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ABSTRACT. This paper is concerned with 3-D stochastic Euler-Poisson equa-
tions with insulating boundary conditions forced by the Wiener process. We
first establish the global existence and uniqueness of the solution to the system,
then we prove that the solution converges to its steady-state time-asymptotically.
To obtain the converging rate, although the weighted energy estimates are un-
necessary for the deterministic case, we must develop the weighted energy
estimates for stochastic system. Moreover, we observe that the invariant mea-
sure is just the Dirac measure generated by the steady-state, in which the
time-exponential convergence rate to the steady-state plays an essential role.

1. Introduction. The Euler-Poisson equations are important in the analysis and
design of semiconductor devices, offering a more precise description of physical phe-
nomena [21] compared to the conventional drift-diffusion model. Furthermore, in
the extreme ultraviolet (EUV) lithography, stochastic effects sometimes cause un-
wanted defects and pattern roughness in chips [3] that may impact the performance
of a chip or cause a device to fail. Hence, there is a pressing need to investigate the
dynamical model of semiconductors perturbed by stochastic forces within mathe-
matical frameworks. The stochastically forced Euler-Poisson equations (SEP for
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short) in a bounded smooth domain U C R3 reads as

pe+ V- (pu) =0,
d(pu)+ (V- (pu®@u) + VP (p) — pV®)dt = —22dt +F (p,u)d W, (1)
AP =p—0b,

where “d” in (1) is the differential notation with respect to time ¢, in compari-
son to gradient V and Laplacian A for spatial derivatives, p is the electron den-
sity of semiconductors, u denotes the particle velocity, P (p) is the pressure, ® is
the electrostatic potential, 7 is the velocity relaxation time, and b(x) is called the
doping profile, which is positive and immobile. The above mentioned unknowns
p=pwt,x), u=uwtzx), ®=>(wtx),and P(p) = P (p(w,t,xz)) are stochas-
tic processes as functions with respect to w, t, and z, where w is a sample in the
complete probability space (2, F,P). For convenience, we use the simplified nota-
tion p, u, ®, and P (p) here and hereafter. W is an H-valued cylindrical Brownian
motion defined on the filtrated probability space (2, F,P), where H is an auxil-
iary separable Hilbert space, F is the filtration, see the definitions of filtration and
Wiener process in Appendix A.

Let {ex};>] be an orthonormal basis in . Then, the Brownian motion W can

+o0o

be written in the form of W = Y ey 0k, where {8k (t); k € N, ¢ > 0} is a sequence of
k=1

independent, real-valued standard Brownian motions. Let H be a Bochner space.

F (p,u) is an H-valued operator from H to H. Denoting the inner product in # as
(-, ), the inner product

<F (pa u)aek> = Fk (pv u) (2)
is an H-valued vector function, which shows the strength of the external stochastic
forces by

+oo
F(p,u)dW =Y Fi(p,u)d . (3)
k=1

Throughout the paper, we assume that
F (P> U.) = akpuy (pu ll) ’ (4)

where ay, are positive constants, and Y (p, u) is a smooth function of p and u, where
Y (p,u) can be bounded by the homogeneous polynomials.

Subjected to the stochastic Euler-Poisson equations (1), the proposed boundary
is the insulating boundary:

u-v=0 V&.-vr=0, (5)
where v is the outer normal vector of U. The initial data is
(ps 10, ®)|t=0 = (po (w,z), g (w,z), Po(w,2)), (6)

which is given in the probability space (2, F,P), po (w,z) > 0. Here and hereafter,
we simply denote the initial data by (po, ug, ®g) without confusion.

The hydrodynamic model of semiconductors was first introduced by Blotekjaer
[4], which is the deterministically dynamical model presented by the Euler-Poisson
equations mathematically. For the 1-D case, the initial boundary value problems
of the Euler-Poisson equations with the insulating boundary and the Ohmic con-
tact boundary were studied by Hsiao-Yang [29] and Li-Markowich-Mei [39], re-
spectively, where the solutions are shown to converge to the corresponding sub-
sonic steady-states time-asymptotically, where the doping profile is required to
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be flat: [0'(x)] < 1. Such a restriction was then released by Nishibata-Suzuki
[44] and Guo-Strauss [21] independently. For the N-D case, Guo-Strauss [21]
first considered the deterministic 3-D Euler-Poisson equations in a bounded do-
main with insulating boundary, and showed the convergence of solutions to the
3-D subsonic steady-states. Subsequently, Mei-Wu-Zhang [42] investigated the
convergence to the steady-states for the N-D radial Euler-Poisson equations with
the Ohmic contact boundary. For the whole space without boundary effects, the
Cauchy problems to deterministic Euler-Poisson equations were extensively studied
in [10, 30, 31, 32, 33, 36]. For the case of free boundary with vacuum, we refer to
[40, 43, 51] and the references therein. For the formulation of singularities in com-
pressible FEuler-Poisson equations and the large time behavior of Euler equations
with damping, one can refer to [49] and [50], respectively.

When the hydrodynamic model of semiconductors is counted into the stochastic
affections, it then becomes the stochastic Euler-Poisson equations with uncertain
extra disturbances, see (1) with the Wiener process F (p,u)dW. This is a new
model for semiconductor devices and has not been touched yet. The main issue
of the paper is to investigate this 3-D SEP in a bounded domain with insulating
boundary and prove the convergence of solutions to the stochastic steady states.
The coefficient function of the Wiener process Fy (p, u), depending on the solutions
p and u, is called the multiplicative noise. In most cases, the multiplicative noise
magnifies the perturbation, thereby complicating the well-posedness of solutions
for evolution systems. The stochastic forces are at most Hélder—%—continuous in
time ¢, resulting in reduced regularity of velocity with respect to time. So, from
a mathematical standpoint, the study of the stochastic problem helps us to study
how the solutions to the stochastic Euler-Poisson equations behave in the absence of
strong regularity in time. Further, this encourages exploring whether the desirable
property remains under the influence of particular types of noise. This is the first
attempt to study the asymptotic behavior of solutions to stochastic 3-D Euler-
Poisson equations.

For stochastic evolution systems, the solution is called the stationary solution
provided that the increment of solutions during evolution is time-independent. Orig-
inally, the study of stationary measures dates back to the works of Hopf [28], Doeblin
[9], Doob [12], Halmos [22, 23], Feller [13], and Harris and Robbins [25, 24], who
contributed to the theory of discrete Markov processes from 1930s to 1950s. The
study of invariant measure of fluid models dates back to Cruzeiro [8] for stochastic
incompressible Navier-Stokes equations in 1989, by Galerkin approximation with
dimensions D > 2. Flandoli [14] proved the existence of an invariant measure by
the “remote start” method for 2-D incompressible Navier-Stokes equations in 1994.
One year later, Flandoli-Gatarek [15] showed the existence of stationary solutions for
3-D incompressible Navier-Stokes equations by a different method with [8]. In 2002,
Mattingly [41] proved the existence of exponentially attracting invariant measure
with respect to initial data for the incompressible N-S equations. Later, Goldys-
Maslowski [20] showed that transition measures of the 2-D stochastic Navier-Stokes
equations converge exponentially fast to the corresponding invariant measures in the
distance of total variation. Then, for the 3-D case, Da Prato and Debussche [46]
constructed a transition semigroup for 3-D stochastic Navier-Stokes equations with-
out the uniqueness, which allows for rather irregular solutions. Flandoli-Romito [17]
used the classical Stroock-Varadhan type argument to find the almost-sure Markov
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selection. The above works are for the incompressible case. For stochastic com-
pressible Navier-Stokes equations, Breit-Feireisl-Hofmanova-Maslowski [6] proved
the existence of stationary solutions. Compared to the Navier—Stokes equations, the
regularity effect of viscosity is lost for the Euler system. Hofmanovd-Zhu-Zhu [27)
selected the dissipative global martingale solutions to the stochastic incompress-
ible Euler system, and obtained the non-uniqueness of strong Markov solutions.
Very recently, they [26] showed that stationary solutions to the Euler equations
is a vanishing viscosities limit in the law of stationary analytically weak solutions
to the Navier-Stokes equations. In terms of non-uniqueness studies, some scholars
believe that a certain stochastic perturbation can provide a regularizing effect of
the underlying PDE dynamics. For instance, Flandoli-Luo [16] showed that a noise
of transport type prevents a vorticity blow-up in the incompressible Navier-Stokes
equations. A linear multiplicative noise prevents the blow up of the velocity with
high probability for the 3-D Euler system, which was shown by Glatt-Holtz-Vicol
[19]. Gess-Souganidis [18] investigated the large-time behavior and established the
existence of an invariant measure for stochastic scalar conservation laws, demon-
strating that an algebraic decay rate in time holds. In their work, they introduced
a particular type of noise that provided stronger regularization properties for the
problem. Then, Dong-Zhang-Zhang [11] proved the existence of stationary solu-
tions with multiplicative noise. For stochastic conservation laws, Da Prato-Gatarek
studied the existence and uniqueness of invariant measures for the stochastic Burg-
ers equation [47]. Da Prato-Zabczyk listed the basic theory of stationary solutions
of general stochastic PDEs in view of invariant measures in [48]. Bedrossian-Liss
[1] gave the existence of stationary measure for the stochastic ordinary differential
equations with a nonlinear term. To the best of our knowledge, the stationary so-
lutions of SEP have not been explored previously. For our SEP, the electrostatic
potential term pV®d¢ and the relaxation term 2% dt are actually damping terms
providing better regularity than the Euler equations. In this paper, we show the
existence and uniqueness of invariant measure in a more regular space.

It is worth noting that the stationary solution we consider is in view of invariant
measures. In this paper, the concepts of stationary solution for stochastically forced
system (1) and steady state (p(w, z), G(w, z), ®(w,z)) for the following deterministic
system (7) are distinguished. First, we establish the global existence and uniqueness
of perturbed solutions around the steady state for the Euler-Poisson equations.
Subsequently, we demonstrate the existence of stationary solutions and invariant
measure based on the a prior: energy estimates and weighted energy estimates.

We recall the steady state and recount the basic conclusion on the existence and
uniqueness of (p(w,z), a(w,z),®(w,x)). Within the probability space (€, F,P),
the steady state (p(w, ), u(w,z), ®(w,z)) is assumed to adhere to the following
equations:

V(ﬁﬁ)zo, B o
V-(pu®u)+ VP (p) - pVe = L3, (7)
AD = p—b(x).

For the deterministic steady state with insulating boundary condition, Guo-Strauss
[21] gave a proof for existence and uniqueness of (p(z), u(z), ®(z)) = (p(z),0, ®(z)).
By substituting (7), into (7),, and acting V- on (7),, we have

V- (pu-Va)+ AP (p)— V- (pV®) = 0. (8)
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If u =0, it reduces to
P'(p) Ap+ P (p) |V = VpV® — p(p—b) =0, 9)

where P’ () > 0 = |1]” so that the equation of  given in (9) is uniformly elliptic.
In this paper, we consider the subsonic case, i.e., the condition P’ (p) > |u/® holds.
For every w € Q, (p(w, z),0,®(w,z)) = (p(x),0,®(x)) is the unique solution of (7),
which is called the steady state in this paper. We will denote (ﬁ(w,x)ﬁ, @(w,x))
by (ﬁ, 0, <I>) for convenience in the following. The law of steady state is the Dirac
measure d; X dg X 05, see Appendix A. We conclude the following lemma for steady
state. Here, U denotes the closed set of U.

Proposition 1.1. Let b(z) > 0 in U and P : (0,00) — (0,00) be smooth with
P(0) = 0. Then, there exists (ﬁ,ﬁ,@), Yw € Q, a unique smooth steady-state
solution of the insulating problem with Neumann boundary condition

od
— =0 10
87/ ‘GU ) ( )
such that there holds
p>p>0, |Vp[>0, ®>0, VeeU, Pas, (11)

where p is a constant, and

/pdm—/b dz, P as. (12)

Let @ (p) be such that VQ (p) = V@ (cf. [21]). Then, the steady state satisfies
VQ(p) =Ve, AP=p—Db(z). (13)

We consider the solutions (p, u, ®) of the hydrodynamic system around the steady
state (ﬁ, 0, <I>), and we denote

o=p—p, ¢=0—0. (14)

Our main result is on the existence of solutions near the steady state, and as-
ymptotic stability for the insulating boundary condition.

We denote by |||, |||, and |||, the L?(U)-norm, L>(U)-norm, and H*(U)-
norm, respectively. Let £ (-) be the law of random variables in (€, F,P); see the
definition in Appendix A. L?™ (Q; C ([07 T); H* (U))) is the space in which the 2m-
th moment of the C ([0, T]; H* (U))-norm of random variables is bounded. We state
our main theorems as follows.

Theorem 1.2 (Global existence). Let U be a smooth bounded domain in R® and
the pressure P : (0,00) — (0,00) be a smooth function, with P(-) >0 and P'(-) > 0.
Let (ﬁ, 0, <I>) be the smooth steady state in Proposition 1.1, and

Ay = po — b(). (15)

Then, in (2, F,P), there exists a unique global-in-time strong solution (p,u,®) to
the initial and boundary problem (1)-(5)-(6):

p, ue L™ (;C ([0,T); H* (U))), ® € L*™ (Q;C ([0,T]; H* (U))), (16)
up to a modification, for any fized integer m > 2 and ¥V T > 0.

Moreover, for the small perturbation problem, the existence of invariant measure
and decay rate hold.
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Theorem 1.3 (Convergence to steady state). Assume that the stochastic forces
satisfy

Y _ai=1, Y (p,u)| < Clpul, (17)
I¥pY (oWl <€, V2.7 (o), < C.

Here, V, . denotes the differential operator with respect to p and u. If there exists
a constant € > 0 such that the initial condition (po,ug, Po) satisfies (15) and

_ — 2\
E |(lloo = 2l5 + uol} + [ V@ - V&|*) | <, vm>2,  (18)
then the decay rate and the existence of invariant measure hold:
1. There are positive constants C' and « such that the expectation

B [( o (I~ 1 + i + 7 - v@uz))m]

se[0,t
_am _ =2\
<Ce™E [(1loo — pll; + w3 + ||V @0 — VB|) "], (19)
holds, where C' is independent of t and C' is the m-th power of some constant.

2. The invariant measure generated by fOTE (p) x L(u) x L(P)dt is exactly
the Dirac measure of steady state (ﬁ,O, é).

Remark 1.4. After passing to the limit ¢ — oo in (19), the stationary solution
coincides with the steady state PP a.s., since the m-th moment of their difference
tends to zero.

Remark 1.5. If for any w € §,

_ ~ 12
(loo = a5 + I3 + || V@0 — VB||*) < &, (20)
then there exists some constant C' such that the asymptotic stability holds P a.s.:
_ =12 5w
up. <||p 2+ |l +||[vVe - Vo ) <202, (21)
se[0,t

Actually, by Chebyshev’s inequality (see Appendix A), it holds that
P Hw cQlllp—pl2+ u?+||ve - vo|’ > 205@%2}]
12 2 = 12|
E [|llo— 7l + ull3 + [|ve - V8| "]
<2C~’e—‘¥t52)m

X

(22)

B [Cem (I — I + ol + | 790 = v8[*) "]

(QCe—atEQ)m I

S

Letting m — o0, it holds that
P [{w e Qlp—all2 + [ul? +||ve - va|° > 266—%2” =0,

i.e.,
o — a3+ |lull3 + Ve - V<i>H2 < 2Ce "2 holds P a.s. for every s € [0,1].
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Remark 1.6. The argument in this paper implies the same existence and as-
ymptotic stability of solutions around the steady state for the 2-D system with
insulating boundary conditions. Repeating the argument, by Sobolev’s embed-
ding, the existence of perturbed solutions and asymptotic stability of steady state
for the 1-D system with insulating boundary conditions holds: p and u are in
L*™ (Q;C ([0,T); H2 (U))), ® € L*™ (;C ([0, T); H* (U))) in (Q, F,P).

As mentioned before, the study of stochastic Euler-Poisson equations, totally
from the existing studies for the deterministic case, is new and challenging. The
idea of the proof is as follows. We first prove the local existence by Banach’s
fixed point theorem, then we establish the uniform energy estimates in time ¢ to
show the global existence of (o, u,¢). Furthermore, we prove the weighted energy
estimates so that we can obtain the asymptotic stability for steady states with
the insulating boundary conditions. The a priori estimates imply the tightness
of approximate measures, which will converge to an invariant measure by Krylov-
Bogoliubov’s theorem in a complete probability space. The global existence does
not require the small perturbation condition (17) and (18). However, the existence
of invariant measure in Theorem 4.5 requires (17) and (18). From the weighted
energy estimates, we then prove that the invariant measure for (1) is exactly the
law of steady state, c.f. Section 4. This intricate relationship has not been uncovered
in the asymptotic behavior analysis of the stochastic Navier-Stokes equations yet
[41, 20].

Here, we explain in detail the main difficulties we face and the strategies we
propose.

1. No temporal solutions due to the stochastic term. Since Brownian
motion is at most Héder—%— continuous with respect to ¢t and it is nowhere

differentiable, we have neither dd—VtV nor d(dp;‘). No temporal derivative is in-
volved in the norm of solutions. Thus, in deterministic cases [21, 42], the

spatial estimates bounded by the temporal derivatives estimates, such as
(=) 7+ 1V (p=p) > + V- ulf? (23)
2 g2
<O (Il + 1o = )l + el + o)

do not apply to this stochastic case, where ||| - ||| means the temporal and
spatial mixed derivatives. Consequently, the different energy estimates with
the spatial and temporal mixed estimates are necessary in this paper. The
spatial derivative estimates are based on It6’s formula. We also symmetrize
the system compatible with the insulating boundary conditions to control the
linear term and to facilitate the a priori estimates.

It is interesting that the noise in the form of (4) is in the higher order of
u than being Lipschitz continuous on u. This is reasonable when we consider
the small perturbation around the steady state, which is different with most
cases in which Lipshcitz continuous coeflicients give birth to well-posedness.
In this case, the influence of stochastic forces has not been exaggerated too
much.

2. Weighted energy estimates on account of the estimates of the sto-
chastic integral. Recalling the 3-D deterministic case [21], for instance,
based on the energy estimates, one can obtain the ordinary differential in-
equality (ODI). The ODI is then multiplied with the exponential function of ¢
directly to facilitate the stability analysis. However, in this paper, in order to
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estimate the stochastic term, we apply Burkholder-Davis-Gundy’s inequality
to the stochastic integral of the Wiener process. Then, the a priori estimate
(151) is already in the form of time integrals rather than an ODI. Integration
with respect to time twice does not imply the asymptotic stability. Conse-
quently, direct acquisition of asymptotic stability becomes challenging. To
overcome this obstacle, we employ the weighted energy estimates. Moreover,
the weight is determined by the a priori estimates, which should be obtained
first, cf. Section 3.1.

This paper is organized as follows. Section 2 is dedicated to establishing the
global existence of solutions around the steady state. In Section 3, we investi-
gate the asymptotic stability of semiconductor equations. Finally, in Section 4,
we demonstrate the existence and property of invariant measures. Section 5 is the
appendix, in which we provide an overview of stochastic analysis theories that are
employed in this study.

2. Global existence of solutions. In this section, we first establish the local
existence of strong solutions by Banach’s fixed point theorem. Specifically, we
derive the system of perturbed solutions in matrix notation by (1). In Step 1, we
symmetrize it to simplify the energy estimates and proceed to linearize the system.
In Step 2, following a standard procedure in view of Picard iteration, we establish the
uniform estimates onto mapping. We utilize It&’s formula and Burkholder-Davis-
Gundy’s inequality to estimate the stochastic force. In Step 3, we demonstrate
contraction. In Step 4, we get the a priori estimates in §2.2 so as to obtain the
global existence of (p — p,u), or equivalently, p,u € L?™ (Q; C ([O,T]; 3 (U))) in
§2.3. Step 5 concerns the proof of global existence.
In the form (o, u,¢) = (p — p,u, ® — @), the hydrodynamic system becomes

ot +V-((p+o)u)=0,
d(u) + ((u-V)u+u+VQ(p+0) = VQ(p)dt = Vodt + - dW, (24)
Ap =o.

Here, we view 7 as a constant 1 without loss of generality for the stability analysis.
In terms of components, by Taylor’s expansion, we have

VQ(p+0)-VQ(p)=(Q(p+0)—Q(p),
=Q' (p+0o)(p+a),—Q (p)p,
=Q' (p+0)o;+(Q (p+0)—Q (p)pi (25)
=Q' (p+0)o;+Q" (p)opi+(Q (p+0)—Q (p) — Q" (p)o) p
=Q (p+o0)o;+Q"(p)op, + hi,

where (-) , represents the derivative with respect to z;, and

In term of components, there holds
¢,i == Ailo—,h (27)

where A~ is well-defined under condition (5). In matrix notation, denoting w =

[ z } , we write the system as

dW+ (Alw,l +A2W’2+A3W)3+BW+£u)dt:£¢dt+fa (28)
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where

Al =
A? =
A =
B =

0

1

u
ﬁu = u2 s £¢ =

w3

hs]l
oo &+
o8 oo
oo o

I

(aw]
i
Q

oo 8§,
o §, 0o+
g, o000

S,o00
]|
o o+

ooo?‘ OO:Q,O
el o

o O O-M
I

Ooovw Qw

0

h(o), —F'dW
h(o), —F>dW
h(o),—FdW

Step 1. Symmetrizing and Linearizing.

We define the symmetrizer

D =diag|Q' (p+0),p+0,p+0,p+ 0] := diag[di,d2, d3,dy].

Then, the system becomes

Ddw + (Alw,l + APw oy + ABw g —|—l§’w+/ju) dt = Lydt + f,

where

[ W@ (p+o)
i (ﬁ+0)QO(ﬁ+0)
0

<

(p+0)Q (p+0) 0 0
(p+o)ut 0 0
0 (p+o)ut 0
0 0 (p+o)ut
0 (p+a)Q(+o) 0
(p+ o) u? 0 0
0 (p+ o) u? 0
0 0 (p+ o) u?
0 0 (p+0)Q (p+0)
(p+o)u? 0 0
0 (p+o)u? 0
0 0 (p+o)u?

3885

(29)

(30)

(31)

(34)

(36)
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0 pP1 P2 D3
5 Q"(p)pr 0 0 0
B= PP, , 38
Q' (Mp2 0 0 0 (38)
Q"(pps 0 0 0
0 0
~ B wl - A1
Lo=(+0)| 2 |+ Lo=(+0)| foagt | (39)
ud A‘lqg
0
. . h(o), dt —FdW
f=—(p+o) h(O’)’zdt—E‘QdW (40)

h(o)5dt —F3dW

2.1. Local existence. In this subsection, the main estimates for the stochastic

forces are manipulated, considering the assumption of (17), for instance. Similar

to the approach in [37, 45], we first linearize the system, and then we use Banach’s

fixed point theorem to get the local existence by the a priori energy estimates.
The linearized system is

D(&)dw+ (A (W)w,s + B(W)w, + A (W)ws + Bw)dt (41

= La(u)di+ L, (&,a}) dt+ f(w),

where w = Z is given, & € C([O,T];H3 (U))7 and a € C ([O,T];H3 (U)) We

denote M = sup ||G,1l;.
t€[0,T]

Step 2. Estimates for the uniform upper bound.
By It6’s formula (see Appendix A), it holds that

1
/d(DW~W)dx (42)
U 2
:/ 1dDw~wd:L’Jr/Dw~dwd:z+/D]F~1Fd;rdt.
U2 U U

Integrating

Ddw-w+ (jl (VAV)WJ~W+A2(VAV)W,2-W—I—AS(W)W}g-W—‘r[gW'W)dt

=—Lo-wdt+L;-wdt+f-w (43)
over the domain U, we gain
/Dw~dwdx
U
=—/ <A1W71-W+A2W’2-W+A3W73'W+BW'W)dZEdt (44)
U

— | La-wdadt+L;-w+ | Vh(6) -wdazdt+ [ DFEAW -wdaz.
U ¢ U U
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By integration by parts, we have
/ (.fllw’l'w+/12w72~W+fl3w,3-w+l’;’w~w)dxdt (45)
U

:/ <—1 (wﬂ%w—l—wﬂ%w—l—wflgw)+l§|w2>dxdt+/ (W.%ij) dadt.
U 2 U »J

On account of the insulated boundary condition @ - v|sy = 0, it holds that
/ (wfljw) dax (46)
U J
:/8 ((ﬁ V) (Q’ (p+6)0>+ (p+6) [u)* +2puQ’ (5 +6) (/5—1—&))) dsS=0.
U
In summary, there holds
1
/ d (Dw : W> dx
U 2
1 1 il 12 i3 3 1|2
=[| -dDw -wdz — —= <WA1W+WAQW+WA3W)+B|W| dzdt
v?2 v\ 2
—i—/U(—Eﬁ-wﬁ—ﬁd;-w)dxdt—i—/UVh(&)-stcdt (47)
+/DFdW-wdx+/DIF-Fdxdt.
U U

Direct calculation shows that

— A+ B~ diag [—; (W@ (9), 5 (u'0) ;. — (w'n) .~ (uip) | (48)
0 —si{pa} +paa —5{pa},+p2a —5{pa}s+psq
| —3dpat,+0Q" (P) 5 0 0 0
—5{pa} ,+0Q" (D) P 0 0 0
—3{pa} 5 +0Q" (P)p 0 0 0

is anti-symmetric [21], where ¢ = Q' (p). Then, we estimate

2
2 ~ P
<Cwl” (llolls + llalls) dz.

/ <1 (wjlinrwA%erwfigw) +B|w|2> dzdt (49)
U

Recalling (39), we have
/f:ﬁ(&,u)-wdmdt:/ (ﬁ+&)|u|2dxdt20/ﬁ\u\zdxdt, (50)
U U U
and
/£¢(&,¢).wdxdt
U
=/ (ﬁ+&)V¢~udxdt:—/ V-(p+05)u)pdadt (51)
U U

o _ _ 2
—/Uaﬁbdxdt—/U(A@thdxdt— d/U|V¢| da.
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For f , there holds

t t
/ /f-wdx:C/ /&Q-dedt—l—
0o Ju 0o Ju

where
t t
//&2~udzds</ 1611, 61| [w| d.s. (53)
0 U 0

For fot Jy (p+6)F-udzdW, one can see the definition of the stochastic integral
in Appendix A. Since [F (5,1)|> < C|(5+ &) a|*, there holds

/Ot/U(p+&)]F-udde, (52)

/ DF-Fdzdt < C | (||ﬁ||§ ||ef||§) dt < CMBdt, (54)
U

/(:/UIEVudxdW‘m g]E[(/Ot /UIEVudxzds)?]
<E (C/Ot /U(ﬁ+(})f1|2udx2ds>zl] (55)

and

t k)
_ N4 nand
<E (C sup |u® A ||(P+0)||3UII3d8> ]

s€0,t]
K 4 4 "
L CpE [(/ Il 5+ )13 s ]

m

2
(SUP [[ul] )
s€[0,t]

by Burkholder-Davis-Gundy’s inequality (see Appendix A), where §; is taken such

that 6; sup |Jul|® can be balanced by the left side. We estimate
s€[0,t]

/Uw(dD)wdz

<OTE

:/Uw<diag{cz'<ﬁ+&>t,<p+&>t,<ﬁ+&>t,<ﬁ+&>t}>wdxdt
:/ (" (p+3)610% + 6 u]*) dd (56)
U

=/U(Q”(ﬁ)+0(6))(—v-((ﬁ+&)ﬁ))a2dx+/ (=V-((p+6) 1)) [u]* dadt

U
2 ~ ~ ~ ~ ~ A~
<Cllwl”(laly + llall; l[all, + ol 1ol ) dt,

where O means the same order. In summary, there holds

s t m
<sup / d</ﬁ|w|2dx+/ |V¢2dx>+cl/ /ﬁ|u|2dxds> ]
s€[0,t] Jo U U o Ju

t m
(0 (1ai® (1 o) + 1wl el + I ) s ]
0

(0 / a5+ o) ||4ds)m] (57)

E

<E

+E
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t m
(c [ I il + 1, il + ||er||2|&||3|ﬁ||2>ds) ]
t t t m
<C/ (M+M2+M4)ds+/ M||w||2ds—|—/ M2||w||ds) ]
0 0 0

(C/Ot(M4+M8)ds)m </Ot||w||2(M+M2+M3)ds)m].

Furthermore, for p with a positive lower bound, we have

EKsi‘t"ﬂ/ ([ waes [ vor dx)> ] (58)
(f i?as) D

where Cis,m is a constant depending on m, M. Similarly, we take higher-order
derivatives of system (41) up to the third order, and we do the a priori estimates.

There holds
<sup / d(|w||§+|v¢|2)> ] (59)
s€[0,t] JO

(f (w12 1voi?)as) ) .

By Gronwall’s inequality, we have w € L*™ (Q; C ([0, T); H? (U))). More precisely,

(;‘fé,’t] (Iwlis +11v0]*) <s>) ]

<E [((Ilwlli + ||qu||2) (0))’”}  Cppt™ )
+ [ E (w124 19017) ©) ] + Carmt™) Capameli a7
< (B[((Iwol + 1¥0l%)) "] + Capmt™) e,

From the estimates of the time shift of solutions, similar to (60), by applying the
Kolmogorov-Centov theorem (see Appendix A), following the standard argument
in stochastic analysis [5], we deduce the time continuity of w up to a modification
in probability space (€, F,P), and we omit the details.

The iteration scheme is

+E

<E

+E +CE

<C(M m (tm +E

E

<CM,m (tm +E

E

D(op—1)dw,+
(A" (W) Wt 4+ A2 (W) W + A (Woo1) Wi+ Bwa ) At (61)
= — Lun,l (O'n—h un) dt+ £~¢ (O'n—ly ¢n) dt+ f(wn—l) .

By energy estimates (60), we take Tj such that

ot <2 Oy <E[((Iwoll+1Vaul?))"]. 62
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( sup ||wn-1(s)||§>
s€[0,t]

E [(;ﬁt"t] ||wn<s>|§>m] <4B[((Iwol; +1900)%)) "] (69

Remark 2.1. For general stochastic forces without condition (17), there also holds

(iﬁi’t] a3+ |v¢|2)> m] )
([ (1wt + 1v01%) d)mD .

with another expression of the constant Cjs .. Thus, we get the local existence by
Gronwall’s inequality, similarly to the above statement.

if

E <4E[((Iwoll +1v60l?)) "], (63)

and then

E

Step 3. Contraction.
For ||w,, — wy_1]|5, we show that it is a Cauchy sequence. (w,, — w,,_1) satisfies

D(op-1) (dWn —dwpn_1) + (D (0n-1) = D (0n-2)) dWp_1
+ A (W 1) (Woy — wio11) d it + ( (wp1) — A (Wn—z)) Wpo1,1dt
+ A% (W) (Wao — wy12)dE ( (wp1) — A (anz)) Wno1,2d?
A (W) (Was = Wao1,3) dE+ (A% (Wao1) = A% (Wao) ) waoagd i (66)
+ B(W) (Wi — wp_1)dt
=—Ly(op—1,up)dt + Ly (0p_2,u,-1)dt
+ (Lo @nm1:00) = Lo (0n2,00-1) ) dt + (F(was) = F (wa2).

Then, we multiply the above formula with (w,, — w,_1), and the estimates of the
terms

-’41 (Wn—1> (Wn,l - Wn—l,l) dt+ AQ (Wn—l) (Wn,2 - Wn—1,2) dt (67)
—+ ./2(3 (Wn—l) (ng — Wn_l,g) dt + B (W) (Wn — Wn—l) dt

are similar to (45), (46), and (49), so we omit them here. We focus on the estimates
of

S (A (W) = AT (w2) ) WL, (68)

and the right-hand side terms in (66). By the expression formula of At it holds
that

1
/ > (Ai (Wp_1) — A (wn,z)) Wno1i- (Wp—wn_1)dzdt  (69)
0
SC[wn = Wy [[Wn—1 — wn_s[[dt.
Since
- Zu (O'n—h un) dt + iu (U7L—2; un—l) dt (70)
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= (ﬁu (On—1,0n1) = Lu (001, u”)) di

+ (Eu (On—2,Un_1) — Ly (01, un,1)> dt,

we estimate

1
/ (f‘éu (Un—laun) dt + Eu (Un—Q; un—l)) : (Wn - Wn—l) dzdt
0

1
(p+opn-1)u, — un_l\2 daxdt

1
(Unfl - Un72) Up—1 - (un - unfl) dzdt

1

|
— — S—.

3891

(71)

_ 1
< - g ‘un - un—l‘2 dzdt— / (O'n—l - Un—2) Up—1 - (un - un—l) dzdt,
0
where
1
/ (Un—l - 0n—2) Up—1 (un - un—l) dzdt
0
<C||lwp = Wyt || |[Wn—1 — Wp—o||dt.
Since

¢ (Un—la ¢n) - Ed) (Un—Q, ¢n—1)> dt
(O'n—la ¢n) - Zi(ﬁ (O'n_l7 ¢n—1)> dt

+ (L (On1, bn1) — L (0n_2, ¢n71)) dt,

/—\/—\

then we have

1
/0 (Eqb (Un—l, ¢n) - £¢ (Jn_g, ¢n_1)) . (Wn _ Wn—l) drdt

1
— [ (£o(n1000) = £ (0nmr00-0)) - (w = wor) dad

1
+ /0' (»Cd) (O—nflv ¢n71) - »Cqb (O'n72a ¢n71)) : (Wn - anl) dzdt.

By the continuity equation, there holds
/U@(onfl,eﬁn—a:nfm(wn—wnq)dwdt
[ 0 V(6= 000) - (w — ) drd
== [Vt ) (= 00 (0 = 1) d
_/ (O — nt)y (bn — doy)dadt
/V (0n—1 —0n—2)pn_1) (P — Pp—1)dxdt

=/ A (fn = bn1)), (6n — 1) dudt
U

(74)
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+/ v'((gn—l*Jn—Z)un—l)(d)n*an—l)dmdt

U
fd/UW(asn—¢n_1)|2dzf/U<an_1fan_z)un_l~V(¢n7¢n_1)dzdt

<- d/ IV (6n — )2 + C Wi — Worr | [|Wnt — Wr_a| 1,
U
nd

a.
1

/ <[:¢ (On-1,Pn-1) — Ly (Un—2a¢n—1)) (wp —wp_1)dzdt
0

:/ (On 1 — On2) Vom 1 - (U — 1) dadt (76)
U
<C||lwp — Wyt || |[Wn—1 — Wp_o||dt.

For the terms in f , similarly, we have

/O (5 + Ont) Vh (0n1) = (5 + Tn_s) Vh (0n_2)) - (Wn — Wa_1)dadt (77)

<O ||wy, — W1 [|[Wh—1 — Wi d t;

and
[ pt p1 m
E / / (Fpo1 —Fp0)dW . (w,, —w,_1)da ]
o Jo
[ pt ,1 m
=F / / (Fre1—Fpo) - (Wp — Wyp_1) dxdW‘ 1
o Jo
i t 1 2 %
QE C/ / (]Fn—l - Fn_g) . (Wn — Wn—l) dz| ds (78)
o [Jo

t 5
<E ‘c/ W — W2 [ Wt — WaoPd s ]
0

" 1
<E <C sup [[wWy—1 _Wn72||2/ ||Wn_Wn1|2dS> ] :
s€[0,t] 0

t m
(/ Cs, ||Wn — Wn_1||2d8) ] .
0

d(D(on-1) (Wn — anl) (Wn = Wp1))

=dD(on-1) (W — Wn_1) - (Wp — Wy_1) (79)
+ 2D (0p-1) (Wy —Wp—1) - d (Wy, — Wp_1)
+ D (on-1) (d(Wy = Wp_1),d(Wy, —Wpn_1)),

+E

- m
<E <62 sup ||[Wp—1 _Wn—2||2>
I s€[0,t]

By Ito’s formula, we have

where (-) is the short abbreviation of { (), (-) >7%_L for quadratic variation, and
D(on-1){d(Wn —Wp_1),d(Wp — Wy_1)) (80)
= (ﬁ + Unfl) |Fn71 - Fn72‘2 dt7
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and
/1 D (0n-1) (d (Wn = Wn_1),d (Wn = Wp_1))dz < C w1 — wao|*dt. (81)
Her(1)ce7 it holds that
/0 (D (0r) (W — War) - (W~ W) < O wa — wo i PdL. (82)

Combining the above estimates, for some m > 2, we have

E sup / d||vvn—wn,1||2
s€l0,t] Jo

t
<[ [ € (1w~ waca P+ s = il (53)
0

+Wn = Wy [[Wn—1 — Wn_2]|) d5|m]

m t m
(52 sup [|[wy,—1 — Wn—2||2> </ Cs, [Wn — Wn—12d5) ] )
0

s€[0,t]
where C depends on M. By Cauchy’s inequality and Jensen’s inequality, we have

E (sup ||Wn—wn_1||2> ]
L s€[0,t]

t
<E ( € (1w = wacall s = P
L 0

+E +E

Hlwn = waa [l [Wno1 = Wiz} ds)™] (84)

<E (/Ot C (Iwn = w1 I + [ Wa1 = waa*) ds) m]
< [ (B[(co w1 (s o) s

The higher-order contraction estimates are proved similarly to the zeroth-order,
with the same symmetrizing matrix and the important insulating boundary condi-
tion, and so the detailed proof is omitted here. In summary, we have

m
( sup ||wy, — Wnl”g) ] (85)
s€[0,t]

</Ot (E [(Co [Wn —Wn—1|\§)m} +E [(Co [Wn—1 —Wn—2||§)mD ds.

By Gronwall’s inequality, we have

E l( sup ||wy, — Wn1||§> ]
s€[0,t]

< (s, It - wocaly) | i &

s€0,t]

. m
+/ E ( sup ||Wn—1 - Wn—2§>
0 s€[0,7]

E

m
TC2r e T d r
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m
2
< sup ||lwp_1 — Wn—2|3> ] t.
s€[0,7]

Let T} < Tp and 3C*Ty < 1, €©6" Tt < 2. Then,

sup ||[wyp, — Wp_1|l3 <aE
s€[0,t]

where a = 3Cy"Ty with Cj depending on the initial data by the onto mapping
estimates. Hence, w, is a Cauchy sequence. By Banach’s fixed point theorem,
there exists a unique solution w in L?™ (Q;C ([O,Tl];H3 (U))) Since A¢p = o
holds, ¢ is also a unique solution in L*™ (Q;C ([0,73]; H® (U))) up to a constant,
with the boundary condition V¢ - v = 0.

By the proof of Theorem 5.2.9 in [35], (p,u, ®) is the unique strong solutions to
SEP, where p,u € C ([0,T1]; H* (U)) and ® € C ([0,73]; H® (U)) hold P a.s. We
give the definition of the local strong solution as follows.

<3CTE

E

( sup HWn,1 - Wn2||3> ‘| ,a<l1, (87)

s€[0,¢]

Definition 2.2. Let (2, F,P) be a fixed stochastic basis with a complete right-
continuous filtration F = (Fs) 5, and W be the fixed Wiener process. (p,u, ®) is
called a strong solution to the initial and boundary value problem (1)-(5)-(6)-(15)-
(4), if:

1. (p,u, @) is adapted to the filtration (]-'5)520;

- PH{(p(0),u(0),®(0)) = (po, w0, o)} =1
3. the equation of continuity

[\

p(t) = po */0 V- (pu)ds,

holds P a.s. for any ¢ € [0,T1];
4. the momentum equation

u(t) :uo—/ot(u-V)uds—/Ot Vi(p)ds—i—/otvfbds—/otuds (88)

" F(p, u) .
+/O —OSaw(s),

holds P a.s. for any ¢ € [0,T1];
5. the electrostatic potential equation

AD =p—D, (89)
holds P a.s. for any ¢ € [0, T}].
Remark 2.3. Reviewing the above proof, (87) holds for general stochastic forces

without (17). Thus, the local existence also holds.

Step 4. Energy estimates.

2.2. Estimates up to third-order. In this subsection, we begin by symmetrizing
the system. Then, we proceed with energy estimates up to the third order, taking
stochastic forces under condition (17) for instance.



STATIONARY SOLUTION TO SEP IN BOUNDED DOMAIN 3895
2.2.1. Zero-order estimates. For system (28), we define the energy
L/ 2 _ 2
= [ 5 (ol + Q@ (p)o + Vo) da (90)
U
By Itd’s formula, we have
1 2
d/ Lo+ o) ufds (91)
U2

1 1
:/ fd(ﬁ+0)\u\2dx+/ (ﬁ+o)u-dudx+/ LGto)FPdtda.
U2 U U2

But, here we will deal with p 4+ ¢ and u together by considering the symmetrized
system of w. By It6’s formula, it holds that

/Ud <;Dw : w> dz (92)

1 1
:/ fw(dD)wdx—f—/de-wdx—i—/ -DF-Fdxzdt,
U U U2
which is d [, 3 (f)|u|2 + Q' (p) 02) dz. Over the domain U, we integrate

DdW-W—‘r(A1W71~W—|—A2W)2'W+A3W73~W+BW-W+EU~W)dt (93)
=Ly-wdt+f-w.
Then, we have
1
/d(’Dw-w)dm
U 2
1 1
:/ fw(dD)wda:+/de~wdx+/ —DF-Fdzdt (94)
U2 U U2

1 ~ N - -
:/ §w(dD)wdz—/ <A1w71~W+A2w72~w+A‘3W73~w+Bw-w)dxdt
U U

7/Eu«wdxdt+/ﬁ¢~wdzdt+/Vh(a)owd:rdt
U U U

+/ ’DFdW~Wd:C+/ DF-Fdxzdt.
U U
Direct calculation shows that
1. - 1, . 1, . 1, . 1, .
—5 Al + B — diag {—2 (W@ (0) ;=5 (W'p) ;=5 (W'p) ;=3 (UZP)J}
is anti-symmetric [21]. Hence, we have

/ (fllwﬁl'w+/~l2w,2~w+/i3w,3~W+l§’w~w)dxdt (95)
U
1 7l 12 13 2 2 17
= —= (WA1W+WA2W+WA3W)+BIW| dedt+ (WAJW) dzdt.
v\ 2 7 ’ ’ U J

On account of the insulated boundary condition u - v|gy = 0, it holds that

wAw) de= [ ((u-v)(Q(p)o®+plu*+20Q (p)))dS=0. (%)
U ou

5]
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Hence, it holds that
/U <; (wfﬂw + wAdw + wjlgw) +B |w2) dzdt < C|w|3dt. (97)
Recalling (39), there hold
/Uiu.wdxdt:/U(,a+a)|u\2dxdt> /UC'ﬁ|u|2d:1:dt, (98)

and

/U£¢-dedtz/U(ﬁ—&—J)ngS-udmdt:—/UV-((ﬁ+o)u)¢5dxdt (99)

_ _ _ 2
—/Uatqﬁd:vdt—/U(AqS)t(bdmdt— d/U|V¢| dz.

For the stochastic term, it holds that

/f~wdx=/ (O(c®)dt—FdW) -udz (100)
U U

<w|gdt+‘/ FAW -udz
U

([

For |F| < C |pul®, we estimate

- m
//F~udde‘
o Ju
_ t ) m
<E O/ /IﬁUI2|u|2'Udl” ds

o |Ju
- . Ed

2 4

<E (C’ sup |[ul| |u||3d5>

s€[0.4] 0

m t m
<sup u||2> ( / ||u||§ds) ]
s€[0,t] 0

where 3 is taken such that §5"E ( sup |ul? can be balanced by the left side
s€[0,t]
by the time continuity of solutions. Similarly, it holds that

E <E

C/F~udx
U

4T

(101)

<OPE +CJE

/U%DFIE‘dmdthHngdt. (102)
Besides, there holds
/ w(dD)wdzx
U
= [ w(ing {Q (5 0), (54 ) (54 ), (5 + ) Py widadt
:/U (Q” (p+ o) at02+ot|u|2>dxdt (103)

=/ (@ (5) +0(0)) (-V - ((p+0) u))onde/ (=Y ((p+ o) w) [ul*dzdt
U U
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<C|[wlf3 dt.

In conclusion, as p has a positive lower bound, we have

(szl[lol?t] /osd (/U \W|2dx + /U V¢|2dx> ds> m}
(cz /Ot/U [uf* dxds> m] »
(e[ mizas) ]

Next, we give the estimates of fg I o]l d2ds. From the velocity equation (24),
we have

E

+E

<E

(VQ(p+0)-VQ(p))dt (105)
F
=—du-— ((u-V)u—u)dt—i—V(bdt—i—deV,
with
VQ(p+0)-Q(p)=Q (p+0)Va+Q"(p)oVp+h, (106)
where
hi =0 (o?). (107)

We multiply equation (105) with (o, o, O')T. By integration by parts and the insu-
lating boundary condition, due to the condition that |Vp| > 0, the left side is

/ Q" (p) Vpllo|* dz + / O (o%) du. (108)
U U
By It6’s formula, there holds

(du') o =d (u'c) —u'do, (109)

where

[af woyars [a(31o17+ 3 1)). (110

By the continuity equation, it holds that

t t
/ / ’uida‘ dz < C’/ ||w||§ds (111)
o Ju 0

For —udt, we directly estimate

¢ ¢ ¢
/ / |—u'o|dzds < %4/ ||U||2ds+C’54/ ||uiH2d5, (112)
0o Ju 0 0

where J4 is small such that d4 fg |lo|I* d s can be balanced by the left side. For the
term V¢ dt in (105), we estimate

t t
| [estads<S [lolPds+cs s Joul®. (13
0o Ju 0 s€[0,1]
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For the stochastic term, since |F| < C'|pu)®, we estimate

Fi m t ]FZ 2 %
E — dWodz <E C/ /_ ocdxz| ds
vpto o Jupto
t 2 El
<E /|ﬁ+a\|u|20dm ds
U
- t ) 1
<E ‘C/ ||uH2HﬁU—&—02HOOds ] (114)
0
<E 1 2 C K 2 2 4 "
< 7 sup |u] [ul[* [lo||%, ds
L s€0,t] 0

+E

L )
— sup
456[0,2&]
1 m
<E |z sup |lulf
2se[o,t]

Therefore, we have

t m
( / ||o||2ds)

0
([ (B 2iai)) ] e (3 s o) (113

— ||O — |fa — Su u
0 2 2 236[01,)15]
2 " t 2 " t 3 "

(c sup ||V¢||> (c [ 1l ds) (c / ||w||3ds) ]

s€[0,t] 0 0

m
Furthermore, we can give the estimate of E Kfot [Ve|>d s) ] We multiply (105)
with V¢ and integrate it over U. Then, we have

/|V¢|2dxdt
U

(e [ tale o d)]
(ef ||w||§ds)m] .

<E +E

+E

z—/ (VQ(ﬁ+U)—VQ(ﬁ))~V¢dmdt+/du-V¢dx (116)
U U

F
—I—/U((u-V)u—u)~V¢dxdt—/Up+70dW-V¢dx.

From (106), by integration by parts and A¢ = o, we estimate

| [ (vai+0)-vQ@)-vodsds (117)

<c<sup Vol + / lo?ds + / ||o||3ds>.
sE

By It6’s formula, there holds
(du) Ve =d(uVe) —ud Vo, (118)
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t t 1 , 1 )
-/ d/U<uv¢>da:</0 d<2 IVl + £ ful ) (119)

By the continuity equation, it holds that

/Ot/U|udV¢|dx:/Ot/U{udVA_lo|dx (120)

t t
:/ / |uVA*1do}dx<C'/ ||w||§ds
o Ju 0

//((u~V)u)~V¢dzdt<C’/ [w|3ds. (121)
0 U 0

where

It is clear that

For —udt, we directly estimate

t 1 t 1 t
//|—u~V¢|dxds<7/ ||V¢||2ds+f/ ul|*ds. (122)
0o JU 2 0 2 0

For the stochastic term, since |F| < C'|pu|® and A¢ = o, we estimate

[t F ¢ F
/ / AW - Veda c/ / " Véda
|IJo Jupt+o o |Jup+o

¢ i
<t|jc |
0

m 2

E <E ds

w3
[

2
ds

/ 7+ ol [uf? |Vl dz
U

B t
20— 2 2
<E ‘c / lall? 15+ o2, V4|2 ds
- 1 m
<E (L swp Ju)?
L 456[0,t]
L sup ful? .
— sup |ju
4 se0,4)
1 m
<E | = sup [ju)?
2 se0,4]

Therefore, we have

(/Ot ||V¢||2ds>m
(/otd (; IV61 + 5 ”u”2>)

(O sup ||V¢>||2>
s€[0,t]

] (123)
(¢ [ e ||a||?ds)m]

(¢ [ 1l ol ||a||?ds)m]

(ef ||w|§ds)m] .

+E

+E +E

+E

E

m

<E +E

1 m
(2 sup ||u|2> ] (124)
s€0,t]
t m t m
(c/ ||w||2ds> (c/ w|§ds> ]
0 0

+E +E +E
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Multiplying a small constant to it, we add the zeroth-order estimates (104) such

that
‘ s 1 m 1 ) m
(;‘[t% [ a (Gt + i+ 5 1vel )) (2521[1(5ﬂ||u|> ]
(c o |v¢||> e{(c [ IwPas) ] (125)
€0t

can be balanced by (104). Then, we obtain

E Ksi‘ﬁoﬂ] [ a4 19or?) + 6 ([ 17+ 1ver?) ds> m] (126)
(ef ||w|§ds>m] .

where C' depends on m.

E +E

2.2.2. Flirst-order estimates. Taking the derivative of (34), we have
V(Ddw)+V ((fllw,l + A?w o + A3W73> +V (B’w) +V (Zu)) dt (127
=V (£s)at+ V7.

Recalling D = diag Q' (p+ o) ,p + o,p + 0, p + 0], we calculate

Q’(ﬁ+0)01t an/(ﬁ"'U)Uf"‘Q/(ﬁ"‘U)ath
o | (pto)du | 9i(pt+o)dut +(p+o0)0du
V(PAw) =0; | 51 Ndu? | = 0; (p+o)du®+ (p+0)9; du? (128)
(p+o)du? i (p+o)du®+ (p+o0)0;du?

=V-Ddw+DVdw,

\Y (AiW,z’) =0 (“Zl;kwkz) = 31«‘I§k-wk,i + A;kalwk,i =VA'w,; + A'Vw,, (129)

v (BW) =0 ([S’kak) = (?llg’jkwk + B’jkﬁlwk = VBw + BVw, (130)
v (Eu) = [ vou } , (131)
v (2s) = { v (( 00) Vo) } : (132)
and
V()= [V(O(JQ)O—IFdW) ]: [O(UVU)didW]' (133)

Hence, (127) is reduced to

AwV D+ DVdw + (VA'w; + A'Vw, + VBw + BVw + Vu) dt

_{V((pfa)V(b)}dtJr{O(JOVU)}dt{VF%W}' (134)
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Multiplying (134) with Vw and integrating it on U, we have
1 .
/ §DdVW :Vwdz —|—/ A'0; (|VW|2) dadt
U U

+/B|VW|2dxdt+/ |Vul*dzdt
U U

0 i .
7/U [ V(4o V) ] .de:cdt—/UVAwﬂ.dexdt (135)
—/ VBW:Vdedt—/dWV'DIVWd$+/ { 0 ]:dexdt
U U U O(UVJ)

0
_/U{V]FdW}'Vde'

Since 0y = =V - ((p + o) u), we estimate

/ —-D;Vw :Vwdxdt
/delag "(p+0)),.(p+0),.(p+0),,(p+0)]Vwdadt

:/ (atQ” (ﬁ+0)02+0t|Vu|2)dxdt (136)
U

=/U (—Q” (p+0)V-((p+o)u)o® =V -((p+0)u) \Vulz) dzdt
<Cllwldt.

Due to the boundary conditions u - v = 0, it follows that

/A"ai (\vw|2)da:+/ B|Vw[*dz =0, (137)
U U

[ ot boree | -owasas
/ (/ VAiw,; : deer/VBw de:c)d (138)

< / Iwl3ds+ 2 s [V + / IVelZds,

and

where f(f IVe|*ds = fo [€]*ds can be bounded by fo |wl3ds from the zeroth-
order energy estimates, 5 being determined later. Similarly, we estimate

| |

t
<E [ Cs, [ Iwlas
0

VEFAW : Vwdzx

+E

5 2
% p Jul
s€0,t]

] . (139)
From (28), we have

—/ dwVD :Vwdzx
U
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- / (A'w + AW+ APw s+ Bw + L) VD : Vwdadt (140)
U
+/ LsVD : dede/ (Ly+0(0%)) VD : Vwdazdt
U U

<C||w||§dt+/FdWVD:dex.
U

Similarly, we have

t m
E / /]FdWVD:dex
0 JU

5 " t "
gEK; sup ||u|2> (055/ |w||§ds) ] (141)
s€[0,t] 0

We take 5 such that %5 [uf® and %5 |[Vul|® can be balanced by the left side of
the energy estimates. Similar to the estimates for (124), we have the estimate of

t m
04/ / |Vw|*dzds
0 Ju

m} , (142)

+E

fot [Vol|/*ds. In conclusion, we have

S 1 m
E || sup / d(/DVW:Vde)
s€[0,t] JO 2 U
t G
<E ‘/ Clwlids
0

where C' is independent on ¢.

+E

2.2.3. Second-order estimates. We write (28) in the form of components, and the
ith equation is

d; dw; + ((Al)ij wj,1 + (AQ)Z‘J‘ Wj,2 + <A3)ij wj3 + (B>ij wj + diwi> dt
— (dips + N (0),)dt — F,dW. (143)

Taking the second-order derivatives, we have
2 1 il _ 72 , i3 B 3 _ ..
% (dldwl n ((A ), wia (&), wio+ (&) wya+ (B) wy+ dzwl) dt)
=0y (dig; +h(o),)dt —F;dW). (144)
Multiplying (144) with Ox0,w; and integrating it over U, we have
/ d; 00, d w; O Oyw; d & = / d; d|0p0yw;|* d (145)
U U
By the insulated boundary condition u - v = 0, for all ¢, j, there holds
1 il 2 i3 3 _
/Uakale ( 5 <(A )m1 + (A )W + (A4 )1%3) + (B)Z_J_) Opdw; da = 0.
(146)

By (28), the integrals in the deterministic terms are bounded by C ||w||§ The
stochastic term is estimated as follows:

t
0o JU

m‘| (147)
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m t m
(66 sup Vw||2> (Caﬁ/ ||w||§ds> ]
s€[0,t] 0

where 8¢ is taken such that s sup ||Vw]||* can be obtained by the left side in first-
s€[0,t]

<E +E

order estimates. Similar to estimates (124), we have estimates for fot fU ’820’2 dxzds.
Taking the sum over the indices i = 1,2, 3,4, we have
m]

S 1 m t
E || sup / d(/’(“)Qw’de) 05//{82w|2dxds
se0,t]Jo U2 0o Ju
t m
<E U/ Clwl3ds ] (148)
0

with the assumption that p has a positive lower bound, where C' is independent of
t.

+E

2.2.4. Third-order estimates. Considering the third-order estimates, we take an ad-
ditional derivative of (144). Repeating the argument in subsection 2.2.3, we have

S 1 m t m
E || sup / d(/ DVW:Vde) 04/ / Vw|*dzds
s Jo \2Ju 0 Ju

t m
<e||[ cwias ] (149)
0

where C' is independent of ¢, and
! 2
Cﬁ/ / ‘83w‘ drds
o JUu

s 1
sup / d(/‘83w‘2dx)
s€f0,t] JO U2
t s "
[ cimisas ]
0

with the assumption that p has a positive lower bound.

+E

m

E +E

m] (150)

<E

Step 5. Global existence.

2.3. Global existence. In this subsection, we show the global existence for both
cases on stochastic forces under (17) and general forces.

2.3.1. For stochastic forces under (17) and small perturbations for initial data (18).
We combine the energy estimates up to the third-order. Then, the assumption that
p has a positive lower bound leads to the following inequality:

|

<E

sup (w13 () + 901 ) +a [ (Iwl + IV61?) (5)ds

t
s€[0,t] 0

t
\0/0 IwiZds

where o < ¢;,i = 1,---,6, and C depends on p, m, and the domain U, but is
independent of ¢. Since ||w||; is small, we have

] (151)

+E[(c (Iwoll3 + 1v0l”)) "]
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t ¢ m
B | sup ([l +1V6l%) +a [ (Il + 190l) (s - ¢ [ wiias ]
s€[0,t] 0 0
<€ [(c(Iwoll3 +19401%))"] (152)
and

E <E[(c(Iwoll3 + IVaol”))"].  (153)

( sup (IIwlf; + ||v¢||2)>
s€10,t]

where C' is independent on ¢t. With the above uniform estimates for any time ¢,

and the local existence on [0,77], we can extend the existence to [Tl, T+ T}, and

extend to any time Ty + kT,V k € Nt. More specifically, for the estimate of onto
mapping, if
SE[Th,t]

E [( sup ||wn_1<s>||§>m] <aB [((Iwrl; + Ivom)?)) "] (159

<4k [(¢ (Iwoll; + IIWOHQ))m} :
then

E

( sup ||wn<s>|§>m] <4E [(c (Iwoll3 + IV60l*)) "] (155)

s€[Th,t]

Similarly, the contraction holds from 77 to T; + T. Then, the existence is extended
to T1 + kT for any k € N*. In conclusion, we obtain the global existence of w and
¢, which is equivalent to the global existence of strong solutions (p, u, ®) stated by
the following proposition.

Proposition 2.4. In (Q, F,P), there exists a unique global-in-time strong solution
(p,u,®@) to (1):

p,ue C([0,T);H*(U)),® € C([0,T); H®> (U)),VT >0, (156)
up to a modification, where m > 2 is a constant.
2.3.2. For general stochastic forces. If the stochastic forces have linear growth in

pu, then the following energy estimates hold:

E

[ (1wl )+ 191" 0)

s€f0,t

v [ [ (I 6) + 19617 )z m] (157)

t m t m
]/ Clwlds \/ Clwl2ds ]

Without the small perturbation of initial data (18), we can use the generalized
Gronwall’s inequality to obtain

(iﬁtpﬂ (1wl + |v¢2)> ] <E[(c) (Iwoll; + I990l*)) "] (158)

<E +E

E
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where C(t) is increasing with respect to ¢. Similarly, if the stochastic forces have
cubic growth in pu, then the energy estimates become

2| s [ a(Iwli )+ Vol )

sefo,¢] Jo

v [ (IWB @)+ IV0IP () ards m] (159)

t m t m
]/ Cllwl3ds \/ Cllwlids ]
0 0

By the generalized Gronwall’s inequality, there also holds (158). Hence, for the
smooth Y in (4) such that ¥ can be bounded by the homogeneous polynomials, the
estimates of (158) hold as well. For the estimate of onto mapping, for any fixed T,
te[0,T],if

<E +E

E[( sup ||wn1<s>||§> ]<4E[((|w<T1>||§+||v¢<T1>||2))m} (160)

s€[Th,t]

<t [(cm) (Iwol + 1¥60l)) ],
then

E l( sup |Wn(8)||§>
SG[Tl,t]

Thus, we extend the local existence on [0, T1] to [O, T + T} and to [O, T, + kT } Nk
€ N*. By Zorn’s lemma, the global existence holds.

<4k [ (@) (Iwol; + I960l*)) "] (a6)

3. Asymptotic stability of solutions. In this section, we consider the stability
under the assumptions of (17) and (18). The a priori estimates (151) show the
stability of solutions around the steady state. However, (151) is insufficient for
investigating the decay rate since the a priori estimates are already in the form of
time integrals rather than a differential inequality. Integrating twice with respect
time might not be wise as it could lead to disappearance of the favorable temporal
properties. The asymptotic decay of solution is then derived from the following
weighted estimates up to the second-order. To manipulate the weighted energy
estimates for stochastic system, we need to multiply d (%Dw . w) directly with e
first, where « is in (151). Then, we integrate it with respect to z, ¢, and w to
estimate the time integral.

3.1. Weighted decay estimates.

3.1.1. Zeroth-order weighted estimates. We multiply (94) with e®*. Then, we have

/ et d <1DW . w) dz
U 2
at 1
=e -w(dD)wdz
U2

- eo‘t/ (Ale w A Awy-w A+ Awsw o+ Bw - W) dzdt (162)
U
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feat/ﬁu-wdxdtJreat/£¢-dedt+eat/ Vh(o) -wdzdt
U U U

+eat/DFdW~wdx+eat/DIF~IE"dxdt.
U U

From the estimates of the zeroth-order estimates in subsection 2.2, we conclude the
following estimates, omitting detailed calculation:

1 ~ - ~ ~
/ et <2 (WA}W + wAZw + WA§W> +B |w2) dzdt < Ce® |w|3dt; (163)
U

eat/ﬁu-wdxdt>eo‘t/C’,6|u|2da:dt>oce°‘t/C’,6|u|2da:dt; (164)
U U U

eo‘t/ Z¢-dedt=—eo‘td/ IVo|® da; (165)
U U
eat/ w(dD)wda < Ce* [wlds; (166)
U
1
eat/ 5 DF - Fdadt < Ce® ||wl|3dt. (167)
U
For the estimates of the stochastic integral, it holds that
eat/f-wdxgeatﬂwﬂgqteat /]FdW.udx . (168)
U U
For |F| < C |pul’,
m 2 %
E F-udxdW’ <E IF udzx ds)
I t 2 3
<E C/ 2o / \pul’ juldz| ds
0 U
¢ k)
2 2as 4
<E || C sup |[u] e“* |lull;ds (169)
s€0,t] 0

+ eozmtE

- m
<e*™E sup ||u||2
s€[0,t]
amtEK /||u||3ds>

where the last inequality holds due to the zeroth-order estimates in subsection 2.2,
and C is a general constant. In summary, as p has a positive lower bound, we have

(/te“d(/ |w|2dx+/U|V¢2dx>>m (/Oteas/[]|u|2dxds)m]
(c [ 1wizas) (170)

(CAWm@dﬁm]

)

+E

amtE




STATIONARY SOLUTION TO SEP IN BOUNDED DOMAIN

3907

Next, we give the estimates of fot e [ ||lo)|*dads. From the velocity equation

(24), we have
e (VQ (5 +0) — VQ () dt
F
=—edu—e”((u-V)u—u)dt+e*Vedt +e* ——dW,

pto

with
V(Q(p+0)-Q(p)=Q (p+0)Vo+Q"(p)oVp+h,
where
hi = O (0'2) .
We multiply equation (171) with (o, 0,0)". The left side of (171) is
e [ 1@ @) Vallo da+ e [ 0(o%) d
U U

By It6’s formula,

et (d ui) o =e¥d (uio) —e“ido,

¢ : ¢ 1 2 1 P12
f/ eo‘sd/ (u'o)dz < / e*d| < loll”+ S [Ju]|”) -
0 U 0 2 2

By the continuity equation, it holds that

¢ ¢
/ eas/ |uido|dx<0/ eaSHwﬂgds.
0 U 0

For —udt, we directly estimate

t ¢ '
/ / e |—uia|d$ds < 6*4/ e ||U||2d5+054/ HuindS’
o Ju 2 Jo ’

where

(171)

(172)

(173)

(174)

(175)

(176)

(177)

where d4 is small such that d4 fot ¢®* ||| d s can be balanced by the left side. For

the term V¢ dt in (105), we estimate

t t
0
/ /e”l—aﬁ,wldxdsé 54/ e Jlor* s+ Cs,e® sup o]
0 JU 0

s€0,t]

For the stochastic term, since |F| < C |pu|?, we estimate

i t ]Fq, t ]Fi
E /eas/ — dWodz C/ e*? / — cdz
1o vpto 0 vpto
: =
<E C/ e*®
0

[ t k2
<E c/o ¢ ||ul|?[|po + 0?||” d's ]

U ) | )
<4 sup ||u|2> (¢ [ el ol as) ]
s€[0,t] 0

m

<E

2
ds

[ 1o+ oluf odz
U

<€Om1t]E + E

ds

(178)

(179)
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1 2 c b s 2 A d "
7 sup |ul e® Jall”[lofls d s
s€0,t] 0
1 m t m
2 as || l(3
(2 sup ||u|> ([ e iwias) ]
s€10,t] 0
t s\
< /||w||3ds) <C’/O easw||3ds) .

Therefore, we have

ﬂ«:[(/wa)
<E [( [ea (1o +5 |u||2))m] (150)
(c [ iwizas) | +| (e /Ote“w@ds)m]
@{(/d@ ol + i) |+ w[( [ iwigas) ]
Similarly, the estimates for & [ f; ¢ [V¢]*ds) "] hold:
¢ [(/ Vol as)
< [( [ema(3imer+5 u||2))m] (1s1)
(c [ iwizas) | +| (e /Oteawwnids)m]
<E [(/ era(FIwol+ 3 it} (ef ||w|§ds>m] .

Multiplying a small constant with (180) and (181), we add the zeroth-order
estimates (104) such that

(/0d< ol + Il + 5 V6] ))m] (182)

can be balanced by (104). Then, we obtain
t t m

([ e a(im+1vo) +a [ e (1wl +1v617) as) ] (183)
0 0

(c /||w||3dt) ]

+ eomv,tE + E

geamtE + E

amtE + E

m

amtE 4 E

m

amt]E 4 E

+ eamtE

E

E

amt]E
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3.1.2. First-order weighted estimates. Multiplying (134) by e**Vw and integrating
it over U, we can repeat the argument from subsection 3.1.1 to obtain

t t
/easd(/ DVW:VWdJ:) /aeas/\VW|2dxds
0 U 0 U
t m
eat/ Clwlids ]
0

3.1.3. Second-order weighted estimates. Similarly, we multiply (144) with e®*9%w,
and then integrate it on U. Repeating the procedure in subsection 3.1.1, we have

t t
/easd(/ |82W|2dz> /ae’”/ |82W|2dxds
0 U 0 U
t m
eat/ Clwlids ]
0

3.1.4. Third-order weighted estimates. Considering the third-order weighted esti-
mates, repeating the procedure in subsection 3.1.1, we have

t t
/easd(/ |83W|2d$> /ae’”/ |63W|2dxds
0 U 0 U
t m
eat/ Clwlids ]
0

3.2. Asymptotic stability. Combining the weighted estimates in the previous
subsections, we obtain

m

E +E

m] (184)

<E

m

E +E

m] (185)

<E

m

E +E

m] (186)

<E

t t m
|| [ ea (il + 19017) + [ et (1wl + 170l as ] (187)
0 0
t m
<E eat/ Cllwlds
0
Therefore, we have
E{|e (Iwl + 1vsl?)| "] (188)

<E [| (1ol + 1960l) "] + B

1

t
et [ Clwlias
0
Since Hwoﬂg + [V ||? is small, we have

] ’”1

< [| (Iwll3 + 1760l1?)| "] - (189)

t
e (Il + 1901%) = et | Clwiids
0

We estimate

t
et [ Iwliids < et sup wl} < ¢ sup [wl]: (190)
0 s€[0,t] [0,]

se
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Therefore, we obtain the asymptotic decay estimates

E[ :

on the account that Hong + ||[Veol|? is sufficiently small, where m > 2.

sup (|Iw[3 + V¢]*)

s€0,t]

< e[| ((Iwolli + Iveal))| ] . @on

4. Invariant measures. The law generated by the initial data zg := (pg, ug, ®o)
in probability space (Q,F,P) is denoted by L (zg). We denote H = H3 (U) x
H3 (U) x H® (U). With the initial data zo := (pg, ug, ®9) € H and the assumptions
of (17) and (18), SEP system (1) admits a unique martingale solution
z(t,x,w) := (p,u, ®) € H. (192)

Let S; be the transition semigroup [48]

Siyp(z0) = B[ (2((t,20)))], >0, (193)
where 1 is the bounded function on X, i.e., ¥ € Cp(H). For ¢t > 0, S(t,20,T) is
the transition function

S(t,z0,T) := S(20, ') = Sexr(zo) = L(2z(t,20)) (T), 20 € H, T € B(H). (194)

For vg := (po — p,ug, Py — <i>) in probability space (2, F,P), the perturbed sys-
tem (24) admits a unique martingale solution

v(t,z,w) = (p —p,u, d — ‘5) € H. (195)
S, is the transition semigroup

Sip(vo) = E[Y (v((t,vo)))], >0, (196)
where 1 is the bounded function on 3, i.e., ¥ € Cy(H). The transition function for

the perturbed system (24) is denoted by S(t,zo,T).
We give the definition of the stationary solution for (1).

Definition 4.1. A martingale solution (p;u;®) to system (1) under the initial
boundary conditions (5)-(6) is called stationary, provided that the transition func-
tion (S;p, Sru,S;®) on C ([0,T); H3 (U)) x C ([0, T); H* (U)) x C ([0,T]; H> (U))
is independent of 7 > 0.

Let M (H) be the space of all bounded measures on (H,B (H)). For any ¢ €
Cy (H) and any p € M (3), we set

Wo) = [ wlan(da). (197)
F
For t > 0, p € M (H), S} acts on M (H) by
Siur) = [ StaTu(da), TeB(30). (198)
H
Moreover, there holds
(.St = (Sebp), Vb€ Oy, peM (D). (199)

Particularly, for the perturbed system (24) and v := (po — p,ug, Pp — @) in prob-
ability space (€, F,P), there holds S} L(vo) = L(v(t,vp)). In other words,

(Se) L(vo) =E[y (v(1))], (200)
where ¢ € C(H).
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Definition 4.2. A measure g in M(H) is said to be an invariant (stationary)
measure if

Ppu=p, Vit>0. (201)
The Dirac measure centered at the steady state (57 0, <T>) is the invariant measure

for (7) since it stays unchanged after the action of the transition semigroup for (7).
For zg € H and T > 0, the formula

1 T
7 [ SmDde=RrD), Tes 0. (202)
0
defines a probability measure. For any v € M(H), Ryv is defined as follows:
Ryv(T) = / Ry(z,T)v(dz), T e B(H). (203)
H

For any ¢ € Cy(3), there holds

1 T
Brvi) =1 [ (sivwiat (204)
0
S, is a Feller semigroup provided that, for arbitrary ¢ € Cj, (H), the function
[07 +OO) X :H:a (t, :L') — Sﬂﬁ(x) (205)

is continuous. Since the solution is continuous and unique, we do not need the
Markov selection as in [17, 27].

The method of constructing an invariant measure described in the following the-
orem is due to Krylov-Bogoliubov [38].

Theorem 4.3. If for some v € M (H) and some sequence T,, T +oo, R v =
weakly as n — 0o, then u is an invariant measure for the Feller semigroup S;,t = 0.

The following lemma is obtained similarly to [6], and we provide a proof for the
convenience of the readers. v;° represents the stochastic process initiated from vy
for the sake of expediency.

Lemma 4.4. The SEP (24) defines a Feller-Markov process, i.e., Sy : Cyp(H) —
Cy(H), and

E [y (v2,)| Fi] = (Sw) (VYO), VvoeH, ¢eCy(H), Yts>0, (206)

Proof. From the continuity of solutions, it is easy to see the Feller property that
S 1 Cp(H) — Cy(H) is continuous. For the Markov property, it suffices to prove

E[¢ (viy,) X] = E[Ss (vi°) X], (207)
where X € F;.

n .
Let D be any F;-measurable random variable. We denote D,, = > D*1q:, where
i=1
D! € H are deterministic and (QZ) C JF; is a collection of disjoint sets such that

UQ = Q. D,, — D in H implies S;¢ (D,,) — Si(D) in H. For every deterministic

D € F;, the random variable v?t s depends only on the increments of the Brownian
motion Wyys — Wy, and hence it is independent of F;. Therefore, it holds that

E [y (viiys) X] =E [ (viy.)]E[X], VDeF. (208)
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Since vEt 1 has the same law as vD by uniqueness, we have
E[¢ (vP1s) X] =E[¢ (vP)] E[X] = S(D)E[X] = E[S,¢:(D)X].  (209)
Thus, there holds

E [¢ (Viies) X] = E[(Ss) (D)X] (210)

for every D. By uniqueness, we have
Vite=Viie P oas, (211)
which completes the proof. O

We shall prove the tightness of the law

{;,/OTz(w(t)) x L (6())dt, T>0}, (212)

so as to apply Krylov-Bogoliubov’s theorem.
Theorem 4.5. There exists an invariant measure for system (24).

Proof. From the energy estimates of global existence, we know that

m
2
( sup IIW(t)Hg)
tef0.7]

By :={w(t)e H*U)||w(®)|; <L}, L>0, (214)

E

<[(c(Iwli+1veol))"]. (@)

The sets

are compact in C1(U). Consequently, there holds

T T
7| eoeyEnar—5 [Tl > par

<o [ B[]t (215)

<2 [( (IwlE + Ivenl?))"]
— 0, as L — +oo0.

This gives the tightness of = fOTL(W(t))dt. The tightness of = fOTL((Z)(t)) dt is
obtained similarly due to the energy estimate
m

E || sup Vo)’

te[0,T)

<E[(c(Iwli+1veol?))"]. (@)

Hence, the tightness of (212) holds. Therefore, there exists an invariant measure
by Krylov-Bogoliubov’s theorem. O

Remark 4.6. In the above proof, we need that the constant in energy estimate
(213) is independent of T'. That is the reason why we assume (17) and (18).
(1) defines a Feller-Markov process as well, similarly to (24). Since (ﬁ, u, q@) is

smooth, by the uniqueness of solutions, 7 fOT L(p)x L(u)x L(P)ds is also a tight
measure, which generates an invariant measure. Actually, for compact sets

By ={pe HU)||pll; <L}, L>0, (217)
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in CY(U), there holds
e 1T
7 [ comai— [ pilsl, > )
0 0
oL /TIE [Ipl2m] at (218)
ST Pl

< (& Il + £ 137
— 0, as L — +oo0.

We also care about what the limit of £ fOT L(p)x L(u)x L(P)dt is.

Theorem 4.7. The invariant measure generated by + fOTE (p) X L(u) x L(P)dt,
for system (1), is the Dirac measure of the steady state (ﬁ,O, ‘i)). That is, the limait

e
TLHEOOT/O L(p) x L(u) x L(P)dt =105 % dp X Ig (219)

holds weakly.
Proof. For any ) € CY (H3), we have

N S R
im 7 [ L) de= tm [ ER Al (220)

T—+oo T T—~+oco

~ lim 1/0 E[W(p) — v (p)] +E [ (o)) dt.

T—+oco T

We claim that lim 1 fOT E ¢ (p) — ¢ (p)]ds = 0. Actually, we separate  into
T—+o0

Qt={¢(ﬂ)—¢(ﬂ)<\}i}» t>0, (221)
and €¢. Then, there holds
B[ () =0 (] = | (00 =¥ (7)) (222)
—[ @ -v@PED+ [ w0 -0 )P
Qne, Qnag
=1 + I5.
For I, it holds that
1T B o1 (T
Jm 2 f /M ()= (@) PEw)de< tim [ Zar—o. (2

For I5, by the weighted energy estimates and Chebyshev’s inequality, there holds

[ @@-venraw < [ (wel+ P E)Pdw)
QnQe

QnQe

< o el 1) () < HQ’” (o) — () > %H (224)

E[lv (o) - v ()I*"]
<C

< _ < Ct™Me™ MU [|pO . p|2m} .
()
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Hence, we have

e _
Jim g ) @O v e P (225)
: |
< lim C= tMe” 7™ dt = 0.
Therefore, there holds
e I
Jim [ var= im 2 DB @Ea=EwE)] = G0 @20
A similar calculation shows that
T
) 1
Tl_l)r_{_loo ; TE (u)dt = do; (227)
and
T
LA i TL(@)dt =05 (228)
This completes the proof by the tightness of joint distributions. O

Appendix A. We provide an overview of the fundamental theory concerning sto-
chastic analysis. Let E be a separable Banach space and B(FE) be the o-field of
its Borel subsets, respectively. Let (2, F,P) be a stochastic basis. A filtration
F = (Fi),er is a family of o-algebras on  indexed by T such that 7, C F; C F,
s<t,s,teT. (Q,F,P)is also called a filtered space. We first list some definitions.

1. E-valued random variables. [48] For (2, J) and (F, £) being two measur-

able spaces, a mapping X from  into E such that the set {w € Q: X(w) €
A} = {X € A} belongs to F for arbitrary A € €, is called a measurable
mapping or a random variable from (2, F) into (E, &) or an E-valued random
variable.

. Strongly measurable operator valued random variables. [48] Let U
and H be two separable Hilbert spaces which can be infinite-dimensional, and
denote by L(U,H) the set of all linear bounded operators from U into H. A
functional operator ¥(-) from € into L(U, H) is said to be strongly measurable,
if, for arbitrary X € U, the function ¥(-)X is measurable, as a mapping from
(©,F) into (H,B(H)). Let £ be the smallest o-field of subsets of L(U,H)
containing all sets of the form

{(Velld,H):IX e A}, XeclU, AcB(H). (229)
Then, ¥ : Q@ — L(U,H) is a strongly measurable mapping from (€, F) into
(LU, H),L).
. Law of a random variable. For an E-valued random variable X : (Q, F) —

(E, &), we denote by L][X] the law of X on FE, that is, £[X] is the probability
measure on (F, &) given by

LIX](A)=P[X € 4], Acé. (230)

. Stochastic process. [48] A stochastic process X is defined as an arbitrary
family X = {X;}1eT of E-valued random variables X;, t € T. X is also
regarded as a mapping from 2 into a Banach space like C([0,T]; E) or LP =
LP(0,T; E),1 < p < 400, by associating w €  with the trajectory X (-,w).
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. Cylindrical Wiener Process valued in Hilbert space. [48] A U-valued

stochastic process W (t),t > 0, is called a cylindrical Wiener process if

e W(0)=0;

e IV has continuous trajectories;

e IV has independent increments;

e the distribution of (W (t) — W(s)) is N(0, (t —s)), 0<s <t
Adapted stochastic process. A stochastic process X is F-adapted if X; is
Fi-measurable for every ¢t € T;

Martingale. The E-valued process X is called integrable provided that
E[||X:]]] < +oo for every ¢ € T. An integrable and adapted E-valued process
X;,t € T, is a martingale if

e X is adapted;

o X, =E[X, | Fs], for arbitrary t,s € T, 0 < s < t.

Stopping time. On (2, F,P), a random time is a measurable mapping
7:Q — T Uoo. A random time is a stopping time if {7 < t} € F; for every
t € T. For a process X and a subset V of the state space, we define the hitting
time of X in V as

Tv(w) =inf {t € T| X;(w) € V}. (231)

If X is a continuous adapted process, and V is closed, then 7y is a stopping
time.

Modification. A stochastic process Y is called a modification or a version
of X if

Plwe Q: X(t,w) #Y(t,w)}] =0 forallteT. (232)

Progressive measurability. In (Q, F,P), the stochastic process X is pro-
gressively measurable or simply progressively measurable, if, for w € £,
(w,s) = X(s,w), s <tis F @ B(T NJ0,t])-measurable for every ¢t € T.
Progressive measurability of continuous functions. Let X (¢),¢ € [0, 17,
be a stochastically continuous and adapted process with values in a separable
Banach space E. Then, X has a progressively measurable modification.
Cross quadratic variation. Fixing a number 7' > 0, we denote by M2 (E)
the space of all E-valued continuous, square integrable martingales M, such
that M(0) = 0. If M € MZ (R'), then there exists a unique increasing
predictable process (M (-)), starting from 0 , such that the process

ME(t) = (M()), te€0,T)] (233)

is a continuous martingale. The process (M (-)) is called the quadratic varia-
tion of M. If My, My € M2 (Rl), then the process

(M (), Mo(0)) = § [V + Do) (1) — (M — Do) ()] (234)

is called the cross quadratic variation of My, Ms. It is a unique, predictable
process with trajectories of bounded variation, starting from 0 such that

My (t)Ma(t) — (M (t), Ma(t)), t€[0,T] (235)

is a continuous martingale.
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For M € M?2(H), where H is Hilbert space, the quadratic variation is
defined by

(M(t) = > (Mi(t), M;(t))e; @ ej, te[0,T), (236)

as an integrable adapted process, where M;(t) and M;(t) are in M3 (R!).
For a € H1,b € Ho, a ® b denotes a linear operator from s into H; given by
the formula

(a®@b)x =alb,x)y,, € Ha. (237)

We define a cross quadratic variation for M € M2 (H;), M? € M2 (Hz)
where H; and Ho are two Hilbert spaces. Namely we define

(M (1), M?(8)) = D (M} (t), M} (1)) ef @e3, te[0,T], (238)
i,j=1
where {e%} and {e?} are complete orthonormal bases in H; and Ho, respec-
tively.
Stochastic integral. Let W be the Wiener process. Let ¥(t),t € [0,T], be
a measurable Hilbert—Schmidt operators in L(U,H). ¥(t) is set in the space
Lo such that

5| [ ), as] = (), 0 (5)) s < oo, (239)

where (-, -}y means the inner product in H. For the stochastic integral
J3 @ dW, there holds

(/(Jt\I!dW)2

Furthermore, the following properties hold
e Linearity: [(a®q +b¥s)dW =a [T dW +b [ UydW for constants a
and b;
e Stopping property: [1i.<PdW = [WdM"™ = fo'/\T UdW;
e Ito-isometry: for every t,

(f vam)

Dirac measure. Let (E,B(FE)) be a measurable space. Given z € E, the
Dirac measure J, at x is the measure defined by

E —=|/ ), as]. (240)

2

E —=|/ ), as]. (241)

1, z€A

5,(A) == {0 v oa (242)

for each measurable set A C E. In this paper, there holds
b5 = L[p)(A) = P[{w € Qlp(x) € A}] = 1.

Tightness of measures. [2] Let E be a Hausdorff space, and let £ be a o-
algebra on E. Let M be a collection of measures defined on €. The collection
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M is called tight, if, for any € > 0, there is a compact subset K. of E such
that, for all measures p € M,

|l (E\K:) <e, (243)

where |p| is the total variation measure of u. More specially, for probability
measures g, (243) can be written as

p(K)>1—c. (244)

We list some important theorems in stochastic analysis.

1. Itd’s formula. [34, 48] Assume that ¥ is an Lo-valued process stochastically
integrable in [0, T, ¢ being a H-valued predictable process Bochner integrable
on [0,T],P-a.s., and X(0) being a Fy-measurable H-valued random variable.
Then, the following process

X(t) = X(0) —|—/O ©o(s)ds —|—/0 U(s)dW(s), tel0,T] (245)

is well defined. Assume that a function F : [0,7] x H — R, and its partial
derivatives Fy, F, F,,, are uniformly continuous on bounded subsets of [0, T'] x
H. Under the above conditions, P-a.s., for all ¢ € [0, 7],

P X(0) =F(O.X0) + [ (P65, X(), W) aW(5)
+ [ ARG XE) + (Rl XD e} ds (20
+ [ §Pale X@)IEIE, s

Applying the above formula for F' = (z,z)3, we have Ito’s formula for
(X, X)#. Then, by

(X+Y, X+ —(X-Y,X-Y)y
4

in Hilbert space, the following It0’s formula holds for X and Y in form of
(245),

<X7 Y>7-L

:(XO,Y0>H+/<X,dY>H+/ Y,dX ’H"‘/d ) (X,Y) >7%1 (248)

<X7Y>7-[ =

(247)

:(XO,Y0>H+/<X,dY>H+/<Y dX)u + (X, Y),(X,Y) >i,

where (X,Y) means the cross quadratic variation of X and Y defined above.
2. Chebyshev’s inequality. Let Y be a random variable in probability space
(Q,F,P), e > 0. For every 0 < r < oo, Chebyshev’s inequality reads

PI{Y] > e}] < SE[¥]). (249)

3. Burkholder-Davis-Gundy’s inequality. [7, 48] Let M be a continuous
local martingale in H. Let M* = Jnax, |M(s)], for any m > 1. (M)r denotes
SRS
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the quadratic variation stopped by T. Then there exist constants K™ and
K,, such that

KnE[((M)r)"] <E[(M7)™"] < K™E[(M)7)"], (250)

2m(2m—2)

2m
2m—1

equivalent to €™ as m — oo. Specifically, for every m > 1, and for every

t > 0, there holds
2m t m
] <& (2] [ e, ) (251)
0

for every stopping time 7. For m > 1, K™ = ( , which is

E | sup

s€[0,t]

[ werawe

. Stochastic Fubini theorem. Assume that (E, £) is a measurable space and

let
U (tw,z) = Y(t,w,x)

be a measurable mapping from (Q7 x E,B(Qr) x B(E)) into (£, B (£?)).
Moreover, assume that

/E []E /OT<\II(S)’ U (s))n dt

Then, the following equality holds P-a.s.

/E [/OT \I,(t,x)dW(t)l p(da) = /OT [/E\I,(t,x)u(dx)} dW(t). (253)

Kolmogorov-Centov’s continuity theorem. [35, 48] Let (2, F,P) be a
probability space, and X be a process on [0,7] with values in a complete
metric space (F, &). Suppose that

E[|X, - X.|°] < Clt — s+, (254)

1
2

u(dz) < +oo. (252)

for every s <t <T and some strictly positive constants a,b and C. Then, X
admits a continuous modification X, P [{X, = X;}| = 1 for every t, and X
is locally Holder continuous for every exponent 0 < v < g, namely,

Pllw: > Mgé =1, (255)

[t — s
0<t—s<h(w),t,s<T

where h(w) is an strictly positive random variable a.s., and the constant sat-
isfies 6 > 0.
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