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OPTIMAL DECAY RATES OF THE COMPRESSIBLE EULER
EQUATIONS WITH TIME-DEPENDENT DAMPING IN R”: (II)
OVERDAMPING CASE"

SHANMING JIt AND MING MET*

Abstract. This paper is concerned with the large time behavior of the multidimensional com-
pressible Euler equations with time-dependent overdamping of the form fﬁpu in R™, where
n>2, >0, and A € [—1,0). This continues our previous work dealing with the underdamping
case for A € [0,1). We show the optimal decay estimates of the solutions such that for A € (—1,0)
and n > 2, |lp = 1| p2rny = (1 +t)7%" and |lullp2gny ~ (1 + t)’%”“%, which indicates
that a stronger damping gives rise to solutions decaying optimally slower. For the critical case of
A = —1, we prove the optimal logarithmical decay of the perturbation of density for the damped
Euler equations such that [|p—1{| 2 (gn) | In(e+¢)|~% and llullp2@ny = 1+~ ln(e—l—t)\*%*%
for n > 7. The overdamping effect reduces the decay rates of the solutions to be slow, which causes
us some technical difficulty in obtaining the optimal decay rates by the Fourier analysis method and
the Green function method. Here, we propose a new idea to overcome such a difficulty by artfully
combining the Green function method and the time-weighted energy method.
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1. Introduction.

1.1. Modeling equations and research background. We consider the fol-
lowing multidimensional compressible Euler equations with time-dependent damping;:

Op+ V- (pu) =0,
(1.1) O (pu) + V- (pu@u) + Vp(p) Z—ﬁp%
pli=o=po(z) =1+ po(z), uli=0=uo(z),

where z € R", n > 2, u >0, A € [-1,0). Here, the unknown functions p(t,z) and
u(t,x) represent the density and velocity of the fluid, and the pressure p(p) = %p”
with v > 1. The initial data satisfy

(1.2) po(z) =1, ie., po(x)—0, and wug(x)—0, as|z|— oco.
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The underdamping case of A € [0,1) is considered in the first part [23] of our series of
studies, where we showed that weaker damping leads to faster decays. Here in this
paper, we focus on the overdamping case of A\ € [—1,0) and we prove that stronger
damping gives rise to optimally slower decays.

As we mentioned in the first part [23] of this series of studies, the damping ef-
fect plays a key role in the structure of solutions to the compressible Euler equa-
tions. Without the damping effect, the solutions of Euler equations usually possess
singularity-like shock waves and exhibit blow-up for their gradients [6, 7, 10, 12, 24, 34,
39]. When the Euler system of equations has the damping effect, the structure of the
solutions becomes more complicated and varies according to the size of the damping
effect, and of course, the study is more challenging. When A =0 and p > 0, the regular
case of damping effect in the form of —pupu, once the initial data and their gradients
are small enough, the damping effect can prevent the formation of shocks for the
damped Euler equations [38] and makes the solutions behave time-asymptotically as
the so-called diffusion waves for the corresponding nonlinear diffusion (porous media)
equations [19, 29, 30, 32, 33], while once the gradients of the initial data are bigger,
the blow-up phenomena for the solutions of Euler equations with regular damping
still occur [26, 46]. When A > 0 and p > 0, the damping effect —ﬁpu becomes
weaker as A increases—the so-called underdamping case. Here, for A € (0,1) and
>0, once the initial data and their gradients are small enough, the weak damping
effect can still guarantee the global existence of the solutions for the Euler equations
with underdamping [8, 11, 17, 18, 25, 35, 40], while the solutions will blow up at finite
time when the gradients of the initial data are big [8]. However, when A > 1 with
1> 0, the damping effect is too weak, and the Euler system with such a weak damping
essentially behaves like the pure Euler system so that the singularity of shocks cannot
be avoided, no matter how smooth and small the initial data are [8, 17, 18, 36, 41].
Such blow-up phenomena in this super underdamping case of A > 1 are determined
by the mechanism of the dynamic system itself, rather than the selection of the initial
data [8]. When A =1, this is the critical case, where the solutions globally exist for
p >3 —mn as shown in [17, 18] (see also [8, 14, 36, 41] for the one-dimensional case)
and blow-up occurs for ¢ <3 —n as studied in [17, 18].

For the global solutions of the dynamic system of partial differential equations,
one of the fundamental problems from both mathematical and physic points of view is
to investigate the asymptotic behavior at large time. For the time-dependent damped
Euler equations (1.1), when A =0, the optimal decay rates were technically obtained
by Sideris, Thomas, and Wang [38] when the initial data are in certain Sobolev space
and by Tan and others [42, 43] in some Besov spaces. For A € (0,1), the methods
for deriving the decay estimates of the solutions adopted in the previous studies for
the A = 0 case in [38, 42, 43] cannot be directly applied, due to the complexity of
the damping effect involving the time t. In our study [23], we apply the technical
Fourier analysis to derive the optimal decay estimates for the linearized system which
can be formally expressed by the implicit Green functions, then use the weighted
energy method with some new developments to obtain the optimal decay rates of the
solutions for the nonlinear Euler equations with time-dependent underdamping:

102 (p = 1) p2qny = (1 +8) =72 (G HleD,
100w L2 gmy & (14 £)~ 2 GHaD=22 1 A eo,1).

The new point observed in [23] is that, for A € [0,1), the weaker underdamping effect
makes the faster decay of the solutions, namely, the decay of the solutions at A =0 is
weakest, while the decays of the solutions around A =1~ are much faster.
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However, for A < 0, the so-called overdamping case, the relevant study for the
damped Euler equations, almost nothing is known, to the best of our knowledge. This
will be the main concern of the present paper. We consider the case for A € [-1,0) and
> 0. First of all, we focus on the case of A € (—1,0) and show the optimal decay of
the implicit Green functions by using Fourier analysis for the high frequency part and
the low frequency part, respectively, and further obtain the optimal decay estimates
for the solutions to the nonlinear Euler equations with time-dependent overdamping
(1.1) by the Green function method with some restriction on A. That is,

A m g,
105 (0 = Dl L2 (ry = (1 +8) 7= G HleD,

o ulsny = (14 FEHD e (<o),

but we have to restrict A € (*ni_ﬂ, 0) due to the bad effect of the overdamping. In fact,
from the above decay estimates, we realize that the overdamping effect for A € (—1,0)
makes the decay of the solutions become slower and slower, as A — —17. Namely, the
strongest overdamping at A = —17 reduces the solution decay the most. Just because
of this, we cannot close the high-order decay estimates for all A € (—1,0) by the Green
function method and have to leave the case of A € (71,7#_2] open. In order to
delete such a gap for A € (—1, —HLH], we propose a new technique, which is an artful
combination of the Green function method and the time-weighted energy method.
The Green function method cannot perfectly treat the high-order decay estimates for
A near —1, and the time-weighted energy method is also short in deriving the optimal
decay estimates, but it is very efficient to treat the high-order estimates. Hence we
try to combine these two methods together to get the optimal decay estimates for all
A€ (—1,0). In fact, the procedure to cleverly combine both existing methods is also
technical as we know. Thus, we can finally prove the optimal decay estimates for all
A€ (—1,0) as follows:

_lia, _lda, 1o
llp(t,z) =1 p2@ny = (1+t)" 7 lw(t, )| L2rny = (14+1)" 1 2 e (—1,0).
Second, we consider the critical case of A = —1, the most interesting but also the most

difficult case. We further show the optimal decay rates as follows:

_n — —_n_1
p(t, 2) =1 p2@my~|In(e+1)| "%, |lu(t,2)|| 2@~ (14+t) " | In(e+t)[ 7572, A=-1.

But we have to restrict the space dimension n > 7 for technical reasons.

For the other topics with vacuum for the damped Euler equations, we refer to the
significant works [13, 15, 20, 21, 22, 28]. For the recent study of shock singularities, we
refer to the important contributions [1, 2, 3, 9, 27, 31]. For the linear wave equations
with time-dependent damping, we refer to the pioneering studies by Wirth in [47,
48, 49]. For the time-dependent damped Klein—-Gordon equations, we refer to the
interesting results by Burq, Raugel, and Schlag in [4, 5].

1.2. Transformation of equations and notation. In order to study the
system (1.1), we switch it to a symmetric system. Let v = %( p(p)—1) =
%(p%l —1)and w= VT_I Then (v,u) satisfies the symmetric system

ow+V-u=—u-Vv—wiV-u,
(1.3) 8tu+Vv+ﬁu=—(u-V)u—vaU,

'U|t:0 = U0($)7 U|t:0 = Uo(l‘)a
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where vo(x) = %((1 + po(x))™= — 1), which behaves like jo() if the initial pertur-
bation is small.

Notation. We denote D; = —id;, and 0(¢) = .#(v) the n-dimensional Fourier
transform of a function v(x). We use H* = H*(R"), s € R, to denote Sobolev spaces
and LP = LP(R™), 1 < p < o0, to denote the LP spaces. The spatial derivatives 9%
stand for 9g! --- 99~ with nonnegative multi-index o = (az,...,ay) (the order of «
is denoted by |a| = Zij{ a;) and 8! stands for all the spatial partial derivatives
of order |a|. The pseudodifferential operator A is defined by Asv := Z~1(|£]|*9(&))
for s € R. The norm ||v||% stands for the || - |[x norm of the low frequency part
vl = F 71 (x(€)6(€)) of v, while ||v]|% stands for the ||-||x norm of the high frequency
part v" :=.Z (1 — x(£))5(£)) of v, where 0 < x(£) < 1 is a smooth cut-off function
supported in B (0) and x(§) =1 on Bg(0) for a given R > 0.

Throughout this paper, we denote b(t) = ﬁ with >0 and X € [-1,0) and we
let C' (or C; with j=1,2,...) denote some positive universal constants (may depend
onn, \, i, v, and o). Weuse f Sgor g2 fif f<Cg, and denote f=xgif f <g and
g 2 f. For simplicity, we define ||(f,¢)|x :=fllx + llgllx and [ f:= [;. f(2z)dz. The
norm || - || .2 will be simplified as || - || without confusion. For a matrix A= (4; ), the
norm || A|lmax := max; ; |4; x| is the maximum absolute value of all its elements. We
define the following time decay function:

[T+ (1 +8)" = (1452, Ae(-1,0),

1+ (297 A=—1,

1.3. Main results. For the overdamping case with A € [—1,0), our main results
for the global existence and uniqueness of the solutions as well as the optimal decay
esitmates are stated as follows.

(1.4) I'(t,s):=

THEOREM 1.1 (optimal L? decay estimates of nonlinear Euler system). For the

dimension n > 2 and A € (—+15,0), there ewists a constant g > 0 such that the

solution (v,u) of the nonlinear system (1.3) corresponding to initial data (vg,wg) with

small energy ||(vo, wo)ll ;115143 < €0 exists time-globally and satisfies
0| S(1+t¢ *%"*%M’ 0<]a|<[Z2]+1,
x ~ 2
(15) |08 u] £ (140~ F = (el 0 <ol < 3],

(v, )|l frgi+s S 1.
The first two decay estimates in (1.5) (i.e., the decay estimates on ||0%v|| with 0 <
lof < [5]+1 and ||0gu|| with 0 < |a| < [§]) are optimal and consistent with the
linearized hyperbolic system.

THEOREM 1.2 (optimal L? decay estimates of nonlinear Euler system). For
n>2 q¢€ 2,00, k>34, with v, = n(l/2-1/q), and X\ € (—;15,0),
let (v,u) be the solution to the nonlinear system (1.3) corresponding to initial data
(vo,uo) with small energy such that |[(vo,wo)l| ;. yrz1+x < €0, where g9 > 0 is a
small constant only depending on n,q,k and the constants 7, u, A in the system. Then
(v,u) € L=(0, +o0; HZITF) and satisfies

14X

{"{’?vllm<(1+t>—1¥*’m—2a', 0<]al <1,

~

lwllpe < (148~ 5 1ma—5",

~

(1.6)

where y1, 4 =n(1—1/q). The decay estimates in (1.6) are optimal.
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Remark 1.3. The above optimal L? and LY decays are formulated by means of
the technical Fourier analysis and the Green function method. The restriction of A\ €
(—345,0) comes from the following two main difficulties caused by the overdamping:

(i) The optimal decay of ||0%v|| for the linearized hyperbolic system of (1.3) is
slow,

1+
4

{||8magll(t,0)voz(1+t) n7%|a|, )‘6(7170)3
|o]

102G (¢, 0ol ~ [ In(e + )| 75772, A=—1,

where G(t, s) is the Green matrix (see (2.2)). One should be careful in calculating the
estimates of fot G(t,s)Q(s)ds involving general nonlinear terms Q(t).

(ii) The overdamping b(t) causes trouble in the estimates on b(t)0kwu - 9%+1v, which
is crucial for the high-order energy estimates on |[0¥*1v|| in the closure of the a priori
assumption.

(1.7)

Remark 1.4. The solutions to the linearized hyperbolic system of (1.3) decay
optimally slower for the overdamping case. We may understand it as follows: when the
overdamping is stronger as A € [—1,0), the high frequencies decay faster as e~Ca+t)' ™
(superexponential), while the low frequencies decay slower as

e~ CIPA+™  for X e (—1,0),
e~ClEPn(ett)  for critical A= —1,

and on the whole the solutions decay slower.

In order to formulate the decay estimates for all A € (—1,0) and especially for
the critical case of A = —1, we develop a time-weighted iteration scheme, which is
the combined time-weighted energy estimates and Green functions we build up in the
above, to close the decay estimates.

THEOREM 1.5 (optimal decay estimates for A € (—1,0)). Forn>2, N>[3]+2,
and A € (—1,0), there exists a constant €9 > 0 such that the solution (v,u) of the
nonlinear system (1.3) corresponding to small initial data || (vo, wo)||pr1na~ <eo exists
globally and satisfies
(1.8)

A 1—X

u(t, )| S A+~ T T

{Ilv(tw)l S+

The above decay estimates are optimal and consistent with the linearized hyperbolic
system.

Remark 1.6. Theorem 1.1 shows the optimal decay rates of all derivatives of

solutions [|0gv| with 0 < [af < [§] + 1 and ||0gu| with 0 < |af < [F], but A is

restricted in (—n1270). Based on Theorem 1.1, applying the new developed time-
weighted energy method, we further improve the optimal decay rates of ||(v,u)|| in
Theorem 1.5 for all A € (—1,0) and n > 2. But for the optimal decay rates to the

derivatives of the solutions as A € (—1, they still remain open.

S,

THEOREM 1.7 (optimal logarithmic decays for the critical case of A\ = —1).
Forn > 7, A = =1, and N > [3] + 2, there exists a constant ¢9 > 0 such that
the solution (v,u) of the nonlinear system (1.3) corresponding to small initial data
(o, wo) || Lina~ <eo exists globally and satisfies

{nv(t,-)n < |In(e+1)| "%,

" e, I < (1 40) 7 - [ ne + )| # 3.

Nl
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The above decay estimates are optimal and consistent with the linearized hyperbolic
system.

Remark 1.8. For the critical A = —1, the optimal decay of ||v|| of the nonlinear
Euler system (1.3) is powers of the logarithmic function, i.e., |In(e + #)|~%, which
differs from the classical algebraical decays. To the best of our knowledge, this is
the first result that shows the optimal logarithmical decays of the damped Euler
equations.

All the above decay estimates are valid for the Euler equation (1.1).

COROLLARY 1.9. For n > 2 and X € (—%5,0), there exists a constant €9 > 0
such that the solution (p,u) of the nonlinear system (1.1) corresponding to initial data

(po,wo) with small energy ||(po — 1,u0)||L1ﬂH[%]+3 <eg exists globally and satisfies

102 (p — >||,s<1+t> et el o<l <[2] 41,
(1.10) 0wl S (1+8)~ % 1“<'a'+1>+*, 0< |al <[2],

[[(0, W)l 140 51-

The first two decay estimates in (1.10) (i.e., the decay estimates on ||0%(p — 1)| with
0<|a| <[]+ 1 and [|0gu| with 0 < |a| < [ 1) are optimal.

Forn>2, g€ [2,00], k>34 [y2,4] wzth V2,0 :=1(1/2=1/q), and X € (—15,0),
let (p,u) be the solution to the nonlinear system (1.3) corresponding to initial data
(po;uo) with small energy such that ||(po — 1,uo0)l| . fr1++ < €0, where g9 >0 is a
small constant only depending on n,q,k and the constants 7, u, A in the system. Then
(p—1,u) € L®(0, +o0; HIZ1HF) and satisfies

(1.11) {Ilf);’(p— Dllze £ (1 +t)—7vl =l g<a <1,

lullzs S (1487 F a7,

where y1, =n(1—1/q). The decay estimates in (1.11) are optimal.

COROLLARY 1.10. Forn>2, N > [§]+2, and A € (—1,0), there exists a constant
€o > 0 such that the solution (p,u) of the nonlinear system (1.3) corresponding to small
ingtial data ||(po — 1, wo0)||pina~ <eo exists globally and satisfies

{np( 7))~ 1] < <1+t>;ﬁ”
et 2)]| S (148)= 50

A

The above decay estimates are optimal.

Forn>7, N> [5]+2, and A = —1, there exists a constant g > 0 such that
the solution (p,u) of the nonlinear system (1.3) corresponding to small initial data
l(po — L,uo) || pina~ <eo exists globally and satisfies

lp(t, ) — 1] < [In(e +1)| %,
lu(t,2)|| S (1+8)71 - [In(e + 1) 752

The above decay estimates are optimal.

The paper is organized as follows. We first leave the optimal decay estimates
of the time-dependent damped wave equations and the linearized system (2.4) to the
appendix. In section 2 we formulate the optimal decay rates of the solutions with high-

order derivatives up to [F]th order for the nonlinear system (1.3) with A € (—15,0).
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In section 3, by developing a new approach combining the Green function method
with the time-weighted energy method, we further improve the optimal decay rates
of ||(v,u)| for all A\ € (—1,0). Finally, the critical case of A = —1 with optimal
logarithmic decays is considered in section 4.

2. Green function method. In this section we apply the technical Fourier
analysis and the Green function method to the study of the asymptotic behavior of
nonlinear system (1.3). We rewrite (1.3) as

v a(i)-(5 ) (0T

and the solution can be expressed, by the Duhamel principle, as follows:

v(t,z)\ v(0,x) K
22) (s ) =oo (20)) + [ et aas.
where
[ Qi(s,x)\ _ [(—u-Vv—woV-u ~ (Gu(t,s) Gia(t,s)
Qs ) = (QQ(S,J:) T \—(u-Vu—wvVv )’ Glt,s)= Ga1(t,s) Gaalt,s))’

The Green matrix G(t, s) represents the evolution of the linear system starting from
time s to t. It should be noted that G(t,s) # G(t — s,0) since the time-asymptotically
growing damping ﬁ on (s,t) is completely different from the damping on (0,t—s).
Moreover, there is no explicit (matrix exponential type) expression of the Green matrix
G(t,s) due to the time-dependent coefficient b(¢). In fact, the abstract expression of

G(t,s) based on the Peano—Baker formula (see Proposition A.3 in [47], for example)
is

00 t t1 th—1
Git,s) =1+ A(tl,g)/ .A(tg,f)-n/ A, )ty - - dtadt,

k=175

with the noncommutative (A(t,§)A(s, &) # A(s,§)A(t, €) for general s #t) matrix
_4&T
A(t.€) :=( y * )

_ZS _m_%)/\lnxn

where ()T is the transpose of a vector. The exact time decay estimates of G(t, s) are
shown in Theorem A.5 in the appendix, where we write the Green function of time
and space G(t,s;x,€) as G(t, s) for the sake of simplicity. Here and hereafter, in order
to emphasize the effect of time ¢ for a given function v(t,x), we often simply write
v(t) instead of v(¢,x) if there is no confusion.

The linearized system of (1.3) (or (2.1)) is

5tv+V~u:0,

]
(2.3) Oyu + Vo + i+1)

vlt=0 = v0(7), Ult=0 = uo(7).

Tu=0,

Let u :== A7V - u and w := A tcurlu (with (curlu)? i= Oy, uF — O 0 for u =
(ul,...,u™)) (see [43], for example), where the pseudodifferential operator A is defined
by Asv:=.Z1(|¢]*5(€)) for s € R. Then the linearized system (2.3) is equivalent to
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O+ Au=0,
"
ou — Av + ———u =0,
(2.4) A (l—l-t))\u
Oyw + w =0,
(1+)>

U|t:o = UO(JC), U|t:0 = UO(JU), w|t=0 = wo(x),

where ug(z) = A1V - ug(z) and wo(x) = A~ teurlug(x). We note that the estimates
on (v, u) are equivalent to the estimates on (v, u,w). From (2.4)3, the vorticity w(¢, )
of the linearized system decays to zero superexponentially (as wo(x)e_“(l*'t)ld/(l_)‘)
with A € [-1,0)), which is faster than any algebraical decays. So we only consider the
first two equations of (2.4).

In order to formulate the optimal decay rates of the linearized system (2.4), we
consider the following two kinds of wave equations with time-dependent damping:

1
0o —Av+ 1 du=0, R
(2.5) N () P

U|t=o =1 (33)7 atU|t=0 = vg(x),

and

2 —A H — R"™
Oiu u—&—@t((l_'_t))\u) 0, xzeR",

uli=o =u1(x), Opuli=o = us(x),

(2.6)

which are satisfied by the solutions v(¢,z) and u(t,x) of (2.4), respectively.

We show that the optimal decay rate of u(t,z) in the damped wave equation (2.6)
is faster than the optimal decay rate of v(¢,z) in the wave equation (2.5), and further
we prove that u(¢, z) in the damped linear system (2.4) decays optimally faster than all
the damped wave equations (2.5) and (2.6). Therefore, there are cancellations between
the evolution of initial data if we regard u(¢, ) in the linear system (2.4) as a solution
of the wave equation (2.6) with initial data u; (z) = ug(x) and uz(z) = Avg(z) —pug(z).

The optimal decay estimates of the time-dependent damped linearized system
(2.4), together with the optimal decays of the wave equations (2.5) and (2.6), are
proved in the appendix (Theorems A.1 and A.5) by means of the technique of Fourier
analysis.

Compared with the underdamping case A € [0,1) in [23], here the overdamping
case A € [—1,0) gives rise to two main difficulties in the decay estimates of the
nonlinear system:

(i) |0%v|| decays slowly since ||Gy1(t,0)vo|| & (14t)~ 5 ™ for A € (—1,0) and even
worse ||G11(t,0)vo| ~ |In(e +t)]~% for A = —1. One should be careful in calculating
the estimates on fot G(t,5)Q(s)ds.

(ii) The high-order energy estimates on v,u)|| are generally deduced

30| needs the estimate

through the energy method, but the estimate on ||8[z"/
/ b(£)O/ P2y (1) . VA 242 (1),

where the overdamping coefficient b(t) = ﬁ = u(1+t)M for X\ € [~1,0) is growing
and causes trouble for A near —1.

2.1. High-order energy estimates with overdamping. For the closure of
the decay estimates of nonlinear system (1.3), we need to formulate high-order energy
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estimates. Note that the overdamping coefficient b(t) = 7{5x is growing for A €
[~1,0).

LEMMA 2.1. Let (v, ug) € HEIF with k> 2, and (v,u)(z,t) be the solutions of
the nonlinear system (1.3) for t € [0,T] with a positive number T and satisfy

1
(2.7) ||(v(t),u(t))HH[g]+2 < 50@7
where &g > 0 is a small number. Then it holds that
L
(2.8) [[CRD] e +/0 (lev(s)ni][%“ +b(8)|u(s)||2[g]+k) ds

S ”(UOvuO)”iI[%Hkv te [OvT]'

Proof. The case of time-independent damping (i.e., A =0) is proved in [42], and
the underdamping case A € (0,1) is proved in [23]. But, different from the previous
studies, for the overdamping case with A € [—1,0), here the main difficulty lies in the
absence of uniform upper bound of the overdamping coefficient. We divide the proof
into four steps.

Step 1. For 0 <j <[%]+k—1, we have

d , . .
(2.9) 02w * + b@) 17 ull* S ll(v, w)ll g - (107 0 + 07 ull®).
This can be proved by applying 97 to (1.3) and then multiplying the resultant equa-
tions by 94 (v,u), summing them up, and integrating it with respect to x over R™.
Here we omit the details.
Step 2. By applying 021! to (1.3) with 0 < j < [2] + k — 1, and multiplying the

resultant equations by 927! (v,u), and summing them up and integrating it over R™,
we have

d _ . .
(2.10) @l@l“(%U)HQ +o()[105 wl? S0, w)|| yigie - (1057 0] + 1105 ul?).
Step 3. For 0 <j <[§]+k — 1, we can obtain
d , A , A . ,
(2.11) @/aiu'vaiwr [0 0)|* S o(t) |04l - |03+ ]| + |04 wl®
+ (v, yegiee - (102 0] + 103 ul?).

In fact, this can be proved by applying 92 to (1.3)2 and multiplying it by 9*1v
(specifically, V&2v), utilizing (1.3); to deal with the mixed space-time derivative term
[ 010w - it v, that is,

||3§;VU||2+/8,5(3§;U)-V@ﬁ;va/b(t)aiu'V@iv:/aﬁ;Qg-V@iv,

and
/8t(8iu)~V8£v=%/6§u~vagv+/8§;(v-u) - 0,000

=5 [oruvon—0iT wiP+ [0V w0l
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Applying Cauchy’s inequality to (2.11), we then arrive at
d . ) ) . .
(212) - /@%u Vo + (|07 ol? S0P (@) |05l + (|0 ul?

@ )l yrgriee - (1027 0] + 104 ).

Next, we multiply (2.12) by W’ for 0 <j <[§]+k —1, to have

DV )+ oI L2

( / TR
/

5 ‘/|aﬂu Vo] + b(t) 0l +

0T |2

=I0) bt )|| |
1

+ @H(Uau)HH gre2 - (0571012 + (|02 u|?)

1, .. . 1
Ser =100 0)? + o) |0%ul]? + = |07 u?

~ () b(t)
1 ‘ ,
+ @H(MU)IIH[%W (037 ol + 10+ ),

where £, >0 is a small number. Therefore, for 0 <j < [2] +k — 1, we have

(2.13)

J J 1§12
dt( /auva >+()||8 |
1 B )
S o) 4 ull* + @H%HUII2 + m”(U»U)HH[%]H (o7 ol + (|95 ).
Step 4. Multiplying (2.13) by a small number &5 > 0, summing it up with (2.9)
and (2.10), we have
[n/2]+k 1
d d
@+ 2 | e gy | - Vol

( )HVUH ny4p—1 +b( )HUHQH[%Hk <0,

provided with the a priori assumption (2.7). Let us choose €2 > 0 to be small such
that

n/2]+k 1

1
‘ gy | B Vo] < Sl e

then we obtain (2.8). The proof is completed. d

The trickiest part lies in the treatment of b(t)||dlul| - |02+ v|| in (2.11), where
|02+10]2 is the only good term, and therefore b2(t)||02w||? arises (if Cauchy’s inequal-
ity is applied) and grows faster than b(t)||0w||? in (2.9). This is the reason for the a
priori assumption (2.7). We can prove that (2.7) is satisfied for A near zero. However,
the decay estimates required in (2.7) are not true for A € [-1,0) near —1, especially
for the case A = —1. In fact,

102G11 (£, 0)vo| ~ | In(e +£)[ "5 5 for A=—
and the decay condition ||v(t)|| gin/2142 < Jo(14¢)~1 in (2.7) is not valid.
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We can relax the decay condition of high-order estimates in (2.7) to a wider
range of A\. The crucial point is to avoid the decay conditions of ||v(t)|| gin/21+2. For
application, we prove the following inequality, which can be regarded as a generalized
Gronwall’s inequality with relaxation.

LEMMA 2.2 (Gronwall’s inequality with relaxation). Assume that w(t), g(t), and
H(t) are nonnegative functions, Co > C7 >0, 6 € (0,1), n >0, all are constants, and
F(t) satisfies (note that F(t) is not necessarily nonnegative)

(2.14) C1H(t) — g(t) < F(t) < CoH(t) + g(t),
and the differential inequality

(2.15) %F(t) P < WO HO(E) + g(t) V> 0;

then

(2.16) F(t) S max{F(0), S%«w(s)/n)ﬁ +g(s)(1+1/n))}.
and

(2.17) H(t) S max{F(0), sg?ogt)«w(s)/n)ﬁ +9(s)(1+1/m))}.

Furthermore, if w(t) and g(t) are monotonically decreasing, then

n 1 1 1 ]
(2.18) F(t) < F(0)e ¥t + (lee(()) + <1 + n) g(0)> e~ ¥t
1 1 t 1 t
it (3o
n 2 n 2
and
n 1 1 1 n
(219) H(t) 5 F(O)e_it + (WWH(O) + (1 + 7’]) 9(0)) e_gt

/=) 2 n)9\2)"

Proof. We may assume that C; = %, Cy =2, and 0 = % The other situation
follows similarly. For any ¢ > 0, if F'(t) > F(0), then two cases happen: (i) F(t) =
SUPge(0,4) F(s) such that F'(t) > 0; (ii) there exists a number s € (0,¢) such that
F'(s) =0 and F(s) > F(t). In both cases, we can find a number s € (0,¢] such that
F'(s) >0 and F(s) > F(t). Therefore, according to the differential inequality (2.15),
we have
n 1 1 n

(5)0(5) < T (s) + JH(s) +9(6) < 1)+ 50P(s) + (3 +1) )

ol

nF(s) <w(s)H

which implies
F(t) < F(s) Sw?(s)/n* + g(s)(1+1/n).

This immediately guarantees (2.16). On the other hand, (2.14) implies

H(t) S F(t) +g(t).
This together with (2.16) proves (2.17).
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If w(t) and g(t) are monotonically decreasing, then according to (2.15) and Young’s
inequality

LRy +nF(t) < w(t)HO(1) + g(1)

dt
< WW =0 (0) + T (1) + g(1)
< le/(lﬁ)(t) + %nF(t) + (g + 1) g(t),
we have
4 etp(n) =t (jtm) ¥ ;]F(t))

2

A

et/ 9>< ) +g(t)),

where we have slightly abused the notation “<” such that the inequality depends on
7 and 6 and the dependence is clear. Integrating it with respect to ¢ over (0,¢) gives

F(t)<F(0)e 2t + /t e~ 2(t=s) (wl/(l_‘g)(s) + g(s))ds

0

x
SF(0)e %" + / e*%t(wl/“*@)(o) + g(O))ds
0

Loy t t
O
SFO)e# + (w0 070(0) + g(0) ) ¥ 4 w1/ ‘9)(2>+g<;)

since te~ 1t < e~ 8%, Thus, (2.18) and (2.19) are immediately obtained. The proof is
completed. ]

We modify the high-order estimates Lemma 2.1 such that |[v(¢)]| ,1z1+2 does not
necessarily decay as fast as %ﬂ' The key ingredient is to avoid the estimate on |jv(t)||
such that Step 1 in the proo% of Lemma 2.1 is excluded.

LEMMA 2.3. Let (vo,uo) € HIZITF with k> 2, and let (v,u)(z,t) be the solutions
of the nonlinear system (1.3) for t € [0,T] with a positive number T, and satisfy

(2.20) 1((8), w@)l g2 <0, [[w@ g < 5o$, te[0,T],

where dg > 0 is a small number and w(t) is a nonnegative decreasing function. Then
it holds that

(2.21) IV (v, w13, 05000-1 SNV (00, o) 715001 + 05 - w?(t/2),  t€[0,T).

Proof. According to the estimates (2.10) and (2.11) in Step 2 and Step 3 of the
proof of Lemma 2.1, for 0 < j <[§] 4k — 1, we have

d, . : ,
(2.22) 108 0w + o) 07wl S (v, ) oL 2

| tg1+2
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and
d . , , , 4 ,
(2.23) ﬁ/angagw 107 0]12 S b(t)[|0dull - |05 0]l + [0 ul?,

where we have used the a priori assumption (2.20) such that |[(v(t), w(t))|| ;12142 < do
with a small dg. Multiplying (2.23) by a small number £; (only depending on the
dimension n) such that

i [ 100u- Voi| < 5100 + oull

and making addition of £;-(2.23)+(2.22), then we have

(2.24)

C‘;Qag“(v,u)n? +él/a;u~vagu> +b(0)][03  u|* + &1(|05F o] +5j/ag;u -Vl
SabOkul 1070+ 5 [ ol Vog -+ dlozt 7 + 2ok
Séb®)05ul - 107 vl + &0 vl* + iaiUQ + 00|05 ] + &1 107

where & > 0 is another small number (only dependent on n) such that £:;]/971v||?

is dominated by +£1]|03"!v||2. Noticing that b(t) is growing, £ can be chosen small
enough, and dy is small, too, we rewrite (2.24) into

(2.25)

d ) . ) = . 5 ) 2 ) .
dt@aywuwﬁm / a;u-va;v>+2||a;+1u||2+2||a;+1vn2+2 [ou-vor

Seb®)|0hul - 1o ]| + %H@iull2
2
SO)|0%ull - 1077 (v, w)| + (| O],

Let

F(t) = ||3i“(v,U)||2+51/5£U~V3§;v, H(t) =107 (v, w)|?, g(t) = [|0Lull?,

then
SH(t) — g(t) < F(t) < 2H(1) + 9(1
and
G P(0)+ S S a0 H (1) + 9(0),

with Sow(t) = b(t)||0Ju|| decreasing, provided the a priori assumption (2.20). Applying
the generalized Gronwall’s inequality with relaxation in Lemma 2.2, we have

H(t) = 077 (v, w) 2 S F()e™ T+ (832(0) + 9(0) )™ + 832(2/2) + 9(¢/2).

The proof is completed. ad
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2.2. Optimal L? decay estimates. We start with the optimal L'-L? decay
estimates of the nonlinear system (1.3) for the overdamping case of A € [-1,0).

LEMMA 2.4. For A€ [-1,0) and t > s> Ty (To > 0 is a universal constant only
depending on the constants A and ), then there hold

1021 (t,5)o(@) | STE I (t,5) - (ol + 011]")
102 Gia(t, )8 S (1+ 5 - TEH(15) - (glls + 197161 )

2.26) .
( 192Go1 (1, 9)6(@)]| S (L4 1) TEI 1) - (8] + o o)
feY 1+t A 24| «@
02 Gas(t. )8(@)| £ (15) - TF(ts) - (1101l + 21100 )
Furthermore,

(2.27) [02G2a(t,5)0() || S(1+ DM 1+ ) THI2(0,5) - (gl + ol

1+t

A
.Tatlal;
1+S) (t,9)

10222t $)() | S (

(2.28) : <(1 + )22 T2(t,s) + — + C’,J‘”(t,s))

1
(1+s)*
(ol +10k16]")

where k > 2 can be chosen arbitrarily large and Cy, >0 is a constant depending on k.

Proof. These estimates are simple conclusions of Theorem A.5 in the
appendix. ]

LEMMA 2.5. For >0, v>0, and A € (—1,0), there holds

(2.29)
. (1+t)_min{%ﬂ’"’}, max{%,@,'y}>1,
/ A(t,s)- (14+s) Vds < (1+t)_mi“{%57”f} ‘In(e+1), max{{28,~}=1,
0 (14¢)~7— 5841 max{ 28,7} < 1.

Proof. This can be proved by dividing the interval of integration into (0, %) and
(£,2). For details, see the first part of our series of studies [23, Lemma 4.2], for
example. 0

We are now going to prove the optimal L'~L? decay rates in Theorem 1.1 for the
nonlinear system (1.3).

Proof of Theorem 1.1. The outline of the proof is similar to that of the under-
damping case A € [0,1) in Theorem 1.5, as we show in [23]. But the details are totally
different.

Suppose that the local solution (v,u) exists for t € (0,T). Since we are concerned
with the large time behavior, we may assume that the constant Ty =0 in Lemma 2.4.
Denote the weighted energy function by
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E.(f):= sup (1+6) T+ el 9oy,

te(0,f) { 0< || <[n/2]+1

1a,, 4 140
Z (1—|—t) n+ (Ja|+1)— AHa(yuH
0<|a|<[n/2]

S ool ST (1) e,

jal=ln/2)+1 ol =ln/2}+2
Soo o), Y ||5?(U7U)}7
ol =ln72)+2 ol =[n/2}+3

where wyy, /2141, Win/2)+2, and O, /9142 are constants depending on n and A, and te
(0,T). We claim that under the smallness of the initial data, ||(vo,uo)
there holds

||L1F‘|H[L21]+3 S €0,

(230) E, (E) S 50 VEE (Oa T)7

where g9 > 0 and dg > 0 are some small numbers to be determined later.

The global existence and the a priori assumption (2.30) are proved through the
following three steps. For the sake of simplicity, we take the case n = 3 for an example.
Other cases with n > 2 follow similarly.

Step 1: Basic energy decay estimates. According to the Duhamel principle (2.2)
and the decay estimates of the Green matrix G(¢,s) in Lemma 2.4, we have

Jo(t)]] < 161 (£, 0)vol] + [Gaa(t, O)uo] + / 1Gaa (t,5)Q1 (5)]|ds + / 1Gus (t, $)Qa(5) ds
Seot+0 P04 [ T80 (1Qu() s + ()]s
0
+/0 (L8 TE (L 5) - ([Qa(3)]s + 1Qa(s)]]")ds

t
Seop(l4+8)~ Py B2 )/ T%(t,s)- (1+5) 2 1ds
0

14X 142

+ () /ot(1 + )M T2t (t,s) - (1+s)" 2 "2 ds

Seo(l+t)" T4 B2 (1 +1)~ 5",

where we have used Lemma 2.5 (note that %n + % —A>1forall n>2 and
A € (—1,0)) and the following decay estimates on ||Q(s)||z: and ||Q(s)| (here and

after, we use D7 :=9J and we may also write w as u for simplicity):

14+

1Q1() 1 r S luDvl[z2 + oDl S [ull| Dol + [[o]l[| Dull € EZ(s)(1 + )77 "7,

14+ 14+
2

1Q2() 1 x < lluDullzs + [lwDol 2 S [ull|Dull + [0l Dol B (s)(1+ )~ 7= "~
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For n =3, we have

[u(s)llz= S IDullF|D?u][# S En(s)(1+ )~ 5 304,
[0(s) ||z < |IDv|| % | D02 < Ep(s)(1+ s)—%n——(lw\)
| Du(s)|| o < |D%ul|2 || D?ul|? < Epn(s)(1+s)~ 1“"*%(w2+w3)7
1D(s) || < || D20]|2 | D30||? < En(s)(1+ )T n—%(1+,\+93)’
1D?u(s)|| e SIDPull B [D*ul|® < Eo(s)(145)7 5 e,
|D%0(s) | S ID||2 [ D*]| S En(s)(1+5)7 5 "3

and

1Q1(3)II < luDwl| + vDul| < [[ull o | Dol| + [v]| o | D]
SE2(s)(1+s) & nm 5 milhen)
1Q2(s)II < luDul + [lvDv|| < [[ull o | D] + [[v]] o< | Do
SE2(s)(1+s) & 804N,
1DQ1 ()| S IIDuDwl| + [[uDv]| + [lvD?ul| < E2(s)(1+ )~ = "0,
1DQ2 ()| < lluD?ul| + || DuDul| + oD + [|DvDu|| < E2(s)(1+ )~ & "2,

where

A0 3
911:min{ +%+53 1+ A+= (1+w2),1+4(1+)\)},

1 1 3 0
912=min{w2+2(1+w2),1+2(w2 +w3),1+A+4(1+A),1+A+23}.

Using the above estimates, we have

[ Du(@)]

t
S DG (¢ 0)voll + [[DGr2(t, 0)uol| +/ 1DG11(t,5)Q1(s)llds
0

+ / |1DGrs(t, 5)Qa(s) | ds

S0 1 [P (@) + D@ ()]s

0
+/0 (1+8)* - TE*2(t,5) - (|Q2() |1 + [1DQ2(s) ] )ds

142 142 14

t
SeolL+) T B [ TH k) (L) om0l
0
t
FEAD) [ (49 THes) - (14 5) s
0

1+ 142 1+ 1+

Seo(l+6) T L B2 (1)1 1) T
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provided that £2n + min{1,6;,} > 1. Similarly, we also have
ID?o(t)]
t
S1D?G11(t,0)vo| + | D*Gra (¢, O)uo | +/ ID?Gu1(t, 5)Qu1(s)||ds
0
t
+ [ 10260t 9Qa(e) s
t
Seo(1+) 7m0 +/ LE2(t,s) - (1Qu(8) ]l or +ID*Qu(s)|)ds
. ) 0
+/ (1+8) T (t,5) - ([|Q2(s)l| o + |1 D?Qa(5) | )ds
0

t
<EO(1+t)——n (14X) +E2( )/ F%+2(t,8) . (1+8)—#n—min{l,921}d8
0

+

t
+ EfL(t)/ (148> -T53(t,5) - (14 ) 2 nmin{55% 0223 g
0

Seo(l48) 5 =) L B2(g)(1 4 4) 5 (4N,

provided that

(2.31)
120 4+ min{1, 021}>1 20+ min{l, 05} > H2n + (1+ ),
LA+ min{3E2 00} —A>1, E2n+min{H2 00} —A>H2n+ (14 )),

where we have also used the following estimates:

ID*Q1(s) ]| S luD?vl| + [|DuD*v]| + || DvD?ul| + [[vD*ul| < By (s)(1+5) 7= "%,
ID*Q2(s) || £ lluD?ull + | DuD?ull + [[vD*v] + [ DuD*v|| S Ej(s)(1 + )~ = "%

with
. 1 1 1 3
021 :mln{2(1+w2)+93,1+)\+ §(WQ+W3),1+ 5(14‘)\4—93),0«’34— 4(1+)\)},

1 1 3 1
922:min{2(1+w2)+w3,wQ+2((.02 +W3),93+4(1+)\)71+>\+2(1+)\+w3)}.

The decay estimates on ||0%v]| for 0 < |a| < [2] + 1 are based on the optimal
decay estimates on |03 G11(t,s)|| and |03 G12(t, s)|| in (2.26). However, the estimates
on ||0%Ga1(t,s)|| and ||02Gaa(t,s)|| in (2.26) are insufficient for the optimal decay
estimates on [[0gu|| for 0 < |a| < [3]. In fact, we use the optimal decay estimates
in (2.27) to show the decay estimates on [|Ogul| for 0 < |a| < [3] in a similar way
as [|0gvl| for 1 < |af <[%]+1. One can check that the condition on the estimate of
|0%u|| for 0 <k < [2] is equwalent to the condition on the estimate of ||0**!v||. For
example,
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HU(t)II5||921(t70)vo||+||922(t70)uO||+/ ||g21(t,S)Q1(5)IIdS+/ 1G22(t, 5)Qa(s)||ds
. 0 0
Seo(l+8)7 5" +/0 L+ T () - (1Q1(s) | + 1 DQu(s)[|")ds
+/0 L+ 1+ TE(2,5) - (1Q2(s)l171 + [1DQ2(s)]")ds

t
<eo(l+t)~ a7 +E721(t)/ (40> TE (5 ) (14 ) s
0

14X 14+

) /ot(l HOML+ )N TE2(Es) - (L+s)” 2 "2 ds

142 - 1A, 1)
) n

Seo(l+1) T L E2(H)(1+1) =
Further, we use the decay estimates in (2.28) to show the decay estimates on
09wl for [§] +1 < |a| < [§] + 2 since the regularity required in (2.28) is one order
lower than that in (2.27). We note that in this case the condition on the estimate of
|0%u|| for [2] + 1 < k < [%]+ 2 is similar to the condition on the estimate of [|9Fv].
We have
ID°Q1(s) || < luD*ol| + | DuD?v]| + || D*uD?v|| + | DvD?ul| + [[oD"u|
S E(s)(14s)” 0,
ID°Q2(s) |l S luD*ull + -+ + [ D*uD?u]| + |[vD%0]| + -+ + | D*vD?v|
SE(s)(1+s) 50

with
931=min{;(1+m),;(u}2 +ws) + 1ZAn+9371;An+1+0§3,
Tn+;(1+)\+93)+w3,i(1+)\)},
932=min{;(1+w2)7;(w2 +ws) + R 1;An+1+%,
i(1+)\),Tn—&—;(1+/\+93)+93,1+/\n+1+)\+623}.

Therefore, we arrive at
ID?u(t)|| S 1D?Gax (¢, 0)vo| + || D*Gaa (£, 0)uo | + /Ot 1D?Gax (t,5)Q1(s) | ds
+ 1D2Ganlt, )@ (s)lds
Seo(l+1)H VA / 1+ T 1) (11 () e
+ | D?*Q1(s)[|)ds
+/Ot (M)A-Fgu(t,s)-((1+3)2’\-F2(t,s)+

1+s
([1Q2(3) | + [[D*Qa(s)[)ds

1
m + CKFK (t, 8)>
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t
<€0(1+t)—7n 1+E2( )/ (1+t))\1'\%+3(t’8> (1+S)—L>‘n min{1, 921}d$
0
A A 1
2 VN pEt2 . 22X\ 2 L K
+En(t)/0 (1) -T2 ((1+s) Pt )+ gyt + Ol (t,s))

(1+ 3)7%”7“’“}{%’922}&9

Seo(l+6)7 T L B2()(L+4)7 5 e,
provided that

(232 %n—i—min{l,@zl}—)\z%n—i—wg,
%n+min{%,022}> 1+>‘n+w2

Furthermore, we similarly have

| D3u(t)||
t
SID?Gar(t,0)vol| + || D?Goa (t, 0)uol| +/ ID?Ga1 (t, 5)Q1(s) | ds
0
t
+ [ 107Gan(t, Qo) s
<5O(1+t) 4 n—7(1+)\)+A

+/0 (1+6)* - TEH(Es) - (|Q1(s)llLr + 1D*Qu(s)])ds
+/0 (iii)%r%%(t,s). <(1+5)2*'F2(t75)+m+C,<F”(t,s)>

(1Q2(s)ll + 1D*Q2(s) ) ds
(1+t)——n—7(1+>\)+>\

+ Eﬁ(t)/ (148 T4t 5) - (1 4 5)~ {57 nt L 50 t05) g g
0

1+s
. (1 +8)7min{#n+
Seo(1l+6)7 s L E2()(141) 5 "%,

+E2(t) /t (2 s, ((1 )P T2(t,5)+ +CRF"”"(t,s)>

_t
(Its) 1

140 1+>\n+932}d8

provided that

S(1+X) = A>ws,
(233) %n—l— 031 — )\ Z %TL +UJ3,

%n-i-@:u > %n—i—wg.
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Hence, the estimate on ||D3v] is
D% (t)]|
t
SID?Gua (8, 0)vol| + ([ D3Gaa(t, 0)uo|| +/ ID?Gu1(t, s)Q1(s)||ds
0
t
+ [ 10°Guate. Qo) s
< 60(1 +t)f—>‘rsz(1+/\)
t
+/ LE4(ts) - (|Q1(s) L + ID*Qu(s)])ds
0
t n
+/ (1+)*-TEH(t,5) - (1Q2(s)] L1 + 1D*Qa(s)])ds
0
<50(1 _’_t)——n——(l—i-k)

t
+E3L(t)/0 T3+3(t,s) - (14 s) min{FEnt 1 5onton } g

t
+Er2L(t)/ (1 —l—S))\ -F%+4(t,s) . (l—l—S) min{ 142 4 142 +>\n+032}d5
0
Seo(l48)" 5% L B2(1)(14¢)" 5 "%,

under the condition

(2.34) A0 4051 + H2(2+3) — 1> H2n + 05,
1+)\n+932 —A>1.

Combining the above conditions together, we fix 05 = f%, wsy = 1+’\ -3, and

Wy = 1+’\n+ 1"2"\ for the case n =3. We note that the restriction on ws is (2 33)3 such
that ws < 039 an n + 035 is the decay rate o 9 , where the worst term
h <0 d H2n 40, he decay f||D3 here th
(decaying slowest) is HvD4vH restricted by ||v||pe. For general dimension n, we have
ID1E+2Qa(s)|| < 0D E 20 (s)] S vl L~ - En(s)
{1)[]vz IDEL) . By(s)  for odd m,

| Dlz] 1v||2 HD["]“sz n(s) for even n,
1
B2(s)- (14 5) "0 (14 5) 7 02 GHD) T for odd

~

N

+X 1+>\([ ]

B2(s)- ((145)~ 01820
~El(s)- (14s) 5 T

.1+ s)*%"*#([%]“)) for even n,

7l—77l

Therefore, it suffices to take winyo = 14 ’\n for general dimension of n. The condition
(2.31)1, which is necessary for the optlmal decay of |[D?v||, is Z2n+ws+H42.3>1
for n =3 and is 1£2n 4+ 12n 4 125 > 1 for general n > 2. That is, (1+ )\)n > 1,
which is equivalent to A € (—”T_l,()). The condition A\ € (— 0) is stronger than
e (—21)0).

Step 2: High-order energy estimates. We note that the condition (2.7) in Lemma
2.1 under the a priori assumption (2.30) is 22n > —\, which is true for A € (— 0)

n+2 )

Ewe
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and is false for A € (—1,—%7). Fortunately, the condition (2.20) in Lemma 2.3 under
the a priori assumption (2.30) is

1+ A 1+ A 14+ A 1+ A 14+ A
Zn—i—min{—;—)\,w[n/QHQ}:min{ + n—+ + — A, + n}>—/\7

4 2 2

which is true for all A € (—%5,0). Therefore, we can apply the high-order energy

estimates of Lemma 2.2 to get
(2.35) 190, 0) 12,5100 S IV (o, w0) g0 + 53602(0),

where dow(t) = (1 + t)*%””‘ decays to zero.
Step 3: Closure of the a priori estimate (2.30). We now combine the above
estimates and choose €y > 0 and dg > 0 to be sufficiently small such that

C(eg + 62 + dow(t)) < do,

where C' >0 is a universal constant. It suffices to choose C'dy < 1/4, and Cey = dy/2,
and to consider the problem starting form ¢, such that Cw(tg) < 1/4 since w(t) decays
to zero. We see that the a priori estimate (2.30) holds for all the time ¢ € (0, +00).

Finally, we show that those estimates (|03 v| with 0 < |a| <[%]+1 and ||0gu|| with
0 <|af <[%]) are optimal. We take the estimate on ||v|| for an example. According to
the optimal decay estimates in Lemma 2.4 and the energy estimates in Step 1 before,
we choose the initial data (vg,uo) such that |G11(¢,0)vg|| decays optimally; then we
have

IIv(t)H2ng(t,O)vollfllgu(t,O)uon/O IIQn(t,s)Ql(s)IIdsf/O 1G12(t, 5)Q2(s)]|ds,

where ||G12(t,0)uo|| decays faster than ||G11(¢,0)vg||, and the energyfot 1G11(t, s)Q1(s)|
ds + fg IG12(t, s)Q2(s)||ds decays no slower than ||G11(¢,0)vg||. We note that Q1 (¢, )
and Q2(t,x) are quadratic, and we rescale the initial data as (e1v9,1u0) with €1 >0
sufficiently small such that neither fot 1G11(t, s)Q1(s)]||ds nor fg [|G12(t, $)Q2(s)]|ds is
comparable with ||G11(¢,0)vg||. In fact, according to the proof in Step 1, we have

—la,

1G11(t,0)e1vo]| = o (1 + 1)
and
t t
[ 16t )Qu@ds+ [ [Grat.5)Qa(s)ds
0 0
SE2)(1+4) " T <o2(1+t) T <2(144) T n,

even though they are nonlinear. Therefore, ||v(t)| decays in the same order as
IG11(t,0)vo||. The proof is completed. 0

2.3. Optimal L9 decay estimates. We now turn to the L'-L? decay estimates
of the nonlinear system (1.3).
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LEMMA 2.6. For g € [2,00] and X € (—1,0), then
102611t 5)6(@) e ST 40l (E,5) - (1] + Dl TFag])
102G12(t, $)0(@) 0 S (1+ ) - T3t ) - (|l + Ol 00]")
102Ga1 (¢, 5)6(@) e S (14+ D> Tt g ) ()L + alettemag]),

Q 1+t A « al+ws
102 Gaa(t, )0 (@) S (155 ) - T 10 t9) - (Il + 0l =20

where y1,:=n(1—1/q), and wa g > V2,4 :=n(1/2—1/q). Furthermore, it holds that
102G (1, 8)6(a) 20 S (14014 Tt 21, 5) - ([l + e 1))
1+t

fe% ¢ <
192 Gant.)o@)l < (175
. <(1 +5)2 - T%(t, ) +

A
) .rvl,ﬁla\(t’s)

W + CL.I" (¢, 8))

(gl + @l trrremagt),

where k > 2 can be chosen arbitrarily large and Cy, >0 is a constant depending on .
Proof. These estimates are conclusions of Theorem A.5 in the appendix. ]

We prove the optimal L? decay estimates Theorem 1.2 of the nonlinear system
(1.3).

Proof of Theorem 1.2. Since A € (—;45,0) satisfies the condition in Theorem 1.1,
we see that the a priori assumption (2.30) in the proof of Theorem 1.1 is valid, which
is based on the smallness of the initial data [|(vo, uo)l| . 121+2 < €0. Here under the
stronger condition |[(vo,uo)l|, . y1z1+5 < €0, We can enforce the decay estimates as

follows. Denote the new weighted energy function by

1+

F,(t):= sup { (1+t)Tn+%‘a|Ha§U”7
t€(0:8) L o<|al<[n/21+1

ST () E R el DA gy
0<lal<[n/2]

S () E e o,
lal=[n/2)+1

(148) 75 "+l

[n/242<a|<[n/2)+k—1

M’!L w (63 (67
> (L) o relogul, Y ||5z(v7U)|}>

[n/2]+2<|a|<[n/2]+k—1 lal=[n/2]+k

9z vll;

where w,| and 0|, are constants depending on n and A. We claim that under the
small initial data condition ||(vo,%o)|| ;.. 4151+ < €0, there holds
(2.36) F,(t) <60 Vte(0,T),

where ¢35 > 0 and Jp > 0 are small constants to be determined.
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We take, for example, the case n =3 again. Note that for n =3, v2, =3(1/2 —
1/q) <3/2<2. We take k =3+ [y2,4] =4 and wq 4 =2 > 72 ,. We prove the estimate
on ||0%v||Le with |a| =1 in (1.6). According to the Duhamel principle (2.2) and the
L'- L% decay estimates of the Green matrix in Lemma 2.6, we have

[ Dv(t)]| a
S |[DG1(t,0)vol|ne + || DGr2(t, 0)uo|| e

t t
+/WD%w»mxwmm+/WD%mwwxwm@
0 0

142

t
Seo(l ) F e +/ Dt ity s) - (|Qu(s)llzr + 1D 22 Qu(s)l])ds
0

t
+/0 (L+8)* - T 2(t,s) - (|Qa(s)l|r + [ID 22 Qa(s)I])ds

14x

t
560(14_75)*%71«;*% —|—F3(t)/ F'“*"Jrl(t,s)-(l—ks) 7> n—min{1,031} 7,
0

Jr>‘n mm{lJr 032}d8

+F3(t) /Ot(l —I—S)/\ .I"YLq-‘rQ(t’S) . (1 +S) 1

Seo(l48)7 F T E L FA )1 +1) 7 F e
with wyp ¢ =2 > 73 4 provided that
(2.37)
{H)‘n—kmln{l 031} > B2y 4+ 2 20 4+ min{1, 931}>1
LA n 4 min{152 055} — A > 12y, , + 132 LR2p 4 min{12 05} — A > 1

Here, 220 + 031 and 132n + 632 are the decay rates of |[D3Q1|| and ||D*Q:|| under
the a priori assumption (2 36) (which is stronger than (2.30)) such that
ID?Q1(s)|l S luD || + | DuD?v]| + | D*uD?v|| + | DvD?ul| + [[vD*u]
SER(E) (14 s)" 0,
ID?Qa(s)|| S luD ull + -+ + || D*uD?ull + [[oD*0|| + -+~ + [ D*vD?v|
SEA(s) (1 5) e

with

. 1 1 03+ 0
0312111111{2(14—0}2)4-94, (LUQ+LU3)+93,LU2+ 32 4,

1 3
5(1+>\+93)+W3,1(1+)\) +w4},

1
*(wg +w4),

1
*(W2+W3) +w37w2 + 2

1
032 :mln{2(1 +w2) +w4, 2

3
1(1+/\)+04, (1+>\+03)+93,1+)\+ (93+(94)}
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Similar to the proof of Theorem 1.1, where |D3Q)|| decays at the same rate as
|(v,u)|| o since the energy ||D*(v,u)| is only bounded, here ||[D*Q|| decays at the
same rate as ||(v,u)|| due to the boundedness of | D®(v,u)|| and we take wy = H2n.
Then (2.37) is equivalent to 1f2n + H2n 4+ 12 > 1 that is, (1+ A\)n > 1. The
condition A > — " is stronger than (1+ A)n > 1 for all n > 2.

The high-order energy estimate is similar to Step 2 in the proof of Theorem 1.1,

where the restriction is the condition (2.20) in Lemma 2.3. Now it reads as

1 1 1 1 1
Z/\n—kmin{_;\—A,w[n/gprkz}:min{ +/\n—|— +)\—)\, +/\n}>—/\

4 2 2

under the a priori assumption (2.36) with wpy,/94x—2 = %n. It suffices to set A €

(—3i5,0). d

3. Time-weighted iteration scheme. In this section we develop a new tech-
nique which is the artful combination of the time-weighted energy method and the
Green function method to formulate the decay estimates of the overdamped Euler
equation. As shown in the above section, the Green function method is powerful
in the optimal decay estimates of the low-order energies but may have some trouble
for the high-order energies. Meanwhile, the classical weighted energy method is suit-
able for high-order energy estimates but the decay rates are generally not optimal.
Therefore, we combine these two methods together.

Denote as before b(t) = ﬁ with g >0 and A € [-1,0), and

Q1(t,z)=—u-Vv—wvV - u, Q2(t,z) =—(u-V)u —wovVo.

We may write u as u in the proof of this section for convenience. Rewrite the nonlinear
system into nonlinear wave equations

(3.1) 020 — Av+b(t) - 0w =0:Q1 +b(t) - Q1 — V- Q2
and
(3.2) OPu — Au+ 0, (b(t) - u) = 0,Q2 — VQ;.

3.1. Time-weighted energy estimates. The main idea of the time-weighted
iteration scheme is to sacrifice the decay estimates of the low-order energies (i.e.,
10/ 0%(v,w)|| with j = 0,1 and k + j = m > 0) for better decay rates of high-order
energies (i.e., ||0{0%(v,u)| with j = 0,1 and k+ j = m + 1) in the time-weighted
energy estimates, and the optimal decay rates of the basic energy ||(v,u)|| are closed
through the Green function method, where those better decays of high-order energies
are necessary.

We have the following time-weighted energy estimates for A € (—1,0) (the critical
case of A = —1 will be treated separately in the next section). Note that we replace
the small negative constant in the classical time-weighted energy method by a small
positive constant §, such that the high-order energies are decaying better but the
estimates on the low-order energies are absent.

LEMMA 3.1. For any nonnegative integer k, A € (—1,0), § € (0,222), and || =k,

4
there hold
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3.3)
d
E/ (8,0%v,VOtv,0%0) + /[(1+t)1+5|8t8§}v|2+(1+t)’\+5|V8§v|2]
5/(1+z§)‘S L(0%) +/8§(8tQ1+b(t)~Q1 —V-Q2) - (1 +1)*99,0%
+ 1 (1 +8)209%)
and
(3.4)
%/E“(@tagu,vagu,aﬁu)—f—/[(1+t)1_2)‘+‘5|8t8;"u\2+(1+t)_’\+‘5|V8§‘u|2]
s [0 ol + [ 0200 - VQu) - (140! 000w
+pa(1+6) 0% u),
where p1 >0 and po >0 are constants and

Ev(ata% Vo, 0%v) = (1 +t)129(10,000 ]2 4+ |VOL0|?) + (1 4+ 1)°(0%0)?,
E(8,08u, V%u,0%u) ~ (1 +t)72+°(19,0%u)? + |VOSu|?) 4 (1 + ) ~229)9%u?.

Proof. Multiplying (3.1) by (1+ )12 90,0+ pi (1 + ) %0 with § € (0, 142) and
w1 >0, we have (similar to Proposition A.1 in Appendix A of [45])

d

o [ [0 4 [Vof) 4 20 (14 )P0y

+ () (L + M = (A+ ) (1 + )27’

- / [(—(L4+X+0)(L+1) 0 +2b(8) (L + 1) A0 — 20 (1 + 1)) |90 ]?
F (=X H+A+ )L+ )M + 201 (14 )2T0) [ Vo[?]

+ /((/\ +0) A+ 6 — Dy (1 4+ M072 = 9, (urb(2) (1 + ) M0))w?

= 2/(6,56,21 () Q1 — V- Qo) (148000 4 g (14 £ M00)
which can be simplified as
%/E”(atu,vu,u) +/ (146018, + (201 — (1+ A+ 6)(1+ )| Vo?]
5/(1 +t)671v2+/(atQ1 +0(t)-Q1—V-Q2) - ((1 F M9, (1 +t)>\+6v)’
where

EY(8yv,Vv,v) := (1 4+ )20 (|0,0) + [Vo|?) + 201 (1 + ) vdyw
+ (b () (1 + 1) = A+ ) (1+ )27 1)0?
~(1 +t)1+’\+5(|8tv\2 + Vo)) + (1 —|—t)5v2.

Here we fix pq such that uy > 1+ A+ >0.
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Next, multiplying (3.2) by (1+¢)'=*+°9,u+ po(1+¢) " 9w with 6 € (0, 142) and
o >0, we have

% (148 (0ul? + | Vul?) + 200 (1 + 6) *u - dhu

A+ (u2b() (L +1) 7 = (A O (L41) T 10 (8) - (14 1) ) ]
+/ [(—(L=A+0)(L+ )20+ 2b() (1 + )M — 2p5(1 +¢) )| 0|
+(—(L=A+8) (L +1) 0 +2u5(1 +£) ) | Vau|?]
+ /((—A +0) (= A 40 — Va1 +1) A0 — 9, (uab(t) (1 + 1))
+ 20l (£) (14 1) = 3, (0 () (1 + 1)) fuf?

N 2/@@2 —VQ1) - (1+8)" M0+ pa(1+1)u).

We simplify the above equality as

% E“(0pu, Vu,u)+/ (1482221 0u)?+ (2ua — (1 = A+ 0)) (1 + )| Vul?]

S /((Mz — A8+ 202) (1 4 1) AT gy 2
i /@Q? —VQ1) - (1+6)" 0w+ po(146) ),

where

E“(0yu, Vu,u) = (1 + )22 (|0, + |Vul?) + 2u2(1 + 1) " u - du
+ (b)) (1 + )" M0 — (=X + ) pa (1 + ) A7 40/ (1)
(L)) uf?
~ (L) (0l + [Vul?) + (1+ )7l

We choose pio > 0 such that ps > 1 — A+ 4. Thus, the proof for the case of k=0 is
completed.

Differentiating 0% (3.1) and 9% (3.2), and multiplying the resulting equations by
(1 + )1H299,0% + py (1 4+ )*°0% and (1 + €)' °0,0%u + pa(1 + )~ T09%u,
respectively, we can prove (3.3) and (3.4) in a similar procedure. The details are
omitted. ]

Remark 3.2. Compared with the multiplier method developed by Todorova and
Yordanov [45] for the wave equation with variable coefficients (b(t) = ﬁ replaced
by W with @ € (0,1)) and the weighted energy method employed by Pan [37]
for the wave equation with underdamping with A € (0, 1), here for overdamping with
A € [—1,0) we take the weights only dependent on time. The reason is that for the
overdamping case, the simple weights depending on time can take advantage of the
time-asymptotically growing overdamping, which turns out to be sufficient for the
closure of the decay estimates for all A € (—1,0).

Remark 3.3. The energy estimates (3.3) and (3.4) are deduced by rewriting both
v and w as solutions to time-dependent damped nonlinear wave equations. This differs
from the approach in [37] for the underdamping case, where the estimates of u are
formulated according to (1.3)2. Here for the overdamping case we cannot apply the
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above procedure in [37] since the estimates on ||0¥u| depend on at least one of |05+ 1|
and ||0%*1ul|, and other efforts should be made for the closure of the weighted energy
estimates.

We define the following time-weighted energy functions for N > [2] + 2 and
0<k<N-1,

(3.5) & 1(T):= sup { Z (1+t)1+)‘+§/(|8t8§‘11|2—|—|V8§‘v\2)
|| =k

te(0,T)
(3.6) +(1+t)1A+§/(|ata§u|2+|vagu|2)] }
and
Upi1(T) = sup { 3 [/((1+t)1+5|8t8§‘v2+(1+t)>‘+6|V8§v|2)
te(0.1) | |2k
(3.7) +/[(1+t)1‘2*+‘5|8t8§u2+(1+t)‘”‘5|V0;’ul2]1}2’

which satisfies W3, (t) > (1+¢)~!- ®7,,(t). We may assume that $y11(T) > Px(T)
for all Kk > 1 and T. Otherwise, we can modify the definition of ®;1(7"). The
energy function ®j41(7) is defined according to the time-weighted energy estimates
in Lemma 3.1, but the decay estimates on ||v|| and ||u| are absent and insufficient for
the closure of the energy estimates. Additionally, we define the following weighted

energy function:

FESYN 14, 1-2
(38) Wo(T)i= sup {105 ol (14055 ful |
€(0,

The energy estimates in ¥o(T') will be closed through the Green function method
instead of the time-weighted energy method. There holds

N
(3.9) [(vo, wo) [l =Y @1 (0) + To(0) & D (0) + o (0).
k=1
According to the Sobolev embedding theorem, we have

14+ 1—X

(3.10) (1+6) 220l + (1 4+ 1) 2 D] poe

< Op(t) <By(t), 0<j<1,n>3
~1<k<(2]42 e S E(D), 0sjslnz3,

and

142446 14246

A+ T ol + 14+ ) T T uf oo + (1462 |00 £

(3.11) +(1+ ) |0l

S Oy (1) + o (t) < Pn(t) + Tyt _9
N1S£?§]+2 k(1) + Wo(t) S PN (t) + Po(t), 7

We have the following iteration scheme based on Lemma 3.1.
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LEMMA 3.4 (time-weighted iteration scheme). For A € (—1,0) and § € (0, 142),
there holds

(3.12)

¢ ¢
@%(t)—&—/ T2 (s)ds < ®%(0) +/ (1+ s)_l_#"w W2 (s)ds
0 0
t
* / /(ath +0(5) Q1 —V-Q2) - (1+ ) 00+ pa(1+ 5)*v)ds
0

t
+/ /(@Qg — VQl) . ((1 + 8)1_A+58t’u + /.Lg(l + s)_)‘+6u)ds.
0

For any integer k > 1, there holds
(3.13)
t

t
2, (1) + / W2, (s)ds < B2, (0) + / (1+5)7172 - W2 (s)ds

t
+ ) /0 /ag(ath +b(s)- Q1 —V-Qa) - (145)199,0%0 + 1 (1+5)00%)ds

o=k

t
£y / /8;’(8,5622—VQl)~((1+s)1_’\+58t8§u+/$2(1—&-s)_“‘sag‘ju)ds.
0

loe|=k

Proof. This is a simple conclusion of Lemma 3.1 with the notation ®(t), ¥x(t),
and Wy(t) defined by (3.5), (3.7), and (3.8). |

3.2. A priori estimates involving inhomogeneous terms. We estimate the
inhomogeneous terms in the inequalities (3.3) and (3.4) in Lemma 3.1. We first
consider the case of k=0 and in order to extend the proof to a general case of k>0
we should avoid directly using the energy estimates of the second order derivatives
(such as ||0;Vv||) in @ (t), since that would be (k+ 2)th order derivatives for general
k >0 and cause trouble in the closure of the weighted energy estimates.

LEMMA 3.5. There holds, for A€ (—1,0) and § € (0, 2), that
/(8tQ1 =+ b(t) . Ql — V . QQ) . ((1 + t)lJr)ﬁLaat’U =+ /Ll(l + t))\+51))

i /(8‘@2 = VQ) - (L+ )0 + pa(1+ 1) u)

SOT1(t) + (Uo(t) + (1)) - W2(t) + D (t) - W2(t) - (1 +8) 171

provided that ||v||p~ < ﬁ (which is valid under the a priori assumption ®n(t) +
Uo(t) < dp with a small constant &y ), where
Ji(t) S vl - @1(2).

Proof. The estimates of the two integrals are separated into two steps.
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Step 1. We first estimate the term involving b(t) - Q1 as follows:
/b(t) Q1 - ((1 4 t)1+)\+5at,0 —|—,u1(1 + t))Hr&v)
5/(IU'VU\ + 0V ul) - (1+ 6 ]00] + (1+)°[o])

< /(HVUIILOO ol + [Vl - Jul) - (14 6)40100] + (1 +6)° o))

<Dy +1) +6(1+t)1+5/|v||8tv|+<I>N(t)(1+t)* ‘2+“(1+t)5/02
+<1>N(t)(1+t)* +6(1+t)1+5/|u|\8tv|+<I>N(t)(1+t)’ “*“(Ht)é/\unm
<O+ (1+t)1+5 U1+~ W)L+t~ 5"
F RN (L) T (14 1)° o(t)(l—i—t)‘*”
F RN+ T (A )M Wy (4)(1+ ) \1:0( 1+t T
FONOA+O) T4 T(t)(1+ 1) T W (¢ )(1+t)*%"
SN (W) + Oy (TR (1 + 1) +<1>N<t>\113<t>(1 )T
+ONOWRH(L+6) 1 L @y ()P (1 )T
where
RN S T b whs nil Eb e o
1+%n21+%,
14+ 42n -8 >14 142,
for all n >2 and A € (—1,0), and

for n > 3. For the case of n =2, we modify the above estimate (replacing the inequality
(3.10) by (3.11)) as

/|vV ‘- (1+1)70)|0)
S [ ol 1V ul - (14100

S(Wo(t) + DN (E)(1+) 2 1 (1400 W () (1+8) 5 Wy (6)(1+1)”
= (Wo(t) + By () T2(H)(1+1) "%,

Next, we calculate the term involving 0;@1 as follows:

/6tQ1 (A0 + g (14 )M 0)

—A+46
2

N /(—&su Vo — @0V -u) - (1+6) A 000 + pa (14 )M v)
+/<—u-vatv) (48080 4 g (14 1) M0)

+ /(—va Opu) - (L4 6)" 000 + g (14 6)* )

=111+ Lo+ I13.
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We have

L 5 (100l IIVvIILw+||aw|| IV wfle) - (14 )Y dp0 ] + (14 ) lo]])
S () +1)” D (t )(1+t)f Ea
+U (14T et )(1+t) =)
(14 1) (¢ ()( +i) (1+t)’\+6\110(t)(1+t)—%”)
SON(OWIE)(1+1)" 5 P30+ dp ()W (1)(141)~ 1T 3
FON(E)WR() (14 ¢) 1R,

The crucial point in the estimates of I;5 and I3 is to avoid the direct estimates on
Vo and V - dyu through integration by parts such that

Ly = —1<1 H)AT /u -V(00)? = pr(L+ )M /vu - Vo

1
5(1+t)1+’\+5/(v w)(0pv)% 4 py (1 +1) ’\+5/8tv u-Vo+oV-u)

S (L) oo 00 P+ (LM Bgol] - (al] - [Vl + o] - [V - <)
S <I>N(t)(1+t)* W)L+ )0
)BT (‘Po< J(1+0) T By ()14 )7

+O(t)(1+1) - D (t)(1 +t)—13”>

SONOWR() - (1+6) 757 4 o (W ()(1+1) 7173
BN ()TR()(1 +¢) LR

and
I3 =—(14¢t)A+° /wv@tvv O — (1 + t)’\+5/w1}2v COpu=: Iy + I,
where

2= (1 +t)’\+5/wV(v2) - Opu
S+l - [Vl o - 9rul
A6 S ZI _ 14246 1— 2>\+5
SA+) W) (1+8) 75" Oy (t)(1+1) W ()T
SON(OTHO)(L+ 1) T L D () E(E)(1+ 1)1 T,

The treatment of V - d;u in I35 is to rewrite (1.3); into

ov+u-Vo

3.14 V-ou=—
( ) “ 1+ v
with 14 wv >1/2 since ||v||p <1/(y—1) and then

Zv+0u-Vo+u-Vou  w@(0w+u-Vo)dw
14+ wv (14 wv)?

V-atu:—

)
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similar to the proof of Lemma 2.2 in [37] but the trickiest parts and details are
different. Therefore,

Il = —(1 1)t /wv@tvv -Oru

O?v+ Opu - Vv +u - Vo
14+ wv
w (0w + u - Vo)
(14 wv)?

=(1+ t)“”‘s/wvﬁw :

— (14 t)tHA+e /wv@tv .
=: i3 + I3,
where

I3 S L+ ol| e [10p0]] - (10w L + l[uall o V0] L) D]

142

S+ () (1462 W (E) (1 4£) O+

1—X+48

SON()TI(H) - (L+18)7

The estimate on I71 is

0%v Ou - Vv

71 _ 1 t1+A+6/ A - t 1 t1+’\+5/ b SR vy

13 =(1+1) wvdsv 1+wv+(+) L L —
-Vo,
—i—(l—&—t)“”\'*"s/wvaﬂwu
1+ wv

1 2 )
:(1"”)1“”*/@”'M+(1+t)l+’\+5/wv@v- M
2 1+ wv 1+ wv

1 u- V(@tv)z

1 (Opv)? 1 wv
_ T+A+5 - ) 4 2 ) 1+A+6

. 1
+(1+t)1+’\+5/wv8tv-M—(1+t)1+)‘+5§/(8t1;)2. (V wou )

1+ wv .1—|—wv

= atJl(t) + I};,

where

(3.15)

Ti() = (14 )lreel L) 14 ¢)tHA+o Opvl]? < DIt
(1) = ()P [ w2 S (L ) ol [0 S ol o - B3(0):

We see that I 11 are integrals only involving first order derivatives and can be estimated
in a similar way as Iy;. This completes the proof of the estimates involving 9;Q; .
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We now consider the term involving —V - Q2 such that

/(—v “Q2) - (L+ )90 + py (14 8)2 )

n

=/ 3> 0nul 0y uF + @V V| (L4 )00 4y (1+ )M 00)

j=1k=1

+/(u'V)(v~u> (AT (14 1))

+ / @o(V - Vo) - (L6090 + p (1+ 1))

=:Io1 + Ipg + I3.
Similar to 111,

Iy S (IVal| oo | V]| + [V e [ V0] - (1 4+ 022100 + (1 +6)2F2fo]])
1+

SOn(E)(A+1)” el Wy (t)(1 +t),AT+6
. ((1 +O)IAG (4) (1 —i—t)*izé (M0 (1 +t)*%”)

14+

SON(H)TI(E) - (1 +t)*% + N (H)W2(t) + Py () T2(t) - (141) 1772 .

Integrating by parts implies that
I Z/(u V)V ) - (L + )00 + pg (1462 0)
=— /(V cu)? - (L+ )00 + pg (14 6)M )
- /(V cw)u - (14 0)V00 + py (14 1) 0Vo)
and
Iy = /m(v Vo) - (L + 6000 + (1 + )M 00)
= —/le’U|2 (A4 1) — /vav (14 1)1V,
72/w|V1}|2 S (L4 8)2 0,

All the above integrals not involving second order derivatives in Iso and Is3 can be
estimated as Is1, except for

I3y = — /(v cu)u- (14 1)A V0,0,

Iy = — /vav (14 ) AV,

which need to be treated in the same procedure as I{;. Specifically, we have according
to (3.14),
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Iy = — /(V cuw)u- (140 9v00

0,
:/ (1 + )V
1+ wv

1 u
- 5/ oo (1D V@) + -

__ 1 IR L4A+809 02 1 L
= 2/<v 1+m> (1+41) (Opv)* + -,

where we only write down the cubic terms involving second order derivatives and the
integral in the last equality only involves first order derivatives. According to (3.1)
and integration by parts

1213 = /wvAv (14 t)1+k+55tv +-o=(1+ t)lJ“\J“S /wv@tv . 8?1} + ..

whose trickiest part is the same as 14 in I{;. This completes the proof of the estimates
involving —V - Q.

Step I1. We turn to show the estimates of the second integral of this lemma. We
may only focus on the terms involving second order derivatives since the estimates on
the others are similar to those in the first step of this proof. We have

/((%Qz QD) - (14600 + o (1 + 1) o)

- /(—(u V)hu) - (14 ) P00 + pa(1+ 1))
+ /(—mvatv) (14 ) M08+ o (14 1))
b (9% (1 0 a1+
* /(va(v cw) - (L) 0w+ po(1+6) 7 u) + -

=D+l +Is5+ I+

We proceed as before such that
I3 = —%/(1 F )M (- V) D)2 — /ug(l ) MO u2(V - D)

:%/(1+t)””(v-u)|atu|2+/u2<1+t)*“‘;(Vlu|2))'3t“

and

Iso=—(1+ t)17>\+5 /(wvvatv) cOpu+ po(1+ t)*)\“ré /watv (V- (vu))
(3.16)
=(1 +t)1—>\+6/wvatv(v.atu> .

where the integral in the last inequality of (3.16) is in the same form as I{; but the
signs are opposite (such that this one is a good term) and the time-weight is stronger.
It suffices to modify the definition of Jy(¢) in (3.15) by adding a negative integral,
which does not affect the inequality J;(t) < ||v]|z= - ®3(t) in (3.15). We also have
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133:—(1+t)1_/\+5/(V-u)Vv-8tu— (1+t)1_’\+5/(u-Vv)-at(V-u)
—/u2(1+t)_’\+5V|u|2-Vv
=—(1+t>H+5/(u-w)-at(v.u)+--~
=(1+t)1*”5/(u-8tu)~6t(V~u)+.-~
:(1+t)1ﬂ+5/u. (V-(atu®8tu) _ %v@mz) L

:—(1+t)1**+5/(8tu®6tu)®(Vu)+(1+t)1**+5%/\atu|2(v.u)+...7

where “®” denotes the summation of all the elementwise products of two matrices
and we have used the following identity for a general vector-valued function ¢ (we
take ¢ = Oyu):

(3.17) (V- @)=V (poe) - Vipf.

The last integral I34 is estimated as

I34:—(1+t)1_)‘+5/w(v-u)Vv-8tu—(1+t)1_’\+5/wv(V~u)-8t(V-u)
(14 )M [V w)(V )+
:7(1+t)lf>‘+5/wv(V~u)oat(V-u)+-~-

_(1+t)1>‘+5/wv< Orv >.at(v.u)+...

1+ wv

according to (3.14) similar to the treatment of Ii;. Here the integral in the last
inequality of the estimate of I34 is of the opposite sign compared with I{; and hence
is a good term. The proof is completed. 0

Remark 3.6. From the decay estimates in the proof of Lemma 3.5, we see that
the inhomogeneous terms involving b(t) - Q1 and the terms involving vVv in Q2 decay
slowest since b(t) is time-asymptotically growing and v decays slower than w.

For general integer k > 1, we proceed similarly to deduce the time-weighted energy
estimates. The following “tame” product estimate is needed.

LEMMA 3.7 (see [16, 44]). For 1 <p < oo, s >0, there holds

luvlwer S lullLel[ollwer + [vllzee luflwer
for functions u and v in L NW?SP,

LEMMA 3.8. There holds, for any integer k > 1, A € (—1,0), that ¢ € (0, %),
and |a| =k,
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/ag(ath +b()- Q1 —V-Qa) - (141)°9,0% + puy (1 + ) 9%)

+ /a;(at% —VQ1) - (1 + )1 A°00%u + pp (1 4 1) °0%u)

SOk () + (Wo(t) + On (1) - W3, (H)(1+ 1)1
+ (Wo(t) + D (t)) - WE(E) (1 4 )"+,

under the assumption that ||v]| L~ < where

_1
y—1’

Ji1(t) S vl poe - @iy ().
Proof. For |a|=k >1 and n > 3, we have

/ b(t) - 9°Q1 - (1 +6) 00,05 + g (1 4+ ) H9%0)

k
< / <|u VOSu[+ Y [0 VI Tu] + [V - agu|>

j=1
(L) 1005 0] + (1+1)°1050])
S A+ a05] + (L +8)°[[ogvll) - (IIUIILoo AIVOZull + o e - IIVai‘UH)

1446 A4S

S (A+) W (O + )7 + 1+ 0w ()1 +1) )

1—-X495 A+4

-(‘PN(t)(Ht)‘ U ()T

+ N () (1+1)" . Wppr (B)(1+1)" *;5)

SN T (1) (Ve (1 +0)7F + ()1 4075
SON(OTZ, ()1 +1)2 +Dp () T2(6) (1 + 1)~ (FAFE),

where we have used (3.10) and Lemma 3.7. The case of n = 2 follows similarly

according to (3.11) as follows:
/ b(t) - 92Q1 - (1 + ) 90,0%0 + s (1 + 6992 0)
S+ 0050]l + 1+ ) |0g0])) - (lwllzs - IVOFvll + o]l o< - [ VOTul])
< ((1 F ) (46T 4 (1)) (1 +t)’AT+5)

—X_ 14248 At+s
2

: ((\I/o(t) F N1+t T Oy (L)

+ (Wo(t) +(I>N(t))(1 —l—t)_%_% . \I’k+1(t)(l _’_t)_—/\;&)
< (Wo(t) + Bx () Wi (1) (Tasa (D 4107+ W()(1+0)7 )

S (o) + P (8) - W2 ()(L+1)"T + (Wo(t) + Dy (1)) - W2(E)(1 +¢) " HAD).,
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The other integrals are treated in the same procedure as in the proof of Lemma
3.5, where all the terms involving the (k+2)th order derivatives are estimated through
integration by parts such that ¥ o(t) is not needed. d

3.3. Closure through Green function method. We employ the Green func-
tion method to deduce the basic energy estimates in Wy(¢).

LEMMA 3.9. There holds, for A€ (—1,0), that
FH) T W (BN (E) - (L),
I (@ () + o () D (t)

ol S ll(vo, wo)llLarz2 -

(1

[l < ll(vo, wo) [ Lrmmr - (T 42)7 7%
14+ 1—X

2 .

(4t

Proof. The proof is similar to that of Theorem 1.1 but the a priori assumptions
are different. According to the Duhamel principle (2.2) and the decay estimates of
the Green matrix G(t,s) in Lemma 2.4, we have

t t
IIU(t)H§Hgn(t,o)voll+Hg12(t,0)u()||+/0 ||g11(t,8)Q1(8)Hd8+/0 1G12(t, 5)Q2(s)[|ds

t
SH(UO,Uo)Hlem~(1+t)’%”+/ P2 (t,5) - (1Qu(s)lIr + 1Qu(s)]1")ds

+/0 (149 TE(E ) - (1Q2(5)|71 + 1 Q2(s)")ds

1+ 1—X+496

t
S (o, wo)llprrpe - (1487 " Wo )‘I’N(t)/ L2 (t,s)- (1+5)" 1" 2 ds
0

t
+ \Ilo(t)<1)N(t)/ (L4 s) T3 (L) (14 5) 2n= 23 g
0

—A, . e,
S l(vo, wo)llprze - (T+8)" 7% "+ Wo(t) Py (t) - (L+1)" 7 7,
where we have used Lemma 2.5 (note that

142 1246 ~ 14X | 1=A43 _ s
Lidp g L8 > 1A 4 1248 4 85
(3.18) {1i>\ e )\2> 1) | 1aass f\, 14951

TNt TR mAZ T A= >
for all n > 2 and A € (—1,0)) and the following decay estimates on ||Q(s)||r1 and

1Q(s)|| (here and after, we use D7 :=9J):
1Q1(8)llzr S luDvl[Lr + [[oDul| L S (lull[| Do} + [of[[[ Du

142 1— _ 14246
2

SWo(s)(1+8) "5 "7 - Dy (s)(1+9)

1—X+48

FW(s)(1+8) T By (s)(14s)" 2

142 1246

SVo(s)®n(s) - (T+s)" T2,
1Q2(8)llzr S luDul|r + [vDv]| L < flull[| Dull + [[o]l | Do

14+ 1—X46
2

SWo(s)(1+8)" 5 "7 - by (s)(145)"

1+2+46

+Wo(s)(148) " y(s)(14s)

14X 1+A+(5

SVo(s)®n(s)- (1+s)" T
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The decay estimates on ||Q1]| and ||Q2]| are at least at the same rates as ||Q1 |1 and
Q211 since the estimates on || Dv|| e and || Du| L decay at the same rates as || Dv||
and ||Dul| according to (3.10) and (3.11).

In order to deduce the optimal decay estimate on ||u| we need to utilize the
optimal decay estimate on Gog in (2.27), which needs || DQ2||, instead of (2.26), which
only needs ||Qz||. We see that

1DQ2(s)|| < |luD?ul| + | DuDul| + [[vD?v]| + | DvDv|
S Nl [ID*ull + || Dul| Lo || Dul| + [[v]| L [ D? ]| + || Dol L= || Do
O (5)(1+ )70 4 DR (5)(1 4 5) (AT, n=>3,

1= 14A4S 1-X2+8

(Pn(s)+Wo(s)(1+s)" =7 ~— 1 - dy(s)(1+s)" 2

<

~ +q>?v(s)(1+s)_(1—A+5)+?%§(S)(1+8)—(1+A+6) L
—&-((I)N(s)—i—\llo(s))(l—i—s)_%_% “Dn(s)(1+s)” 5t , n=2,

< J R ()X +5)" (A, n>3,

M (@n(s) + To(s) P (s) - (1+5) T =2,

S (@n(s) + Uo(s)) P (s) - (L+5)"FAFED >

according to (3.10) and (3.11). Therefore, we have
¢ ¢
lu@®)] < ||921(t70)vo||+\\922(t,0)uo|\+/ ||g21(t78)Q1(5)||d5+/ 1Ga2(t, 5)Qa(s)||ds
0 0
t
Sl wo,wo)laam - (14+6) 5" +/ L+ -TE () - (1Q1(9) | + 1Qu(s)]|")ds
0

+/O L+ )1+ TEF(2,5) - (1Q2(5) 172 + [|1DQ2(s)]")ds

_14a, 1o
Sl (wo,wo)llpimp - (L42)” 4" 2

1+ 1—X+446
4

+q]0(t)q)N(t)/Ot(1+t))"Fg+1(t,5).(1+S)n yi

t
+ (PN (t) + ‘I’o(t))q)N(f)/ (14+6) (145 -TEH2(L,5) - (1+ )" g
0
— A, 1A _laa, 1o
S l(wo,wo)l[piams - (L4717 72 + (BN (2) + Vo (1)) On(E) - (L+ )" T "7,
since
HAn 41080 N> A L 10 A1 -2+ 5>,
W I > Bhn 4 1A
T+A+36-22=1-X+35>1,
L+ A+ 35 —2)3> LAy 4 122

(3.19)

for all n > 2 and A € (—1,0), except that the last inequality in (3.19) is not true for the
case of %n >1—-A+ %6 . Fortunately, this case has already been proved in Theorem
1.1 by means of the Green function method (for A € (—%5,0), i.e., 20 > —X, which

covers the exceptional case here). The proof is completed. 0

Remark 3.10. Introduction of the positive constant § plays an important role in
the closure of the optimal decay estimate of ||v|| (especially for the case of n = 2)
according to the condition (3.18) in the proof of Lemma 3.9.
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We combine the above time-weighted iteration scheme and Green function method
to close the decay estimates for A € (—1,0).

PROPOSITION 3.11. Forn>2, N > [§]+2 and A € (—1,0), there exists a constant
g0 > 0 such that the solution (v,u) of the nonlinear system (1.3) corresponding to small
ingtial data ||(vo,wo)||pingy <eo exists globally and satisfies

(3.20) {v(t)ll§(1+t)lﬁn,

14+ 1—X
4

lu@® S A+t~ "=

The above decay rates are optimal and consistent with the optimal decay rates of the
linearized hyperbolic system.

Proof. We claim that the a priori decay estimate
(3.21) PN (t) + Wo(t) <do

holds for all the time ¢ > 0, under the small energy assumption of initial data
(v, wo)||LinE~ < €0, where g9 and §y are positive constants to be determined. In
fact, Lemma 3.9 tells us that

(622 W)= sip {1+l (14T ul } Se0+ 5
€(0,

Substituting the estimates of inhomogeneous terms in Lemmas 3.5 and 3.8 into the
time-weighted iteration scheme (3.12) and (3.13) in Lemma 3.4, we have for integer
0<k<N —1 that

t

t
<1>§(t)+/ m%(s)d35@§(0)+J1(t)+/ (1+s)—1—%*"+5-\113(s)ds
0 0

t t
+50/0 \Iff(s)dswo/o (1+4s)" 175 W2(s)ds,
t

t
‘I’i+1(t)+/ ‘I’§+1(8)d55‘1’i+1(0)+Jk+1(t)+/ (1+s)71 7% Wi(s)ds
0 0

t t
+50/ qxﬁﬂ(s)dswo/ (14 )71 72 W2(s)ds,
0 0
where
Ji(t) Slvllpe - @3(t) S (Pn(t) + To(t)) - T(t) S S0P (1),
Jier1(t) S vl pos - Py (8) S (Pn () + Vo () DF 41 (1) S GoPF 41 (1)

We note that dy and gy are small such that the above inequalities can be simplified
as

t t
(3.23) 80+ [ WBods$eb+ 00 [ (140 s
0 0
t t
(3.24) ‘I)%H(t) JF/ ‘IfiH(S)ds Sed+ / (1+5)7172 . W2 (s)ds.
0 0

Multiplying (3.24) by small positive constants for 0 < k < N—1, summing the resulting
inequalities up together with (3.23), we have

t
> @§<t>ssﬁ+wa<t>/ (L45) P ds 2t (0 +82)°,
0

1<j<N
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according to the estimate (3.22). Therefore,
O (t) + Wo(t) Seo + 05 < do

for positive constants €y and &g small enough.

We can show that the decay estimates (3.20) are optimal in a similar way as the
proof of Theorem 1.1, just replacing the estimates on ||v|| and ||u|| by those in Lemma
3.9. The proof is completed. |

Proof of Theorem 1.5. It is immediately proved from Proposition 3.11. O

4. Critical case of A = —1: Optimal logarithmic decays. This section is
devoted to the critical case of A = —1. We show the optimal decay estimates such
that |Jv(t)|| decays as powers of In(e + t), that is, ||v(t)|| ~ |In(e + )|~ *

We start with the optimal decay estimates of the Green matrix for the critical

case of A = —1, which are special cases of Lemma 2.4. Here we write it down for the
sake of convenience.

LEMMA 4.1. For A= —1, there hold
(4.1)
N 1+¢\\2(5+la) N
10261 (t,5)o@)| < (141 (1)) (Nl + I2klol")

1+s
107 Gr2(t, s)o(2) | < (1 +5)7" - ( ( )) $(3+lal+1) <||¢||lLl . ||8_,La|¢||h) |
D) HE (i + oo
+1

105 Gor (t,8)p() | S (L +8) 7" - ( (

1+
105Gt 0 S (300) ™ (1 (TN T (ol + ko)

Moreover,

105 Gaa(t, 5) ()|

U caen e (e () (o 4 poletra)

Proof. These estimates are simple conclusions of Theorem A.5 in the
appendix. 0

The following time decay estimate of the “convolution” type integral of two critical
time decay functions involving a logarithm plays an essential role in the Green function
method for A =—1.

LEMMA 4.2 (logarithmic time decay functions). For 5 >0 and v > 1, there holds
(we may assume that t>1)

(4.3)
|In(e + t)|~mintAr=1 -y > 1,

¢ L4+t\\ 8 L
e - Vds =~ e =
/0 <1+111(1+8)) (14+s) "|ln(e+ )| "ds In(In(e® +t)), v=1,

[In(e +¢)|*77, v<1.
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Proof. For v <1, we have

/Ot (1+1n(1“))‘5<1+s>1|1n<e+s>|7dss/0t<e+s>1|1n<e+s>l”ds

1+s
_ (ne +4), v=1,
|In(e +1)['=7, y<1,

and

/Ot <1+ln (g))_ﬂu+s)’1\1n(e+s)|*7ds
2 [ (11 () ) e

¢
z/ (e+s)"In(e +s)|Vds
t
N{ln(ln(ee—l—t)), ~v=1,

|In(e + )77, y<1.

For v > 1, we calculate the integral divided into (0,¢%) and (¢,t), where € € (0,1)
is a small constant to be determined, as follows:

/tt (Hln(Hz)yﬂ(l+5)*1|1n(e+s)|ﬂds

(44) < /t (e+38) " In(e+s)|ds

e

~|In(e+1°)|"0Y x|eln(e + )|~ O~V

and

/0( ( ))7 (1+5) " In(e+s)|7ds

t
/ 1+1 e+s)) (e+8) " HIn(e+s)|Vds
0
e+t -1
(1+m )) d(
wn [ -
1 NI
- \1n(e+s)|—<v—1>(1+1n(e+ )) ]
v—1 e+s o
+/ts ’
o 7~
Now we fix £ > 0 to be sufficiently small such that
/ts .
o 7—1

= ;/0 (1““(Ziz))fﬁws>‘1lln(e+s>\—7ds,

1|11r1(e—|— s)|_(7_1)>

e+ 5) "0 (e 4 5) (1 +1n (:Iz))_ﬁ_lds.

(e +s)|" O D(e+s)" (1 +1In (:12))7&1(13
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one of whose sufficient conditions is

8 e+t\\~"! 1
1 (1+m(=2)) =3 ),
7_1|n(e+s)| +In . <3 Vs e (0,t%)
It suffices to take%~ﬁ§%,which is true for a small € € (0,1). Now (4.5) reads
as
tE
I AN
/<1+ln(—1_—::s)) (1+s) Y 1In(e+s)|Vds
0
-1 t\\ —B7t°
z[ |1n(e+s)|*(7*1)<1+1n(€+ )) ]
v—1 e+ s 0

~ |In(e+ 1))~ — (e +£)]~0~YP & [In(e + )| 7.

On the other hand, we can improve (4.4) as

t L+t\\ 8
/(1+ln( + )) (1+ )"} In(e + 8)|"ds ~ |In(e + £)| "D,
t

. 1+s
since
t
1+¢\\ 78
141 (—)) 148)~11 ~1d
/ts( +1n T (14+s)" " |In(e+9)| s
t
Z/ (e+38) " In(e +s)|Vds
i
%|ln(e+t/2)|_(7_1)%|ln(e+t)|_(7_1).
The proof is completed. ]

We apply the time-weighted iteration scheme developed in section 3 to the critical
case of A= —1.

n

LEMMA 4.3. For any nonnegative integer k, \=—1, 6 € (0, %), and |a| =k, there
hold
d

7 E?(0:05v,Vosv,05v)
+/ [(148) - [In(e + )P 10,0%0% + (1+6) ™" [In(e + )P | V0[]
(4.6) 5/(1+t)—1.|1n(e+t)|5—1(ag;v)2

+ /85’(@@1 +b(t)-Q1—V-Q2) - (|In(e +t)°+19,0%v
+u(1+1)71 - [In(e +)[°0%)

and
(4.7)
d u (e} (e} (63
a/E (005w, VoS u,05u)
—|—/[(1—|—t)3~|ln(e—|—t)|5|8t3§u\2+(1+t)-|1n(e—|—t)|5|V3§‘u|2]
S [0 e+ )10z

+ /a;;(ath —VQ1) - (1+1)2|In(e+1)|°0;0%u + pa(1 + 1) - |In(e + 1)|°0%u),
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where p1 >0 and po >0 are constants and
EY (0,09, Vgv,020) = |In(e +)[* T (|0,00v]* + |[VOZv|*) + |In(e + )|° (92 v)?,
E%(0,0%u, VO%u,0%u) ~ (1 +1)? - |In(e +t)[°(10,0%u|? + |VO%ul?) + (1 +t)?
In(e+t)|°|05ul?.
Proof. This is proved by multiplying (3.1) by
|In(e +)|°T10,0%0 + p1 (1 +1) 1 - |In(e +1)|°0%v
and multiplying (3.2) by
(1+)*-[In(e+1)°0 05w+ pa(1 + 1) - [ In(e + )
with 6 € (0,%) and 4, p2 > 0. We note that the time-weight of ;0% v is |In(e +¢)[° !

instead of |In(e +¢)|°. The reason is that the time-weights are chosen such that

O(|n(e + )" )~ (1+ 1)~ [In(e+1))°

and
(1 +1)*-|In(e + t)|5) ~(1+1t)|In(e+ t)|‘5.
The rest of the proof is similar to Lemma 3.1. We omit the details. O
We define the following time-weighted energies for the critical case of A = —1,

N>[3]+2,and 0<k<N —1:

(48) B (T) = sup {Z [In(e + )+ / (10:05 0] + VO 0l?)

te(0,T) o=k

1
2

+(1+1)%- |ln(e+t)|5/(|8t8§‘u\2 + |V8§‘u2)1 }

and
Up1(T) := sup { Z l/ [(1+1) - [In(e+ 1) 9,050
te(0,T) o=k
+(14+) - |In(e +1)[°|VOLv|?]
(4.9)

+/ [(1+1)% - [In(e + )| 0,02

+(1+1¢)- |1n(e+t)|5|va§‘u|2]] }2.

We may assume that @41 (T) > ®,(T) for all £ > 1 and T. Similar to the case of
A € (—1,0), here for A = —1 the energy ®y41(T) is defined according to the time-
weighted energy estimates in Lemma 4.3, but the decay estimates on |jv|| and ||u|| are
absent. Therefore, we define the following weighted energy:

(4.10) Uo(T)i= sup {|me+ )% ol (1+1) - [In(e + O] F 4 ful }.
te(0,T)
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The energy estimates in Uo(7') will be closed through the Green function method
instead of the time-weighted energy method. There still holds

N

(4.11) ool = 3 ®(0) + T (0) = By (0) + To (0).
k=1

According to the Sobolev embedding theorem, we have

(4.12) [In(e + 1) % [|07v]l e + (1+1) - [In(e + 1)] 3|07 o

< Op(t) SON(t 0<j<1,mn>3
N1§£?§]+2 k()/\/ N()? —.7— 7”-7

and

(e + )2 o]l e + (14£) - |In(e+ )| 27 ||u]| o
)
(4.13) F (e + )] F 10,0 e + (14 1) - [In(e + 1) 2 [|0pul| 1~

S By, (1) + To(t) < Dn(t) + To(t _o
N kg4 K+ Po(t) SON () +Wo(t), n

We have the following iteration scheme based on Lemma 4.3 for the critical case
of A=—1.

LEMMA 4.4 (time-weighted iteration scheme). For A= —1 and 6 € (0, %), there
holds

(4.14)

2 K 2 s)ds
#0)+ [ Wi

t
< ®2(0) —|—/ (1+s)""|In(e+ s)|5717% . \Ilg(s)ds
0

' / /(ml +b(s)- Q1= V- Q2) - (|Ine+ )" 0p0
0
+pr(1+s)"" - |In(e+s)|°v)ds

+/ /(3t¢22 —VQ1) - ((1+5)?- (e +5)[ du+ p2(1 +5) - [In(e + )| u)ds,
0

and for any integer k> 1, there holds

t t
ﬁH@+AﬂiA$@sﬁH@+Awaww

N Z/O/ag(atczwms)-czl—vaz)

|a|=k
~(In(e +8)"T1 0,050 + (1 +5) 7" - [In(e + 5)|° O v)ds

t
+ 3 /O /8;(8tQ2—VQ1)~((1+s)2-\ln(e+s)|58t8§‘u

|| =k
+ pa(1 4 s) - |In(e + 5)[°0%u)ds.

(4.15)
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Proof. These are conclusions of Lemma 4.3 with the notation ®x(t), ¥ (¢), and
Uy (t) defined by (4.8), (4.9), and (4.10). We note that

J 07 (e 0 S W7 e+ ol hn(e+ o)
S+t In(e+6)° 72 - W2(D),
/(1“) e+ )P lu? < 1+ )71 (e + 1)1 7F
0] (1 +1)% - |In(e + 1)1+ %
SA+t)7 | In(e+1)°717% - W2(1).

The proof is completed. O

The inhomogeneous terms in the inequalities (4.6) and (4.7) in Lemma 4.3 are
estimated in a similar way as Lemmas 3.5 and 3.8.

LEMMA 4.5. There holds, for A\=—1 and ¢ € (0, %), that

/(ath +b(t)- Q1= V- Q2) - (|In(e+ )" 0w+ pa (L + )~ - [In(e + 1) |°0)
+/(8tQ2 —VQ1) - (1+1)*-[In(e +1)]° 0w+ pa(1 + 1) - | In(e + )| *u)
SO () + (To(t) + Bn(2) - V2(t) + By (t) - V2(t) - (1+8) - |In(e+t)| 71,

provided that ||v||pe < 7—; (which is valid under the a priori assumption @y (t) +
U (t) < o with a small constant &y ), where

Ji(t) S vl - 21(2).
Proof. Noticing that the only difference between this lemma and Lemma 3.5 is

the time-weights, we can prove the above decay estimates in the same way as before.
Here we omit the details. O

LEMMA 4.6. There holds, for integer k>1, A=—1,6€(0,%), and |a| =k,

/5‘?(&5@1 +b(t)-Q1—V-Q2) (|In(e+ t)|5+18t3;‘v +pu(1+ t)*1 |In(e + t)\5agu)

+ /a;@mg2 —VQ1) - (1+1)2|In(e 4+ 1)°0,0%u + p2(1 + 1) - |In(e + 1)|°0%u)

SO (1) + (Vo) + P (t) - U2 4 (1) - [In(e+ 1)~
+ (Wo(t) + (1)) - W2(E) - [Infe + 1) 7%,

under the assumption that ||v]| g~ < ﬁ, where

Te1(t) S [[vllzee - @5 (1).

Proof. This is proved in a similar way as Lemma 3.8 since the differences only lie
in the time-weights. 0

The basic energy decay estimates in Wy (¢) are deduced by means of the Green
function method.
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LEMMA 4.7. There hold for A\=—1 and n > 7 that
o]l (w0, wo)l[L1nze - (e + )| % + o (t) P (¢) - | In(e + 1)~ %,

lull S 1l (wo, wo)llanms - (14) 7"+ [Ine+ )| 772
+ (DN (t) + Uo() Py (t) - (L+8) " |In(e+t)| 5 2.
Proof. According to the Duhamel principle (2.2) and the decay estimates of the
Green matrix G(¢, s) in Lemma 4.1, we have

t t
[o()I] S 1911 (¢; 0)voll + [[Gr2 (2, 0)uo]| +/ G112, 8)Qu(s)l[ds + [ [|G12(t, 5)Qa(s)[|ds
0 0
t
< (v, wo) | prnze - [In(e+ 1)~ % +/0 PE(ts) - (1Q1() L + 1Qu(s)|")ds

+/(1+5) FTE( ) (1Q2()l17r + 1Q2(s)]1")ds
0

n

S [(vo, wo)|lLinrz - |In(e + )|~
14+1\\ % o
Folexlt ./ @4*n<1+5)) To(L4s) 7 [In(e+s)| " E5ds
t L4 y)~HED s e
+wen() [ (1497 (141 (et o)t~ ds
0 ( (1+ ))

S l(vos wo)l[Liaze - [n(e + )71 + o () (4) - [In(e+ 1)1
where we have used Lemma 4.2 (note that

n ) n ) n
npdsq, ngsoq>n
it=5>L s+5 -1=27,

for n>5 and ¢ € (2, %)) and the following decay estimates on ||Q(s)||z1 and [|Q(s)]|
(we use D7 :=97):

1Q1(8)llzr S luDvl[Lr + [[oDull v < (ull[[ Do} + [of[[[ Du

n 1

SWo(s)(1+5) "L [In(e+5)| 5% By(s)|In(e + )|+
+ Wo(s)| e +5)| 7% - @y (s)(1+5) "1 [Infe + )|
SWo(s) () (1+5) 7 - |In(e+s)[ 575,
1Q2(5)llzr < luDul|zr + 0D g < [[ull[Dull + [[v][[| Dv]
SWo(s)(1+5) " |In(e+5)| "3 - Dy (s)(1+5)7" - [In(e+s)| 73
+Wo(s)| In(e+5)| % - Dy (s)|In(e + )~
n d+1

SWo(s)Pn(s)-|In(e+s)|757 = .
The decay estimates on ||Q1|| and ||Q2|| are at least at the same rates as ||Q1 || and
|Q2]| 1 since the estimates on ||Dv||~ and ||[Du||L~ decay at the same rates as || Dvl|
and || Dul| according to (4.12).
We estimate ||DQ2|| for n >3 as
1DQ2(s)|| < [luD?ul| + [[DuDul| + |[vD?v]| + || DvDv]
S llull L | D*ull + | Dul| o< || Dull + [[ol| 2= | D*v]| + | Dol | Dv]
SO (s)(1+5) 7% [In(e+5)| 7 + B (s) - [Infe + 5)|
S®X(s) - [Infe +5)[ 07,
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according to (4.12). Therefore, we have

t t
IIU(t)IIS||g21(t,0)vo||+||922(t70)u()||+/0 ||921(t78)Q1(5)||d5+/0 1G22(t, 5)Qa(s) | ds

_1
2

S (v, wo) | impr - (L+6)H - [In(e+ 1)~ %

+/0 1+ TE () - ([Q1 ()] + Q1 (9)]")ds

+/0 (L+8)7 1+ TE2(Es) - (1Qa(s)lI7r + 1DQ2(s)||")ds

_n
4

_1
2

S (o, uo)llpinm - (1+4)7" - [In(e + )]

S0y (0) [ 7T ) (1) i)

+ (PN (1) + ‘I’o(t))q’N(t)/O (1+4) (145" -T2 2(t,s) - |In(e + 5)| " 'ds

1

<o, wo) ||l inms - (L+8)"" - |In(e+¢)| "%~ 2
F (@ () + To(t) B (t) - (L+8)~L | In(e +£)| 53,

since
n ) n o) n 1
(4.17) itz>L pH5-1=29+3,
S+1>1, 6+1-1>%247,
for n>7 and d € (3, §). The proof is completed. d

Remark 4.8. The restriction of n > 7 comes from the imperfect decay estimate of
|Q1]]1, which lays a barrier on the decay estimates of ||(v,u)||. From the view of the
optimal decay estimates of the linearized hyperbolic system, it is supposed that both
|udv|| and ||vd,u|| decay as (1 +#)~!-|In(e +¢)|"2~1. We note that here in the

n 1 o+1

proof of Lemma 4.6, the estimate on ||ud,v| decays as (1+¢)~!-|In(e+¢t)|"57 272,
which is close to the expected optimal decays since 0 € (0, %), while the estimate on
|vd,u|| decays at (1+t)~!-|In(e+¢)|~ %%, which has at least a gap of |In(e + )|~}
decay to the expected optimal decays.

We combine the above time-weighted iteration scheme and Green function method
to close the decay estimates for A = —1.

PROPOSITION 4.9. Formn >7, N > [3]+2, and A = —1, there exists a constant
g0 > 0 such that the solution (v,u) of the nonlinear system (1.3) corresponding to
small initial data ||(vo,wo)||pina~ <eo exists globally and satisfies

{||v<t>||5|1n<e+t>|2,

(4.18) )l S (1481 - | In(e + B+~ 1.

The above decay rates are optimal and consistent with the optimal decay rates of the
linearized hyperbolic system.

Proof. The outline of this proof is similar to Proposition 3.11 for the case of
A€ (—1,0). We claim that the a priori decay estimate

(4.19) D (1) + To(t) < o

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/02/23 to 142.157.196.216 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1094 SHANMING JI AND MING MEI

holds for all the time ¢ > 0, under the small energy assumption of initial data
l(vo, wo)||Linry < €0, where g9 and 0y are positive constants to be determined.
Lemma 4.7 tells us that for n > 7

(420)  Wo(T) < sup {|In(e+0)[F[oll,(1+)- [n(e+ )| T+ full } S0+ 63,
te(0,T)

According to the time-weighted iteration scheme (4.14) and (4.15) in Lemma 4.4 and
the estimates of inhomogeneous terms in Lemmas 4.5 and 4.6, we have for integer
0<k<N —1that

t
@%(t)—&—/o \I/%(s)ds
t
< ®2(0) + J1 (1) +/ (14s)"1|In(e+s)]° 172 - W3(s)ds

0

t t

+50/ \Il%(s)ds—&-do/ (145)L - |In(e 4 5)| "% - B2(s)ds,
0 0

t
‘I’%H(t)"‘/o Ui (s)ds
t t t
§®i+1(0)—|—Jk+1(t)+/ \I/%(s)ds—kéo/ \Ilﬁ+1(s)ds—|—5o/ \Ifi(s)ds,
0 0 0
where
Ji(t) S llvllpes - @F(t) S (P (t) + To(t)) - D3 (E) S 6o PT (1),
T (t) Sllvllzos - @iy (1) S (Pn(t) + Wo () Pi i (1) S 00P7 44 (1),

We simplify the above inequalities as (note that dyp and g are small)

t t
(4.21) @%(t)+/ \pf(s)dsgsgwfg(t)/ (1435)71- |In(e + s)|maxt0-1=3.— %} g,
0 0

t t
(4.22) q>§+1(t)+/0 \Ifﬁ+1(s)ds§sg+/0 (148)7 172 W2 (s)ds.

Multiplying (4.22) by small positive constants for 0 < k < N—1, summing the resulting
inequalities up together with (4.21), we have

t
> @?(t>§eé+\118(t>/ (1+s)" - [In(e+ )01 5 "5 ds Sef + (0 + 65)°,
1<j<N 0

according to the estimate (4.20) and max{0 —1— &, %} < —1 for n > 5. Therefore,
@ (t) + Po(t) Seo+ 05 < do

for positive constants €9 and Jy small enough.

The optimal property of the decay estimates (4.18) follows from the estimates on
|lv|| and ||z|| in Lemma 4.7 through a similar procedure as in the proof of Theorem
1.1. d

Proof of Theorem 1.7. The critical case of A= —1 is proved in Proposition 4.9. O
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Appendix A. Time-dependent damped linear system. The optimal decay
estimates of the time-dependent damped wave equations (2.5) and (2.6) with over-
damping A € [-1,0) are formulated in a procedure similar to the underdamping case
A € [0,1) in [23], but modifications should be made. Here we omit the details for
the sake of simplicity. The frequency analysis implies the following optimal decay
estimates of the wave equations (2.5) and (2.6). Note that the time decay function
I'(t,s) is defined in (1.4).

THEOREM A.l (optimal decay rates of linear wave equations). Let v(t,x) and
u(t,x) be the solutions of the Cauchy problems (2.5) and (2.6) corresponding to given
ingtial data (v(s,z),0p0(s,x)) and (u(s,x),0pu(s,x)) starting from the time s, respec-
tively. For q € [2,00], 1 <p,r <2, and X € [-1,0), we have

(A1)

1050l 0 S T2t 8) - ([[oGs, )|y, + Dk msu(s, )]

h
LT

+ (14 s) - TWratlal(g s) (Hatv Hle + ||olel = e gy (s, ) |

l
Mz

h
LT

and
(A.2)

ogullia 5 (1) o1 (ko) - (Jfuts.) [, + 00+ sus, )|

+ (14t -Datlelg s) . (Hatu

h
LT

ot )

l
Mo

»)
LT' )
where vp g :=n(1/p—1/q), and wyq > vrq for (r,q) # (2,2) and we 2 =0.
The decay estimates (A.1) and (A.2) are optimal for allt > s> 0. Moreover, there
exists a To > 0 such that the decay estimates (A.1) and (A.2) are element-by-element
optimal for all % >s>1Ty.

Remark A.2. The decay estimate (A.1) for s =0 was first proved by Wirth [48]
by developing a perfect diagonalization method. For the application to nonlinear
systems, we need to consider the evolution of initial data starting from any s >0 to
t > s since the damping is time-dependent. One of the main difficulties caused by the
time-dependent damping is that the evolution of the initial data starting from s > 0
to t > s is completely different from that starting from 0 to ¢ — s.

Remark A.3. The two Cauchy problems (2.5) and (2.6) decay with different rates.
We note that the function

1 _u(1+>\)1\'jr'\f
T T Ae(L)
t,r) =
#(t,7) 1 x|

Sy i == -
|]n(6+t)‘%e 41 T 9 )\ 17

which satisfies (H%&go = Ay, is an asymptotic profile of (2.5), while the function
Y(t,x) = @(t,x)/(ﬁ), which satisfies 6}(%#)) = Av, is a good asymptotic
profile of (2.6), and ¥(¢,x) decays faster than o(t,z).

Proof of Theorem A.1l. The estimate (A.1) for s =0 was proved by Wirth [48].
Here we focus on the influence of s and show that u(¢,x) decays optimally faster than
v(t,z). The results are proved through the same procedure as Proposition 2.1 in [23]
according to the optimal decay estimates on the Fourier multiplies. ]
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We next show the optimal decay estimates of the linear hyperbolic system (2.4).

THEOREM A.4 (optimal decay rates of linear hyperbolic system). Let (v(t, ),
u(t,x)) be the solution of the linear hyperbolic system (2.4) (the third equation of
w(t,z) is neglected as it decays superexponentially) corresponding to the initial data
(v(s,x),u(s,x)) starting from time s. There exists a universal constant Ty > 0 such
that for g € [2,00], 1<p,r <2, A€[-1,0), and t > s > Tp, we have

h
Lr

050l ST 1001, ) - (Jo(s. )|

Mo #1057 row(s, )]

(A.3)
£ (14 s)> Deatlal+lg o). (H“(S, L, + [|oleterans, .)H’LLT)
and
14t
gy 1S () ety (Jutss L, + o5+t )
+ (1 th))\ 'va’qHaHl(tvS) : (H’U(S, )||le + ||a\04|+quv HLT)’

where vp g :=n(1/p—1/q), and wyqg > Yrq for (r,q) # (2,2) and we 2 =0.
Moreover, u(t,x) decays faster than (A.4) if we assume one-order-higher regularity

as follows:
h
)

(A5)  +(A+DM ) T2 ) ([fuls, [, + [Jol (s, )|

[9ullze S(1 4+ - T (1) (s, ), 4[|k H o0, )|

h
L)

The decay estimate (A.4) is improved by cancellation without one-order-higher
reqularity as follows:

107 u(t, )| Lo

S +t) - Dratlal+lg g (Hv + ||33‘f‘|+‘*”“’qv(s, o

h
Lr

(UM (14 9) T2 ) (s, ) [, + ([0l ou(s, )|

1+13A 1 i
el g (L e A (1) )
+<1+s> )G te

l h
3 (e e e
where £, >0 is a constant.
The decay estimate (A.3) is element-by-element optimal for all % > s >1Ty; the

decay estimate (A.5) is optimal with respect to v(s,x) for all £ > s > Ty; the decay
estimates (A.3) and (A.5) are optimal for all t > s >0 such that

l
Mz

h
L’V‘

(A.6)

h

+ ||kt teran(s, ||,

h
LT

A I e (O B (PO [

+ [Juls, ~)|\Lp + [|alelFenay(s, )|

and

02 ulle & (L 0 - Dot 1) (s, ),
n ||8La\+1+wr,q,u(8 ) " ||8g|ca\+1+wr,qu(87,)||’;)

M+ s,

)’ ||LP

for some nontrivial initial data.
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Proof. The optimal decay estimates (A.3) and (A.5) are proved in a similar way as
Proposition 2.2 in [23]. The proof of the decay estimate (A.6) improved by cancellation
is similar to Proposition 2.3 in [23]. d

Theorem A.4 implies the optimal decay estimates of the Green matrix G(¢,s) in
(2.2).

THEOREM A.5. For q € [2,00],
constant in Theorem A.4), and X € [—

102611 (t,5)6 (@)1 e ST (2, 5) -l + 10k s 0] L. )

102G12(t $)6(@) 20 S (1+ ) - T2 (1 ) - (gl + Dl agl, )
102621 (¢ 8)6(@) 20 S (140 - Tt g 5) - (o], + ol rag]f,)
102Gaa(t, )00 % (T ) T4t 5) - (ol + 01 megilh. )

1+s
where vp 4 :=n(1/p—1/q), and wy g > Vr g for (r,q) # (2,2) and wa 2 =0. Furthermore,

<pr <2 t>s>Ty (Ty is the universal

1
1,0), we have

102 Goz(t, 8)b(@) | Lo S (LML +8) - Da 2 (1) (|6 + 0L HHHm a9 ),

102G2a(t, )6 5 (10 ) - Trr el )

1
( 14 5)2 - T2(t,5) + +CHF”(t,s))

1
1+ 81
(16150 + D2 Fmag|| ),

where k > 2 can be chosen arbitrarily large and Cy, >0 is a constant depending on k.

Proof. These estimates are conclusions of Theorem A.4. The last estimate is
proved according to (A.6) since the superexponential function decays faster than any
algebraical decays. O

Remark A.6. The decay estimate (A.4) for w in the linear system (2.4) derived
from the optimal decay estimate (A.2) in Theorem A.1 is not optimal here since the
initial data w(0,2) = wo(z) and du(0,x) = Avg(x) — puo(x) are not independent.
Cancellation occurs and the decay rate increases as in (A.5). However, the estimate
(A.4) is still of importance in the decay estimates of the nonlinear system (1.3) since
the regularity required is one order lower than that in the estimate (A.5).
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