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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE UNIPOLAR
HYDRODYNAMIC MODEL OF SEMICONDUCTORS WITH
TIME-DEPENDENT DAMPING IN BOUNDED DOMAIN*

HAILIANG LIt, MING MEI¥, AND JIANING XU$

Abstract. This paper concerns asymptotic behavior of solutions to the initial boundary-value
problem for one-dimensional unipolar hydrodynamic model of semiconductors with time-dependent
damping 7% for A€(0,1). The damping effect is time-gradually-degenerate when A€ (0,1). We
prove that the system admits a unique global smooth solution and the solution time-asymptotically
converges to the constant steady-state in the sub-exponential form when the doping profile is completely
flat. The adopted method of the proof is the elementary energy estimates but with some technical

development.
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1. Introduction

In this paper, we consider the one-dimensional unipolar hydrodynamic model of
semiconductors with time-dependent damping, represented by the following Euler-
Poisson equations

pt+(pu)I:07 ”
(pu)t+(pu2+p(p))x=p¢m—&7ty, (1.1)
Gzz=p—C(7),

where (x,t) € (0,1) xRy, p(z,t) >0, u(x,t) and ¢(z,t) represent the electron density,
the electron velocity and the electrostatic potential, respectively. The function p=p(p)
is the pressure density relation and C(x) >0 is the doping profile which stands for the
density of impurities in semiconductor device. The term — % represents the damping
effect with a parameter A € (—o0,+00), the damping effect is time-gradually-enhancing
for A<0 and time-gradually-degenerate for A\>0. Let j=pu be the current density,
then the system (1.1) becomes

pt"‘]mjov '
jt+<;+p(p)>$:p¢w_myw\> (x’t)e(071)XR+7 (]‘2)
¢zz :ID*C("T)'
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256 ASYMPTOTIC BEHAVIOR FOR HYDRODYNAMIC MODEL OF SEMICONDUCTORS

Our target in this paper is to investigate the asymptotic behavior of solutions to
the initial boundary-value problem (denoted IBVP for simplicity) for the system (1.2)
with A€ (0,1), supplemented with the initial value

(PJ)(%O):(POJO)(LU)’ .%'6(0,1), (1'3)

and the Dirichlet boundary conditions, the so-called Ohmic contact boundary condi-
tions,
p(out):pla P(lyt):P% tZOa (1 4)
¢(07t):¢07 ¢(1at):¢17 tZOa

where p1, p2 >0, ¢ and ¢; are constants. Throughout this paper, we assume that the
pressure function p satisfies

p(-) €C?(0,400) and p'(s) >0 for s >0. (1.5)

The condition p’(s) >0 is physical, and the example is the Gamma-Law p(s) =ks" for
k>0 and v>1.

The hydrodynamic model of semiconductors is usually used to describe the dy-
namic phenomena of charged particles, such as positively and negatively charged ions
in plasma [37] or electrons and holes in semiconductor devices [2,17,25]. These models
can be derived from kinetic transport equation and are applied to physics and engi-
neering, we can refer to [16,24,25,27,33,34, 36] for details. The theoretical study and
numerical computations on the hydrodynamic model of semiconductors have been one
of the hot spots in mathematical physics. For the steady-state system, the existence and
uniqueness of subsonic solutions in one dimension for isentropic flow was studied in [4]
and the three-dimensional irrotational case in [5]. The existence of subsonic solutions in
two dimensions was obtained in [26]. For the corresponding investigations on supersonic
and transonic solutions, see [1,7,8,19,20,32,35] for details.

The damping in system (1.2) is reduced to the regular case when A=0. There are
also many results about the asymptotic behavior of the solutions to the unipolar hy-
drodynamic model of semiconductors with the regular damping, see [10-13, 18,29, 38].
Among them, Li-Markowich-Mei [18] proved that for the IBVP to the system (1.2)
with A=0, there exists a global smooth solution and the solution tends exponentially
to the steady-state. In [38], Sun-Mei-Zhang discussed the case that the system (1.2)
for A=0 on the half line with two different boundary effects, and obtained that the
solutions of original IBVP converge to their corresponding asymptotic profiles by us-
ing energy method. The Cauchy problem to (1.2) with A=0 was investigated in [12],
where Huang-Mei-Wang-Yu [12] showed that the solutions decay exponentially to the
stationary solutions. Regarding the study on the asymptotic behavior of the solutions
to the bipolar hydrodynamic model of semiconductors with the regular damping, we
refer to [6,14,15,28]. However, the structure of the solutions to the system (1.2) will be
more complicated when \#0.

What we are interested in is how the time-dependent damping affects the structure
of solutions. The one-dimensional compressible Euler equations with time-dependent
damping in Lagrangian coordinates can be written as

vy — Uy, =0,
0 (1.6)
TR

Ut +p(v)x =



HAILIANG LI, MING MEI, AND JIANING XU 257

Pan [30,31] proved that the solutions of the system (1.6) globally exist for small initial
perturbation when 0 <A <1, >0 or A=1, p>2, and will blow up in finite time for
some large data when A>1, u>0or A=1, 0<u<2. When A€ (0,1), Cui-Yin-Zhang-
Zhu [3] showed that the system (1.6) possess a unique global solution and the solution
converges to the corresponding diffusion wave at the algebraic rates. Clearly, the time-
gradually-degenerate damping plays the crucial role which causes the system (1.6) to
behave like a degenerate parabolic system with diffusion phenomena when A€ (0,1).
For the critical case, i.e. A=1 with x> 2, Geng-Lin-Mei [9] observed that the damping
effect and the hyperbolicity both play key roles and cannot be ignored. They artfully
constructed the asymptotic profile which is the solution of the linear wave equation
with damping and proved that the solution converges to the asymptotic profile at the
algebraic rates related to p. For the case of A >1, the damping effect is too weak and
can be ignored, which causes the system (1.6) to behave like a hyperbolic system, such
that the shock waves will form.

Compared with the Euler system with time-dependent damping, the studies on the
asymptotic behavior of the solutions to the hydrodynamic model of semiconductors with
time-dependent damping are quite limited. In [21], Li-Li-Mei-Zhang first investigated
the Cauchy problem to the one-dimensional bipolar hydrodynamic model of semicon-
ductors with time-dependent damping for A€ (—1,1). Note that the doping profile is
restricted to be C(z) =0 in [21]. By using the time-weighted energy method, they proved
that the bipolar system possess a unique global solution and the solution converges to the
corresponding diffusion wave at the algebraic rates. Under the assumption of C(x) =0,
the asymptotic profiles of the bipolar system are reduced to the diffusion waves, which
causes that the a prior estimates can be smoothly established. For the case of A\=1 with
> 2 (critical case), Luan-Mei-Rubino-Zhu [23] showed that the solutions to the Cauchy
problem for the bipolar hydrodynamic model of semiconductors with time-dependent
damping converge to the constant steady-states. Particularly, Sun-Mei-Zhang [39] dis-
cussed the Cauchy problem to the one-dimensional unipolar hydrodynamic model of
semiconductors with time-dependent damping for A€ (—1,0)U(0,1). They proved that
the system admits a unique global solution which converges to the steady-state at the
sub-exponential rates when A€ (—1,0), and converges to the constant steady-state at
the sub-exponential rates when A € (0,1).

The main issue in this paper is to study asymptotic behavior of solutions for
IBVP to the one-dimensional unipolar hydrodynamic model of semiconductors with
time-dependent damping for A€ (0,1). Different from the study on the IBVP to the
unipolar hydrodynamic model of semiconductors with regular damping [18], since the
non-trivial doping profile will cause some essential difficulty in establishing the a prior
estimates for A€ (0,1), we have to assume that the doping profile is completely flat,
i.e. C(x)=constant>0. For technical reason, we explain it in the Appendix to the
paper. And different from the Cauchy problem to the unipolar hydrodynamic model
of semiconductors with time-dependent damping [39], because of the boundary effect,
we cannot directly get the decay rates of the solutions for all £>0. In order to over-
come this difficulty, we first obtain that the solutions of the system globally exist with
algebraic convergence rates by using the time-weighted energy method, and then en-
hance the algebraic rates to the sub-exponential rates when ¢ is large enough. Besides,
the establishment of the a prior estimates will be more complicated compared with the
Cauchy problem due to the boundary effect. The study on the asymptotic behavior
of the solutions to IBVP for the unipolar hydrodynamic model of semiconductors with
time-dependent damping for A€ (—1,0) or A=1 will be our targets in future.
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We state our main result as follow:

Because we consider the case that A € (0,1), we have to restrict C(z) = constant := C
for technical reason, and the expected steady-state is reduced to the constant steady-
state (C,0,¢0). We prove that the system (1.2)—(1.4) with A€ (0,1) admits a unique
global solution (p,j,¢) and for all ¢ >0, the solution satisfies

17 @)1+ L+ ) V2 (1lp(8) = Cllz + 172 (6) 1+ 16 (t) — dollz) < CoWo.

Furthermore, the solution converges to the constant steady-state (C’,O,gbo) in the fol-
lowing form as t — +o0,

p(t) = Clla + 17z ()11 + (|6 (E) — dolla < CoWo (1 +)~O+N/2e=o (40",
15(t)]| € Cplrge—o 1+

with some positive constant o, provided that the initial perturbation Wy is sufficiently
small. Here 6 €[\, +00) is related to the initial perturbation ¥, and could be large
enough as the initial perturbation reduces to zero.

The rest of this paper is organized as follows. In Section 2, we formulate the
perturbation system and state the main results of this paper. In Section 3, we derive
the a prior estimates of the solution to the perturbation system. Section 4 is devoted to
the proof of the sub-exponential decay rates of the solution to the perturbation system.
We will show the details of why we have to restrict the doping profile C(z) as a constant
in the Appendix.

Notations: Throughout this paper, C'> 0 always denotes a generic constant which
may be different in different lines. L?((0,1)) is the square-integrable real-valued func-
tional space defined on [0,1] with the norm || f[|:=|f|lz2((0,1)), and H™((0,1))(m >0)

m .
is the usual Sobolev space with the norm || f||,:= > ||0% f||. For simplicity, we denote

(£ 92 =[£I + gl

2. Main results and formulation of the perturbation system

In this section, we will firstly find the asymptotic profiles of the solutions to IBVP
(1.2)—(1.4), and then formulate the perturbation system, and state the main results at
the end of this section.

Since the doping profile C(z) #0, the expected asymptotic profiles of the solutions
to IBVP (1.2)-(1.4) will be the steady-states (5,7,¢) and (p,],¢) satisfying the following
stationary system (see [12,18,22] for details)

=0

j=0,
p(p)a=pds, w€(0,1), (2.1)
¢’zz - p—C(f),

with the Dirichlet boundary conditions

{p(o):m, p(1)=p2, (2.2)

$(0)=do, &(1)=01.

Because we consider the case that A belongs to (0,1), we have to restrict C(z)=C for
a constant C' > 0, and the expected steady-state is reduced to the constant steady-state
(C’ ,0,00). We will explain why we have to add the restriction C(x) = C in the Appendix
to this paper.
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Let C(z) =C, then the system (1.2) becomes

pt+jm:07
(42 J 0.1) xR 2.3
M(pﬁp(p));p%—w, (@) € (0.1) . (23
Q&zz:pfca

with the initial value and boundary value conditions

{( §)(@,0) = (po,jo) (), =€ (0,1),
(0,

D=p(1,)=C, 6(0,0)=6(1,t)=dv, 10, (24)

Set
w:p_é7 n:.]_ozjy €:¢—¢07

then from the system (2.3)—(2.4), we know that (¢,7n,e) satisfy the following perturba-
tion system

¢t+7b: :207
e+ (wié>m+p(¢+é)m(¢+é)em
ezzqu)?

with the initial value and boundary value conditions

ﬁ, (z,t) € (0,1) xRy, (2.5)

{wo(x):w($70):p0($)—é7 770(56):77(3370):]0(55)a 1’6(0,1), (2 6)
P(0,t)=(1,t)=0, e(0,t)=e(1,t)=0, t>0. '
Differentiating (2.5), with respect to x and using (2.5); and (2.5),, one can get
- Ao AN 2 n? )
b ()0 O 04 Ol = =t () .

¢(07t):¢(17t):07 >0,
1/)(5570)21/)0(93)’ ¢t(x,0)=—776(l‘), J,‘E(O,l).

We are now ready to state the main result of this paper.

THEOREM 2.1.  Assume that (1.5) holds, (1o,m0) € H?((0,1)) and Wo:=||(v0,m0)||2 is
sufficiently small. Then, the IBVP (2.3)-(2.4) admits a unique global smooth solution
(p,7,0) and for all t>0, the solution satisfies

i@+ 1+ T2 (|lp(t) = Cllo + [l (8) [+ 16() = Poll2) < CoWo.  (2.8)

Furthermore, the solution converges to the constant steady-state (C,O,qﬁo) in the follow-
ing form as t— —+oo,

llp(t) — CAYH2 + 17z ()11 + 1) — doll2 < CG\IIO(].-l-t)_(e"‘/\)/?e—a(l-i-t)l**’ o)
”J(t)H SC@‘IIOQ_J(LH)I’A .

with some positive constant o, where 6 € [A\,4+00), the positive constant Cy depends on
0, X and C and satisfies CoWg < 400.
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REMARK 2.1. In fact, the constant 6 € [\,4+00) is related to the initial perturbation
and could be large enough as the initial perturbation reduces to zero.

REMARK 2.2.  The non-trivial doping profile will cause some essential difficulty in
establishing the a prior estimates when A€ (0,1), in order to overcome this difficulty,
we have to restrict the doping profile C(x) as a constant. We expect to develop a new
technique to remove this restriction in future.

Next, we state the a prior estimates of the solution to the perturbation system
(2.5)—(2.6).

PROPOSITION 2.1.  Under the conditions of Theorem 2.1, for the constant 6 € [\, +00),
let B satisfy

B>max{(0+\)/X, 20/((1-\)C)}/A=N, (2.10)

There exists a constant €1 > 0 sufficiently small such that, for given T >0, if the solution
to the system (2.5)—(2.6) on [0,T] satisfies

OzltlgT{HU(t)H+(1+f)(0+w2(||¢(t)||2+ [Pe(8)11)} < ﬁ, (2.11)
then for any t€[0,T7],
()| + L+ V2 (@) |2+ 19011+ lle(®)]l2) < CBEHI2 . (2.12)

We can derive the sub-exponential decay estimates based on the estimate (2.12).

PROPOSITION 2.2.  Under the conditions of Theorem 2.1, if the system (2.5)—(2.6)
possesses a global solution and the estimate (2.12) holds for all t >0, then as t— +oo,

() 2+ 1 () 11+ le(@) |2 < CoWo (1 +1) =@+ 2ema 107,

- (2.13)
In(t)|| < CpBoe= o+,

with some positive constant o, where § € [A,+00) and Cy is a positive constant depending
on 0, A and C' and satisfying CyWy < +00.

Proof. (Proof of Theorem 2.1.) The local existence of the solution to the IBVP
(2.5)—(2.6) can be obtained by the standard iteration method. Then, by using the a
prior estimate (2.12) in Proposition 2.1 and the usual continuity arguments, we can
extend the local solution to the global solution. Equivalently, we have proved that
the IBVP (2.3)—(2.4) possesses a global solution. The estimates (2.8) and (2.9) can be
derived from (2.12) and (2.13), respectively. d

For T'> 0, we denote the basic solution space for the IBVP (2.5)—(2.6) as
X(T)={(¢,n,e) e H*((0,1)), 0<t<T},
where its norm is given by

N(O.T)= sup {lIn@®)]+( +6) V([ (@) 2+ [l (8) 1+ le(t)]]2)}-
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3. The a prior estimates

In this section, we derive the a prior estimates of the solution to the perturbation
system (2.5)—(2.6), namely, we devote to prove Proposition 2.1.

From the a prior assumption (2.11), it is easy to verify that

0<C/2<yp+C<2C, | <C, (3.1)

with a positive constant C.
In order to prove Proposition 2.1, we need to establish the following estimates based
on the a prior assumption (2.11) and (3.1).

LEMMA 3.1.  For (¢,n,e) € X(T), under the conditions of Proposition 2.1, it holds

that
1 1 1
/eidng/ Y3d, eigC/ Y2de, (3.2)
0

1
/e d;z:<C/ Yida, eitgc*/ Yide, (3.3)
0

1
/ 2dx<(]( (46" k/ nedz
0 0

t 1
+/ (1—1—5)’\ al(1+s)' 7= (146)' 72
0

(7 +y° dwds) (3.4)

0

1
/ dx<C/ ¢t+¢ _|_1/) )dx_‘_c 1—|—t 2/\< —a(1+t)'~ >\ gd.%‘
0

t 1
+/ (1+5)e af(l+s)' A= (146" A/ (Y2 +4p? dxds) (3.5)
0 0

where a=1/(1—X).

Proof.  For the proofs of the inequalities (3.2) and (3.3), we can refer to [18] for
details. Now we focus on estimating (3.4) and (3.5).

Multiplying (2.5), by n and integrating the resulting equation with respect to z
over (0,1), one has

1d (! 1 1 ) 1 )
5%/ 772dx+/ (1+t)*/\772dx:/ (¢+C)exndm—/ p(¢+C)pndx
0 0 0 o

1 2
n
— = de=:K1+Ky+Ks. 3.6
/0 (¢+C>IU 1 2 3 (3.6)

By Holder inequality and (3.2), K7 can be estimated as

1t 1
Klgi/ (1+t)7)‘772d3:—|—0/ (1+t)*e2dx
0 0

1t a2 e
g4/0 (1+4) nda:+C/O (1+4) 2dz. (3.7)

From Hélder inequality, Taylor’s formula and (2.5);, we can estimate K5 as

Ky—— / (p(6+C) —p(C)) i
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== | @+ Cr=p(C))nda

<c| W ) (3.8)
0

It follows from (2.5); and Holder inequality that
?

1 1 2
n
— —| — — 1 d
b+Clo ./0 MiWeAded
:/1 (3772}/% B ﬁQi/JtA)dx
0 C Pv+C

1

1 1
1 —A, 2 A2
§4/0 (148 da:+C/O (146 p2de. (3.9)

Ky=

Substituting (3.7)—(3.9) into (3.6) leads to
d ! 1 1
%/ 772d;v—|—/ (1+t)_>\772d£6§0(1+t))\/ (Y2 +*)d. (3.10)
0 0 0

Multiplying (3.10) with e+ ™" yields

d ol ol
(e [par) scapecs ™ [y

where a=1/(1—X). Integrating above inequality over (0,¢), we obtain the desired
estimate (3.4).
It follows from (2.5), that

2 2
n <C((1+t)‘”n2+(¢+C)2ei+p<w+0)i+ ( ; ) )
Vv+C/,
<C((+)7 0" +eg+yi+07),
then the desired estimate (3.5) can be derived from (3.2) and (3.4). 0

LEMMA 3.2.  For (¢,n,e)€ X(T), under the conditions of Proposition 2.1, it holds
that

1
/ (B+1) M + 92 +1p?)dz
0

t 1
+ / / (B+)° (W2 + 02 4 02)dads <CB ™| (Wom) 2, (3.11)
0 0
1
/ (B0 (€2 €2, +e2,)da < OB (o, o)1 (3.12)
0
1
/0 n2dz < OB (o, m0) |2 (3.13)

Proof. Owing to 0 < A< 1 and 8 satisfying (2.10), we have the following inequalities:

(5+t)AC’fg(5+t)’1Z B+ C, (3.14)

|~
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B+ 1+ >1, (3.15)
O+ M) (B+) <A, (3.16)
(1-NC+ 9(92_ D (B+t)"2— Q(ﬂ—f—t)_l(l—kt)_A > %(1 -\ C. (3.17)

Next, we focus on establishing the a prior estimates of the solution to (2.5)—(2.6) based
n (3.14)~(3.17).

Multiplying (2.7); by [2(8+1t)? T, + (B+1)?4] and integrating it with respect to
x over (0,1), we get

&I [t v e eu + Je a0 - St
1

+/O [2(8+)*
+/01 [0(1—(
n

1
%(1 +t)_’\_1] (6+t)9w2dx+/o P +C)a [2(8+8)" My + (B+1)9, ] da

1+ =1—(0+ N B+ (B+1) ida

O+ (B+1) 1) +@(6+t)‘2 - g(ﬁﬂ)_l(l )~

I

1
-/ Y2 [2(B+1) T Py + (B+1)04) da wxex[ (B+1)" T+ (B+1) "] d

12 13

- /O ( w”: é) [208+8)" T ue + (B+1) 9, ] da. (3.18)

Iy

Here, I, I5, Is and I, can be estimated as

1
L— / P (61 O [20B4 )My + (B+1) 0 da
0

1
=4 [y wscnae 0 [ PR e O

0

1
- / (B0 (o Oy + / (B0 (4 C)gda

0

1 1
2%/ (5+t>9+*p’(w+é)wid:¢+/ (1= O+ N (B+) (B4 (b +C)2de
0 0

1
—Cey / (B+1)09p2dx. (3.19)
0

It is easy to see that

1
L<Ce / (B+8) (42 +4%)de. (3.20)
0

From Holder inequality and (3.2), we can estimate I3 as

1

133051/0 (B+1) (P2 4-e )d:I:<C€1/ (B+1)° (2 +?)d. (3.21)
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By (2.5);, (3.4), (3.5) and Holder inequality, I4 can be estimated as
2 )y
e Y

1
14:/0 v+C  (P+C)?

d ! 0+ n’; ' 0+x—1_" y7
== T g (04 TV gy
i |, o Loy [

1 1 2
_9 orx NVZ Ve oo o+A N ¢t€ﬁz d
/O(ﬂ-i-t) W10 z+ /O(ﬁ+t) 7(%0)3 T

1 2
0+ 1/% 0+ ;e
+2/0 (B+1) w+édx+2/0 (B+1) rmpdx

1 1 2 2
+2/0 (B+1) 71/1+C* x+/0 (B+1)? ——=— (¢+C)

[2(8+1)" T e+ (B+1) 9, | d

d [! 6+ 772%% ! 0,92 9
Sa/o (B+1)°F de—&-(ﬁ'&/o (B+1)" (v; +9z)dx

1 1
+CE1/ (ﬂ—i—t)_)‘nzdﬂc—&-Cm/ (B+t) pdx
0 0
1

d o4x_ U3 ' 0 (ah2 1 ah2 1 o2
<z ) BT decsl/o (B+D° (Y7 + 42 +y?)da

+Cer (B4 )M 1+1) / t(1+s)kea[<1+s>1f*-(1+t>1—x] / 1(w?+w2>dncds
0 0

1
FCBN141)ReaHD) / néda. (3.22)
0

Putting (3.19)—(3.22) into (3.18), we obtain

jt/ol (000 40" (4G 4 (§040) (1/)—22@)2)%2”)

%(ﬁ‘*‘ﬂ (1+t)_)‘1/12—2(5+t)9_11/12} dx—f—/ol [2(/34'15)/\(1—1—16)_)‘—1
—(OFNE+ T (B0 ide+ / 1 [(1—<9+A><6+t>k—1)0
0
0(6—1)

(B+1)2— g(5+t)fl(1+t)**+ ’2\(1+t)*1] (B+t)0p2da

2

1
4 [ =@ NE+H ] 40 6+ O
01 N 1
SC&/ (B+)° (V2 +2 + ) da+ CB (1 +£) e+ / nRdz
0 0

t 1
+Cer (B4 (1+1) 7 / (14s) el =040 / (V7 +*)dads.
0 0

Thus, in view of the inequalities (3.14)—(3.17), we have

1
& oo oz rvtans [@rorw i
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1
gCﬁ’\(l—H)_)‘e_o‘(Ht)FA/ nedx
0

t 1
+Csl(ﬂ+t)’\(1+t)*2’\/ (1+S)Aea[<1+s>1-*7(1+t>l‘*]/ (2 4+1p?)dxds.  (3.23)
0 0

Integrating the inequality (3.23) over (0,t) yields

1 t 1
/ (B0 (42 +42 4+ 97)da + / / (B+5)° (W2 +42 + ¢2)dads
0 0 0
1

1 t
Sﬂ”’\/ (Z/}t2+’l/13+1/}2)(35,0)d$+06}\/ (1+S)*)\efoé(l+s) —*ds/ ngdm
0 0 0

t s 1
+C€1/ (B-I-S)A(l—i—s)_”/ (1+T)Ae"‘[(“”)lﬂ_(Hs)lﬂ]/ (Y2 +1p?)dxdrds
0 0 0
<CB" M (o,m0) 17

t 1 .
+CE1/ (1+T>Aea(1+7)lf>\/ (wf—H/JQ)dx/ (ﬁ‘*‘s)A(l+S)_2’\e‘0‘(1+8)1’*d8d7
0 0 g
t 1
3056“”(1/’0,770)\@+Cﬂ*61/ (1+T)A/ (3 +¢?)dadr,
0 0

where we used the fact that

1-x
—e efoc(lth) .

t t
[ sy et g ettt
0 0

Then, this implies the estimate (3.11). Furthermore, combining (3.11) and Lemma 3.1,
we can obtain the estimates (3.12) and (3.13). d

LEMMA 3.3.  For (¢,n,e) € X(T), under the conditions of Proposition 2.1, it holds
that

1
/ (B+6)" AW+ 0%,y )do
0
t el
[ [ (@5 Wi 2 duds <O o, m) . (3.24)
0 Jo
Proof. Firstly, we estimate fol nZdz. Differentiating (2.5), in t gives

Mot =— (1) 0+ AL+ (04 C)egt +bren

/ A 772
(' (W +C)h)e— (M>xt’ (3.25)
thus,

ng <C (146 27+ (1+6) "2 727 + (v +C)%e,

2 2
el + (o (b4 O+ (wic) ] (3.26)
xt
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Integrating (3.26) with respect to = over (0,1) and using Lemma 3.1, we have
1 ot 1
/ N <C(1+t)~ P40 / noda+C / (W3 + 92+ 07 +92 +4)da
0 0 0

t 1
+O1+1)~ / (14s) el =040 / (W7 +¢?)dads.  (3.27)
0 0

Now we deal with (3.24). Differentiating (2.7); with respect to ¢, one can get
Gre+ (L) b — AL+ b+ Oy — (p (0 + C)tht)

__ B B n?
— wat ’(/}:rtew wa:ezt + (’(ﬂ—ké)xmt (328)

We multiply (3.28) by [2(8+)?T )y + (8+1t)4;]| and integrate the resulting equation
with respect to = over (0,1) to get

1
di/ |:(ﬁ+t)9wt7/}tt+(5+t)9+/\(¢t2t+éwt2)+1(ﬂ+t)0(1+t)Awtz
t Jo 2

- g(Bth)e’lde “ANB+INA+1) N | da

+/1 208+ 1+t =1— O+ N (B+t)* ] (B+1)YFdx
0

0(0—1)

S (B+)72

+/01 [(1—(9+A)(6+t)*—1)é+

B+)HA+) A=A+ ) (B+0) A +1)"*2

> N D

— 5(1 +) AT ENO+N) B+ A+ )T (B2 da

+ /0 (5 0+ CYe)a [284+ ) ars + (B-+1) thar] d

Is

1
_ / 2 [2(8+ 1) + (B4 1)y de
0

I

1
_/ (wite:v + wazewt) [2(/8 + t)9+>\wtt + (6 + 75)9%] dl‘
0

I7

1 2
_/0 (wz_é) [2(5+t)9+/\¢ztt+(B-Ft)e?/fzt]dxo (3.29)
xt

Is

Next, we focus on estimating I5, Is, I7 and Is. By Holder inequality and (3.16), one
has

1
Is= /0 [P/ (W + C) a0 (04 CYathe] (208 + )T by + (B+4) oot da



HAILIANG LI, MING MEI, AND JIANING XU 267

1
let (B+)"2 (U +C)edida — (0+2) /0 (B+)" A1 (0 + Oy da

-3 /0 (B+0)" 20" (0 + ) 2dx+2% (B+D"2" (W + C)putprtpeda

1
_2(64 ) / (B+ 81" (£ OV thpeda

0

1 1
-2 / (B+8)"T2p" (W + C)hothitbgrda —2 /0 (B4 () + C)athry o da

/ (B+0)°0 (4 O da + / (840" (§+ Cuibrparde

0

1
>d (6+t)9+’\p'(1/1+0)wztdm+2%/o (B2 (¢h+ C)pththgeda

dt
1
+ / (1= (04 N3+ (8409 (5 + )2y
0
1
_051/ (B4 (7, + 02+ 07 )da. (3.30)
0
It is easy to verify that

1
Is< 051/0 (B+1)° (W7, +v7)dx. (3.31)

From Holder inequality and (3.3), we can estimate I7 as
1
<Cer [ (840 (Wh 402+ ¢+ v
0
1
<Cex [ (B4 W+ 02+ o) do. (332
0

By Holder inequality, (3.16) and (3.27), Is can be estimated as
2t | 20%e 2007 2qmihe | 0Par 207 Uuty

1
= v+C o+ @HCP @+ 0? (9402 (p+OP
) [2(ﬂ+t)0+>\7/}mtt + (ﬂ+t)01/)mt} dzx

_i ! O+ 7721/)% _ 1[ O+ 772 } 2
= O(ﬁ—i-t) 7(1/}+é)2da: / (B+1) 7(1#4-0)2 thtdx

! d ! 1/1351/%
_ o+x( " 0+x "M
2/0 (B+1) <¢+C> Y dr+ dt/ (B+1) (01 0)2 dx

1
_4/ {(5—#15)9*’\ 7777t1/ix 1/Jmtd$ 4d/ (B+1 )OHMM
0

(Y +C)2 (v +C)3
1 2 q
94x 1 Ves _ 9+)\|: N ]

1 2 b 1 2
4 042 m/JtA d [2%1/11& 2777/)tf _ 2771/)1:
" /0 (B+4) [(¢+C)2_w¢tt H/ o1C vrC  rOn
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2 Yer 207t
(p+C)* (p+C)? (¢+C)3

1
a TR da d 9+,\7777t1/)x1/)xtd
= 0 (B+1) (p+C)2 +4dt (BH) (Y+C)2 v

d 1 ¥z '
9+/\de+051(6+t)x/ niydx
0

(B +t)9¢ztd$

’4% (B+1) 01 0)8

1
OB / (B+1)° (U2 + 2, + 62 +2)da
0

d ! ora Vo d (! 0+ 7777t1/)m1/)mt
— dx
gdt (B+t) (¢+0) +4dt (B+t) ot C) dz

it [ )9“’7(;””21)”% v O [ (80 +02 e

1
FCBN1+1) e / nédx +Cp* / (B+1) (V2 +1?)da
0 0

t 1
+C€1(6+t)/\(1+t)_4>\/ (1+s)AeaK”S)l’*—(l”)H]/ (W2 +¢?)dads. (3.33)
0 0

Substituting (3.30)—(3.33) into (3.29) gives

1 [(6+t) Vet +(B+1)71 (wtﬁcwt ( "(W+C)— (ﬂQé)?)wgt)

+§<ﬁ+t>9<1+t>—wf— (0P NG+ 1

dt

O+ Wlthszt dx
(Y +0)?

1
. A—1) A
d;z:+/0 {(1 O@+N)(B+)*HC

#20 [0 0 Cptavitnts 435 [ (50

dt
O+ 772%7111%:15
(p+C)3

(B+t)72 - g(ﬂ+t)’1(1+t)”\ “AA+D)(B+ N1 +1) 2

d
+4% (B+t)

n 9(92 1)

- %(1 +) ML A0+ N B+ +t)’\1} (B+1)0p2dx

1
+/ 208+ 1+ = 1= (0+N)(B+1) (B +t) W} da
0
1
+ / [1— 0+ 2 B+ (B+0)°p (1 + CY2, da
0 1 1
<CBre / (B4 (W7, + 02, +f)dz+CB / (B+)° (2 +y?)dzx
0 0
1
+05A(1+t)—3ke—“<1+””/ nedx

0

t 1
+cgl(5+t)A(1+t)-4A/ (1+S)Aea[<1+s>“-<1+f>“1/ (Y2 +?)dads.
0 0
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Let

6= [ [+t vtut (400 s+ Cup+ (pv ) - ( wfév) 2)

LB (07— DB 0P A0 (L)

#2891+ O)tatiia—4(8 1)
9“172%%%}

O ey |

Thanks to the inequalities (3.14)—(3.17), we obtain

Low+e [ (00w v vy
dt 0 tt xt t

1 1
SOBNL+1) oo / noda+CB» / (B+1)" (W7 +42+0?)da
0 0

t 1
+C(ﬁ+t)k(1+t)*4k/ (1+S)AeaKHS)““““)”]/ (W2 +y?)dwds,  (3.34)
0 0

and

{G(t) > Cy fy (BH+O) AW +92 +v2)da — O [ (B+)"F (7 +42)dx, (3.35)

G(t) < Cs [} (B+1) W + 92+ 92 +¢2)da,

where C1, Cy and C5 are some positive constants. Integrating the inequality (3.34) over
(0,¢) and by (3.35), one has

1 t 1
/0 (B-+1)FN 2+ 92, ) + / / (B-+5)° (V3 +2,)duds
1 1
<0 /0 (W2 4%+ 92 +42) (2, 0)do +C /0 (B8 (2 4 2)de
t 1 t 1
+05A/0 (1+s)*3ke*a<1+s>“*ds/0 ngda:JrC’ﬂ’\/O /0 (B+5)° (47 + 02+ %) dads
t s 1
—I—C'/O (ﬁ—i—s))‘(l—ks)_“/o (1—|—T)Aeo‘[(“”)lﬂ_(l"'s)lﬂ]/0 (Y2 +4?)dxdrds
1 1 1
<cprt /0 (W, + 02, +f +92) (2,0)dz +CB* /0 nodz+C /0 (B+)7TA(f +42)da
+Oﬂ’\/t/1(ﬂ+s)9(w2+w2+w2)dxds
0 o t x
<CBI | (vo,m0)113, (3.36)

where we used the fact that

1 1
/ Vi (z,0)dz<C / (W2 + 02+ 07 + 02, +12,) (2,0)da.
0 0
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Finally, we estimate fol 2 dz. It follows from (2.7), that

~ ’[’]2
' C T Ao TT
(p(¢+ ) (¢+C)2>w
21/}t2 anzt _ 4771/}th _ 27721/}:%
v+C  Y+C (+0)2  (h+0)3
=" (Y + OV + Y+ (1+) Mp+ Cp+9° + e,

Multiplying above equation by ., and integrating it with respect to = over (0,1), we
have

1 2
wre)-—T )z
B /1 [ 208 2mbar  Amiibs  20%03
0

Vv+C  Y+C  (W+0)2  (p+C)3
—p" (W +C)2 + g+ (1+8) " + CY+ 0 + ey |Yuade,

then by Hoélder inequality, (3.11) and (3.36), we get

1 1
/ Y2, de <C / (U2 402, 02+ 02 ) da
0 0
<CRITA(B+1) OV || (4ho,m0) 13- (3.37)

The desired estimate (3.24) follows from (3.36) and (3.37). |

Proof. (Proof of Proposition 2.1.) Lemmas 3.2 and 3.3 imply Proposition 2.1.
O

4. Sub-exponential decay rates

In this section, we prove the sub-exponential decay rates of the solution to the
system (2.5)—(2.6), namely, the proof of Proposition 2.2.

When the estimate (2.12) in Proposition 2.1 holds for all ¢ >0, we can get

sup{[(t) 1+ (10 /2 (10O |+ [} OB P imen, (1)

in fact, we have g5 < 1. Thanks to (4.1), (3.1) still holds in this section and we can
prove the following lemma in a similar way as Lemma 3.1.

LEMMA 4.1.  For (¢,n,e) € X(T'), under the conditions of Proposition 2.1, if (4.1)
holds for all t >0, then for any t >Ty, we have

1 1 1 1
/eidxgc/ W2z, /eitdach/ V2dz, (4.2)
0 0 0 0
1
/ 772da:gCe*a(lﬂ)l‘*ea(HTo)l—*ﬁ9+2,\\pg
0

t 1
+C ; (1+S)Aea[(l—i-s)lf)\_(l-&-t)lfk]/ (wt2+’(/)2)dl‘d8, (43)
0 0
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1 1
/ nide <C / (67 +42 07 da+ O(L4 )T (F0 T e o2 g
0 0

t 1
+C(1+t)*2’\/ (1+s)AeaKHSV‘**(H”“*]/ W2 +9?)deds,  (4.4)
To 0

where Ty =max{(04+X)/X, 20/(1=N)C), 2(20+3))/(3(1=X)C)Y/I=N _1 and o=
1/(1=X).

LEMMA 4.2.  For (¢,n,e) € X(T'), under the conditions of Proposition 2.1, if (4.1)
holds for all t >0, then for any t >Ty, we have

/ 1(¢§+¢§+¢2)dxg0,89+2Ae7<1+T0>H(1 1) (0N (1D g2 (4.5)

0

/ (e e, +e2,)du < CAMDIT T (1 gy =040 1+ g2, (4.6)
0

/Oln2dzgcg‘)”%m(l”ﬂ)“*em“*”“*\yg, (4.7)

/1 ntdx < CRIT2rem (1+Tp) "™ (1 —i—?f)_Q’\e_‘“(l"'t)lfA w2 (4.8)
0

for some positive constant v, and py =max{a,v}, pe=min{a,vy}.

Proof. Since 0 <A< 1 and t>Ty, we can obtain the following inequalities:

(1+t)Aé—g(1+t) %(l—kt) ¢, (4.9)
O+N) 1+ A<, (4.10)
(1—>\)C’—g(1+t) g(1+t) Al ;(1—)\)0. (4.11)
Multiplying (2.7); by [2(1+¢)? 4y + (1+¢)%4)] and integrating the resulting equa-

tion with respect to = over (0,1) to obtain
d [! 0 0+A(2 A2y, b o-x,2 0 01,2
p (1+) Y+ (1+1) (¢t+0¢)+§(1+t> G —5(1‘”) Y7 | dx
0

+/O [1—(9+A)(1+t)k—1](1+t)%§dm+/0 {(1—(9+A)(1+t)k—1)0

0(6—1)
2

1
+ / P+ O [214 0 gy + (14 0)0, | do
0

+ (1+8)72— ?(1 +t)_’\_1} (1+1)%%dx

J1

1

P2 [2(148)" M p 4+ (1+1) %) da wx[ (140 + (1+8) %] da

)

Ja J3
1

—/ <wf0> [2(1+8)" T Mpge + (1+8)09, | da. (4.12)

0 x

Ja
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Furthermore, Jy, Jo, J3 and Jy can be estimated as follows.

Ji = / 1p’(w+é)ww [2(1+ )7 e + (1+1) 2, | dae
0
,jt/ (1+1) p '(¢+C)w2dx+/ 1= O+NA+) 1+ (v +C)ida

—052/ (1+t)042dz, (4.13)
0

and
1
JggCag/ (1+8)° (Y7 +2?)d. (4.14)
0

For any ¢ >Tp, from (4.2) and Holder inequality, one can get

1
J3 gc@/ (14+1)% (42 + ) d. (4.15)
0

By (2.5), and Holder inequality, for any ¢ >Tp, we can estimate Jy as

_ ' 2miy R A .
! 1
orn V2 0o
S@ ; (1+1)"* P dz+C’€2/O (1+1t)7 (Y7 +4p7)de. (4.16)

Putting (4.13)—(4.16) into (4.12), for any ¢ > Ty, we have

d

at 01 {(”tﬁwﬁ(ut)w(w?+éw2+<p’(w+é) 2))1”2)

(Y+0C)?

1
+%(1+t)9—w}2— Z(Ht)@—w?} da:+/ [1—(O+N) A+t (1+8)pfde
0

+/1“‘<9+A><1+t>*‘11<1+t>9p'<w+é)z/idw/1 [(1—(9+A><1+t)“>é
o 0

0(0—1)
2

+ (1+t)72— 02/\(1+t)’\1] (1+1)%4%dx

1
§C’52/ (14+1)° (2 +2 + %) da. (4.17)
0
Let

Fy(@,t) :=(14) ey + (1+41)7H (%2 +Cp?+ (p’(z/)—I— C)— (wi(i’)?) wi)

(1—|—t)6 )\1/)2 (1—|—t)0 1#}2

l\D\»—t

Applying (4.10) and (4.11) to (4.17), one has

1

1
pr Fl(mt)dw+c1<1+t)/(zﬂ?wiw?)d:cso, t>T,
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for some constant ¢; >0. It follows from (4.1) and (4.9) that there exist two positive
constants ¢o and c3 such that

e (1+0) A WZ + 2 +9%) < Fi(2,t) <es(L+ )PP W2 +92 +42), t>Tp.  (4.18)

Thus, for any t > Ty, it holds
d [t 1
%/ Fl(x,t)dx—i—q(l—i—t)*)‘/ Fi(z,t)dz <0.
0 0

Multiplying above inequality with Y1+ leads to

d
p <eV<1+t>l /let)d;v><0 t> Ty, (4.19)

where y=c4/(1—X). Integrating (4.19) over (Tp,t), we have

1 1
[ Ao 0406050 [ p 013
0 0
<CeIHT0)' ™o =1(140) 77 g+22 g2 (4.20)
where we used (4.18) and (4.1). Then, (4.5) follows from (4.18) and (4.20). Furthermore,
(4.6)—(4.8) can be derived from (4.5) and Lemma 4.1. O

LEMMA 4.3.  For (¢,n,e) € X(T), under the conditions of Proposition 2.1, if (4.1)
holds for all t >0, then for any t >Ty, we have

1
/ (2 + 2+ 92, + 92 de < IR (T2 (1 4 )= (040 =240 g2 1 (4.01)
0

for some positive constants v1 and vs.

Proof. Since 0 <A< 1 and t>Ty, we can obtain the following inequalities:

(1+1) C’—@(H—t)
O+N) A+ 1<, (4.23)

. 0+2) 04\
(17A)C—+T(1+t)*27%(1+t)

(1+)*C, (4.22)

yMH

(1-\)C. (4.24)

ux\H

Multiplying (3.28) by [2(141)?" ¢y + (141)%;] and integrating the resulting
equation with respect to x over (0,1), we have

1
[ +8)0hyy + (148) 0 W2 +Cv2) + %(1 )02

dt J,
04'2%(1“)9 1wt]dac+/1 {(1—(9+A)(1+t)“1)é
0
+(6— )9+22A(1+t> —?(H—t) }(1+t)91/}t2dac

+/1 [1—(0+N) 1+ (1+8) 7 de
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1
+ / P (W +C))a [200+8) 7 e + (1+1) 0| do
0
.]5

1
- / 20 [2(1 4+ gy + (1 +1) P9y d
0

Je

1
- / (Pata + Puear) 201+ (1+0)79,] dz
0

J7
1 2
—/ (wié> [2(1+8)" T e + (1 +1) 2] dv. (4.25)
0 xt
Js

Now we focus on estimating J5, Js, J7 and Js. By (4.23) and Holder inequality, we can
estimate J5 as

1
J5:/0 (0 (W + C) ot 4" (0 + Cybathe) [2(1 4+ )" gy + (148) )] dar

dt

1
0l Ot 128 [ (40 04 Ot

+/ol (1= O+ A+) 1+ (0 + C), da

—Cey /O 1(1+t>f’(¢?t+wit+w?)dm- (4.26)

For any t >Ty, it follows from Holder inequality and (4.2) that
J6§C’52/01(1+t)0(¢ft+1/)t2)dx, (4.27)
F<Ces [ (Ur0P vt (129

For any ¢ >Tp, Jg can be estimated as

1 2 2 2
2 2 2 20t ot 20*aty
Jsz/ ne | 2w M 2mee e 207 Pat
0

v+C Y+ C W02 (+C)? (+0)2 (Y+C)
2148 M+ (1+1) 2y dae
d orx MV d ! 04X MMtV Wt
Sdt/ (1+1) WO ——Z—dx +4dt (1+1) wre? dx
d 04+A TVt Y YPur lf/ﬂ/lﬂ/lw

1
—4— 1+t dx +C’s/ 1+t dx
dt ( ) (¢+C) 2 ) ( ) 77tt

1
ey / (1+0)° (U2 + 02, + 2 +2)da
0

1 2 1
Si/ (1+t)0+>\n7%d _~_4£ (1+t)6+>\wdx
dt Jo (+C)? dt (4O
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d ' 2 x ¥ !
4, (uﬂ”wmdﬁcgz/o (L+8) (Wf, + %, + 7 ) da

1

1 1
+CEQ(1+t)9/ (wi—i—wz)dm—i—Ceg(l—l—t)_’\/ nfdx+052(1+t)—3k/ n’dx
0 0

0
d [ 04+ 7721/th d [! 04x Mzt
— ———dx+4— ot
édt/o (1+1) WO +4dt/ (1+1) 0+ 0)? =

d [* N2 e)a !
4% [ e T e Tol fo 4 Cey / 1+6)0 (W2 42, + b2 )dx
i Jy T s A H i)
Oy P AT g2 (1 g ) Aemra 140! (4.29)

where we used the fact that
1 1
/n?tdeC/ (Vi + 2 +0F +5 +9%)dzx
0 0
1 1
+O(1+t)—2k/ nfdx—l—C(l—i—t)_“/ n’dz. (4.30)
0 0

Here, the proof of the inequality (4.30) is similar to (3.27) in Lemma 3.3, and is omitted.
Substituting (4.26)—(4.29) into (4.25), for any ¢ >Tj, one gets

1 . X 2
[(1+t)0¢t¢tt+(1+t)9+>\ <w§t+0w?+ (p'(¢+0) - wicv) i)

d [ et
0—1 0+

dt Jo

1 0+2X\
(1) Ay -

d ! 6+Anntww¢wt d O+, 11 A
_4$ (1+1) Wd +2$ (1+f) P (Y +C)opit)ard

+/ [1_(9“)(1“)“1}<1+t)9w§tdx+/1 [(1—(9+>\)(1+t)A_1)C‘
0 0

0-+2X 04+ A

+HO-1)—— (1+t)_2—T(1—|—t) }(1+t)9wfdx

+/01 (1= (04+X)(1+) ] (140D (b +C)2, da

1
§C€2/ (1+8)° (0, + 02, + 17 )da
0
+C€259+2)‘e”1(1+TO)1ix(1+t)_Ae_“2(1+t)17A‘I/g- (4.31)

Next, we multiply (3.25) by 27, and integrate the resulting equation with respect
to x over (0,1) to obtain, for any t >Tp,

d I 1
d—/ n?dx+2/ (1+t) " nida
tJo 0

1 1 1
:2)\/ (1+t)7A717777td1”+2/ (Y +C)egemdr+2 | Pregneda
0 0 0

1 1 2
- (4 CViby) wneda — n d
2/0 (@' (Y +C)ibt) med 2/0 <¢+C>xtm x
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) 1
S% (1+t)Ap’(¢+C)w3tdm+C€z/ (1+t)k(w?t +¢a2ct)d$
o 0

1 1 1
+C/ (1+t)’\(1/)t2+¢326)dz+0/ (1+t)’)‘77t2d:r+0/ (1+1)"2n%dx
0 0 0

1=\ 1 R 1
(1+6)7p (1 + CY2,da + Cey / (L 07 (42 02, ) da
0

<
S
o2, (4.32)

+ C59+2)\eu1(1+To)1_’\ (1 _i_t)f/\efuz(hkt)l

Adding (4.32) to (4.31), for any ¢t >Tp, one gets

d ! A / A 772
@/0 [(1+t)"wtwtt+(1+t)9“(¢§t+0¢$+<p (w+0)—w+é)2) gt)
1 9-xr, 2 0+2A 0—1 d ! oA TPVt s ot
1
_4% ( )6+>\ thd)ré{))rfd _'_2% (1+t)6+)\p//(¢+é)¢x¢t1/1xtd$
1
+ / dx+2/ (14+1)~ T)tdx+/0 [1—(0+N) 1+ (1+8) 7 dr
1
+/O [1—(0+N A+ @+ (v +C) gtdx+/0 [(1—(0+A)(1+t)A He

+ (6 — 1)9*'2”(1“) 2—?(1“) ](1+t)%§dx

1 1
S% o (1+t)9p’(w+é)witdx+052/o (L+6)° (5 +%, +47 )d

+ CBGJrW\eMl(lJrTo)l_A (1 +t)*>\efuz(1+t)1_A \I/(Q) (4.33)

Let
. R 2
Fy(a,t) :=(14) ey + (148) 7T (w?tww% (p’<w+0> - (wzé)z)ibit)

O+ 772¢t1/111/1zt

6+2)
5 (1) M = TR (1) R (1) e

MY 7z >
MW +2(14+8)" 2" (4 C)uthitbar +17

Applying (4.23) and (4.24) to (4.33) yields

d [ ! -
%/0 Fz(x,t)dx+cs/0 (1407 (W + 92+ 97) + 1+ ] da
,)\(1+t)—)\e—uz(l+t)lf>\\yg7 1>,

l\J\H

—4(141)

<Cﬁa+2’\e‘“(1+T‘))l
for some positive constant c¢s. Thanks to (4.1) and (4.22), there exist two positive
constants cg and c¢7 such that, for any t > Tj,

[(1 +t)9+>\(¢t2t+¢it+¢§) +nﬂ < F2(957t) <cz [(1 +t)0+>\(wt2t+¢925t+wt ) +m(} )
4.34
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Then, for any t>Tp, it holds

1 1
i/ FQ(x,t)dx+CS(1+t)7A\/ Fy(x,t)dx

<C I (HT0) ™2 (] gy~ Aemh2(140) 7 2

Multiplying above inequality by e+ gives

1
% (e“*”H / F2<x,t>dl'> ORI UIFTT (14 1) A0 (H070 g2 4>y
0

where 0 =cg/(1—\). Integrating the above inequality over (Tp,t), one has

1 1
|| Patwtydo <et s [y 1) do
0 0

t
L ORI (+T0) " =801+ / (1+ s)f’\e“*”?)(”s)l_kds\llg
To

1
1—X 1—X
<Ce(HT0) 7 e=00140) / [(14+To)? A (2 +42, +2) (z,To)
0

F 02 (2, Tp) | da+ C O+ (+T0) =2 (14077 2
<OBIFAHTO) =2 (14! P g2 (4.35)

where 11 =max{J, 11}, vo=min{d,u2} and we used (4.34), (4.1) and

1 1
| Wk Tde <0 [ i+ v i) o T,
0 0

Then, it follows from (4.34) and (4.35) that
/Ol(wft o2, +2)de < OBITPA (TN 2 (1 gy =0+ =240 2 > 70 (4.36)
Analogous to Lemma 3.3, we can estimate fol 2.dz by using (4.5) and (4.36):
/1 P2, dx < CRITANHT0) ™ (1 4 )= (0N (D) g2 - 4>y (4.37)
0

We finally get the estimate (4.21) by combining (4.36) and (4.37). ad

Proof. (Proof of Proposition 2.2.) Lemmas 4.2 and 4.3 imply Proposition 2.2.
O
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Appendix. This section is devoted to showing the reason for the restriction of
Clx)=C.

then from (1.2)(1.4) and (2.1)-(2.2), we can deduce that (1,7,é) satisfy the following
perturbation system

b1 +17. =0,

7 3 (B = (DB dd T Al
m+<w+p> + (W +p) =p(p)e= (Y +p)es + Vs AT (A1)
e{IJéL‘ ,ll}’

with the initial value and boundary value conditions

1;0(33) ::1;@3’0) :,00($> —[3(33), f]O(x) ::ﬁ(xv()) :jO(x)7 T e (0’1)7 (A 2)
9(0,8)=9(1,t) =0, &0,t)=é(1,t)=0, >0. '
Differentiating (A.1), with respect to x and by (A.1); and (A.1),, one has
Yu+ (L+8) P+t — (& + ) —p(P)) e
N )
KEZI,’+ YT {13+ ~ . A..3
~Guat D=l Gt (7= (A3)

Multiplying (A.3) by [2(1 -I-t)a’tZJt +(1 +t)’8’(/~J] for two constants «a, 5 >0, and integrating
the resulting equation with respect to x over (0,1) by parts, we get

B

1[““)Wt+<1+t> (G4 pi) (10PN 1012 o

dt Jo

1 ~ o1 1 L 6
+/0 [(1+t)ﬂpa(1+t) 1pf§(ﬁf>\)(1+t)5 Aty

2(51)(1“)“}22@
1 ~

+/ 2(1+8)* = (1+t)° —a(l+t)* Pide
0

+ / P+ ) — (7)) [201+6)% s + (1+ )20, ] da

:_/01 <1/7ﬁjﬁ)x [214+0) P+ (1+8)P 4, | da

—/ (14D [(Par + 1)+ Puthe + (4 p) 2] da

0

1 . . ~
/0 2(14)0 (B + D)+ i + (P + D)),

the term fo (0 +7) = ()2 [2(1 1)yt + (1+1)P9), ]dx can be written as

/0 P+ ) — (7)) 201+ )20y + (1)), )
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d ! S v d ! - ) .
=gt J, AF0°p (ww)%dwﬂa/o 1+ (0 +p) = (p)) putbada

1 1
+ / (1487 —a(L+ 0/ (5+ p)d2de — / (18D (D4 D)o (B + 270 )
T / (140)% —2a(1 4+ (D4 0) — P (2)) Paadlr.

We need to choose a and g satisfying S+A<a<f+1 to ensure that the following
inequalities hold for all ¢ >0,

2(14+1) A~ (1+t)f —a(1+t)*" 1 > Co(1+1)>7,

(1+1)P —a(1+)* 1 > Co(1+1)7,

where Cy >0 is some constant. However, in order to estimate f01(1 —&-t)a(ﬁwz/;ﬂﬂwdx, we
need to choose o and f3 satisfying o< — A, which contradicts with f+A<a<f+1
due to 0 < A< 1. Thus, we expect that ¢, =0 which can be deduced by C(z) = constant.
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