€3] L
Wi g B
11— 2 8 1— 1—
>w(ng) — w(m) — 0 _ (ﬁ _ %% 1n50> ( 80) — £
T T 1—¢9 £0 T
41 —
>w(no) — w(m) — 20 =) + 8lney. (2.25)
T
Define Q := {r €0, 11, < m + 3}. Since ng > n*, we have
wng) — wi) > wn®) —w(m+3) in . (2.26)

Thus
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.~k " 4(1 — gg) A
wr(g) — 3 >w®n™) —wm+3) — — 4+ 8lngyg  in Q. 2.27)
T
By (2.2) and (2.27), we obtain
~ k _ 2 kK 4
wp(@) —=>wk(m+B+—-+5—= in Q. (2.28)
2 T 2
Thus it can be deduced
n =2 .oa
g>m+B+—+5 in Q. (2.29)
T

To prove m > m+3 > [, we take (m — (m +3)) ™ as the test function. Multiplying (/m — (m +3))~
for (2.7), and integrating it by parts on [g¢, 1], we obtain

21 1 . Y F . . _
7 (5= 7)1 = @ 3, Par = [ L= 0307 G- @t 3y ar
m m ™m
&0 &0

2
(m+3(r)—§+2+ i)~(m—(m+3))dr
™m

1
/
. N 2r R _
=y/(m+B(r)—g+2+ A>-(m—(m+3)) dr
Tm
Q
Q

. -2 2r . _
<y (m+B(r)— <m+B+;+5> +2+T—m>-(m—(m+3)) dr
<0. (2.30)
Owing to % - % > (0 and ” r_zz H is bounded, using the weak maximum principle in [19,
n- ™T™m LDO[EO, 1]

Theorem 8.1], we ultimately obtain that (7 — (m + 3))~ =0, thatis, m >m + 3 > [.

In summary, we have proved that . < g < A and ! <m < L for ng > n*, which is contradic-
tory with (g, m) € V. Utilizing the standard regularity theory and the discussions above, we can
infer to (gx, my) € W2 (gg, 1) x W2®(gg, 1) and m > m + 3.

Finally, we apply the same method as in [24, Lemma 2.3] to obtain

r

—80y o, 2.31)
1—80

gk(r) =1+ vsin(r -

where v > 0 is a small constant and independent of k.
This completes the proof of Lemma 2.1. O

Now, we are ready to prove Theorem 1.1.
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The proof of Theorem 1.1. We apply the compactness method as in [24] to get the solution
of (1.14). Assume that (gi, my) is the solution of (2.1). Multiplying (gx — 1) for the equation
(2.1); and integrating it by parts on [gg, 1], we have

1

4 +1 3
_x2 / 2|(gk)r / 2 8k 13 r2d
V| Pty | e = D Par

€0

1

+- /r 8 g, +/(gk—mk—B+2)<gk—1>dr—
T 8k

€0 €0

Applying the standard energy estimate and the uniform boundedness of g and my in L> (g, 1),
we derive

3
1((gx = D)2)rllL2(eg,11 = C,

here and below C denotes constant independent of k. Owing to ((gx — D3, = %(gk — 1)% ((gk —

1) 5 )r, according to the boundedness of g, we have

ll(gx — 1)2”]-101[50’1] <C. (2.32)

Now, multiplying (2.1), by (m — mg, ), where mg, (r) = no +r (m (1) — np), and integrating
it by parts on [gg, 1], we arrive

1

1 1
2 2
2 my - 2 2 my — 1 1 _
|(mk)r| dr = (mk)r(mek)rdr+ (mg —meg,)rdr
mk nyj

m
€0 €0 k 50

- /(mk + B — gk +2)(mg — mg,)dr.

&0

Based on the boundedness of gx and my again, it can be obtained that || (m) || L2e 1] = C, and
then ||my ||H|[€0 = < C. Consequently, we get

(gr — 1) = (g — 1)* weakly in H{[go, 1] for k — 1, (2.33)
my — m weakly in H'[gg, 1] for k — 1 (2.34)

and
18 = Dl gtgeg.1 < Co Nlmll 11,1 < C- (2.35)

Using the similar method as in [24], we can prove that (g,m) € C %[80, 1] x W2’°°(80, 1)
and (g, m) is the weak solution of the system (1.14). At the same time, since H!(gp, 1) is the
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compact embedding of C[eg, 1], so we obtain that g > 1 in (g9, 1), m > m + 3 in [g¢, 1] and the
conditions (1.17)-(1.18) all hold by (2.31) and mj > m + 3. Therefore, we complete the proof of
Theorem 1.1. O

3. The ill-posedness of subsonic solution

In this section, we prove the ill-posedness of subsonic solution to (1.9).
The proof of Theorem 1.2. According to the model (1.9), it yields

1 1 1 1 1 /1 1 4
m m g g T\g m r

Integrating (3.1) on (&g, r), we derive

w(m) —w(ny) = —w(g) + l — l/ (l — l) dr + 4lnr — 41ngy. (3.2)
2 T g m

&0

Due to

Lir (L= 24)ar| <L icholds

I 1
w(m) —w(no) < —w(g)+ > + - 41neg. (3.3)
Thus for any fixed 1 > 1, it should hold for all ng < 1

w(m) —w(no) > w(l) —w@) > —w(n).

Hence, it is true

1 1
—w(g)+§+ - —4lngy > —w(n), 34

which gives a restriction on the upper bound of w(g), and thus a restriction on the upper bound
of g. That is, w(g) < w(n) + % + % — 4Inggp. This gives the idea of the proof. Let g = g(77) > 1
such that w(g) = w(n) + % + % — 4lneg. So it holds that g < g, and then w(g) < w(g), for any
r € [eo, 1].

Substituting w(h) = Inh + 5> into the model (1.14);, it becomes

2
[P, ern] + (’—) =g—m—B(r)+2.
roN\T8/y (3.5)

1
w(g(eo) =w(g()) = 7.

Assume that p is the maximum point of w(g(r)) and p lies in the right half interval of [gg, 1]

without loss of generality, that is, p € (80 + 1_280, 1). Taking any point g € (80, g0 + 1_480), we
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have p — g > ~72 and w,(g(p)) =0.Dueto w e Ch 3[eo, 11N W2 eg, 1] (see [24]), then for

any q € (80, 4 ), we integrate (3.5); on (g, p) to have

1 p2 6]2
wr(g(g) =—— /(g m — B(s) + 2)ds +— <_ _ _)
gp)  g@

P
1 1
2—2/ (B(s)+m—g—2)ds — —
T

q

p
iz/ B(s) — (g +2))ds — 1
T
q

p
1 1
S| [rods-cen) -
T
q

1_
( Opr_ (3 +2)> 1 (3.6)
4 T

=

ES)

v

1
q2

where 1(nfﬂ)B B*, and o = gy + 1 2, B=¢e0+ 2(1 £0) Based on this, we have
re(a

1-— &0
w(g(eo + T)) — w(g(&o))

wy(g(s))ds

€0

1—¢,
g0+ 40

1 (1—e , 1
/ L_2< s —(c+2))—;:|ds

€0

_ 1—¢g 1—80 1—¢g
_(380+1)50< 4 B" (s +2)> 4t G.7)

v

Taking

(Beg + Ddey  _ Beg+ ey  4(g+2)
= B*(7)) := ﬁw(g)-l— (1 —eo) + s 3.8)

Then for inf B > B*(5), we derive

re(a.p)

1—
w(g(eo + TEO)) —w(g(€0)) = w(g), (3.9)
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which gives a contradiction with g < g() and w(g) < w(g). This completes the proof of Theo-
rem 1.2. O

4. The uniqueness of subsonic solution
4.1. The uniqueness of subsonic solution when T = 0o

In this subsection, we use the direct energy method to prove the uniqueness of subsonic solu-
tion when the relaxation time t = oo, namely, the pure Euler-Poisson case. The model becomes

11 2_ .
m m3)" Ty TR @.1)

and its equivalent equation is

(1 g)e] w-n-s

(l_L>mr_§=_E’ 4.2)

m m3

g(eo) = g(1) =1, m(e0) = no.

The proof of Theorem 1.3 for the case of 7 = co. Assume that (g1, m1) and (g2, m») are two
pairs of solutions to the equation (4.1), it holds by (4.2)

(r?(w(g1) — w(g))r)r = (g1 — g2) — (m1 —ma). 4.3)

Taking (w(g) — w(gz))™ as the test function, multiplying (4.2) by (w(g1) — w(g2))™ and
integrating it by parts on [gq, 1], we derive

1

—/ﬂ\(w(g])—w(gz))r*fdr

€0

1 1
_ / (g1 — g2) - (wg1) — w(gn) Hdr — / (m1 —m2) - (w(gt) — w(g2) dr
£0 &0

=:B1 + Bs. 4.4)
According to the monotonicity of function w, it holds that By > 0. By (4.1); and (4.1),, we have
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4
(w(g)r — ~= —(w(m)),.
Integrating the above equation on (g, ) and collecting (g1, m1) and (g2, m2), we get

w(g1) — w(g2) = w(mz) — w(my). 4.5)

For w(g1) > w(g2), we naturally have w(m3) > w(m1). Furthermore, based on the monotonicity
of function w again, it holds that B, > 0. Hence, we have

1
- / 7 |(w(g)) — wga)} [ dr = 0. 4.6)

€0

That is

| wgn) —w@)) | ape. 1y =0- 4.7)
Therefore, we ultimately obtain that || (w(g1) —w(g))t || 12
that is, g1 < g» on [eg, 1].

Similarly, taking the test function as (w(g1) — w(g2))~ and multiplying (4.2) by (w(g1) —
w(g2)) ", then performing the same procedure as above, we get g1 > g2 on [gg, 1].

Thus, we have proved the uniqueness of subsonic solution to the system (1.4) when 7 =
oo, O

(e0.1] = 0 by the Poincaré inequality,

4.2. The uniqueness of subsonic solution when % <1
In this subsection, we apply the method of exponential variation in [19, Theorem 10.7] and

make specific modifications to prove the uniqueness of subsonic solution when % < 1. Here, we
take j1 = j and j, = —j in (1.4), then the following model is presented

1 2 jl 2_E
m m3)" T Tm (4.8)

g(e0) = g(1) =1, m(eo) = no,

and its equivalent equation is

1 .2 ; 2
|:r2<——]—3>gri| =g—m—B(r)+2—i<r—> ,
8§ & r T\g/r

(1 j2) j1 2 (4.9)
D) mr_____Z_E’
m  m3 Tm r

g(eo) = g(1) =1, m(gp) = no.
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The method in Section 2 can still be applied for (4.8), thus the subsonic solution also exists.
Next, we focus on the uniqueness of subsonic solution for system (4.8).

The proof of Theorem 1.3 for the case of % <« 1. Suppose that (g1, m) and (g2, my) are
two pairs of solutions of (4.8), then from (4.9), it holds

) ] }’2 }’2
(r°(F(g1) — F(g2))r)r = (81 — 82) — (m1 —m2) — = (— - —) , (4.10)
T \ 41 82/,

where F(h) :=1Inh + % We define V := F(g1) — F(g2) and take ¢, := VK—Lz as the test func-

tion according to the idea of the comparison principle in [19, Theorem 10.7], where & > 0. Then
+
WV,*‘ and (log (1 + VTJr))r = VK;M Multiplying the equation

(4.10) by ¢, and integrating by parts on [gg, 1], we obtain

[ 0+),

&0
:ifr(gl—gz)_ h

we can obtain (¢p), =

+

d
vi+n

2 1
dr-i-/(gl—gz)'
€0

1

V+
-VEdr + / —my) - d
T o wrm AT fmmma) g
£0 &0
=L +D. @.11)
First we deal with fglo (g1 —g2)- V‘i—:hdr. Assume that (g1 — g2)™ % 0, we have
1
. v+t i
h%f(gl —8) iy = e =8 [y > M >0, (4.12)
&0

where M denotes a positive constant. Here and below we use |||, to denote ||-||pp[g,.17 for
simplicity.
Next, it holds for 1}

1
. V+
Ilfi/rz ~‘<log<1+—))
T h ,
=

Because g1 > 1,g2 > 1 in (g9, 1) and gy = go =1 at r = g9 and r = 1, then it holds that
hlir& ‘ o ‘ — 400 when j =1 for r is near gy or 1. For this reason, the comparison prin-
cgle in [19, Theorem 10.7] cannot be directly applied in the following proof. Define the set
l»:{rewmu|ﬂ:&

V++h
we have

h(g1— g2)

dr. 413
VE+h " (4.13)

<C }, where C > 0 is to be determined. Using the Young inequality,
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. V+
Ilfihfrz ~‘(10g<1+—>>
T h -
D
J [ 2,18 —8 vt
= h 1 1+ —
#2 [P e (157),

D(,
< ihC/r2
T
D

81— &2

d
V*+h ’

dr

V+
1 14+ — d
<og< T ))r ’
. 2 + 2
J [ 2 1 (g1—4 € v
= h-| — =11 14+ — dr, 4.14
+r/r [2e(v++h> +2<°g(+h>>r} roo G
DC
where ¢ is a parameter, and D¢ = [gg, 1]/D. Taking ¢ = %, it follows from (4.14) that
1 - 2
J 2 J 2 81— 82
I <=hC 1 1+ — d — . d
= qic o (°g( " h)) T (v++h) ’
€0 D¢
1
h v |
+E/r2 <10g <1+7))r dr
€0
| V+ ) ( )2
J 2 J 2181 — &2
<=hnC 1 14— d — —\d
Tt /V <Og< T >>r "o vi+n |“
&0 C
W[ v |
+ = / r2{(log 1+ — dr. 4.15)
2 h ,

According to the Taylor expansion, we have F(g;) = ’72 + FD(gi — 1)+ %(gi -2+
o(gi — 1)2, where i =1, 2, we can get

(81— g2)*
Vt+h

2 2
S‘(g]—gz) <|_(&—&) | (4.16)

v+ “ | F(g1) — F(g2)

uniformly for r € [gg, 1] and & > 0. There exists a constant C >> 1 such that | D¢| « 1 satisfying

e
272

DC

V+
Vt+hn

(g1 —g)°
V++h

dr. (4.17)

1
1
dr < - —82)-
r_2/(g1 82)
£0

Combining (4.11)-(4.17), we obtain
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2

1 1
hof, v+ 1 v+
z log (14 —— dr + - —g)——d
Z/F <0g<+h>)r r+2/(g1 82)
£0 €0
. l V+
5ihc/r2 <log<1+—>> dr + D 4.18)
T h ,
€0

Now, we give a detailed calculation of I, which is critical and more complex. Adding (4.8);
to (4.8),, it yields

i (1 1
(F(@)r+ a (— - —) — = =—(F(m)),. 4.19)
T\g m r
Integrating (4.19) on (go, ) and collecting (g1, m1) and (g2, m3), we derive

F(my) — F(m2)

r r

=F F J ! ! d J ! ! d 4.20
=782 - (gl)_?/<g1(s>_gz<s)> ”?/(ml(s)_mz(s)) 5 (420

€0 &0

and thus
i .
|F(my) — F(ma)| < |F(g1) — F(g2)|+ ;llgl —gllp + %”ml —mallpr.  (421)

Integrating (4.21) on [&g, 1] yields

[|[F(m1) — F(m2)llp — %I|m1 —mallpr < [|F(g1) — F(g)llp + %Ilgl —82llp1-(4.22)

Since m1, my € [m + 3, m], there exists a constant C > 1 such that

1
C—lllf(ml) — F(m)|lp < |lmy —ma||pn < Crl|F(my) — F(mo)||pr. (4.23)
When % < 21—1, we have
2j
[|F(my) — Fm)llp < 2/|F(g1) — F(g)llp + ?llgl —gllpr. (4.24)

Noting that

1
+

Vt+h

_ nip—my
) F(my) — F(m)

€0

I - (F(mp) — F(my)) - dr, (4.25)
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because if F(m1) — F(my) =0, then m1 — my = 0 due to the monotonicity of F. There ex-
mij—my

ists a constant C > 1 such that C < m < (. Plugging (4.20) to (4.25) and from
(4.23)-(4.24), it holds

1

mp—m VJr
b < W (F(g2) — ]'—(gl))'md'”
€0
! +
my—m
| Fom— Ry O ‘V++h‘dr
£0
1
w.(}“( ) — F(g1)) - N d
Fmy) — Fomy) 87 T8y g

€0

2j* J 2j
+ 7C1C2+;C2 '||gl_82||L1+?CIC2'||]:(gl)_]:(g2)||Ll’ (4.26)

r(_1 1 i1 1 o1 -
where ¥ (7, r) := (gl(Y) gz(s)) ds+< f80 (ml(s) - mm)) ds and £ < 55 Substituting

(4.26) into (4.18), we derlve

1
hfz 1 1+V+
— 0 PR
2 \°® n)),
+

€0
+—/f -7 V4
(F(e0) = F (@) 55

+

Vv
d - —dr
r+ /(81 g2) - VE T h

&0

1
. V+ 2 2 .
<Lic [ <log (1 n —)) dr + (%clcz + i@) Nlg1 — g2l
T h , T T
&0
2j
+?C1C2-IIJ:(gl)—]:(gz)HLL (4.27)

Similarly, taking ¢, := V =7 as the test function for & > 0 is small enough, and utilizing the

same process as above, we get

1=+

)
| 1

+C—/(}'(g2)—}'(g1))~
2

1
1

dr + - — o)

r+2/(82 &) V- Th
&0

dr

V- +h
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1
§ihC~/r2 <log<1 + V—))
T h ,
€0

)
+ {clcz F (1) = F(g)ll i

22 J
dr + 7C1C2+?C2 “llg1 — g2l

(4.28)

where C > 0 is another constant. Combining (4.27) and (4.28), we have

1 1
h VA P h %
Pt
£0 €0
/(gl /(gz—

V Vv
L / (Flgn = Fg) - oy dr o / (Flgn) = Fl) 5o

b . e ey

4j° 2j 4j
+ 7C1C2+?C2 -||g1—gzllLl+?C1C2~I|f(g1)—]:(g2)llu~ (4.29)

2
dr

dr

JOCHCY
Cr++/Ca(C14+C») 1 , we have

When £ :=min { — 0,6 ’8C1C2
| 1
h 2 v* ’ h 2
i log [ 1+ — dr+ >
3k <°g<+h)>r 3

£0 €0
/(gl /(gz —
V V=
L / (Flen = F@) - oy dr + o / (Flgn) = Fl) g

e 5 e )

1
+ legl —&llp + Ellw(g)l —w(ga|lpr-

2
dr

(log(w%))r

dr

(4.30)
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So there exists hg, when i < hg, we derive

1
legl —&llp = /(81 g2) -

V-
L ar +/(g2 —81)- dr (4.31)

and

1
2C2|| (g1) (&)l

+ V-
F - F . d F - F . dr|. 432
/( (81) (82)) T r+/( (82) (1) v (4.32)
Collecting (4.30)-(4.32), we obtain
2 1 2
&2h V-
/‘(log<l+—>> dr+0—f‘<log(1+—)> dr
2 h -
€0
v+ : V-
<1hcf ‘<1og <1+7>) dr+1hé/'<1og <1+7>> dr. (4.33)
&0 r &0 r
That is
: v P l v\ 2
f‘(log(l—i——)) dr+/‘<log<l+—)) dr
h , h .
£0 £0
C : VT
5L/‘<log <1+—)) dr+—/‘<log( )) dr. (4.34)
& h
€0
Let C3 := é—c and C4 := 2£—~ we get
&t &t
1 v I : v\ P
/‘(log<l+—>> dr+/‘<log<1+ >> dr
h , h ,
£0 €0
1 1
y+ V-
<Cj log| 1+ W dr + Cy log| 1+ W dr. (4.35)
£0 r £0 r
From (4.35), it can be seen that there must exist a sequence {4;}, i =1, 2, ... with h; — 0, and
at least one of the two inequalities
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: V+ 2 ; V+
/'<log<1+ )) drng/'(log(l—i- )) dr
hi - h; -
&0 &0
and
1 1
V- 2 V-
/ log| 1+ dr§C4/ log| 1+ dr
hi r hi p
&0 &0
holds true. Without loss of generality, we suppose
; V+ 2 ! V+
/ ‘(log (1 + )) dr < C3f )(log (1 + )) dr (4.36)
hi r hi r
&0 €0

holds for #; — 0. Denote h; also by A, according to (4.36) and using the Holder inequality, we

have
1
v+ 2 v+
h rilL2 h r
£0
V+
<Cj3 <log <1 + —>) 4.37)
h rip?
Finally, we obtain
V+
H <log <l + —)) < Cs, (4.38)
h rip?

for h — 0. By (4.38) and the Poincaré inequality, we know Hlog (1 + VT+) HLZ is uniformly

bounded with 4 — 0, which is impossible, except that V* = 0. This means F(g;) < F(g>), and
thus g1 < g». And from (4.35), it is easy to obtain
1 1+ v
0 —_
g h .

1 V- ) 1
[l(es+ 7)) [orzei [
h r

=0 €0

Similarly, we will get V™~ =0, that is, F(g1) > F(g2), then g1 > g».

Hence, we have proved g; = g2 on [&g, 1]. According to (4.24), we have m| = m3 on [&o, 1].
Therefore, we have proved the uniqueness of subsonic solution to the system (1.4) when % <
1. O

dr. (4.39)
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