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Abstract
This paper is concerned with the multi-dimensional compressible Euler equations
with time-dependent damping of the form − μ

(1+t)λ
ρu in R

n , where n ≥ 2, μ > 0,
and λ ∈ [0, 1). When λ > 0 is bigger, the damping effect time-asymptotically gets
weaker, which is called under-damping. We show the optimal decay estimates of the

solutions such that ‖∂α
x (ρ − 1)‖L2(Rn) ≈ (1 + t)− 1+λ

2 ( n
2+|α|), and ‖∂α

x u‖L2(Rn) ≈
(1 + t)− 1+λ

2 ( n
2+|α|)− 1−λ

2 , and see how the under-damping effect influences the struc-
ture of the Euler system. Different from the traditional view that the stronger damping
usually makes the solutions decaying faster, here we recognize that the weaker damp-
ing with 0 ≤ λ < 1 enhances the faster decay for the solutions. The adopted approach
is the technical Fourier analysis and the Green function method. The main difficul-
ties caused by the time-dependent damping lie in twofold: non-commutativity of the
Fourier transform of the linearized operator precludes explicit expression of the fun-
damental solution; time-dependent evolution implies that the Green matrix G(t, s) is
not translation invariant, i.e., G(t, s) �= G(t − s, 0). We formulate the exact decay
behavior of the Green matrices G(t, s) with respect to t and s for both linear wave
equations and linear hyperbolic system, and finally derive the optimal decay rates for
the nonlinear Euler system.
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1 Introduction

1.1 Modeling Equations and Background

In this series of study,we consider themulti-dimensional compressible Euler equations
with time-dependent damping

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + ∇ · (ρu) = 0,

∂t (ρu) + ∇ · (ρu ⊗ u) + ∇ p(ρ) = − μ

(1 + t)λ
ρu,

ρ|t=0 = ρ0(x) := 1 + ρ̃0(x), u|t=0 = u0(x),

(1.1)

where x ∈ R
n , n ≥ 2. Here, the unknown functions ρ(t, x) and u(t, x) represent

the density and velocity of the fluid, and the pressure p(ρ) = 1
γ
ργ with γ > 1. The

nonlinear source − μ

(1+t)λ
ρu is the damping effect of the system with two quantities

μ > 0 and λ ∈ (−∞,∞). It is said to be under-damping for λ > 0, which is
time-asymptotically vanishing; and it is said to be over-damping for λ < 0, which
is time-asymptotically enhancing to ∞. Particularly, when 0 < λ < 1, the damping
is called the regular under-damping, which makes the system (1.1) to possess the
parabolicity structure, and can guarantee the existence of global solutions. While,
when λ > 1, we call it the super under-damping, because the damping effect is too
weak, and causes the system (1.1) essentially behaves like a pure hyperbolic system
with shock singularity (blow-up of the gradients of the solutions). When λ = 1, we
call it as the critical under-damping. Furthermore, we call the damping effect as the
regular over-damping for −1 < λ < 0, the super over-damping for λ < −1, and the
critical over-damping for λ = −1. In this paper, we aremainly interested in the regular
under-damping case with λ ∈ [0, 1), and leave the regular/critical over-damping case
with λ ∈ [−1, 0) in the second part (Ji and Mei 2022). The initial data satisfy

ρ0(x) → 1, i.e., ρ̃0(x) → 0, and u0(x) → 0, as |x | → ∞. (1.2)
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The time-dependent damping phenomena were first proposed and studied byWirth
(2006, 2007, 2004) for the linear damped wave equations, see also the significant
extension on the damped Klein–Gordon equations by Burq-Raugel-Schlag in Burq
et al. (2015, 2018), recently. Since then, the study on this subject becomes one of hot
spots, and intensively carried on, particularly, the research for Euler system involving
time-dependent damping. The under- or over-damping effect with λ > 0 or λ < 0
makes the structure of the solutions to (1.1) more complicated and various.

When μ = 0, the system (1.1) is reduced to the pure Euler system which usually
does not possess the global-in-time solutions, nomatter how smooth the initial data are,
and the singularity formed by shock waves cannot be ignored (Chen et al. 2007, 2017;
Courant and Friedrichs 1948; Dafermos 2010; Lax 1964; Pan and Zhu 2016; Smoller
1982). See also some of the important developments in the study of shock singularities
in the last two decades (Alinhac 1999a, b; Buckmaster et al. 2022; Christodoulou 2007;
Luk and Speck 2018; Miao and Yu 2017).

When μ > 0 and λ = 0, the damping effect usually prevents the singular-
ity formation of shocks when the initial data are suitably smooth (Sideris et al.
2003), but the damped solutions can still blow up like shocks when the gradients of
the initial data are big (Li and Wang 2018; Wang and Chen 1998). For 1-D case,
Hsiao and Liu (1992) first observed that the damped Euler system is essentially
equivalent to the nonlinear porous media equations, and showed the convergence
as ‖(v − v̄, u − ū)(t)‖L∞ = O(t−1/2, t−1/2), where (v̄, ū)(x/

√
t) are the self-similar

solutions to the corresponding porous media equations, the so-called diffusion waves.
The relaxation-limit convergence in theweak sensewas showed byMarcati andMilani
in Marcati and Milani (1990). After then, the convergence rates to the diffusion
waves were improved to O(t−3/4, t−5/4) by Nishihara (1996) in L2-sense, and to
O(t−1, t−3/2) by Nishihara et al. (2000) in L1-sense, respectively. Furthermore, (Mei
2010) heuristically looked for the best asymptotic profileswhich are a kind of solutions
for nonlinear diffusion equations with certain selected initial data, and obtained much
better convergence rates O(t−3/2 ln t, t−2 ln t). For the multiple dimensional case,
Sideris et al. (2003)first showed the global existence of the solutions and the decay rates

to the constant states as ‖∂α
x (ρ − 1, u)(t)‖L2(R3) = O(t− 3

4− |α|
2 , t− 3

4− |α|+1
2 ) when the

initial perturbations are smooth enough in Sobolev space Hl , whichwas then improved

to O(t− 3
4− |α|

2 − s
2 , t− 3

4− |α|+1
2 − s

2 ) by Tan and Wu (2012) for the initial data in the Besov

space Hl ∩ Ḃ−s
1,∞ with s ∈ [0, 1], and to ‖∂α

x (ρ−1, u)(t)‖HN−|α| = O(t−
|α|+s
2 , t−

|α|+s
2 )

by Tan and Wang (2013) for the initial data in the Besov space Ḃ−s
2,∞ ∩ HN with

s ∈ (0, 3/2]. For the vacuum case, the existence of the entropy solutions and their
convergence to Barenblatt self-similar solutions were significantly studied by Huang
et al. (2011), Huang and Pan (2003), Huang et al. (2005), and Geng and Huang (2019),
and Geng et al. (2019), respectively, and the free boundary case with singularity was
further studied by Luo and Zeng (2016) recently. The global existence and conver-
gence to the modified Barenblatt solution for Euler equations with physical vacuum
and time-dependent damping were investigated by Pan (2021, 2022).

When μ > 0 and λ > 0, compared with the case of λ = 0, the damping effect
− μ

(1+t)λ
ρu becomes weaker, we call it as under-damping. This makes the feature of
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the compressible Euler system more complicated and fantastic. For 1-D case, Pan
(2016a, b) first proved that when 0 < λ < 1 and the initial data around the constant
states are small enough in Sobolev space H1, then the solutions globally exist in
time; when λ > 1 and the initial data are big, then the gradients of the solutions
blow up at finite time; when λ = 1, the critical case, then the solutions still globally
exist for μ > 2, but blow up for 0 < μ ≤ 2. These results were then improved by
Sugiyama (2018, 2020) in C1 space, and particularly, by Chen et al. (2020) for the
global existence even with large initial data. When the constant states at far fields
are different, the convergence of the solutions to the diffusion waves was investigated
by Cui et al. (2018) and Li et al. (2017), independently, where the convergence rates
obtained in Cui et al. (2018) are better than in Li et al. (2017). In the critical case of
λ = 1 and μ > 2, by the variables scaling method for finding the asymptotic profiles,
Geng et al. (2020) recognized that the roles of hyperbolicity and the damping effect for
the Euler system both are equivalently important and cannot be ignored, and further
proved the convergence of the original solutions to the asymptotic profiles which are
artfully determined in the critical case, where the convergence rates are dependent on
the physical quantity μ (> 2). For the multiple dimensional case Rn with n = 2, 3,
Hou and Yin (2017) and Hou et al. (2018) first proved that, when 0 < λ < 1 with
μ > 0, or λ = 1 withμ > 3−n, once the initial data are smooth, compact supporting,
and zero-curl or not, then the solutions for the time-dependent damped Euler system
globally exist, while when λ > 1 with μ > 0, or λ = 1 but μ ≤ 3 − n, the solutions
will blow up in finite time. The decay rates for high-dimensional solutions in the case
0 < λ < 1 were proved by Pan (2020) very recently, but these rates are not optimal.

The main purpose of the present paper is to understand the structure of the
solutions for time-dependent damped Euler system as the damping effect getting
weaker for 0 < λ < 1, and to derive the optimal decay rates of the solutions as

‖∂α
x (ρ −1)‖L2(Rn) ≈ (1+ t)− 1+λ

2 ( n2+|α|), and ‖∂α
x u‖L2(Rn) ≈ (1+ t)− 1+λ

2 ( n2+|α|)− 1−λ
2 ,

by means of the technical Fourier analysis and the Green function method. Tradi-
tionally, we thought that the stronger damping would reduce a faster decay for the
dynamic system. However, from these optimal rates, we see that the weaker damping
with 0 ≤ λ < 1 enhances the faster decay for the solutions. This is a bit surprising
and also subverts the traditional view. In fact, as we show later, by taking Fourier
transform to the linearized system to derive the fundamental solutions, we see that
when the damping is getting less as λ increases, the solutions in the high frequency
part still decay slowly, but the solutions in the low frequency part decay fast.

1.2 Main Results

In order to obtain the optimal decay rates of the solutions for Euler system (1.1), we
need to build up the fundamental solutions for the corresponding linearized system.
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Let v = 2
γ−1 (

√
p′(ρ) − 1) = 2

γ−1 (ρ
γ−1
2 − 1) and � = γ−1

2 . Then, (v, u) satisfies
the following symmetric system:

⎧
⎪⎪⎨

⎪⎪⎩

∂tv + ∇ · u = −u · ∇v − �v∇ · u,

∂tu + ∇v + μ

(1 + t)λ
u = −(u · ∇)u − �v∇v,

v|t=0 = v0(x), u|t=0 = u0(x),

(1.3)

where v0(x) = 2
γ−1 ((1 + ρ̃0(x))

γ−1
2 − 1), which behaves like ρ̃0(x) if the initial

perturbation is small.
The optimal decay rate of the linearized system is essential for the study of large

time behavior of the time-dependent damped Euler equations. The linearized system
of (1.3) is

⎧
⎪⎪⎨

⎪⎪⎩

∂tv + ∇ · u = 0,

∂tu + ∇v + μ

(1 + t)λ
u = 0,

v|t=0 = v0(x), u|t=0 = u0(x).

(1.4)

Let u := �−1∇ · u and w := �−1curl u (with (curl u)kj := ∂x j u
k − ∂xk u

j for

u = (u1, . . . , un)), see (Tan and Wu 2012) for example, where � is the pseudo-
differential operator defined by �sv := F−1(|ξ |s v̂(ξ)) for s ∈ R (see the notations
introduced below for details). Then, the linearized system (1.4) is equivalent to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tv + �u = 0,

∂t u − �v + μ

(1 + t)λ
u = 0,

∂tw + μ

(1 + t)λ
w = 0,

v|t=0 = v0(x), u|t=0 = u0(x), w|t=0 = w0(x),

(1.5)

where u0(x) = �−1∇ ·u0(x) andw0(x) = �−1curl u0(x). We note that the estimates
on (v, u) are equivalent to the estimates on (v, u,w) according to the relation

u = −�−1∇u − �−1∇ · w.

From the equation (1.5)3, we can see that the vorticityw(t, x) of the linearized system
decays to zero sub-exponentially as:

w(t, x) = w0(x)e
− μ

1−λ
(1+t)1−λ

,

which is faster than any algebraical decays. So we only focus on the first two equations
of (1.5). The Fourier transform B(t, ξ) of the linear operator (1.5) is time-dependent
and non-commutative (although it is diagonalizable), that is, B(t, ξ)B(s, ξ) �=
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B(s, ξ)B(t, ξ) for general s �= t with

B(t, ξ) :=
(
0 −|ξ |
|ξ | − μ

(1+t)λ

)

.

Therefore, the fundamental solution of the first two equations of (1.5) cannot be

represented as matrix exponential e
∫ t
0 B(s,ξ)ds .

In order to formulate the optimal decay rates of the linearized system (1.5), we con-
sider the following two kinds of linear wave equations with time-dependent damping

⎧
⎨

⎩

∂2t v − 
v + μ

(1 + t)λ
∂tv = 0, x ∈ R

n,

v|t=0 = v1(x), ∂tv|t=0 = v2(x),
(1.6)

and

⎧
⎨

⎩

∂2t u − 
u + ∂t

( μ

(1 + t)λ
u
)

= 0, x ∈ R
n,

u|t=0 = u1(x), ∂t u|t=0 = u2(x),
(1.7)

which are satisfied by the solutions v(t, x) and u(t, x) of (1.5), respectively. The
above two Cauchy problems (1.6) and (1.7) may seem similar at first glance, but as
we prove below, their optimal decay rates are totally different. It should also be noted
that the optimal decay rates derived from (1.7) are not the optimal decay rates of
the solution u in the linearized system (1.5). The reason is that the optimal decay
rates of (1.7) are formulated with respect to arbitrary initial data u1(x) and u2(x),
while the solution u in (1.5) corresponds to (1.7) with initial data u1(x) = u0(x) and
u2(x) = �v0(x)−μu0(x). We will show that there exist some cancellations between
the evolution of initial data in this situation.

Notations. We denote Dt = −i∂t and the n-dimensional Fourier transform F (v)

of a function v(x) is denoted by v̂(ξ) for simplicity. We use Hs = Hs(Rn), s ∈ R,
to denote Sobolev spaces and L p = L p(Rn), 1 ≤ p ≤ ∞, to denote the L p spaces.
The spatial derivatives ∂α

x stands for ∂
α1
x1 · · · ∂αn

xn with nonnegative multi-index α =
(α1, . . . , αn), where the order of α is denoted by |α| = ∑ j=n

j=1 α j , and ∂
|α|
x stands

for all the spatial partial derivatives of order |α|. The pseudo-differential operator �

is defined by �sv := F−1(|ξ |s v̂(ξ)) for s ∈ R. We use Ḣ s = Ḣ s(Rn), s ∈ R,
to denote homogeneous Sobolev spaces with the norm ‖ · ‖Ḣ s defined by ‖v‖Ḣ s :=
‖�sv‖L2 . The norm ‖v‖lX stands for the ‖ · ‖X norm of the low frequency part vl :=
F−1(χ(ξ)v̂(ξ)) of v, while ‖v‖hX stands for the ‖·‖X norm of the high frequency part
vh := F−1((1 − χ(ξ))v̂(ξ)) of v, where 0 ≤ χ(ξ) ≤ 1 is a smooth cut-off function
supported in B2R(0) and χ(ξ) ≡ 1 on BR(0) for a given R > 0.

Throughout this paper, we also denote b(t) = μ

(1+t)λ
with μ > 0 and λ ∈ [0, 1)

and we letC (orC j with j = 1, 2, . . . ) denote some positive universal constants (may
depend on the dimension n, the constants λ, μ, γ , and the index α). We use f � g
or g � f if f ≤ Cg and denote f ≈ g if f � g and g � f . For simplicity, we use
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‖( f , g)‖X to denote ‖ f ‖X + ‖g‖X and
∫

f := ∫

Rn f (x)dx . The norm ‖ · ‖L2 will
be simplified as ‖ · ‖ if no confusion can arise. For a matrix the norm ‖ · ‖max is the
maximum absolute value of all its elements and blanked entries correspond to zeros.
We define the characteristic functions

χ[s≤ t
2 ] = χ[s≤ t

2 ](s) :=
{
1, s ≤ t

2 ,

0, others,
χ[s≥ t

2 ] = χ[s≥ t
2 ](s) :=

{
1, s ≥ t

2 ,

0, others.

For simplicity, we denote time decay functions

�(t, s) :=
(
1 + (1 + t)1+λ − (1 + s)1+λ

)− 1
2
,


(t, s) := min{�(t, s), (1 + t)−λ}. (1.8)

There holds

�(t, s) · χ[s≤ t
2 ](s) ≈ (1 + t)−

1+λ
2 ≈ 
(t, s) · χ[s≤ t

2 ](s), 
(t, s) � �(t, s).

Here we always assume λ ∈ [0, 1) and show that under-damping gives rise to faster
decay estimates. Our main results are stated as follows. We present the L2 and Lq

decay estimates of the nonlinear system (1.3).

Theorem 1.1 (Optimal L2 decay rates of nonlinear Euler system) For n ≥ 2 and
λ ∈ [0, 1), there exists a constant ε0 > 0, such that the solution (v, u) of the
nonlinear system (1.3) corresponding to initial data (v0, u0) with small energy
‖(v0, u0)‖L1∩H [ n2 ]+3 ≤ ε0 exists globally and satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖∂α
x v‖ � (1 + t)− 1+λ

4 n− 1+λ
2 |α|, 0 ≤ |α| ≤ [ n2 ] + 1,

‖∂α
x u‖ � (1 + t)− 1+λ

4 n− 1+λ
2 (|α|+1)+λ, 0 ≤ |α| ≤ [ n2 ],

‖∂α
x u‖ � (1 + t)− 1+λ

4 n− 1+λ
2 |α|+λ, |α| = [ n2 ] + 1,

‖(v, u)‖
H [ n2 ]+3 � 1.

(1.9)

The first two decay estimates in (1.9) (i.e., the decay estimates on ‖∂α
x v‖ with 0 ≤

|α| ≤ [ n2 ] + 1 and ‖∂α
x u‖ with 0 ≤ |α| ≤ [ n2 ]) are optimal and consistent with the

linearized system.

Theorem 1.2 (Optimal Lq decay estimates of nonlinear Euler system) For n ≥ 2,
λ ∈ [0, 1), q ∈ [2,∞] and k ≥ 3 + [γ2,q ] with γ2,q := n(1/2 − 1/q), let (v, u) be
the solution to the nonlinear system (1.3), corresponding to the initial data (v0, u0)
with small energy such that ‖(v0, u0)‖L1∩H [ n2 ]+k ≤ ε0, where ε0 > 0, is a small
constant only depending on n, q, k and the constants γ, μ, λ in the system. Then,
(v, u) ∈ L∞(0,+∞; H [ n2 ]+k) and satisfies

{
‖∂α

x v‖Lq � (1 + t)− 1+λ
2 γ1,q− 1+λ

2 |α|, 0 ≤ |α| ≤ 1,

‖u‖Lq � (1 + t)− 1+λ
2 γ1,q− 1−λ

2 ,
(1.10)
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where γ1,q = n(1 − 1/q). All the decay estimates in (1.10) are optimal.

For the time-dependent damped Euler equation (1.1), we have the following decay
estimates.

Corollary 1.1 For n ≥ 2 and λ ∈ [0, 1), there exists a constant ε0 > 0, such that the
solution (ρ, u) of the Euler equation (1.1), corresponding to the initial data (ρ0, u0)
with small energy ‖(ρ0 − 1, u0)‖L1∩H [ n2 ]+3 ≤ ε0, exists globally and satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖∂α
x (ρ − 1)‖ � (1 + t)− 1+λ

4 n− 1+λ
2 |α|, 0 ≤ |α| ≤ [ n2 ] + 1,

‖∂α
x u‖ � (1 + t)− 1+λ

4 n− 1+λ
2 (|α|+1)+λ, 0 ≤ |α| ≤ [ n2 ],

‖∂α
x u‖ � (1 + t)− 1+λ

4 n− 1+λ
2 |α|+λ, |α| = [ n2 ] + 1,

‖(ρ − 1, u)‖
H [ n2 ]+3 � 1.

(1.11)

The first two decay estimates in (1.11) (i.e., the decay estimates on ‖∂α
x (ρ − 1)‖ with

0 ≤ |α| ≤ [ n2 ] + 1 and ‖∂α
x u‖ with 0 ≤ |α| ≤ [ n2 ]) are optimal.

For n ≥ 2, λ ∈ [0, 1), q ∈ [2,∞] and k ≥ 3 + [γ2,q ] with γ2,q := n(1/2 − 1/q),
let (ρ, u) be the solution to the Euler equation (1.1) corresponding to initial data
(ρ0, u0) with small energy such that ‖(ρ0 − 1, u0)‖L1∩H [ n2 ]+k ≤ ε0, where ε0 > 0 is
a small constant only depending on n, q, k and the constants γ, μ, λ in the system.
Then, (ρ − 1, u) ∈ L∞(0,+∞; H [ n2 ]+k) and satisfies

{
‖∂α

x (ρ − 1)‖Lq � (1 + t)− 1+λ
2 γ1,q− 1+λ

2 |α|, 0 ≤ |α| ≤ 1,

‖u‖Lq � (1 + t)− 1+λ
2 γ1,q− 1−λ

2 ,
(1.12)

where γ1,q = n(1 − 1/q). All the decay estimates in (1.12) are optimal.

To derive the optimal decay rates of the solutions for the Euler system with time-
dependent damping (1.1), it is essential to investigate the fundamental solutions to the
linear system (1.5) and two kinds of wave equations (1.6) and (1.7). Here, we state
the optimal decays of the solutions for the linear wave equations (1.6) and (1.7) and
the linear hyperbolic system (1.5) as follows.

Theorem 1.3 (Optimal decay rates of linear wave equations) Let v(t, x) and u(t, x)
be the solutions of the Cauchy problems (1.6) and (1.7) corresponding to the ini-
tial data (v(s, x), ∂tv(s, x)) and (u(s, x), ∂t u(s, x)) starting from the initial time s,
respectively. Then, for q ∈ [2,∞] and 1 ≤ p, r ≤ 2 (or θ ∈ [0, n

2 )), we have

‖∂α
x v(t, ·)‖Lq � �γp,q (t, s) · 
|α|(t, s)

·
(∥
∥(v(s, ·), (1 + s)λ∂tv(s, ·))∥∥lL p + ∥

∥(∂
|α|+ωr ,q
x v(s, ·), (1 + s)λ∂

|α|−1+ωr ,q
x ∂tv(s, ·))∥∥hLr

)
,

(1.13)

and

‖∂α
x u(t, ·)‖Lq �

( 1 + t

1 + s

)λ · �γp,q (t, s) · 
|α|(t, s)
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·
(∥
∥(u(s, ·), (1 + s)λ∂t u(s, ·))∥∥lL p + ∥

∥(∂
|α|+ωr ,q
x u(s, ·),

× (1 + s)λ∂
|α|−1+ωr ,q
x ∂t u(s, ·))∥∥hLr

)
, (1.14)

where γp,q := n(1/p − 1/q) (or γp,q replaced by βθ,q := θ + γ2,q and ‖ · ‖L p norm
replaced by ‖ · ‖Ḣ−θ ), and ωr ,q > γr ,q for (r , q) �= (2, 2) and ω2,2 = 0.

The decay estimates (1.13) and (1.14) are optimal for all t ≥ s ≥ 0 such that the
“�” in (1.13) and (1.14) can be replaced by “≈” for some nontrivial initial data
(v(s, x), ∂tv(s, x)) and (u(s, x), ∂t u(s, x)).

Moreover, there exists a number T0 ≥ 0 such that the decay estimates (1.13) and
(1.14) are element-by-element optimal for t

2 ≥ s ≥ T0 in the following sense: there
exist four kinds of nontrivial initial data (v(s, x), 0), (0, ∂tv(s, x)), (u(s, x), 0), and
(0, ∂t u(s, x)) starting from the time s such that the four corresponding solutions satisfy

‖∂α
x v(t, ·)‖Lq ≈ �γp,q (t, s) · 
|α|(t, s) ·

(∥
∥v(s, ·)∥∥lL p + ∥

∥∂
|α|+ωr ,q
x v(s, ·)∥∥hLr

)
,

‖∂α
x v(t, ·)‖Lq ≈ (1 + s)λ · �γp,q (t, s) · 
|α|(t, s)

·
(∥
∥∂tv(s, ·)∥∥lL p + ∥

∥∂
|α|−1+ωr ,q
x ∂tv(s, ·)∥∥hLr

)
,

‖∂α
x u(t, ·)‖Lq ≈

( 1 + t

1 + s

)λ · �γp,q (t, s) · 
|α|(t, s)

·
(∥
∥u(s, ·)∥∥lL p + ∥

∥∂
|α|+ωr ,q
x u(s, ·)∥∥hLr

)
,

‖∂α
x u(t, ·)‖Lq ≈ (1 + t)λ · �γp,q (t, s) · 
|α|(t, s) ·

(∥
∥∂t u(s, ·)∥∥lL p

+ ∥
∥∂

|α|−1+ωr ,q
x ∂t u(s, ·)∥∥hLr

)
,

respectively.

Corollary 1.2 Let v(t, x) and u(t, x) be the solutions of the Cauchy problems (1.6) and
(1.7) corresponding to the initial data (v(0, x), ∂tv(0, x)) and (u(0, x), ∂t u(0, x)),
respectively. Then, for q ∈ [2,∞] and 1 ≤ p, r ≤ 2 (or θ ∈ [0, n

2 )), we have

‖∂α
x v(t, ·)‖Lq � (1 + t)−

1+λ
2 (γp,q+|α|) ·

(∥
∥(v(0, ·), ∂tv(0, ·))∥∥lL p

+ ∥
∥(∂

|α|+ωr ,q
x v(0, ·), ∂ |α|−1+ωr ,q

x ∂tv(0, ·))∥∥hLr
)
,

and

‖∂α
x u(t, ·)‖Lq � (1 + t)−

1+λ
2 (γp,q+|α|)+λ ·

(∥
∥(u(0, ·), ∂t u(s, ·))∥∥lL p

+ ∥
∥(∂

|α|+ωr ,q
x u(0, ·), ∂ |α|−1+ωr ,q

x ∂t u(0, ·))∥∥hLr
)
,

where γp,q := n(1/p − 1/q) (or γp,q replaced by βθ,q := θ + γ2,q and ‖ · ‖L p norm
replaced by ‖ · ‖Ḣ−θ ), and ωr ,q > γr ,q for (r , q) �= (2, 2) and ω2,2 = 0.
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The above decay estimates are optimal such that the “�” can be replaced by “≈”
for some nontrivial initial data (v(0, x), ∂tv(0, x)) and (u(0, x), ∂t u(0, x)).

Remark 1.1 The decay estimate (1.13) for s = 0 was first proved by Wirth (2007) by
developing a perfect diagonalizationmethod. For the application to nonlinear systems,
we need to consider the evolution of initial data starting from any s ≥ 0 to t ≥ s
since the damping is time-dependent. One of the main difficulties caused by the time-
dependent damping is that the evolution of the initial data starting from s ≥ 0 to
t ≥ s is completely different from that starting from 0 to t − s, as can be seen from
the estimates (1.13) and (1.14). As a consequence, the estimate on the decay rate of∫ t
0 G(t, s)Q(s, x)ds is slower than Q(t, x), where G(t, s) is a general Green function
and Q(t, x) is a general non-homogeneous term.

Remark 1.2 It is surprising here that the two Cauchy problems (1.6) and (1.7) decay
with different rates. We note that the function

ϕ(t, x) := 1

(1 + t)
1+λ
2 n

e
− μ(1+λ)|x |2

4(1+t)1+λ ,

which satisfies μ

(1+t)λ
∂tϕ = 
ϕ, is an asymptotic profile of (1.6), while ψ(t, x) :=

ϕ(t, x)/( μ

(1+t)λ
), which satisfies ∂t (

μ

(1+t)λ
ψ) = 
ψ , is a good asymptotic profile of

(1.7), andψ(t, x) decays slower than ϕ(t, x). The functions ϕ(t, x) andψ(t, x) decay
at the same rates as v(t, x) and u(t, x) proved in Theorem 1.3.

Theorem 1.4 (Optimal decay rates of linear hyperbolic system) Let (v(t, x), u(t, x))
be the solution of the linear hyperbolic system (1.5) (the third equation of w(t, x)
is neglected as it decays sub-exponentially) corresponding to the initial data
(v(s, x), u(s, x)) starting from the time s. There exists a universal constant T0 ≥ 0
such that for q ∈ [2,∞] and 1 ≤ p, r ≤ 2 (or θ ∈ [0, n

2 )), and for t ≥ s ≥ T0, we
have

‖∂α
x v(t, ·)‖Lq � �γp,q (t, s) · 
|α|(t, s) ·

(∥
∥v(s, ·)∥∥lL p + ∥

∥∂
|α|+ωr ,q
x v(s, ·)∥∥hLr

)

+ (1 + s)λ · �γp,q (t, s) · 
|α|+1(t, s) ·
(∥
∥u(s, ·)∥∥lL p + ∥

∥∂
|α|+ωr ,q
x u(s, ·)∥∥hLr

)
,

(1.15)

and

|∂α
x u(t, ·)‖Lq �

( 1 + t

1 + s

)λ · �γp,q (t, s) · 
|α|(t, s) ·
(∥
∥u(s, ·)∥∥lL p + ∥

∥∂
|α|+ωr ,q
x u(s, ·)∥∥hLr

)

+ (1 + t)λ · �γp,q (t, s) · 
|α|+1(t, s) ·
(∥
∥v(s, ·)∥∥lL p + ∥

∥∂
|α|+ωr ,q
x v(s, ·)∥∥hLr

)
, (1.16)

where γp,q := n(1/p − 1/q) (or γp,q replaced by βθ,q := θ + γ2,q and ‖ · ‖L p norm
replaced by ‖ · ‖Ḣ−θ ), and ωr ,q > γr ,q for (r , q) �= (2, 2) and ω2,2 = 0.

Furthermore, u(t, ·) decays faster than (1.16) provided one order higher regularity:

‖∂α
x u(t, ·)‖Lq � (1 + t)λ · �γp,q (t, s) · 
|α|+1(t, s)
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·
(∥
∥v(s, ·)∥∥lL p + ∥

∥∂
|α|+1+ωr ,q
x v(s, ·)∥∥hLr

)

+ (1 + t)λ(1 + s)λ · �γp,q (t, s) · 
|α|+2(t, s) ·
(∥
∥u(s, ·)∥∥lL p

+ ∥
∥∂

|α|+1+ωr ,q
x u(s, ·)∥∥hLr

)
. (1.17)

Moreover, the decay estimates (1.15) are element-by-element optimal for t
2 ≥ s ≥

T0 in the following sense: there exist two kinds of nontrivial initial data (v(s, x), 0)
and (0, u(s, x)) starting from the time s such that the two corresponding solutions
satisfy

‖∂α
x v(t, ·)‖Lq ≈ �γp,q (t, s) · 
|α|(t, s) ·

(∥
∥v(s, ·)∥∥lL p

+ ∥
∥∂

|α|+ωr ,q
x v(s, ·)∥∥hLr

)
,

and

‖∂α
x v(t, ·)‖Lq ≈ (1 + s)λ · �γp,q (t, s) · 
|α|+1(t, s)

·
(∥
∥u(s, ·)∥∥lL p + ∥

∥∂
|α|+ωr ,q
x u(s, ·)∥∥hLr

)
,

respectively.
The decay estimate (1.16) and (1.17) are optimal with respect to v(s, x) for all

t
2 ≥ s ≥ T0 in the following sense: there exists nontrivial initial data (v(s, x), 0) such
that

‖∂α
x u(t, ·)‖Lq ≈ (1 + t)λ · �γp,q (t, s) · 
|α|+1(t, s) ·

(∥
∥v(s, ·)∥∥lL p

+ ∥
∥∂

|α|+ωr ,q
x v(s, ·)∥∥hLr

)
.

The decay estimates (1.15) and (1.17) are optimal for all t ≥ s ≥ 0 such that

‖∂α
x v(t, ·)‖Lq ≈ �γp,q (t, s) · 
|α|(t, s)

·
(∥
∥v(s, ·)∥∥lL p + ∥

∥∂
|α|+ωr ,q
x v(s, ·)∥∥hLr + ∥

∥u(s, ·)∥∥lL p

+ ∥
∥∂

|α|+ωr ,q
x u(s, ·)∥∥hLr

)
,

and

‖∂α
x u(t, ·)‖Lq ≈ (1 + t)λ · �γp,q (t, s) · 
|α|+1(t, s)

·
(∥
∥v(s, ·)∥∥lL p + ∥

∥∂
|α|+1+ωr ,q
x v(s, ·)∥∥hLr + ∥

∥u(s, ·)∥∥lL p

+ ∥
∥∂

|α|+1+ωr ,q
x u(s, ·)∥∥hLr

)
,

for some nontrivial initial data (v(s, x), u(s, x)).
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Corollary 1.3 Let (v(t, x), u(t, x)) be the solution of the linear hyperbolic system (1.5)
(the third equation ofw(t, x) is neglected as it decays sub-exponentially) correspond-
ing to the initial data (v(0, x), u(0, x)). Then, for q ∈ [2,∞] and 1 ≤ p, r ≤ 2 (or
θ ∈ [0, n

2 )), we have

‖∂α
x v(t, ·)‖Lq ≈ (1 + t)−

1+λ
2 (γp,q+|α|)

·
(∥
∥v(0, ·)∥∥lL p + ∥

∥∂
|α|+ωr ,q
x v(0, ·)∥∥hLr + ∥

∥u(0, ·)∥∥lL p

+ ∥
∥∂

|α|+ωr ,q
x u(0, ·)∥∥hLr

)
,

and

‖∂α
x u(t, ·)‖Lq ≈ (1 + t)−

1+λ
2 (γp,q+|α|)− 1−λ

2

·
(∥
∥v(0, ·)∥∥lL p + ∥

∥∂
|α|+1+ωr ,q
x v(0, ·)∥∥hLr + ∥

∥u(0, ·)∥∥lL p

+ ∥
∥∂

|α|+1+ωr ,q
x u(0, ·)∥∥hLr

)
,

where γp,q := n(1/p − 1/q) (or γp,q replaced by βθ,q := θ + γ2,q and ‖ · ‖L p norm
replaced by ‖ · ‖Ḣ−θ ), and ωr ,q > γr ,q for (r , q) �= (2, 2) and ω2,2 = 0. The above
decay estimates are optimal.

Remark 1.3 The decay estimate (1.16) for u in the linear hyperbolic system (1.5) with
time-dependent damping derived from the optimal decay estimate (1.14) in Theorem
1.3 is not optimal, since the initial data u(0, x) = u0(x) and ∂t u(0, x) = �v0(x) −
μu0(x) are not independent. Cancellation occurs and the decay rate increases as in
(1.17). However, the estimate (1.16) is still of importance in the decay estimates of
the nonlinear system (1.3) since the regularity required is one order lower than that in
the estimate (1.17).

Remark 1.4 We would like also to note some new features and difficulties caused by
the time-dependent damping of the linear system (1.5) and two kinds ofwave equations
(1.6) and (1.7).

(i) The general solutions of the wave equation (1.7) (satisfied by u(t, x)) decay
optimally slower than those solutions of (1.6) (satisfied by v(t, x)), while in the linear
system (1.5), u(t, x) decays faster than v(t, x).

(ii) The solutions to the linear system (1.5) (and the linear wave equations (1.6) and
(1.7)) decay faster as λ ∈ [0, 1) increases. This may seem counterintuitive as weaker
damping coefficients give rise to solutions which decay faster. We may understand it
as follows: when λ is larger, the high frequencies decay slower as e−C(1+t)1−λ

, while
the low frequencies decay faster as e−C|ξ |2(1+t)1+λ

, and on the whole the increasing
decay of the low frequencies dominates the decay rate of the system, which is faster
as λ increases.

(iii) For the application to nonlinear problems, the fundamental solution of the linear
hyperbolic system (1.5) (and the linear wave equations (1.6) and (1.7)) starting from
the time s to t , denoted by G(t, s), is essentially dependent on s. That is, G(t, s) �=
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G(t − s, 0) since the decaying damping μ

(1+t)λ
on (s, t) is not comparable with the

damping on (0, t − s).
(iv) Two main difficulties occur when showing the optimal decay rates: the first

one is that we cannot express the fundamental solution E (t, s, ξ) in the phase space

as simply e
∫ t
0 B(τ,ξ)dτ and approximated diagonalization scheme is applied such that

in the elliptic zone Zv
ell

E (t, s, ξ) = e
∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv(τ,ξ)|

2
√|mv(τ,ξ)| )dτ

Ẽ (t, s, ξ),

where Ẽ (t, s, ξ) := MN1(t, ξ)Q(t, s, ξ)N−1
1 (t, ξ)M−1, see Lemma 2.1. Therefore,

we need not only to prove the lower bound of e
∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv(τ,ξ)|

2
√|mv(τ,ξ)| )dτ

, but also
to show that some elements of the matrix Ẽ (t, s, ξ) are not cancelled in the matrix
product. The other one is that the low frequencies are divided into elliptic zone Zv

ell
and mixed zones, where the frequencies in Zv

ell decay slowest but the region Zv
ell is

shrinking. As a result, higher decay rates are needed for frequencies in mixed zones
in order to avoid the possible cancellations between frequencies in different zones.

The paper is organized as follows. In Sects. 2 and 3, we formulate the optimal decay
estimates of the time-dependent damped wave equations and linear system separately.
The optimal L2 and Lq decay estimates of the nonlinear system are proved in Sect. 4.

2 Time-Dependent DampedWave Equations

Wefirst focus on the optimal decay rates of the time-dependent dampedwave equations
(1.6) and (1.7). Here we need to consider the wave equations starting from any time
s ≥ 0 to time t ≥ s for application to nonlinear problems, since the evolution is not
translation invariant due to the time-dependent damping. This section is devoted to
the proof of Theorem 1.3.

Taking Fourier transforms to the time-dependent damped wave equations (1.6) and
(1.7), we have

{
∂2t v̂ + |ξ |2v̂ + b(t)∂t v̂ = 0,

v̂(0, ξ) = v̂1(ξ), ∂t v̂(0, ξ) = v̂2(ξ),
(2.1)

and
{

∂2t û + |ξ |2û + ∂t (b(t)û) = 0,

û(0, ξ) = û1(ξ), ∂t û(0, ξ) = û2(ξ),
(2.2)

where b(t) = μ

(1+t)λ
with μ > 0 and λ ∈ [0, 1). The solutions can be represented in

the form:

v̂(t, ξ) = �v
1(t, 0, ξ)v̂1(ξ) + �v

2(t, 0, ξ)v̂2(ξ), (2.3)
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û(t, ξ) = �u
1(t, 0, ξ)û1(ξ) + �u

2(t, 0, ξ)û2(ξ), (2.4)

with Fourier multipliers �v
j (t, s, ξ) and �u

j (t, s, ξ), j = 1, 2, which represent the
evolution of initial data starting from s ≤ t . A perfect diagonalization scheme was
developed by Wirth (2006, 2007) in order to handle the time-dependent operators
since the matrix is not commutative.

Let

ṽ(t, ξ) := e
1
2

∫ t
0 b(τ )dτ v̂(t, ξ),

ũ(t, ξ) := e
1
2

∫ t
0 b(τ )dτ û(t, ξ).

Then, the equations in (2.1) and (2.2) are transformed into

∂2t ṽ +
(
|ξ |2 − 1

4
b2(t) − 1

2
b′(t)

)
ṽ = 0, (2.5)

∂2t ũ +
(
|ξ |2 − 1

4
b2(t) + 1

2
b′(t)

)
ũ = 0. (2.6)

For simplicity, we denote

mv(t, ξ) := |ξ |2 − 1

4
b2(t) − 1

2
b′(t),

mu(t, ξ) := |ξ |2 − 1

4
b2(t) + 1

2
b′(t).

One may think that the difference between mv(t, ξ) and mu(t, ξ) is of no importance
since |b′(t)| ≈ 1

(1+t)1+λ is dominated by b2(t) ≈ 1
(1+t)2λ

as λ ∈ [0, 1). However, we
will prove that this difference makes the solution u(t, x) of (1.7) essentially decay
slower than the solution v(t, x) of (1.6).

We employ the diagonalization method developed by Wirth (2006, 2007), and we
paymore attention to the exact asymptotic behavior of different frequencies, especially
the low frequencies such that mv(t, ξ) < 0 or mu(t, ξ) < 0. We need to analyze the
phase-time space for both (2.5) and (2.6). For the sake of simplicity, we only write
down the analysis and diagonalization of the problem (2.5) and then we highlight the
difference between the two problems. The phase-time space (t, ξ) of the problem (2.5)
is divided into the following parts:

Zv
hyp : = {(t, ξ);√|mv(t, ξ)| ≥ Nvb(t),mv(t, ξ) ≥ 0},
Zv
pd : = {(t, ξ); εvb(t) ≤ √|mv(t, ξ)| ≤ Nvb(t),mv(t, ξ) ≥ 0},

Zv
red : = {(t, ξ);√|mv(t, ξ)| ≤ εvb(t)},
Zv
ell : = {(t, ξ);√|mv(t, ξ)| ≥ εvb(t),mv(t, ξ) ≤ 0, t ≥ tvell},

where εv > 0 is chosen to be sufficiently small such that the influence of the reduced
zone Zv

red on the fundamental solution is relatively small, and Nv > εv , tvell > 0. There
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remains a bounded part {(t, ξ);√|mv(t, ξ)| ≥ εvb(t),mv(t, ξ) ≤ 0, t ∈ (0, tvell)}
which is of no influence. The treatment of the zones, Zv

hyp, Z
v
pd, Z

v
red, and Zv

ell is
similar to that in Wirth (2007); here, we present the treatment of the elliptic zone Zv

ell
in detail since this part will determine the decay rates of solutions.

For any fixed constant c0 ≥ μNv , we would call

high frequencies: (t, ξ) ∈ Zv
hyp, |ξ | ≥ c0,

low frequencies: (t, ξ) ∈ Zv
ell, or other mixed zones,

where mixed zones are Zv
pd, Z

v
red, and Zv

hyp with |ξ | ≤ c0. Note that the elliptic zone
Zv
ell is shrinking and the frequencies in Zv

ell decay slowest.
In the elliptic zone Zv

ell, we let Dt := −i∂t and V := (
√|mv(t, ξ)|ṽ, Dt ṽ)T, where

(·)T is the transpose of a matrix or a vector. Then, the equation (2.5) is converted into
(note that mv(t, ξ) < 0)

DtV =
(

Dt
√|mv(t,ξ)|√|mv(t,ξ)|

√|mv(t, ξ)|
−√|mv(t, ξ)|

)

V =: A(t, ξ)V . (2.7)

Here and after, blanked entries correspond to zeros in a matrix. Let

M =
(
i −i
1 1

)

, M−1 = 1

2

(−i 1
i 1

)

.

Then,

Dt − A(t, ξ) = M(Dt − D(t, ξ) − R(t, ξ))M−1, (2.8)

where

Dt =
(
Dt

Dt

)

, D(t, ξ) =
(−i

√|mv(t, ξ)|
i
√|mv(t, ξ)|

)

,

R(t, ξ) = Dt
√|mv(t,ξ)|

2
√|mv(t,ξ)|

(
1 −1

−1 1

)

.

An important note here is that Dt �= Dt I since Dt F = −i∂t F is the time derivative
of a scalar, or vector, or matrix F , while Dt F for a matrix F is a multiplier such that

Dt FG = Dt (FG) = (Dt F)G + F(DtG) �= (Dt F)G

for general matrix or vector G. For a vector V , there holds Dt V = DtV .
Now the matrices Dt and D(t, ξ) are diagonal but R(t, ξ) is not. The bad thing

is that ‖R(t, ξ)‖max � 1
1+t (the norm ‖ · ‖max for a matrix is the maximum absolute

value of all its elements), which is not uniformly bounded integrable with respect to
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time. The key ingredient for the diagonalization method developed by Wirth (2006,
2007) is to proceed a step further, such that

(Dt − D(t, ξ) − R(t, ξ))N1(t, ξ)

= N1(t, ξ)(Dt − D(t, ξ) − F0(t, ξ) − R1(t, ξ)), (2.9)

with

N (1)(t, ξ) = i Dt
√|mv(t,ξ)|

2|mv(t,ξ)|
(

1
−1

)

, F0(t, ξ) = Dt
√|mv(t,ξ)|

2
√|mv(t,ξ)|

(
1
1

)

,

and N1(t, ξ) = I + N (1)(t, ξ) such that

N (1)(t, ξ)D(t, ξ) − D(t, ξ)N (1)(t, ξ) = R(t, ξ) − F0(t, ξ),

and then

R1(t, ξ) = −(I + N (1)(t, ξ))−1(Dt N
(1)(t, ξ) − R(t, ξ)N (1)(t, ξ)

+N (1)(t, ξ)F0(t, ξ)).

Now one can verify that ‖R1(t, ξ)‖max � 1
(1+t)2−λ , whose integral with respect to time

over any interval (s, t) is uniformly bounded. We also note that ‖N1(t, ξ) − I‖max =
‖N (1)(t, ξ)‖max � 1

(1+t)1−λ and N1(t, ξ) is uniformly bounded invertible if the tvell in
the definition of Zv

ell is chosen large.

Lemma 2.1 The fundamental solution E (t, s, ξ) of Dt − A(t, ξ) (i.e., the equation
(2.7)) for (t, ξ) ∈ Zv

ell and 0 ≤ s ≤ t is

E (t, s, ξ) =MN1(t, ξ)e
∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv(τ,ξ)|

2
√|mv(τ,ξ)| )dτQ(t, s, ξ)N−1

1 (t, ξ)M−1

=e
∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv(τ,ξ)|

2
√|mv(τ,ξ)| )dτ

Ẽ (t, s, ξ),

where Ẽ (t, s, ξ) := MN1(t, ξ)Q(t, s, ξ)N−1
1 (t, ξ)M−1 andQ(t, s, ξ) is the solution

of the following integral equation:

Q(t, s, ξ) = H(t, s, ξ) + i
∫ t

s
H(t, θ, ξ)R1(θ, ξ)Q(θ, s, ξ)dθ, (2.10)

with

H(t, s, ξ) =
(
1 0

0 e−2
∫ t
s

√|mv(τ,ξ)|dτ

)

.

Moreover, ‖Q(t, s, ξ)‖max is uniformly bounded and ‖Q(t, s, ξ) − H(t, s, ξ)‖max �
1

(1+s)1−λ for (t, ξ) ∈ Zv
ell and s ≤ t .
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Proof According to the relation (2.8) and (2.9), it suffices to prove that the fundamental
solution of Dt − D(t, ξ) − F0(t, ξ) − R1(t, ξ) is Ẽ0Q(t, s, ξ) with

Ẽ0 := e
∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv(τ,ξ)|

2
√|mv(τ,ξ)| )dτ

.

That is, we need to show

∂t (Ẽ0Q) = i Dt (Ẽ0Q) = (iD(t, ξ) + i F0(t, ξ) + i R1(t, ξ))(Ẽ0Q).

In fact,

∂t (Ẽ0Q) = (∂t Ẽ0)Q + Ẽ0∂tQ = (iD + i F0 − H)Ẽ0Q + Ẽ0∂tQ,

where

H(t, ξ) = i(D(t, ξ) + F0(t, ξ)) −
(√|mv(t, ξ)| + ∂t

√|mv(t,ξ)|
2
√|mv(t,ξ)|

)
I

=
(
0 0
0 −2

√|mv(t, ξ)|
)

.

Noticing that Ẽ0 is scalar, we see that Q is the solution of

∂tQ(t, s, ξ) = H(t, ξ)Q(t, s, ξ) + i R1(t, ξ)Q(t, s, ξ), Q(s, s, ξ) = I ,

which is equivalent to the integral equation (2.10). As proved in Theorem 15 of Wirth
(2007), there holds the estimates

‖Q(t, s, ξ) − H(t, s, ξ)‖max

�
∞∑

j=1

∫ t

s
‖R1(t1, ξ)‖max

∫ t1

s
‖R1(t2, ξ)‖max · · ·

∫ t j−1

s
‖R1(t j , ξ)‖maxdt j · · · dt2dt1

�
∞∑

j=1

1

j !
( ∫ t

s
‖R1(τ, ξ)‖maxdτ

) j
� e

∫ t
s ‖R1(τ,ξ)‖maxdτ − 1.
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The proof is completed since

∫ t

s
‖R1(τ, ξ)‖maxdτ �

∫ t

s

1

(1 + τ)2−λ
dτ � 1

(1 + s)1−λ
,

which tends to zero as s → ∞. ��
The following asymptotic analysis will be used to show the optimal decay rates of

the solutions v̂(t, ξ) and û(t, ξ) for equations (2.1) and (2.2).

Lemma 2.2 For (t, ξ) ∈ Zv
ell, there holds (note that b

′(t) ≤ 0)

⎧
⎪⎪⎨

⎪⎪⎩

√|mv(t, ξ)| + ∂t
√|mv(t,ξ)|

2
√|mv(t,ξ)| − b(t)

2
≤ −|ξ |2 1

b(t)
+ b′(t)

b(t)
+ |rv(t, ξ)|,

√|mv(t, ξ)| + ∂t
√|mv(t,ξ)|

2
√|mv(t,ξ)| − b(t)

2
≥ −|ξ |2 C

b(t)
+ b′(t)

b(t)
− |rv(t, ξ)|,

(2.11)

and for (t, ξ) ∈ Zu
ell (the definition of zones in the phase-time space corresponding to

ũ is completely similar to that of ṽ), there holds

⎧
⎪⎨

⎪⎩

√|mu(t, ξ)| + ∂t
√|mu(t,ξ)|

2
√|mu(t,ξ)| − b(t)

2
≤ −|ξ |2 C1

b(t)
+ |ru(t, ξ)|,

√|mu(t, ξ)| + ∂t
√|mu(t,ξ)|

2
√|mu(t,ξ)| − b(t)

2
≥ −|ξ |2 C2

b(t)
− |ru(t, ξ)|,

(2.12)

where |rv(t, ξ)| � 1
(1+t)2−λ and |ru(t, ξ)| � 1

(1+t)2−λ such that the integrals of |rv(t, ξ)|
and |ru(t, ξ)| with respect to time are uniformly bounded.
Proof Recall that

mv(t, ξ) := |ξ |2 − 1

4
b2(t) − 1

2
b′(t),

mu(t, ξ) := |ξ |2 − 1

4
b2(t) + 1

2
b′(t),

and in the elliptic zone Zv
ell or Zu

ell, mv(t, ξ) < 0 and
√|mv(t, ξ)| ≥ εvb(t), or

mu(t, ξ) < 0 and
√|mu(t, ξ)| ≥ εub(t), respectively. Then, we have |mv(t, ξ)| =

1
4b

2(t) + 1
2b

′(t) − |ξ |2 ≥ ε2vb
2(t), |mv(t, ξ)| ≤ 1

4b
2(t) and

√|mv(t, ξ)| + ∂t
√|mv(t,ξ)|

2
√|mv(t,ξ)| − b(t)

2

= |mv(t, ξ)| − 1
4b

2(t)√|mv(t, ξ)| + b(t)
2

+
1
2b(t)b

′(t) + 1
2b

′′(t)
4( 14b

2(t) + 1
2b

′(t) − |ξ |2)

= −|ξ |2√|mv(t, ξ)| + b(t)
2

+
1
2b

′(t)√|mv(t, ξ)| + b(t)
2
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+
1
2b(t)b

′(t)
4( 14b

2(t) + 1
2b

′(t) − |ξ |2) +
1
2b

′′(t)
4( 14b

2(t) + 1
2b

′(t) − |ξ |2)
≤ −|ξ |2 1

b(t)
+ b′(t)

b(t)
+ rv(t, ξ), (2.13)

with |rv(t, ξ)| = ∣
∣

1
2 b

′′(t)
4( 14 b

2(t)+ 1
2 b

′(t)−|ξ |2)
∣
∣ � b′′(t)

ε2vb
2(t)

� 1
(1+t)2−λ . This shows the first

inequality in (2.11).
As for mu(t, ξ), we have |mu(t, ξ)| = 1

4b
2(t) − 1

2b
′(t) − |ξ |2 ≥ ε2ub

2(t) and
|mu(t, ξ)| = 1

4b
2(t) − 1

2b
′(t) − |ξ |2 ≤ 1

2b
2(t) since |b′(t)| � 1

(1+t)1+λ is dominated

by b2(t) ≈ 1
(1+t)2λ

and the elliptic zone Zu
ell is defined within t ≥ tuell which can be

chosen large. Now, we see that

√|mu(t, ξ)| + ∂t
√|mu(t,ξ)|

2
√|mu(t,ξ)| − b(t)

2

= |mu(t, ξ)| − 1
4b

2(t)√|mu(t, ξ)| + b(t)
2

+
1
2b(t)b

′(t) − 1
2b

′′(t)
4( 14b

2(t) − 1
2b

′(t) − |ξ |2)

= −|ξ |2√|mu(t, ξ)| + b(t)
2

+ − 1
2b

′(t)√|mu(t, ξ)| + b(t)
2

+
1
2b(t)b

′(t)
4( 14b

2(t) − 1
2b

′(t) − |ξ |2) +
1
2b

′′(t)
4( 14b

2(t) − 1
2b

′(t) − |ξ |2)

= −|ξ |2√|mu(t, ξ)| + b(t)
2

+ r̄u(t, ξ),

with −|ξ |2√|mu(t,ξ)|+ b(t)
2

≈ −|ξ |2 1
b(t) and

|r̄u(t, ξ)|

=
∣
∣
∣

− 1
2b

′(t)√|mu(t, ξ)| + b(t)
2

+
1
2b(t)b

′(t)
4( 14b

2(t) − 1
2b

′(t) − |ξ |2) +
1
2b

′′(t)
4( 14b

2(t) − 1
2b

′(t) − |ξ |2)
∣
∣
∣

�
∣
∣
∣

− 1
2b

′(t)√|mu(t, ξ)| + b(t)
2

+
1
2b

′(t)
b(t)

∣
∣
∣ +

∣
∣
∣

1
2b(t)b

′(t)
4( 14b

2(t) − 1
2b

′(t) − |ξ |2) −
1
2b

′(t)
b(t)

∣
∣
∣ +

∣
∣
∣
b′′(t)
b2(t)

∣
∣
∣

�
|b′(t)||√|mu(t, ξ)| − b(t)

2 |
|b(t)||√|mu(t, ξ)| + b(t)

2 | + |b′(t)||2b′(t) + 4|ξ |2|
|b(t)||mu(t, ξ)| + |b′′(t)|

b2(t)

�
|b′(t)|| − 1

2b
′(t) − |ξ |2|

|b(t)||√|mu(t, ξ)| + b(t)
2 |2 + |b′(t)||2b′(t) + 4|ξ |2|

|b(t)||mu(t, ξ)| + |b′′(t)|
b2(t)

� |ξ |2 1

b(t)
· |b′(t)|
b2(t)

+ |b′(t)|2
b3(t)

+ |b′′(t)|
b2(t)

.
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By noticing that |b′(t)|
b2(t)

� 1
(1+t)1−λ , which tends to zero as t → ∞, we find that r̄u(t, ξ)

can be split into

r̄u(t, ξ) = |ξ |2 1

b(t)
· ω(t, ξ) + ru(t, ξ),

with

|ru(t, ξ)| � |b′(t)|2
b3(t)

+ |b′′(t)|
b2(t)

� 1

(1 + t)2−λ
,

and

−|ξ |2√|mu(t, ξ)| + b(t)
2

+ |ξ |2 1

b(t)
· ω(t, ξ) ≈ −|ξ |2 1

b(t)

since |ω(t, ξ)| � 1
(1+t)1−λ and we can choose tuell large enough (it suffices to let

|ω(t, ξ)| ≤ 1/4).
We show that the second inequality in (2.11) holds. Note that in the Zv

ell,

ε2vb
2(t) ≤ |mv(t, ξ)| = 1

4
b2(t) + 1

2
b′(t) − |ξ |2 ≤ 1

4
b2(t).

Then, (2.13) reads as

√|mv(t, ξ)| + ∂t
√|mv(t,ξ)|

2
√|mv(t,ξ)| − b(t)

2

= −|ξ |2√|mv(t, ξ)| + b(t)
2

+
1
2b

′(t)√|mv(t, ξ)| + b(t)
2

+
1
2b(t)b

′(t)
4( 14b

2(t) + 1
2b

′(t) − |ξ |2) +
1
2b

′′(t)
4( 14b

2(t) + 1
2b

′(t) − |ξ |2)

≥ −|ξ |2 2

b(t)
+

1
2b

′(t)
b(t)
2 + b(t)

2

+
1
2b(t)b

′(t)
b2(t)

+ r̄v(t, ξ)

≥ −|ξ |2 2

b(t)
+ b′(t)

b(t)
+ r̄v(t, ξ),

with

r̄v(t, ξ) =
1
2b

′(t)√|mv(t, ξ)| + b(t)
2

+
1
2b(t)b

′(t)
4( 14b

2(t) + 1
2b

′(t) − |ξ |2)

+
1
2b

′′(t)
4( 14b

2(t) + 1
2b

′(t) − |ξ |2) −
1
2b

′(t)
b(t)
2 + b(t)

2

−
1
2b(t)b

′(t)
b2(t)

123



Journal of Nonlinear Science             (2023) 33:7 Page 21 of 47     7 

≥
( 1

2b
′(t)√|mv(t, ξ)| + b(t)

2

−
1
2b

′(t)
b(t)
2 + b(t)

2

)

+
( 1

2b(t)b
′(t)

4( 14b
2(t) + 1

2b
′(t) − |ξ |2) −

1
2b(t)b

′(t)
b2(t)

)
−

∣
∣
∣

1
2b

′′(t)
4( 14b

2(t) + 1
2b

′(t) − |ξ |2)
∣
∣
∣

≥
1
2b

′(t)( 12b(t) − √|mv(t, ξ)|)
(
√|mv(t, ξ)| + b(t)

2 )b(t)
+

1
2b(t)b

′(t)(−2b′(t) + 4|ξ |2)
4( 14b

2(t) + 1
2b

′(t) − |ξ |2)b2(t) − |b′′(t)|
8ε2vb2(t)

� b′(t)
b2(t)

· − 1
2b

′(t) + |ξ |2
1
2b(t) + √|mv(t, ξ)| − |b′(t)|2

b3(t)
+ b′(t)

b2(t)
· |ξ |2
b(t)

− |b′′(t)|
b2(t)

� b′(t)
b2(t)

· |ξ |2
b(t)

− |b′(t)|2
b3(t)

− |b′′(t)|
b2(t)

� − |ξ |2 C3

b(t)
− |rv(t, ξ)|,

where C3 ≈ maxt≥0
|b′(t)|
b2(t)

� maxt≥0
1

(1+t)1−λ is bounded, and

|rv(t, ξ)| � |b′(t)|2
b3(t)

+ |b′′(t)|
b2(t)

� 1

(1 + t)2−λ
.

Therefore, the second inequality in (2.11) holds with C = C3 + 2. The proof is
completed. ��
According to the asymptotic analysis of the frequencies, we can formulate the follow-
ing estimates.

Lemma 2.3 Themultiplies�v
j (t, s, ξ) and�u

j (t, s, ξ), j = 1, 2, in the equations (2.3)
and (2.4) have the following estimates: there exist c0 > 0, ε ∈ (0, 1/2), C > 0, and
T0 ≥ 0 (only depending on μ and λ) such that

(i) For (t, ξ) ∈ Zv
ell and 0 ≤ s ≤ t , there hold

|�v
1(t, s, ξ)| � e−C|ξ |2 ∫ t

s
1

b(τ )
dτ

,

|�v
2(t, s, ξ)| � 1

b(s)
· e−C|ξ |2 ∫ t

s
1

b(τ )
dτ ; (2.14)

for (t, ξ) ∈ Zv
hyp, 0 ≤ s ≤ t , and |ξ | ≥ c0, there holds

|�v
1(t, s, ξ)| + |ξ ||�v

2(t, s, ξ)| � e−( 12−ε)
∫ t
s b(τ )dτ ;

and for (t, ξ) /∈ Zv
ell with 0 ≤ s ≤ t and |ξ | ≤ c0, there hold

|�v
1(t, s, ξ)| � e

−C|ξ |2 ∫ max{s,tv
ξ

}
s

1
b(τ )

dτ−( 12−ε)
∫ t
max{s,tv

ξ
} b(τ )dτ

,

|�v
2(t, s, ξ)| � 1

b(min{s,tvξ }) · e−C|ξ |2 ∫ max{s,tv
ξ

}
s

1
b(τ )

dτ−( 12−ε)
∫ t
max{s,tv

ξ
} b(τ )dτ

,
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where tvξ := sup{t; (t, ξ) ∈ Zv
ell}.

(ii) For (t, ξ) ∈ Zu
ell and 0 ≤ s ≤ t , there hold

|�u
1(t, s, ξ)| � b(s)

b(t)
· e−C|ξ |2 ∫ t

s
1

b(τ )
dτ

, |�u
2(t, s, ξ)| � 1

b(t)
· e−C|ξ |2 ∫ t

s
1

b(τ )
dτ ;
(2.15)

for (t, ξ) ∈ Zu
hyp, 0 ≤ s ≤ t , and |ξ | ≥ c0, there holds

|�u
1(t, s, ξ)| + |ξ ||�u

2(t, s, ξ)| � e−( 12−ε)
∫ t
s b(τ )dτ ;

and for (t, ξ) /∈ Zu
ell with 0 ≤ s ≤ t and |ξ | ≤ c0, there hold

|�u
1(t, s, ξ)| � b(min{s,tuξ })

b(tuξ )
· e−C|ξ |2 ∫ max{s,tu

ξ
}

s
1

b(τ )
dτ−( 12−ε)

∫ t
max{s,tu

ξ
} b(τ )dτ

,

|�u
2(t, s, ξ)| � 1

b(tuξ )
· e−C|ξ |2 ∫ max{s,tu

ξ
}

s
1

b(τ )
dτ−( 12−ε)

∫ t
max{s,tu

ξ
} b(τ )dτ

,

where tuξ := sup{t; (t, ξ) ∈ Zu
ell}.

(iii) For (t, ξ) ∈ Zv
ell and T0 ≤ s ≤ t , the estimate (2.14) is optimal:

|�v
1(t, s, ξ)| � e−C|ξ |2 ∫ t

s
1

b(τ )
dτ

, |�v
2(t, s, ξ)| � 1

b(s)
· e−C|ξ |2 ∫ t

s
1

b(τ )
dτ

,

(2.16)

with another universal constant C > 0.
(iv) For (t, ξ) ∈ Zu

ell and T0 ≤ s ≤ t , the estimate (2.15) is optimal:

|�u
1(t, s, ξ)| � b(s)

b(t)
· e−C|ξ |2 ∫ t

s
1

b(τ )
dτ

, |�u
2(t, s, ξ)| � 1

b(t)
· e−C|ξ |2 ∫ t

s
1

b(τ )
dτ

,

(2.17)

with another universal constant C > 0.

Proof The estimates (i) with s = 0 was proved by Wirth in Theorem 17 of Wirth
(2007). Herewe need to consider�v

j (t, s, ξ)with s ≤ t for the application to nonlinear
system (1.3). It should be noted that�v

j (t, s, ξ) behaves different from�v
j (t− s, 0, ξ)

since the damping is time-dependent.
We first focus on the elliptic zones Zv

ell and Zu
ell. Using the fundamental solution

E (t, s, ξ) of Dt − A(t, ξ) in Lemma 2.1, we can express the solution of (2.7) as:

(√|mv(t, ξ)|ṽ(t, ξ)

Dt ṽ(t, ξ)

)

= E (t, s, ξ)

(√|mv(s, ξ)|ṽ(s, ξ)

Dt ṽ(s, ξ)

)

= e
∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv (τ,ξ)|

2
√|mv (τ,ξ)| )dτ

Ẽ (t, s, ξ)

(√|mv(s, ξ)|ṽ(s, ξ)

Dt ṽ(s, ξ)

)

,
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where Ẽ (t, s, ξ) := MN1(t, ξ)Q(t, s, ξ)N−1
1 (t, ξ)M−1 and ‖Ẽ (t, s, ξ)‖max is uni-

formly bounded. According to the relation

ṽ(t, ξ) = e
1
2

∫ t
0 b(τ )dτ v̂(t, ξ),

we arrive at (note that Dt = −i∂t )

( √|mv(t, ξ)|v̂(t, ξ)

Dt v̂(t, ξ) − i b(t)2 v̂(t, ξ)

)

= e
∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv(τ,ξ)|

2
√|mv(τ,ξ)| − b(τ )

2 )dτ · Ẽ (t, s, ξ)

( √|mv(s, ξ)|v̂(s, ξ)

Dt v̂(s, ξ) − i b(s)2 v̂(s, ξ)

)

.

Therefore,

�v
1(t, s, ξ) = 1√|mv(t, ξ)|e

∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv (τ,ξ)|

2
√|mv (τ,ξ)| − b(τ )

2 )dτ
(
√|mv(s, ξ)|[Ẽ (t, s, ξ)]11

− i
b(s)

2
[Ẽ (t, s, ξ)]12),

�v
2(t, s, ξ) = −i√|mv(t, ξ)|e

∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv (τ,ξ)|

2
√|mv (τ,ξ)| − b(τ )

2 )dτ [Ẽ (t, s, ξ)]12, (2.18)

such that

v̂(t, ξ) = �v
1(t, s, ξ)v̂(s, ξ) + �v

2(t, s, ξ)∂t v̂(s, ξ),

where [·] jk denotes the ( j, k)-element of a matrix. Note that in the elliptic zone Zv
ell,

we have

εvb(t) ≤ √|mv(t, ξ)| ≤ 1

2
b(t).

We apply the estimate (2.11) in Lemma 2.2 to get

e
∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv(τ,ξ)|

2
√|mv(τ,ξ)| − b(τ )

2 )dτ � e−|ξ |2 ∫ t
s

1
b(τ )

dτ · e
∫ t
s

b′(τ )
b(τ )

dτ = b(t)

b(s)
· e−|ξ |2 ∫ t

s
1

b(τ )
dτ

,

which implies (2.14).
Similarly, we have

�u
1(t, s, ξ) = 1√|mu(t, ξ)|e

∫ t
s (

√|mu (τ,ξ)|+ ∂t
√|mu (τ,ξ)|

2
√|mu (τ,ξ)| − b(τ )

2 )dτ
(
√|mu(s, ξ)|[Ẽ (t, s, ξ)]11

− i
b(s)

2
[Ẽ (t, s, ξ)]12),

�u
2(t, s, ξ) = −i√|mu(t, ξ)|e

∫ t
s (

√|mu (τ,ξ)|+ ∂t
√|mu (τ,ξ)|

2
√|mu (τ,ξ)| − b(τ )

2 )dτ [Ẽ (t, s, ξ)]12.
(2.19)
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Here we have slightly abused the notion Ẽ (t, s, ξ), which should be replaced by the
matrix corresponding to the problemof ũ(t, ξ).We apply the estimate (2.12) in Lemma
2.2 to get

e
∫ t
s (

√|mu(τ,ξ)|+ ∂t
√|mu (τ,ξ)|

2
√|mu (τ,ξ)| − b(τ )

2 )dτ � e−|ξ |2 ∫ t
s

1
b(τ )

dτ
,

which completes the proof of (2.15).
The treatment in the zones Zv

hyp, Z
v
pd, and Zv

red of the phase-time space of ṽ(t, ξ)

is similar to that in Wirth (2007). We note that for (t, ξ) ∈ Zv
hyp and |ξ | ≥ c0, 1

b(s) ,
b(s)
b(t) , and

1
b(t) are all dominated by eε

∫ t
s b(τ )dτ . For (t, ξ) /∈ Zv

ell and |ξ | ≥ c0, we can
apply the estimate (2.14) to �v

j (t
v
ξ , s, ξ) if s ≤ tvξ . This completes the proof of (i) and

the proof of (ii) follows similarly.
We prove that the estimate of �v

2(t, s, ξ) in (2.14) is optimal. According to the
optimal estimate (2.11) in Lemma 2.2, we see that for (t, ξ) ∈ Zv

ell,

e
∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv(τ,ξ)|

2
√|mv(τ,ξ)| − b(τ )

2 )dτ � e−|ξ |2 ∫ t
s

C
b(τ )

dτ · e
∫ t
s

b′(τ )
b(τ )

dτ = b(t)

b(s)
· e−|ξ |2 ∫ t

s
C

b(τ )
dτ

.

Then, (2.18) reads as:

|�v
1(t, s, ξ)| = 1√|mv(t, ξ)|e

∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv(τ,ξ)|

2
√|mv(τ,ξ)| − b(τ )

2 )dτ ∣∣
√|mv(s, ξ)|[Ẽ (t, s, ξ)]11

− i
b(s)

2
[Ẽ (t, s, ξ)]12

∣
∣

� e−|ξ |2 ∫ t
s

C
b(τ )

dτ
∣
∣

√|mv(s, ξ)|
b(s)

[Ẽ (t, s, ξ)]11 − i

2
[Ẽ (t, s, ξ)]12

∣
∣,

and

|�v
2(t, s, ξ)| = 1√|mv(t, ξ)|e

∫ t
s (

√|mv(τ,ξ)|+ ∂t
√|mv(τ,ξ)|

2
√|mv(τ,ξ)| − b(τ )

2 )dτ ∣∣[Ẽ (t, s, ξ)]12
∣
∣,

� 1

b(s)
· e−|ξ |2 ∫ t

s
C

b(τ )
dτ

∣
∣[Ẽ (t, s, ξ)]12

∣
∣.

It suffices to show that there is no cancellation between the elements of the matrix
product of Ẽ (t, s, ξ) such that

∣
∣
√|mv(s,ξ)|

b(s) [Ẽ (t, s, ξ)]11 − i
2 [Ẽ (t, s, ξ)]12

∣
∣ � 1 and

|[Ẽ (t, s, ξ)]12| � 1. Noticing that

Ẽ (t, s, ξ) = MN1(t, ξ)Q(t, s, ξ)N−1
1 (t, ξ)M−1

= M(I + N (1)(t, ξ))Q(t, s, ξ)(I + N (1)(t, ξ))−1M−1,
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where ‖N (1)(t, ξ)‖max � 1
(1+t)1−λ and ‖Q(t, s, ξ) − H(t, s, ξ)‖max � 1

(1+s)1−λ with

H(t, s, ξ) =
(
1 0

0 e−2
∫ t
s

√|mv(τ,ξ)|dτ

)

as shown in Lemma 2.1, we can find T0 ≥ 0 such that for any T0 ≤ s ≤ t and
(t, ξ) ∈ Zv

ell, there holds

‖Ẽ (t, s, ξ) − MH(t, s, ξ)M−1‖max ≤ 1

16
,

and furthermore, we have

∥
∥
∥MH(t, s, ξ)M−1 − 1

2

(
1 i
−i 1

)∥
∥
∥
max

= 1

2
e−2

∫ t
s

√|mv(τ,ξ)|dτ
∥
∥
∥

(
1 −i
i 1

)

∥
∥
∥
max

≤ 1

2
e−2

∫ t
s εvb(τ )dτ ≤ 1

16
,

if t > s such that
∫ t
s εvb(τ )dτ ≥ 3 ln 2/2, which is easily achieved since

∫ ∞
s b(τ )dτ

is divergent. Therefore, |[Ẽ (t, s, ξ)]12 − i
2 | ≤ 1

8 and |[Ẽ (t, s, ξ)]11 − 1
2 | ≤ 1

8 , which
means

∣
∣
∣
(
√|mv(s, ξ)|

b(s)
[Ẽ (t, s, ξ)]11 − i

2
[Ẽ (t, s, ξ)]12

)

− (
√|mv(s, ξ)|

b(s)
· 1
2

− i

2
· i
2

)∣∣
∣

≤
√|mv(s, ξ)|

b(s)

1

8
+ 1

2

1

8
≤ 3

16
.

It follows that

∣
∣
∣
(
√|mv(s, ξ)|

b(s)
[Ẽ (t, s, ξ)]11 − i

2
[Ẽ (t, s, ξ)]12

)∣∣
∣ ≥

∣
∣
∣
(
√|mv(s, ξ)|

b(s)
· 1
2

− i

2
· i
2

)∣∣
∣ − 3

16
≥ 1

16
,

and the proof of (iii) is completed.
We turn to prove (iv) in a similar way as (iii). According to the optimal estimate

(2.12) in Lemma 2.2, for (t, ξ) ∈ Zv
ell, we have

e
∫ t
s (

√|mu(τ,ξ)|+ ∂t
√|mv(τ,ξ)|

2
√|mv(τ,ξ)| − b(τ )

2 )dτ � e−|ξ |2 ∫ t
s

C
b(τ )

dτ
.
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Then, (2.19) reads as:

|�u
1(t, s, ξ)| = 1√|mu(t, ξ)|e

∫ t
s (

√|mu(τ,ξ)|+ ∂t
√|mu (τ,ξ)|

2
√|mu (τ,ξ)| − b(τ )

2 )dτ ∣∣
√|mu(s, ξ)|[Ẽ (t, s, ξ)]11

− i
b(s)

2
[Ẽ (t, s, ξ)]12

∣
∣

� b(s)

b(t)
· e−|ξ |2 ∫ t

s
C

b(τ )
dτ

∣
∣

√|mu(s, ξ)|
b(s)

[Ẽ (t, s, ξ)]11 − i

2
[Ẽ (t, s, ξ)]12

∣
∣,

and

|�u
2(t, s, ξ)| = 1√|mu(t, ξ)|e

∫ t
s (

√|mu(τ,ξ)|+ ∂t
√|mu (τ,ξ)|

2
√|mu (τ,ξ)| − b(τ )

2 )dτ ∣∣[Ẽ (t, s, ξ)]12
∣
∣,

� 1

b(t)
· e−|ξ |2 ∫ t

s
C

b(τ )
dτ

∣
∣[Ẽ (t, s, ξ)]12

∣
∣.

The proof of |[Ẽ (t, s, ξ)]12| � 1 and
∣
∣
√|mu(s,ξ)|

b(s) [Ẽ (t, s, ξ)]11 − i
2 [Ẽ (t, s, ξ)]12

∣
∣ � 1

in the case of ũ(t, ξ) is the same as in (iii). ��
The above frequency analysis is used to show the optimal decay estimates of the

wave equations (1.6) and (1.7). Note that the time decay functions �(t, s) and 
(t, s)
are defined as in (1.8).

Proof of Theorem 1.3 The estimate (1.13) for s = 0 was proved byWirth (2007). Here,
we focus on the influence of s and show that u(t, x) decays slower than v(t, x).We also
prove that those estimates are optimal. According to the frequency decay estimates
Lemma 2.3 and the representation

v̂(t, ξ) = �v
1(t, s, ξ)v̂(s, ξ) + �v

2(t, s, ξ)∂t v̂(s, ξ),

we need to calculate the integral ‖|ξ ||α|v̂(t, ξ)‖Lq′ decomposed into several zones,
where q ′ := p/(p − 1) is the conjugate of q ′ with 1′ = ∞. For the low frequencies
in the elliptic zone (t, ξ) ∈ Zv

ell, we consider the case p ∈ (1, 2) and q ∈ [2,∞) and
take |ξ ||α||�v

1(t, s, ξ)||v̂(s, ξ)| for example. Let ξt := sup{|ξ |; (t, ξ) ∈ Zv
ell}. We have

∫

|ξ |≤ξt

(
|ξ ||α||�v

1(t, s, ξ)||v̂(s, ξ)|
)q ′

dξ

�
∫

|ξ |≤ξt

|ξ ||α|q ′
e−Cq ′|ξ |2 ∫ t

s
1

b(τ )
dτ |v̂(s, ξ)|q ′

dξ

�
( ∫

|ξ |≤ξt

|v̂(s, ξ)|p′
dξ

)q ′/p′( ∫

|ξ |≤ξt

|ξ ||α|p′q ′/(p′−q ′)e−Cp′q ′/(p′−q ′)·|ξ |2 ∫ t
s

1
b(τ )

dτdξ
)1−q ′/p′

� (‖v(s, x)‖lL p )
q ′(

∫ ξt

0
|ξ ||α|p′q ′/(p′−q ′)+n−1e−Cp′q ′/(p′−q ′)·|ξ |2 ∫ t

s
1

b(τ )
dτd|ξ |

)1−q ′/p′

�
(‖v(s, x)‖lL p (1 + (1 + t)1+λ − (1 + s)1+λ)−

1
2 (γp,q+|α|))q ′

,
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which is

‖χ(ξ)|ξ ||α|�v
1(t, s, ξ)v̂(s, ξ)‖Lq � ‖v(s, x)‖lL p (1 + (1 + t)1+λ

−(1 + s)1+λ)−
1
2 (γp,q+|α|), (2.20)

where we have used the fact that for general β ≥ 0 and C > 0,

∫ ∞

0
|ξ |βe−C |ξ |2 ∫ t

s
1

b(τ )
dτd|ξ | =

∫ ∞

0
(|ξ |2∫ t

s
1

b(τ )
dτ)

β
2 e−C |ξ |2 ∫ t

s
1

b(τ )
dτd(|ξ |2∫ t

s
1

b(τ )
dτ)

1
2

·
(∫ t

s

1

b(τ )
dτ

)− β+1
2

�
(∫ t

s

1

b(τ )
dτ

)− β+1
2 � (1 + (1 + t)1+λ − (1 + s)1+λ)−

β+1
2 , t ≥ s + 1.

We also have

|ξ ||α| ≤ |ξt ||α| � b|α|(t) � (1 + t)−λ|α|, ∀(t, ξ) ∈ Zv
ell,

and then

‖χ(ξ)|ξ ||α|�v
1(t, s, ξ)v̂(s, ξ)‖Lq � (1 + t)−λ|α|‖χ(ξ)�v

1(t, s, ξ)v̂(s, ξ)‖Lq

� ‖v(s, x)‖lL p (1 + (1 + t)1+λ − (1 + s)1+λ)−
1
2 γp,q · (1 + t)−λ|α|. (2.21)

Combining (2.20) and (2.21) together, we have

‖χ(ξ)|ξ ||α|�v
1(t, s, ξ)v̂(s, ξ)‖Lq � ‖v(s, x)‖lL p · �γp,q (t, s) · 
|α|(t, s).

For the high frequencies such that (t, ξ) ∈ Zv
hyp and |ξ | ≥ c0, we consider the case

(r , q) �= (2, 2) and we have

∫

|ξ |≥c0

(
|ξ ||α||�v

1(t, s, ξ)||v̂(s, ξ)|
)q ′

dξ

�
∫

|ξ |≥c0
|ξ ||α|q ′

e−( 12−ε)q ′ ∫ t
s b(τ )dτ |v̂(s, ξ)|q ′

dξ

� e−( 12−ε)q ′ ∫ t
s b(τ )dτ

( ∫

|ξ |≥c0

(|ξ ||α|+ωr ,q |v̂(s, ξ)|)r ′
dξ

)q ′/r ′( ∫

|ξ |≥c0
|ξ |−κdξ

)1−q ′/r ′

� (e−( 12−ε)
∫ t
s b(τ )dτ‖∂ |α|+ωr ,q

x v(s, x)‖hLr )q
′
,

since κ := ωr ,qr ′q ′/(r ′ − q ′) > n. Note that the sub-exponential function

e−( 12−ε)
∫ t
s b(τ )dτ decays faster than (1 + (1 + t)1+λ − (1 + s)1+λ)− 1

2 (γp,q+|α|).
For the mixed part of low frequencies such that (t, ξ) /∈ Zell and |ξ | ≤ c0, we

divide the proof into two cases: (i) tvξ ≥ s + t0 and (ii) tvξ ≤ s + t0, where t0 ≥ 1 is a

constant such that
∫ s+t0
s

1
b(τ )

dτ ≥ 1. Note that 1
b(τ )

≈ (1+ τ)λ, and t0 can be chosen

123



    7 Page 28 of 47 Journal of Nonlinear Science             (2023) 33:7 

independent of s. For case (ii) with s < tvξ ≤ s + t0, we have |ξ | ≈ b(tvξ ) ≈ b(τ ) for
τ ∈ (s, tvξ ), and

e
−C1|ξ |2 ∫ max{s,tv

ξ
}

s
1

b(τ )
dτ−C2

∫ t
max{s,tv

ξ
} b(τ )dτ ≈ e

−C1
∫ max{s,tv

ξ
}

s b(τ )dτ−C2
∫ t
max{s,tv

ξ
} b(τ )dτ

� e−min{C1,C2}
∫ t
s b(τ )dτ ,

which is also true for tvξ ≤ s. As for the case (i), we can use the following inequality
for general β ≥ 0

|ξ |βe−C1|ξ |2 ∫ max{s,tv
ξ

}
s

1
b(τ )

dτ−C2
∫ t
max{s,tv

ξ
} b(τ )dτ

=
(
|ξ |2∫ tvξ

s
1

b(τ )
dτ

) β
2
e−C1|ξ |2 ∫ tv

ξ
s

1
b(τ )

dτ · e−C2
∫ t
tv
ξ
b(τ )dτ(∫ tvξ

s
1

b(τ )
dτ

)− β
2

� e
−C2

∫ t
tv
ξ
b(τ )dτ(∫ tvξ

s
1

b(τ )
dτ

)− β
2

� e
−C2

∫ t
tv
ξ
b(τ )dτ(

1 + ∫ t
tvξ

1
b(τ )

dτ
/ ∫ tvξ

s
1

b(τ )
dτ

) β
2
(∫ tvξ

s
1

b(τ )
dτ + ∫ t

tvξ
1

b(τ )
dτ

)− β
2

�
(∫ t

s

1

b(τ )
dτ

)− β
2
,

since
∫ tvξ
s

1
b(τ )

dτ ≥ ∫ s+t0
s

1
b(τ )

dτ ≥ 1. The rest of the proof is similar to the case
(t, ξ) ∈ Zv

ell.
Now we prove that the estimate (1.13) is optimal. The proof of the optimal decay

of the estimate (1.14) follows in a similar way. Without loss of generality, we assume
that s ≥ 1 and t ≥ 2s. We show that the L1-Lq estimates are sharp, other L p-Lq and
Ḣ−θ -Lq estimates can be deduced similarly or using an interpolation theorem. Let
T0 ≥ 0 be the constant in Lemma 2.3. If s ≥ T0, we consider the initial data at the
time s with v(s, x) = 0 and ∂tv(s, x) = F−1(χ) such that χ(ξ) is a nonnegative and
smooth function, χ(ξ) ≡ 1 for |ξ | ≤ R and suppχ ⊂ B2R(0). Replacing the upper
bound estimates (2.14) by the optimal lower bound estimate (2.16) of �v

2(t, s, ξ) in
the estimates within Zv

ell shows that the frequencies in Zv
ell decay not faster than the

desired rates in (1.13). Note that v̂(s, ξ) = 0 and then �v
1(t, s, ξ) has no influence.

We only need to show that the low frequencies in the mixed zones decay faster such
that the cancellation between frequencies in different zones cannot happen. In fact,

ξt := sup{|ξ |; (t, ξ) ∈ Zv
ell} ≈ (1 + t)−λ and tξ := sup{t; (t, ξ) ∈ Zv

ell} ≈ |ξ |− 1
λ , we

can estimate for ξt ≤ |ξ | ≤ c0 and |ξ | near ξt

e
−C1|ξ |2 ∫ tξ

s
1

b(τ )
dτ−C2

∫ t
tξ
b(τ )dτ � e−C1|ξ |2t1+λ

ξ −C2(t1−λ−t1−λ
ξ )

� e−C1|ξ |− 1−λ
λ −C2(t1−λ−|ξ |− 1−λ

λ ) � e−min{C1,C2}t1−λ

,
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which decays sub-exponentially and is faster than the desired decay. We can also take
the initial data ∂tv(s, x) = 0 and v(s, x) = F−1(χ), and then using the optimal lower
bound estimate (2.16) of �v

1(t, s, ξ).
It remains to show the optimal decays for the case s ≤ T0. We first choose the

initial data (v(T0, x), ∂tv(T0, x)) at the time T0 such that v(t, x) decays not faster
than the rate in (1.13). Then, we consider the backward wave equation (1.6) with the
initial data (v(T0, x), ∂tv(T0, x)) at the time T0 and backward to the time s ≤ T0. Note
that the problem is a linear wave equation with bounded damping coefficients on a
bounded time interval (s, T0) ⊂ (0, T0), and the solution remains bounded. The proof
is completed. ��

3 Time-Dependent Damped Linear Hyperbolic System

Wenext show the optimal decay estimates of the linear hyperbolic system (1.5) starting
from any time s ≥ 0 to time t ≥ s for the application to nonlinear Euler system (1.3).

Proof of Theorem 1.4 We first prove that

‖∂α
x v‖Lq � �γp,q (t, s) · 
|α|+2(t, s)

·
(∥
∥(v(s, ·), (1 + s)λu(s, ·))∥∥lL p + ∥

∥(∂
|α|+ωr ,q
x v(s, ·), (1 + s)λ∂

|α|+ωr ,q
x u(s, ·))∥∥hLr

)
,

and

‖∂α
x u‖Lq �

( 1 + t

1 + s

)λ · �γp,q (t, s) · 
|α|+2(t, s)
(∥
∥(u(s, ·), (1 + s)λv(s, ·))∥∥lL p + ∥

∥(∂
|α|+ωr ,q
x u(s, ·), (1 + s)λ∂

|α|+ωr ,q
x v(s, ·))∥∥hLr

)
,

which follow from the estimates (1.13) and (1.14) in Theorem 1.3. That is, we regard
v(t, x) as a solution of (1.6) with the initial data v(s, x) and ∂tv(s, x) = −�u(s, x),
andu(t, x) as a solutionof (1.7)with the initial datau(s, x) and ∂t u(s, x) = �v(s, x)−
b(s)u(s, x). Note that

∥
∥(1 + s)λ∂tv(s, ·)∥∥lL p �

∥
∥(1 + s)λ�u(s, ·)∥∥lL p �

∥
∥(1 + s)λu(s, ·)∥∥lL p ,

∥
∥(1 + s)λ∂

|α|−1+ωr ,q
x ∂tv(s, ·)∥∥hLr �

∥
∥(1 + s)λ∂

|α|+ωr ,q
x u(s, ·)∥∥hLr ,

and

∥
∥(1 + s)λ∂t u(s, ·)∥∥lL p �

∥
∥(1 + s)λ(�v(s, ·) − b(s)u(s, ·))∥∥lL p

�
∥
∥(u(s, ·), (1 + s)λv(s, ·))∥∥lL p ,

∥
∥(1 + s)λ∂

|α|−1+ωr ,q
x ∂t u(s, ·)∥∥hLr

�
∥
∥(∂

|α|−1+ωr ,q
x u(s, ·), (1 + s)λ∂

|α|+ωr ,q
x v(s, ·))∥∥hLr .
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However, the above estimates on low frequencies are not element-by-element opti-
mal (the decay rate of v(t, x) in dependence on the initial data v(s, x) is optimal, but
that on u(s, x) is not). According to the frequency decay estimates Lemma 2.3 and
the representation

v̂(t, ξ) = �v
1(t, s, ξ)v̂(s, ξ) + �v

2(t, s, ξ)∂t v̂(s, ξ)

= �v
1(t, s, ξ)v̂(s, ξ) − |ξ |�v

2(t, s, ξ)û(s, ξ),

we can improve the decay rate of v(t, x) in dependence on the initial data u(s, x)
by 
(t, s) in a similar way as in the proof of Theorem 1.3 since the decay rate is
determined by the frequencies in Zv

ell. This completes the proof of (1.15) and (1.16).
We show that u(t, x) decays faster than (1.16). According to the equation (1.5)2,

we have

u(t, x) = e− ∫ t
s b(τ )dτu(s, x) +

∫ t

s
e− ∫ t

η b(τ )dτ
�v(η, x)dη. (3.1)

The sub-exponential function e− ∫ t
s b(τ )dτ ≈ e−C((1+t)1−λ−(1+s)1−λ) decays faster than

any desired algebraical decay and

∥
∥
∥∂α

x

∫ t

s
e− ∫ t

η b(τ )dτ
�v(η, x)dη

∥
∥
∥
Lq

≤
∫ t

s
e− ∫ t

η b(τ )dτ‖∂α
x �v(η, x)‖Lq dη

�
∫ t

s
e− ∫ t

η b(τ )dτ
�γp,q (η, s) · 
|α|+1(η, s)dη

·
(∥
∥v(s, ·)∥∥lL p + ∥

∥∂
|α|+1+ωr ,q
x v(s, ·)∥∥hLr

)

+
∫ t

s
e− ∫ t

η b(τ )dτ
(1 + s)λ · �γp,q (η, s) · 
|α|+2(η, s)dη

·
(∥
∥u(s, ·)∥∥lL p

+ ∥
∥∂

|α|+1+ωr ,q
x u(s, ·)∥∥hLr

)
.

Integrating by parts yields

∫ t

s
e− ∫ t

η b(τ )dτ
�γp,q (η, s) · 
|α|+1(η, s)dη

=
∫ t

s
�γp,q (η, s) · 
|α|+1(η, s)

1

b(η)
d
(
e− ∫ t

η b(τ )dτ )

� (1 + t)λ · �γp,q (t, s) · 
|α|+1(t, s).

This ends the proof of (1.17).
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Let T0 ≥ 0 be the constant in Lemma 2.3. We can prove that the estimates (1.15)
on ‖∂α

x v(t, x)‖Lq is optimal in a similar way as (1.13) in Theorem 1.3. In fact, if
s ≥ T0, we take v(s, x) = F−1(χ) and u(s, x) = 0 to show the optimal decay
with respect to v(s, x), such that v(t, x) is a solution of (1.6) with the initial data
v(s, x) = F−1(χ) and ∂tv(s, x) = −�u(s, x) = 0, where T0 ≥ 0 is the constant in
Lemma 2.3 andχ(ξ) is the smooth function in the proof of Theorem 1.3. Alternatively,
we take u(s, x) = F−1(χ) and v(s, x) = 0 to show the optimal decay with respect
to u(s, x). For the case s ≤ T0, we apply the same procedure as in Theorem 1.3.

Finally, we show that the decay estimate (1.17) is optimal with respect to v(s, x)
for all t

2 ≥ s ≥ T0 by taking v(s, x) = F−1(χ) and u(s, x) = 0. For (t, ξ) ∈ Zu
ell

and s ≤ t , according to (2.19) in the proof of Lemma 2.3, we have

û(t, ξ) = �u
1(t, s, ξ)û(s, ξ) + �u

2(t, s, ξ)∂t û(s, ξ)

= �u
2(t, s, ξ)|ξ | · χ(ξ)

= −i√|mu(t, ξ)|e
∫ t
s (

√|mu(τ,ξ)|+ ∂t
√|mu (τ,ξ)|

2
√|mu (τ,ξ)| − b(τ )

2 )dτ · |ξ |[Ẽ (t, s, ξ)]12 · χ(ξ),

and |[Ẽ (t, s, ξ)]12| � 1. The rest of the proof is similar to the proof of the optimal
decay in Theorem 1.3. The proof is completed. ��
Remark 3.1 The estimate (1.16) on ‖∂α

x u(t, x)‖Lq derived from the optimal estimate
(1.14) is not optimalwith respect tou(s, x) for the linear system. If one takev(s, x) = 0
and u(s, x) = F−1(χ), then the initial data of the wave equation satisfied by u(s, x)
are u(s, x) = F−1(χ) and ∂t u(s, x) = �v(s, t) − b(s)u(s, x) = −b(s)F−1(χ).
According to the estimates in the proof of Lemma 2.3, we see that if s ≥ T0,

|�u
1(t, s, ξ)û(s, ξ)| ≈ b(s)

b(t)
· e−|ξ |2 ∫ t

s
C

b(τ )
dτ

χ(ξ),

and

|�v
2(t, s, ξ)∂t û(s, ξ)| ≈ 1

b(t)
· e−|ξ |2 ∫ t

s
C

b(τ )
dτ · b(s)χ(ξ) ≈ b(s)

b(t)
· e−|ξ |2 ∫ t

s
C

b(τ )
dτ

χ(ξ).

They are decaying of the same order and cancellations happen as we can prove a faster
decay (1.17).

We have formulated two kinds of decay estimates on ‖∂α
x u(t, ·)‖Lq in Theorem 1.4:

one is (1.16) without optimal decay rates, the other is (1.17) with optimal decay rates
but the regularity required is one order higher. In application to the nonlinear system,
we can use the optimal (1.17) for the estimates of ‖∂α

x u(t, ·)‖Lq with lower index α

and apply (1.16) to those with higher index α.
We improve the decay estimates (1.16) on ‖∂α

x u(t, ·)‖Lq in Theorem 1.4 by tak-
ing advantage of the cancellation between the initial data u(s, x) and ∂t u(s, x) =
�v(s, x) − b(s)u(s, x) if we regard u(t, x) as a solution of the wave equation (1.7).
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Proposition 3.1 (Decay rates improved by cancellation) Let (v(t, x), u(t, x)) be the
solution of the linear system (1.5) corresponding to the initial data (v(s, x), u(s, x))
starting from the time s. Then, for q ∈ [2,∞] and 1 ≤ p, r ≤ 2 (or θ ∈ [0, n

2 )), and
for t ≥ s ≥ T0 (T0 ≥ 0 is the constant in Lemma 2.3), we have

‖∂α
x u(t, ·)‖Lq � (1 + t)λ · �γp,q (t, s) · 
|α|+1(t, s) ·

(∥
∥v(s, ·)∥∥lL p + ∥

∥∂
|α|+ωr ,q
x v(s, ·)∥∥hLr

)

+ (1 + t)λ(1 + s)λ · �γp,q (t, s) · 
|α|+2(t, s) ·
(∥
∥u(s, ·)∥∥lL p + ∥

∥∂
|α|+ωr ,q
x u(s, ·)∥∥hLr

)

+ Ĉ
( 1 + t

1 + s

)λ · �γp,q (t, s) · 
|α|(t, s) ·
( 1

(1 + s)1−λ
+ (1 + (1 + t)1+λ − (1 + s)1+λ)−1

)

·
(∥
∥u(s, ·)∥∥lL p + ∥

∥∂
|α|+ωr ,q
x u(s, ·)∥∥hLr

)
, (3.2)

where Ĉ ≥ 0 is a constant and γp,q := n(1/p − 1/q) (or γp,q replaced by βθ,q :=
θ + γ2,q and ‖ · ‖L p norm replaced by ‖ · ‖Ḣ−θ ), and ωr ,q > γr ,q for (r , q) �= (2, 2)
and ω2,2 = 0. The decay estimate (3.2) is optimal with respect to v(s, x) for all
t
2 ≥ s ≥ T0.

Proof If Ĉ = 0, the decay rates in (3.2) are equal to that in (1.17) in Theorem 1.4, but
the regularity required is one order lower. We note that the estimates on ‖∂α

x u(t, ·)‖Lq

in (1.17) are deduced from the optimal decay estimates on ‖∇∂α
x v(t, ·)‖Lq , which

requires regularity one order higher.Noticing that cancellations happen in the evolution
between the initial data if we regard u(t, x) as a solution of the wave equation (1.7),
we make advantage of the cancellation to improve the decay estimates without the one
order higher regularity.

Similar to the proof of Lemma 2.3 but with more precise estimates concerned with
the possible cancellations, for (t, ξ) ∈ Zu

ell and s ≤ t , we have

û(t, ξ) = �u
1(t, s, ξ)û(s, ξ) + �u

2(t, s, ξ)∂t û(s, ξ)

= �u
1(t, s, ξ)û(s, ξ) + �u

2(t, s, ξ)(|ξ |v̂(s, ξ) − b(s)û(s, ξ))

= (
�u

1(t, s, ξ) − b(s)�u
2(t, s, ξ)

)
û(s, ξ) + |ξ |�u

2(t, s, ξ)v̂(s, ξ)

= 1√|mu(t, ξ)|e
∫ t
s (

√|mu(τ,ξ)|+ ∂t
√|mu (τ,ξ)|

2
√|mu (τ,ξ)| − b(τ )

2 )dτ

·
(
(
√|mu(s, ξ)|[Ẽ (t, s, ξ)]11

+i
b(s)

2
[Ẽ (t, s, ξ)]12)û(s, ξ) − i |ξ |[Ẽ (t, s, ξ)]12v̂(s, ξ)

)
,

according to (2.19) in the proof of Lemma 2.3, where we have proved that there are
no cancellations between

√|mu(s, ξ)|[Ẽ (t, s, ξ)]11 − i
b(s)

2
[Ẽ (t, s, ξ)]12,

123



Journal of Nonlinear Science             (2023) 33:7 Page 33 of 47     7 

and here we show that the leading terms within the summation

√|mu(s, ξ)|[Ẽ (t, s, ξ)]11 + i
b(s)

2
[Ẽ (t, s, ξ)]12

cancel each other. In fact, noticing that

Ẽ (t, s, ξ) = MN1(t, ξ)Q(t, s, ξ)N−1
1 (t, ξ)M−1

= M(I + N (1)(t, ξ))Q(t, s, ξ)(I + N (1)(t, ξ))−1M−1,

where ‖N (1)(t, ξ)‖max � 1
(1+t)1−λ and ‖Q(t, s, ξ) − H(t, s, ξ)‖max � 1

(1+s)1−λ with

H(t, s, ξ) =
(
1 0

0 e−2
∫ t
s

√|mu(τ,ξ)|dτ

)

as shown in Lemma 2.1, we have

‖Ẽ (t, s, ξ) − MH(t, s, ξ)M−1‖max � 1

(1 + s)1−λ
, (3.3)

and

∥
∥
∥MH(t, s, ξ)M−1 − 1

2

(
1 i
−i 1

)

∥
∥
∥
max

= 1

2
e−2

∫ t
s

√|mu(τ,ξ)|dτ
∥
∥
∥

(
1 −i
i 1

) ∥
∥
∥
max

≤ 1

2
e−2

∫ t
s εub(τ )dτ . (3.4)

Therefore, (3.3) and (3.4) imply

∥
∥
∥Ẽ (t, s, ξ) − 1

2

(
1 i
−i 1

) ∥
∥
∥
max

� 1

(1 + s)1−λ
+ e−2

∫ t
s εub(τ )dτ , (3.5)

which means

∣
∣
∣

√|mu(s, ξ)|
b(s)

[Ẽ (t, s, ξ)]11 + i

2
[Ẽ (t, s, ξ)]12

∣
∣
∣ �

∣
∣
∣

√|mu(s, ξ)|
b(s)

· 1
2

+ i

2
· i
2

∣
∣
∣ + 1

(1 + s)1−λ
+ e−2

∫ t
s εub(τ )dτ

� 1

b(s)

∣
∣
∣
√|mu(s, ξ)| − 1

2
b(s)

∣
∣
∣ + 1

(1 + s)1−λ
+ e−2

∫ t
s εub(τ )dτ

� |ξ |2 + |b′(s)|
b2(s)

+ 1

(1 + s)1−λ
+ e−2

∫ t
s εub(τ )dτ .

It follows that
∣
∣
∣
√|mu(s, ξ)|[Ẽ (t, s, ξ)]11
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+ i
b(s)

2
[Ẽ (t, s, ξ)]12

∣
∣
∣ � b(s) ·

∣
∣
∣

√|mu(s, ξ)|
b(s)

[Ẽ (t, s, ξ)]11 + i

2
[Ẽ (t, s, ξ)]12

∣
∣
∣

� |ξ |2
b(s)

+ 1

1 + s
+ 1

(1 + s)λ
e−2

∫ t
s εub(τ )dτ .

Compared with

∣
∣
∣
√|mu(s, ξ)|[Ẽ (t, s, ξ)]11

∣
∣
∣ ≈ b(t),

∣
∣
∣i
b(s)

2
[Ẽ (t, s, ξ)]12

∣
∣
∣ ≈ b(t),

the multiplier |ξ |2
b2(s)

leads to a decay estimate multiplied by


2(t, s) · (1 + s)2λ,

and the multiplier

1

(1 + s)1−λ
+ e−2

∫ t
s εub(τ )dτ � 1

(1 + s)1−λ

+e−2εu((1+t)1−λ−(1+s)1−λ) � 1

(1 + s)1−λ
+ (1 + (1 + t)1+λ − (1 + s)1+λ)−1,

since (1 + (1 + t)1+λ − (1 + s)1+λ)e−2εu((1+t)1−λ−(1+s)1−λ) � 1 for all 0 ≤ s ≤ t . ��
Remark 3.2 If Ĉ = 0, then (3.2) is reduced to the optimal decay estimate

(1.17) with the higher order regularity
∥
∥∂

|α|+1+ωr ,q
x (v(s, ·), u(s, ·))∥∥hLr replaced by

∥
∥∂

|α|+ωr ,q
x u(s, ·)∥∥hLr . That is, (3.2) is stronger than both (1.16) and (1.17) if Ĉ = 0.

Here, we cannot prove that Ĉ = 0 due to the approximation error in (3.5). Fortunately,
the strategy of applying (1.17) and (1.16) to ‖∂α

x u(t, ·)‖Lq with different indexαworks
for n ≥ 2 and λ ∈ [0, 1).

4 Reformulated Euler System

We apply the optimal decay estimates Theorem 1.4 of the linear system (1.5) to the
study of asymptotic behavior of nonlinear system (1.3). We rewrite (1.3) as

∂t

(
v

u

)

=
(

0 −∇·
−∇ − μ

(1+t)λ

)(
v

u

)

+
(−u · ∇v − �v∇ · u

−(u · ∇)u − �v∇v

)

, (4.1)

and the solution can be expressed as by the Duhamel principle

(
v(t, x)
u(t, x)

)

= G(t, 0)

(
v(0, x)
u(0, x)

)

+
∫ t

0
G(t, s)Q(s, x)ds, (4.2)
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where

Q(s, x) =
(
Q1(s, x)
Q2(s, x)

)

=
(−u · ∇v − �v∇ · u

−(u · ∇)u − �v∇v

)

, G(t, s) =
(G11(t, s) G12(t, s)
G21(t, s) G22(t, s)

)

.

The Green matrix G(t, s) (which is not a semigroup) stands for the evolution of the
linear system starting from the time s to t . For simplicity, we may write a function of
time and space v(t, x) as v(t).

It should be noted that G(t, s) �= G(t − s, 0) since the decaying damping μ

(1+t)λ
on

(s, t) is completely different from the damping on (0, t − s). One should be careful
that the optimal decay estimates of G(t, s) depends on both t and s (not only on t − s).

4.1 Optimal L2 Decay Estimates

We start with the optimal L1-L2 decay estimates of the nonlinear system (1.3).

Lemma 4.1 For t ≥ s ≥ T0 (T0 ≥ 0 is the constant in Lemma 2.3), there hold

‖∂α
x G11(t, s)φ(x)‖ � �

n
2 (t, s) · 
|α|(t, s) · (‖φ‖lL1 + ‖∂ |α|

x φ‖h),
‖∂α

x G12(t, s)φ(x)‖ � (1 + s)λ · �
n
2 (t, s) · 
|α|+1(t, s) · (‖φ‖lL1 + ‖∂ |α|

x φ‖h),
‖∂α

x G21(t, s)φ(x)‖ � (1 + t)λ · �
n
2 (t, s) · 
|α|+1(t, s) · (‖φ‖lL1 + ‖∂ |α|

x φ‖h),
‖∂α

x G22(t, s)φ(x)‖ �
( 1 + t

1 + s

)λ · �
n
2 (t, s) · 
|α|(t, s) · (‖φ‖lL1 + ‖∂ |α|

x φ‖h).
(4.3)

Furthermore,

‖∂α
x G22(t, s)φ(x)‖ � (1 + t)λ(1 + s)λ · �

n
2 (t, s) · 
|α|+2(t, s)

· (‖φ‖lL1 + ‖∂ |α|+1
x φ‖h). (4.4)

Proof These estimates are simple conclusions of Theorem 1.4. ��
Lemma 4.2 For β > 0 and γ > 0, there holds

∫ t

0
(1 + (1 + t)1+λ − (1 + s)1+λ)−β(1 + s)−γ ds

�

⎧
⎪⎨

⎪⎩

(1 + t)−min{β(1+λ),γ }, if max{β(1 + λ), γ } > 1,

(1 + t)−min{β(1+λ),γ } ln(e + t), if max{β(1 + λ), γ } = 1,

(1 + t)−γ−β(1+λ)+1, if max{β(1 + λ), γ } < 1.

(4.5)

Proof Denote δp,q = 1 for p = q and δp,q = 0 for p �= q, we can calculate

∫ t

0
(1 + (1 + t)1+λ − (1 + s)1+λ)−β(1 + s)−γ ds

123



    7 Page 36 of 47 Journal of Nonlinear Science             (2023) 33:7 

�
( ∫ t/2

0
+

∫ t

t/2

)
(1 + (1 + t)1+λ − (1 + s)1+λ)−β(1 + s)−γ ds

�
∫ t/2

0
(1 + t)−β(1+λ)(1 + s)−γ ds

+
∫ t

t/2
(1 + (1 + t)1+λ − (1 + s)1+λ)−β(1 + t)−γ ds

� (1 + t)−β(1+λ)(1 + t)max{1−γ,0}| ln(e + t)|δγ,1

+ (1 + t)−γ (1 + t)max{1−β(1+λ),0}| ln(e + t)|δβ(1+λ),1,

since

∫ t

t/2
(1 + (1 + t)1+λ − (1 + s)1+λ)−βds �

∫ t

t/2
(1 + (t − s)1+λ)−βds

�
∫ t

t/2
(1 + t − s)−β(1+λ)ds =

∫ t/2

0
(1 + s)−β(1+λ)ds.

We can verify (4.5) in different cases. ��
Lemma 4.3 For β > 0, γ > 0, and k ≥ 0, there holds

∫ t

0
(1 + s)λ · �β(t, s) · 
k+1(t, s) · (1 + s)−γ ds

�
∫ t

0
�β(t, s) · 
k(t, s) · (1 + s)−γ ds �

∫ t

0
�β+k(t, s) · (1 + s)−γ ds

�

⎧
⎪⎨

⎪⎩

(1 + t)−min{ 1+λ
2 (β+k),γ }, if max{ 1+λ

2 (β + k), γ } > 1,

(1 + t)−min{ 1+λ
2 (β+k),γ } ln(e + t), if max{ 1+λ

2 (β + k), γ } = 1,

(1 + t)−γ− 1+λ
2 (β+k)+1, if max{ 1+λ

2 (β + k), γ } < 1.

(4.6)

Proof We note that 
(t, s) = min{�(t, s), (1 + t)−λ} as defined in (1.8). The proof
is completed according to Lemma 4.2. ��

The following higher-order energy estimates will be used to close the decay esti-
mates of nonlinear system (1.3).

Lemma 4.4 Assume that (v0, u0) ∈ H [ n2 ]+3 and a priori assume that

‖(v(t), u(t))‖
H [ n2 ]+2 ≤ δ0b(t), (4.7)

where δ0 > 0 is a small constant. Then, the nonlinear system (1.3) admits a global
solution (v, u) such that

‖(v, u)‖2
H [ n2 ]+3 +

∫ t

0
b(s)

(‖∇v(s)‖2
H [ n2 ]+2 + ‖u(s)‖2

H [ n2 ]+3

)
ds
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� ‖(v0, u0)‖2
H [ n2 ]+3 . (4.8)

Proof The energy estimate (4.8) is proved through the following four steps. The case
of time independent damping and n = 3 is proved in Tan and Wang (2013). Here, the
main difficulty lies in the absence of a uniform lower bound for the weak damping
coefficient.

Step I: For 0 ≤ k ≤ [ n2 ] + 2, we have

d

dt
‖∂kx (v, u)‖2 + b(t)‖∂kx u‖2 � ‖(v, u)‖

H [ n2 ]+2

·(‖∂k+1
x v‖2 + ‖∂kx u‖2). (4.9)

This is proved by applying ∂kx to (1.3) and then multiplying the equation by ∂kx (v, u),
summing up and integrating over Rn . Here we omit the details.

Step II: For 0 ≤ k ≤ [ n2 ] + 2, we have

d

dt
‖∂k+1

x (v, u)‖2 + b(t)‖∂k+1
x u‖2 � ‖(v, u)‖

H [ n2 ]+2 · (‖∂k+1
x v‖2 + ‖∂k+1

x u‖2).
(4.10)

This is proved by applying ∂k+1
x to (1.3) and then multiplying the equation by

∂k+1
x (v, u), summing up and integrating over Rn .
Step III: For 0 ≤ k ≤ [ n2 ] + 2, we have

d

dt

∫

∂kx u · ∇∂kx v + ‖∂k+1
x v‖2

� ‖∂kx u‖2 + ‖(v, u)‖
H [ n2 ]+2 · (‖∂k+1

x v‖2 + ‖∂k+1
x u‖2). (4.11)

This is proved by applying ∂kx to (1.3)2 and then multiplying it by ∇∂kx v, utilizing
(1.3)1 to dealing with the mixed time derivative term

∫
∂kx ∂tu · ∇∂kx v.

Step IV: Multiply (4.11) by b(t), for 0 ≤ k ≤ [ n2 ] + 2, we have

d

dt

(
b(t)

∫

∂kx u · ∇∂kx v
)

+ b(t)‖∂k+1
x v‖2

� |b′(t)|
∫

∣
∣∂kx u · ∇∂kx v

∣
∣ + b(t)‖∂kx u‖2 + b(t)‖(v, u)‖

H [ n2 ]+2 · (‖∂k+1
x v‖2 + ‖∂k+1

x u‖2)
� ε1b(t)‖∂k+1

x v‖2 + b(t)‖∂kx u‖2 + b(t)‖(v, u)‖
H [ n2 ]+2 · (‖∂k+1

x v‖2 + ‖∂k+1
x u‖2),

where ε1 > 0 is a small constant. Therefore, for 0 ≤ k ≤ [ n2 ] + 2,

d

dt

(
b(t)

∫

∂kx u · ∇∂kx v
)

+ b(t)‖∂k+1
x v‖2 � b(t)‖∂kx u‖2

+b(t)‖(v, u)‖
H [ n2 ]+2 · (‖∂k+1

x v‖2 + ‖∂k+1
x u‖2). (4.12)
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Multiply (4.12) by a small constant ε2 > 0, summing it up with (4.9) and (4.10), we
have

d

dt
‖(v, u)‖2

H [ n2 ]+3 + d

dt

(
ε2

[n/2]+2∑

k=0

b(t)
∫

∂kx u · ∇∂kx v
)

+b(t)(ε2‖∇v‖2
H [ n2 ]+2 + ‖u‖2

H [ n2 ]+3) ≤ 0,

provided that the a priori assumption (4.7) is valid with δ0 ≤ ε2/4. The constant
ε2 > 0 is small such that

∣
∣
∣ε2

[n/2]+2∑

k=0

b(t)
∫

∂kx u · ∇∂kx v

∣
∣
∣ ≤ 1

2
‖(v, u)‖2

H [ n2 ]+3 .

The proof is completed. ��
We present the optimal L1-L2 decay rates of the nonlinear system (1.3).

Proposition 4.1 (Decay rates of nonlinear system) For n ≥ 2 and λ ∈ [0, 1), there
exists a constant ε0 > 0, such that the solution (v, u) of the nonlinear system (1.3)
corresponding to initial data (v0, u0) with small energy ‖(v0, u0)‖L1∩H [ n2 ]+3 ≤ ε0

exists globally and satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖∂α
x v‖ � (1 + t)− 1+λ

4 n− 1+λ
2 |α|, 0 ≤ |α| ≤ [ n2 ] + 1,

‖∂α
x u‖ � (1 + t)− 1+λ

4 n− 1+λ
2 (|α|+1)+λ, 0 ≤ |α| ≤ [ n2 ],

‖∂α
x u‖ � (1 + t)− 1+λ

4 n− 1+λ
2 |α|+λ, |α| = [ n2 ] + 1,

‖(v, u)‖
H [ n2 ]+3 � 1.

(4.13)

The first two decay estimates in (4.13) (i.e., the decay estimates on ‖∂α
x v‖ with 0 ≤

|α| ≤ [ n2 ] + 1 and ‖∂α
x u‖ with 0 ≤ |α| ≤ [ n2 ]) are optimal.

Proof Suppose that the local solution (v, u) exists for t ∈ (0, T ). Denote the weighted
energy

En(t̃) := sup
t∈(0,t̃)

{ ∑

0≤|α|≤[n/2]+1

(1 + t)
1+λ
4 n+ 1+λ

2 |α|‖∂α
x v‖,

∑

0≤|α|≤[n/2]
(1 + t)

1+λ
4 n+ 1+λ

2 (|α|+1)−λ‖∂α
x u‖,

∑

|α|=[n/2]+1

(1 + t)
1+λ
4 n+ 1+λ

2 |α|−λ‖∂α
x u‖,

∑

|α|=[n/2]+2

(1 + t)
1+λ
4 n‖∂α

x (v, u)‖,
∑

|α|=[n/2]+3

‖∂α
x (v, u)‖

}
. (4.14)
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We claim that under the condition ‖(v0, u0)‖L1∩H [ n2 ]+3 ≤ ε0, there holds

En(t̃) � δ0, ∀t̃ ∈ (0, T ), (4.15)

where ε0 > 0 and δ0 > 0 are small constants to be determined.
The global existence and the a priori assumption (4.15) (which implies the decay

estimates (4.13)) will be proved in the following three steps. For the sake of simplicity,
we take the case n = 3 for example. Other cases with n ≥ 2 follow similarly. We
may assume that T0 = 0, where T0 ≥ 0 is the constant in Lemma 2.3. That is, we
consider the nonlinear system (1.3) starting form the time T0 and we write t − T0 as t
for convenience.

Step I: Basic energy decay estimates.
According to the Duhamel principle (4.2) and the decay estimates of the Green

matrix G(t, s) in Lemma 4.1, we have

‖v(t)‖ � ‖G11(t, 0)v0‖ + ‖G12(t, 0)u0‖ +
∫ t

0
‖G11(t, s)Q1(s)‖ds

+
∫ t

0
‖G12(t, s)Q2(s)‖ds

� ε0(1 + t)−
1+λ
4 n +

∫ t

0
�

n
2 (t, s) · (‖Q1(s)‖lL1 + ‖Q1(s)‖h)ds

+
∫ t

0
(1 + s)λ · �

n
2 (t, s) · 
(t, s) · (‖Q2(s)‖lL1 + ‖Q2(s)‖h)ds

� ε0(1 + t)−
1+λ
4 n + E2

n(t)
∫ t

0
�

n
2 (t, s) · (1 + s)−

1+λ
2 n−1ds

+ E2
n(t)

∫ t

0
(1 + s)λ · �

n
2 (t, s) · 
(t, s) · (1 + s)−

1+λ
2 n− 1+λ

2 ds

� ε0(1 + t)−
1+λ
4 n + E2

n(t)(1 + t)−
1+λ
4 n,

where we have used Lemma 4.3 (note that 1+λ
2 n + 1+λ

2 > 1 for n ≥ 2 and λ ∈ [0, 1))
and the following decay estimates on ‖Q(s)‖L1 and ‖Q(s)‖ (here and after, we use
D j := ∂

j
x and we may also write u as u for simplicity)

‖Q1(s)‖L1 � ‖uDv‖L1 + ‖vDu‖L1 � ‖u‖‖Dv‖
+ ‖v‖‖Du‖ � E2

n(s)(1 + s)−
1+λ
2 n−1,

‖Q2(s)‖L1 � ‖uDu‖L1 + ‖vDv‖L1 � ‖u‖‖Du‖
+ ‖v‖‖Dv‖ � E2

n(s)(1 + s)−
1+λ
2 n− 1+λ

2 .

For n = 3, we have

‖u(s)‖L∞ � ‖Du‖ 1
2 ‖D2u‖ 1

2 � En(s)(1 + s)−
1+λ
4 n−1,
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‖v(s)‖L∞ � ‖Dv‖ 1
2 ‖D2v‖ 1

2 � En(s)(1 + s)−
1+λ
4 n− 1+λ

2 ·3,

‖Du(s)‖L∞ � ‖D2u‖ 1
2 ‖D3u‖ 1

2 � En(s)(1 + s)−
1+λ
4 n− 1

2 ,

‖Dv(s)‖L∞ � ‖D2v‖ 1
2 ‖D3v‖ 1

2 � En(s)(1 + s)−
1+λ
4 n− 1

2 (1+λ),

‖D2u(s)‖L∞ � ‖D3u‖ 1
2 ‖D4u‖ 1

2 � En(s)(1 + s)−
1+λ
8 n,

‖D2v(s)‖L∞ � ‖D3v‖ 1
2 ‖D4v‖ 1

2 � En(s)(1 + s)−
1+λ
8 n,

and

‖Q1(s)‖ � ‖uDv‖ + ‖vDu‖ � ‖u‖L∞‖Dv‖ + ‖v‖L∞‖Du‖
� E2

n(s)(1 + s)−
1+λ
2 n− 1+λ

2 −1,

‖Q2(s)‖ � ‖uDu‖ + ‖vDv‖ � ‖u‖L∞‖Du‖ + ‖v‖L∞‖Dv‖
� E2

n(s)(1 + s)−
1+λ
2 n−2,

‖DQ1(s)‖ � ‖DuDv‖ + ‖uD2v‖ + ‖vD2u‖ � E2
n(s)(1 + s)−

1+λ
2 n−1− 1+λ

2 ,

‖DQ2(s)‖ � ‖uD2u‖ + ‖DuDu‖ + ‖vD2v‖ + ‖DvDv‖
� E2(s)(1 + s)−

1+λ
2 n−θ12 ,

where θ12 = min{ 32 , 1 + λ} ≥ 1+λ
2 .

Using the above estimates, we have

‖Dv(t)‖ � ‖DG11(t, 0)v0‖ + ‖DG12(t, 0)u0‖
+

∫ t

0
‖DG11(t, s)Q1(s)‖ds +

∫ t

0
‖DG12(t, s)Q2(s)‖ds

� ε0(1 + t)−
1+λ
4 n− 1+λ

2 +
∫ t

0
�

n
2 (t, s) · 
(t, s) · (‖Q1(s)‖L1 + ‖DQ1(s)‖)ds

+
∫ t

0
(1 + s)λ · �

n
2 (t, s) · 
2(t, s) · (‖Q2(s)‖L1 + ‖DQ2(s)‖)ds

� ε0(1 + t)−
1+λ
4 n− 1+λ

2 + E2
n(t)

∫ t

0
�

n
2 (t, s) · 
(t, s) · (1 + s)−

1+λ
2 n−1ds

+ E2
n(t)

∫ t

0
(1 + s)λ · �

n
2 (t, s) · 
2(t, s) · (1 + s)−

1+λ
2 n− 1+λ

2 ds

� ε0(1 + t)−
1+λ
4 n− 1+λ

2 + E2
n(t)(1 + t)−

1+λ
4 n− 1+λ

2 ,

and

‖D2v(t)‖ � ‖D2G11(t, 0)v0‖ + ‖D2G12(t, 0)u0‖ +
∫ t

0
‖D2G11(t, s)Q1(s)‖ds

+
∫ t

0
‖D2G12(t, s)Q2(s)‖ds
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� ε0(1 + t)−
1+λ
4 n−(1+λ) +

∫ t

0
�

n
2 (t, s) · 
2(t, s) · (‖Q1(s)‖L1 + ‖D2Q1(s)‖)ds

+
∫ t

0
(1 + s)λ · �

n
2 (t, s) · 
3(t, s) · (‖Q2(s)‖L1 + ‖D2Q2(s)‖)ds

� ε0(1 + t)−
1+λ
4 n−(1+λ) + E2

n(t)
∫ t

0
�

n
2 (t, s) · 
2(t, s) · (1 + s)−

1+λ
2 n−1ds

+ E2
n(t)

∫ t

0
(1 + s)λ · �

n
2 (t, s) · 
3(t, s) · (1 + s)−

1+λ
2 n− 1+λ

2 ds

� ε0(1 + t)−
1+λ
4 n−(1+λ) + E2

n(t)(1 + t)−
1+λ
4 n−(1+λ),

since

1 + λ

2
n + 1 + λ

2
≥ 1 + λ

4
n + (1 + λ), for n ≥ 2, λ ∈ [0, 1).

We have also used the following estimates

‖D2Q1(s)‖ � ‖uD3v‖ + ‖DuD2v‖ + ‖DvD2u‖ + ‖vD3u‖
� E2

n(s)(1 + s)−
1+λ
2 n−1,

‖D2Q2(s)‖ � ‖uD3u‖ + ‖DuD2u‖ + ‖vD3v‖ + ‖DvD2v‖
� E2

n(s)(1 + s)−
1+λ
2 n−1.

The decay estimates on ‖∂α
x v‖ for 0 ≤ |α| ≤ [ n2 ] + 1 are based on the optimal

decay estimates on ‖∂α
x G11(t, s)‖ and ‖∂α

x G12(t, s)‖ in (4.3). However, the estimates
on ‖∂α

x G21(t, s)‖ and ‖∂α
x G22(t, s)‖ in (4.3) is insufficient for the optimal decay

estimates on ‖∂α
x u‖ for 0 ≤ |α| ≤ [ n2 ]. In fact, we use the optimal decay estimates

in (4.4) to show the decay estimates on ‖∂α
x u‖ for 0 ≤ |α| ≤ [ n2 ] in a similar way as

‖∂α
x v‖ for 1 ≤ |α| ≤ [ n2 ] + 1. One can check that the condition on the estimate of

‖∂kx u‖ for 0 ≤ k ≤ [ n2 ] is equivalent to the condition on the estimate of ‖∂k+1
x v‖.

Further, we use the decay estimates in (4.3) to show the decay estimates on ‖∂α
x u‖

for [ n2 ] + 1 ≤ |α| ≤ [ n2 ] + 2 since the regularity required in (4.3) is one order lower
than that in (4.4). We note that in this case the condition on the estimate of ‖∂kx u‖ for
[ n2 ] + 1 ≤ k ≤ [ n2 ] + 2 is similar to the condition on the estimate of ‖∂kx v‖. We have

‖D3Q(s)‖ � ‖(v, u)D4(v, u)‖
+ ‖D(v, u)D3(v, u)‖ + ‖D2(v, u)D2(v, u)‖ � E2

n(s)(1 + s)−
1+λ
4 n−θ3 ,

with

θ3 = min
{1 + λ

2
· 3, 1 + λ

4
n + 1

2
, 1 + 1 + λ

8
n
}
.
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Therefore,

‖D3u(t)‖ � ‖D3G21(t, 0)v0‖ + ‖D3G22(t, 0)u0‖ +
∫ t

0
‖D3G21(t, s)Q1(s)‖ds

+
∫ t

0
‖D3G22(t, s)Q2(s)‖ds

� ε0(1 + t)−
1+λ
4 n− 3

2 (1+λ)+λ

+
∫ t

0
(1 + t)λ · �

n
2 (t, s) · 
4(t, s) · (‖Q1(s)‖L1 + ‖D3Q1(s)‖)ds

+
∫ t

0

( 1 + t

1 + s

)λ · �
n
2 (t, s) · 
3(t, s) · (‖Q2(s)‖L1 + ‖D3Q2(s)‖)ds

� ε0(1 + t)−
1+λ
4 n− 3

2 (1+λ)+λ + E2
n(t)

∫ t

0
(1 + t)λ · �

n
2 (t, s) · 
4(t, s)

· (1 + s)−min{ 1+λ
4 n+θ3,

1+λ
2 n+1}ds

+ E2
n(t)

∫ t

0

( 1 + t

1 + s

)λ · �
n
2 (t, s) · 
3(t, s) · (1 + s)−min{ 1+λ

4 n+θ3,
1+λ
2 n+ 1+λ

2 }ds

� ε0(1 + t)−
1+λ
4 n + E2

n(t)(1 + t)−
1+λ
4 n,

since θ3 ≥ λ. The estimates on ‖D3v‖ follows similarly.
Step II: Higher-order energy estimates.We note that the condition (4.15) is stronger

than the a priori assumption (4.7), and according to (4.8) in Lemma 4.4, we have

‖(v, u)‖2
H [ n2 ]+3 +

∫ t

0
b(s)

(‖∇v(s)‖2
H [ n2 ]+2 + ‖u(s)‖2

H [ n2 ]+3

)
ds � ‖(v0, u0)‖2

H [ n2 ]+3 .

(4.16)

Step III: Closure of the a priori estimate (4.15). Combining the above estimates and
choosing ε0 > 0 and δ0 > 0 to be sufficiently small such that C(ε0 + δ20) ≤ δ0, we
see that the a priori estimate (4.15) holds for all the time t ∈ (0,+∞).

Finally, we show that those estimates (‖∂α
x v‖ with 0 ≤ |α| ≤ [ n2 ] + 1 and ‖∂α

x u‖
with 0 ≤ |α| ≤ [ n2 ]) are optimal. We take the estimate on ‖v‖ for example. According
to the optimal decay estimates Lemma 4.1 and the energy estimates in Step I, we
choose the initial data (v0, u0) such that ‖G11(t, 0)v0‖ decays optimally, and then, we
have

‖v(t)‖ � ‖G11(t, 0)v0‖ − ‖G12(t, 0)u0‖ −
∫ t

0
‖G11(t, s)Q1(s)‖ds

−
∫ t

0
‖G12(t, s)Q2(s)‖ds,

where ‖G12(t, 0)u0‖ decays faster than ‖G11(t, 0)v0‖, and
∫ t
0 ‖G11(t, s)Q1(s)‖ds +

∫ t
0 ‖G12(t, s)Q2(s)‖ds decays no slower than ‖G11(t, 0)v0‖. We note that Q1(t, x)
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and Q2(t, x) are quadratic, and we rescale the initial data as (ε1v0, ε1u0) with ε1 > 0
sufficiently small such that neither

∫ t
0 ‖G11(t, s)Q1(s)‖ds nor

∫ t
0 ‖G12(t, s)Q2(s)‖ds

is comparable with ‖G11(t, 0)v0‖. In fact, according to the proof in Step I, we have

∫ t

0
‖G1 j (t, s)Q j (s)‖ds � E2

n(t)(1 + t)−
1+λ
4 n � δ20(1 + t)−

1+λ
4 n, j = 1, 2,

and

‖G11(t, 0)v0‖ ≈ ε0(1 + t)−
1+λ
4 n,

where the small constants ε0 ≈ δ0 as in the proof Step III. That is, ‖v(t)‖ decays in
the same order as ‖G11(t, 0)v0‖. The proof is completed. ��
Proof of Theorem 1.1 This is proved in Proposition 4.1. ��

4.2 Optimal Lq Decay Estimates

We now turn to the L1-Lq decay estimates of the nonlinear system (1.3). Similar to
Lemma 4.4, we have the following higher-order energy estimates.

Lemma 4.5 Assume that (v0, u0) ∈ H [ n2 ]+k with k ≥ 2 and a priori assume that

‖(v(t), u(t))‖
H [ n2 ]+2 ≤ δ0b(t),

where δ0 > 0 is a small constant. Then, the nonlinear system (1.3) admits a global
solution (v, u) such that

‖(v, u)‖2
H [ n2 ]+k +

∫ t

0
b(s)

(‖∇v(s)‖2
H [ n2 ]+k−1 + ‖u(s)‖2

H [ n2 ]+k

)
ds � ‖(v0, u0)‖2

H [ n2 ]+k .

(4.17)

Proof The proof is completely same as that in Lemma 4.4. We note that the a priori
assumption only requires the norms ‖(v(t), u(t))‖

H [ n2 ]+2 , which is sufficient for the
required estimates such as ‖∂x (v(t), u(t))‖L∞ and ‖(v(t), u(t))‖L∞ . ��
Lemma 4.6 For q ∈ [2,∞] and 1 ≤ p, r ≤ 2 (or θ ∈ [0, n

2 )), and for t ≥ s ≥ T0
(T0 ≥ 0 is the constant in Lemma 2.3), we have

‖∂α
x G11(t, s)φ(x)‖Lq ��γp,q (t, s) · 
|α|(t, s) · (‖φ‖lL p + ‖∂ |α|+ωr ,q

x φ‖hLr ),
‖∂α

x G12(t, s)φ(x)‖Lq �(1 + s)λ · �γp,q (t, s) · 
|α|+1(t, s) · (‖φ‖lL p + ‖∂ |α|+ωr ,q
x φ‖hLr ),

‖∂α
x G21(t, s)φ(x)‖Lq �(1 + t)λ · �γp,q (t, s) · 
|α|+1(t, s) · (‖φ‖lL p + ‖∂ |α|+ωr ,q

x φ‖hLr ),
‖∂α

x G22(t, s)φ(x)‖Lq �
( 1 + t

1 + s

)λ · �γp,q (t, s) · 
|α|(t, s) · (‖φ‖lL p + ‖∂ |α|+ωr ,q
x φ‖hLr ),
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where γp,q := n(1/p − 1/q) (or γp,q replaced by βθ,q := θ + γ2,q and ‖ · ‖L p norm
replaced by ‖ · ‖Ḣ−θ ), and ωr ,q > γr ,q for (r , q) �= (2, 2) and ω2,2 = 0.

Furthermore,

‖∂α
x G22(t, s)φ(x)‖Lq � (1 + t)λ(1 + s)λ · �γp,q (t, s) · 
|α|+2(t, s)

· (‖φ‖lL p + ‖∂ |α|+1+ωr ,q
x φ‖hLr ).

Proof These estimates are simple conclusions of Theorem 1.4. ��
We present the following optimal Lq decay estimates of the nonlinear system (1.3).

Proposition 4.2 (Optimal Lq decay estimates) For n ≥ 2, λ ∈ [0, 1), q ∈ [2,∞]
and k ≥ 3 + [γ2,q ] with γ2,q := n(1/2 − 1/q), let (v, u) be the solution to the
nonlinear system (1.3) corresponding to initial data (v0, u0) with small energy such
that ‖(v0, u0)‖L1∩H [ n2 ]+k ≤ ε0, where ε0 > 0 is a small constant only depending on

n, q, k and the constants γ, μ, λ in the system. Then, (v, u) ∈ L∞(0,+∞; H [ n2 ]+k)

and satisfies

{
‖∂α

x v‖Lq � (1 + t)− 1+λ
2 γ1,q− 1+λ

2 |α|, 0 ≤ |α| ≤ 1,

‖u‖Lq � (1 + t)− 1+λ
2 γ1,q− 1−λ

2 ,
(4.18)

where γ1,q = n(1 − 1/q). All the decay estimates in (4.18) are optimal.

Proof The decay estimates are based on the optimal L2 decay estimates Proposition
4.1, the higher-order energy estimates Lemma 4.5, and the L1-Lq decay estimates of
the Green matrix in Lemma 4.6.

Weprove the estimate on‖∂α
x v‖Lq with |α| = 1 in (4.18).According to theDuhamel

principle (4.2) and the L1-Lq decay estimates of the Green matrix in Lemma 4.6, we
have

‖Dv(t)‖Lq � ‖DG11(t, 0)v0‖Lq + ‖DG12(t, 0)u0‖Lq

+
∫ t

0
‖DG11(t, s)Q1(s)‖Lq ds +

∫ t

0
‖DG12(t, s)Q2(s)‖Lq ds

� ε0(1 + t)−
1+λ
2 γ1,q− 1+λ

2 +
∫ t

0
�γ1,q (t, s) · 
(t, s) · (‖Q1(s)‖L1

+‖D1+ω2,q Q1(s)‖)ds
+

∫ t

0
(1 + s)λ · �γ1,q (t, s) · 
2(t, s) · (‖Q2(s)‖L1 + ‖D1+ω2,q Q2(s)‖)ds

� ε0(1 + t)−
1+λ
2 γ1,q− 1+λ

2 + E2
n(t)

∫ t

0
�γ1,q (t, s) · 
(t, s) · (1 + s)−

1+λ
2 n−1ds

+E2
n(t)

∫ t

0
(1 + s)λ · �γ1,q (t, s) · 
2(t, s) · (1 + s)−

1+λ
2 n− 1+λ

2 ds

� ε0(1 + t)−
1+λ
2 γ1,q− 1+λ

2 + E2
n(t)(1 + t)−

1+λ
2 γ1,q− 1+λ

2 ,
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where ω2,q > γ2,q and

1 + λ

2
n + 1 + λ

2
≥ 1 + λ

2
γ1,q + 1 + λ

2
,

which is valid for all n ≥ 2, λ ∈ [0, 1), and q ∈ [2,∞]. Other estimates and cases
can be proved through a similar procedure. ��
Proof of Theorem 1.2 This is proved in Proposition 4.2. ��
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