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Abstract

In this paper we consider the asymptotic behavior for nonlocal dispersion Nicholson blowflies equation
ur = D(Jxu—u)—du+pu(t—rt, x)e~ @ (=T.%) in the whole RV . By the method of Fourier transform, we
first derive the decay estimates for the fundamental solutions with time-delay. Then, we obtain the threshold
results with optimal convergence rates for the original solution to the constant equilibrium. Namely, when

0< 5 < 1, the solution u (¢, x) globally converges to the equilibrium O in the time-exponential form; when

g = 1, the solution u(z, x) globally converges to O in the time-algebraical form; when 1 < g < e, the

solution u(z, x) globally converges to 4 in the time-exponential form; and when e < g <é2,it locally

converges to u4 in the time-exponential form. This indicates that when the death rate is bigger than the
birth rate, the blowflies will disappear in future. While, when the birth rate is bigger than the death rate in
a certain range, then the blowflies population will reach an equilibrium after long time. The lower-higher
frequency analysis plays a crucial role in the proof.
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1. Introduction

In this paper we mainly study the asymptotic behavior of solutions to the following Cauchy
problem of nonlocal time-delayed diffusion equation

ou

— — D(J xu—u) +du=bu( —1,x)), t>0, xeRY,

5 (J *xu—u) u (u( X)) >0, x (L.D)
uly=y =uo(s, x), se[-7,0], x e RV,

This model represents the spatial dynamics of a single-species population with age-structure and
nonlocal diffusion such as the Australian blowflies population distribution [3,4,6,7,11,14,21,24].
Here, u(¢, x) denotes the total mature population of the species (after the maturation age 7 > 0)
at time ¢ and position x. D > 0 is the diffusion rate of the species, du is the death rate function for
d > 0 representing the per capita daily adult death rate, b(«) = pue™%" is the birth rate function,
where p > 0 is the maximum per capita daily egg production rate, % > 0 is the size at which the
blowfly population reproduces at its maximum rate. J (x) is a nonnegative, unit and radial kernel

(J*u)(r,x>=fJ(x—y)u(z,y>dy,
RN

where J (x — y) is thought of as the probability distribution of jumping from location y to location
x,and (J xu)(t,x) = f]RN J(x — y)u(t, y)dy is the rate at which individuals are arriving to
position x from all other places. While

—u(t,x)=— / J(x —y)u(t,x)dy
RN

stands the rate at which they are leaving the location x to all other sites. We also assume that the
kernel J (x) satisfies the following two conditions:

N

(J1) J(x) = [ Ji (x;), where J; (x;) is smooth, and J; (x;) = J;(|x;]) > 0 and fR Ji(x))dx; =
1 fori= 1,2,~-l~,N.

(J») Fourier transform of J (x) satisfies f(é) =1—«|&|* 4+ 0(]€]*) as &€ — 0 with « € (0, 2]
and some constant x > 0.

The equation (1.1) is called nonlocal diffusion equation since the diffusion on the density
u(t,x) at a point x and time ¢ does not only depend on u(t, x), but also on all the values of
u in a neighborhood of x through the convolution term J * u, see [1,2,8,9,12,13,15,16,32,33]
and references therein. When J is nonnegative and compactly supported, this equation shares
many properties with the classical heat equation u, = D Au. For example, the bounded stationary
solutions are constant, the maximum principle holds for both of them and perturbations propagate
with infinite speed [ 1 7]. However, there is no regularizing effect in general. In fact, if the equation
(1.1) is simplified to the form of d;u = J * u — u, and J is rapidly decaying (or compactly
supported), then the singularity of the source solution, that is a solution with a delta measure
initial condition uo = 8¢, remains with an exponential decay. This fundamental solution can be
decomposed as w(t, x) = e '8y + v(t, x), where v(¢, x) is smooth [7]. In this way we see that
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there is no regularizing effect since the solution u can be written as u = w % ug = e 'ug + v * ug
with smooth v, which means that u is as regular as u(, and no more better regularity.

The nonlocal dispersion equation (1.1) has been extensively studied recently. For the nonlocal
dispersion equation

ur=Jxu—u+ Fu). (1.2)

Garcia-Melian and Quirés [18] investigated the blow up phenomenon of the solutions to the
equation (1.2) with F(u) = u?, and gave the Fujita critical exponent. Regarding the structure of
special solutions to the equation (1.2) like traveling wave solutions, Coville et al. [8—10] stud-
ied the existence and uniqueness (up to a shift) of traveling wave solution. One can see also the
existence/nonexistence of traveling waves by Yagisita [36] and the existence of almost periodic
traveling waves by Chen [5]. Furthermore, the global stability of traveling waves with exponen-
tial convergence rate for noncritical planar wavefronts, and algebraic convergence rate for critical
wavefronts, were obtained by Huang et al. in [21]. When the equation is crossing-monostable,
the equation and the traveling waves both lose their monotonicity, and the traveling waves are
oscillating as the time-delay is big. Huang et al. [22] proved that all non-critical traveling waves,
including those oscillatory waves, are time-exponentially stable, when the initial perturbations
around the waves are small. Later, Xu et al. [34] proved the global stability of critical oscilla-
tory traveling waves for a class of nonlocal dispersion equations with time-delay. For the long
time behavior and stability of traveling waves for other type of diffusion, for example degenerate
diffusion, we refer the readers to [19,20,23,35] and the references therein.

As for the asymptotic behavior as + — oo for the nonlocal model (1.2) without external or
internal sources, Chasseigne et al. [7] and Cortazar et al. [13] showed that the long time behavior
of the solutions is determined by the behavior of the Fourier transform of J near the origin.
If f(é) =1—«kl&|*+ 0(|€]*)(0 < @ < 2), the asymptotic behavior is the same as the one for
solutions of the evolution given by the /2 fractional power of the Laplacian. In particular, the
asymptotic behavior is the same as the one for the heat equation for J is a compactly supported
kernel. Ignat and Rossi [25] further obtained the asymptotic behavior of the solutions to the
nonlocal equation that takes into account convective and diffusive effects. Ignat and Rossi [20]
also proved that every solution to (1.1) with an initial condition ug € L'(RV) N L>®°(R™) has
an asymptotic behavior given by [lu(#) ¢~y < C1™%, but it should be noted that this estimate
is not optimal. Our main task here is to develop an new method to obtain more accurate decay
estimate.

In the present paper, we are mainly interested in the asymptotic behavior for the nonlocal
Cauchy problem (1.1) with time delay t > 0. We obtain the threshold results with optimal con-
vergence rates for the original solution to the constant equilibrium. Namely, when 0 < 5 <1,
the solution u(¢, x) globally converges to the equilibrium O in the time-exponential form; when
5 = 1, the solution u(¢, x) globally converges to O in the time-algebraical form; when 1 < 5 <e,
the solution u(f,x) globally converges to #4 > O in the time-exponential form; and when
e < g < €2, the solution u(t, x) locally converges to u4 in the time-exponential form, once
the initial perturbation around u is small enough. The adopted approach is the optimal energy
estimates by taking Fourier transform to the fundamental solutions. The lower-higher frequency
analysis plays a crucial role in the proof. These results indicate that, from the ecological point
of view, when the death rate is bigger than the birth rate, the blowflies will disappear in future.
While, when the birth rate is bigger than the death rate in a certain range, then the blowflies
population will reach an equilibrium after long time.
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Roughly speaking, our first result states that the decay rate as ¢ goes to infinity of solutions of
this nonlocal problem is determined by the behavior of the Fourier transform of J near the origin.
The asymptotic decays are the same as the ones that hold for solutions of the evolution problem
with right hand side given by a power of the Fractional Laplacian. As mentioned in [7], a simple
way to understand our results follows that, by the assumption (J2), at low frequencies (£ ~ 0),
the operator is very much like the fractional Laplacian (usual Laplacian if « = 2). Now, as time
evolves, diffusion occurs and high frequencies of the initial data go to zero. This is reflected in
the explicit frequency solution

i, &) =V O D).

Indeed, if J is a L! function, then it happens that J (&) = 0 as & — o0, so that for [£] > 1, the
high frequencies of u( are multiplied by something decreasing exponentially fast in time (this
could be different in the case when J is a measure, but we do not consider such a case here).
Thus, roughly speaking, only low frequencies of the solution will play an important role in the
asymptotic behavior as t — oo, which explains why we obtain something similar to the heat
equation. In fact, what we do in the proof of the linearized problem (Theorem 2.1) is precisely to
separate the low frequencies, where we use the expansion (J), from the high frequencies that we
control since they tend to zero fast enough in a suitable time scale. To this end, we first analyze
the decay of solutions of the linearized problem. These solutions have a similar decay rate as the
one that holds for the heat equation, see [7] and [26] where the Fourier transform plays a key
role. This is a crucial step for getting the optimal convergence for the solution of (1.1) to the
constant equilibrium 0 and u 4 = % In %.

Throughout this paper, C > 0 denotes a generic constant, and denote specific positive constant
by C; >0 =0,1,2,---). k= (k1, k2, - - -, kiy) denotes a multi-index with nonnegative integers
ki>00=1,2,---,N), and |k| =k + ko + - - - + ky. The derivatives for multi-dimensional
function are denoted as

Wf) = 9N f(x).
For a N — D function f(x), its Fourier transform is defined as
FUNEO = f@i= [ fwdx, =y
RN

and the inverse Fourier transform is given by

5[] = / ¢ f(8)dE.

RN

@m)N

Let LP(RN )(p = 1) be the Lebesgue space of the integrable functions defined on RV,
WP (RN)@m >0, p > 1) denoted by

wrr@Y) = { () e LP@RY) | 0 £ () € LP@®Y), [kl < m],
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with the norm given by

||f||wm,p:(fj/(a!;f(x)\”)%,
k=0 n

and in particular, we denote W2(R™) as H™(R™). Further, H*(R") denotes the Sobolev space
of substantial number which defined by Fourier transform, for any nonnegative real number «,

H®RY) = e 2RY) | (1 +16P)% f€) e L2RY).

The rest of the paper is organized as follows. In Section 2, we first give some preliminaries
about the estimates for the linear delayed ODEs that will be used to give explicit formula of
solutions as well as for the proof of the asymptotic behavior. Then we list the main results of
this paper. In Section 3, we consider the existence, uniqueness and asymptotic behavior of the
solutions to the linear problem, and prove Theorem 2.1. In Section 4, we consider the asymptotic
behavior of the solutions to the original nonlinear problem, and prove Theorems 2.2 and 2.3.
Finally, in Section 5, as a direct application of the results of this paper, we give the corresponding
results for the Nicholson’s blowflies type equation with local dispersion.

2. Preliminaries and main results

In this section, we first give some basic results for a class of linear delayed ODEs, which
will be used to derive the asymptotic behavior of the solutions for the linearized problem with
nonlocal diffusion and time delay. Then, we present the main results of this paper, that is, the
asymptotic behavior of the original problem (1.1) for two cases of 0 < g <land 1< 5 <eé2.

Now, as preliminaries, we recall the linear delayed ODEs and list some basic properties of the

solutions as shown in [27] and [30].

Lemma 2.1 ([27]). Let z(t) be the solution to the following linear time-delayed ODE with time-
delay t >0

%z(t) +Bz(t) =yz(t — 1),

z(s) = zo(s), se[—1,0].

@2.1)

Then

0
2(1) =e Pl z9(—1) + / e Ul 7T 0(5) + Bao(s)ds,

-7

where
y=yelT,
and e’z "is the so-called delayed exponential function in the form
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0’ te (_009 _T)7
1’ ) te [—T,O],
l + );_!t’ te [07 ‘C]7
- 2
1+ 5+ 5¢-12 telr, 2,

5 =2 =3 =m
I+ 5+ 50—+ 50 =207+ + L[t — m— DT]™, 1 €[(m - DT, mt],

and €' is the fundamental solution to

i 1) = Y] t —
dtz()—yz( 7),
z(s)=1,s €[-1,0].

2.2)

Note that, different from the exponential function e17%2) = kit k2t here we have
egkl-&-kz)l + e]r‘"elr‘zt.
Furthermore, such a solution captures the following asymptotic behavior.
Lemma 2.2 ([30]). Let B > 0 and y > 0. Then the solution z(t) to (2.1) satisfies
|2()] < Coe™ e,

where

0
Co:=e P |zo(—1)| +/e’3“|z{)(S) + Bzo(s)|ds,

—-T
and the fundamental solution e? " with y > 0to (2.2) satisfies
el <C+07%", >0
for arbitrary number § > 0.
Furthermore, when B >y > 0, there exists a constant €] = €1(B,y, 1) with 0 < €| < 1 for
1>0,ande; =1 fort =0, and €, = €1(tr) — 0" as T — 400, such that
ef’eiﬂt <Ce 1B=1It 450,
and the solution z(t) to (2.1) satisfies

lz(t)| < Ce™ 1B 15 0.
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Remark 2.1. We can also refer to the textbooks [31] that, when y <0 < 8 and |y| < 8, for any
time-delay t > 0, it holds that

lz()| < Ce™™, >0,
for some v > 0.

Next we consider the following nonlocal linear time-delayed dispersion equation

du
— —D(J xu—u)+Bu=yu(lt —r1,x), >0, xeRY,
ot 2.3)

uli=s = uo(s, x), se[-1,0], x e RV

By Lemmas 2.1 and 2.2, and using the Fourier transform method, we derive the asymptotic
behavior of solution of (2.3) with the optimal decay rates as follows.

Theorem 2.1. Let 8 > |y | and u(t, x) be the solution of the problem (2.3), assume that uo(s, -) €
C([—7,0]; H™ RNy N LY (RN)) and d5u(s, ) € L' ([—7,0]; H*(RN) N LY (RN)) with m >
0, o € (0, 2], then we have

<CM} (1 alemeB=lvi 4o 0. (2.4)

LXRN) —

u(t)‘

for k| =0,1,2,---,[m], and e = €3(B, y) > 0,

ML =l @y + luo(—0) | g ry)
0

+/[”uo(s)”LI(]RN)O[—[V‘H'“(]RN) + ||u6(s)”LI(RN)QHV“(RN)]ds'

—-T

Furthermore, if m > 5 + |k|,

,t>0. 2.5)

u(t)H - <CME (141

As a direct application of Theorem 2.1, by a detailed analysis as sketched before in the intro-
duction, we can further obtain the following asymptotic behavior of the solution of the problem

(1.1).

Theorem 2.2. When 0 < 3 < 1, suppose that initial data ug satisfies 0 < uo(s,x) < a, ugp €
C([—7,0]; H" RNy N LYRYN)) and d5u0(s, -) € L' ([—7,01; H™(RN) N LY (RN)) with m >
0, @ € (0, 2]. Then the problem (1.1) admits a unique solution u(t, x), such that:

e when 0 < % < 1, then u(t, x) converges globally to u = 0 time-exponentially

<CMy (1+1 Ho—esd=pr 4o 0

ZRN_

u(t)

82



R. Huang, M. Mei and Z. Wang Journal of Differential Equations 364 (2023) 76—106

where constant €3 = €3(d, p) > 0;
o when g =1, then u(t, x) converges globally to u = 0 time-algebraically

<eME (4
L2(RN) — o(L+1 ¢

, >0,

u(t)‘

with k| < % and N > «.

Theorem 2.3. When 1 < 3 < €2 , suppose that 0 < ug < uy, vo :=ug — uy € C([—7,0];
H™ RNy N LYRN)) and 3 (uo(s, ) —uy) e LY([—1,0]; H"RY) N LY (RN)) with m > 0,
o € (0,2]. Then the problem (1.1) admits a unique solution u(t, x), such that:

1

e whenl < 5 <e, then u(t, x) converges globally to u; = - In 5 in the exponential form

P
a1 >0,

k
ey, S CML A+

" (u — ”+)(l)’

for some €4 = €4(d, p) > 0;
e whene < § < €, then u(t, x) converges locally to uy = % lng in the exponential form

(2—1n§)t’ >0

) <cM; (1

k=)0

for some positive number €s.
Remark 2.2. In Theorem 2.3, when e < 5 < €2, we said that the solution u(t, x) converges
locally to u4+ means that, different from Theorem 2.2 which has no restraint on the initial per-
turbation, here we need to suppose the initial perturbation of ug with respect to u, that is, ijo
small enough.

Remark 2.3. We need to indicate that in our main results, the decay rates are optimal in the
sense by comparing to the linearized problem. Since for the original nonlinear problem, when
0< g < e, the birth function is convex, b” (1) < 0 for u € [0, uy], and we can neglect the higher
order terms in the decay estimations of the solution. While for the case of e < 5 < €2, no higher
order terms are neglected in the decay estimations, but as stated in Remark 2.2, the convergence
is locally in this case.

Remark 2.4. The analysis for nonlinear problem is more involved than the linear case, and here
we cannot use the Fourier transform directly (by the presence of the nonlinear term). Our strategy
is to decompose the nonlinear equation into a linear part and a higher-order part. Then the desired
estimates can be proved by using the fact that the higher-order part decays faster than the linear
part.

3. Linear nonlocal reaction-diffusion equations with time-delay

The aim of this section is to prove Theorem 2.1, we will derive the solution formula for the
nonlocal delayed dispersion equation (2.3), as well as its asymptotic behavior, which will play
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a key role to prove the main results for our original nonlinear problem in the next section. The
main ingredient for our proofs is the Fourier splitting method introduced by Schonoced, see [33].

The following lemmas will be used to estimate the optimal decay rates for the solutions of the
problem (2.3).

Lemma 3.1. Let B > y > 0, and uy be the solutions to the following problems

Wy () + Pus(t) = £yus(t — 1),

Utli=g =u+,0(s), se[-r,0],
with
lu— o) <uio(s), sel-t,0],
then
lu— ()] < uq(r).

Proof. We first prove that u (¢) >0 forall > 0. For ¢ € [0, 7], i.e.,t — T € [—7, 0], then u (¢)
satisfies

ul (1) + Bus(t) = yus(t — 1) >0,
Uyli=s =uy0(s) >0, s e[-7,0]

According to maximal principle, we have
uy(t) >0, forr €[0, r].
Repeating the same procedure on [7, 27], [27, 37], - - -, [mT, (m + 1)7], we can prove
uy(t) >0, fort € [mr, (m + 1)t],
and finally
us(t) >0, forr e Ry.
Next, we prove |u_(t)| <u4(t) fort > 0. Let
u(t) =us(@®)+u_(t) and u@):=us@)—u_(1).
We will prove u(z) > 0 and u(t) > 0. When ¢ € [0, t], then u(¢) satisfies the following equation

W' () + Bu(t)=yus(t—1)—u_(t —1)) >0,
E|t=s = u+,0(s) + 147,0(5) = 01 s € [_T’ O]

By maximal principle, we have
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u(t) >0, fort [0, ].
Repeat the same procedure on [z, 27], [27, 37], - - -, we have
u(t) >0, fort € [mt,(m+ 1)1],
and then
u()=>0, fort e R;.

Similarly, we can also prove that u(¢) > 0, for t € R... Based on the above analysis, we immedi-
ately know that

lu— ()] < uq(1).
The proof of this lemma is complete. O
In what follows, we give a comparison principle.

Lemma 3.2. Let B1 > B2 >y >0, and let u;(t) (i = 1,2) be the solutions to the following
problems

) (t) + Piui (t) = yu;(t — 1),
Uili=s = uo(s) >0, s € [—7,0].

Then
0=<ui(@) <ux(0).

Proof. We first prove that u;(t) > 0. When ¢ € [0, t], we have t — 7 € [—7, 0], then u(¢)
satisfies

{ uy () + Bur (1) = yu (t = 1) 2 0,
Uil=s =u1(s) >0, s € [—1,0].
By the maximal principle, we have
ui(t) =0, forr €0, r].
Similarly, we can prove
ui(t) >0, fort € [mt, (m+ 1)t],
and finally

u1(t) >0, forr e R,.
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Next we prove that us(¢) > uy(¢). Let u(t) := ua(¢t) — u1(¢), then u satisfies the following
equation

a' (1) 4 Baur(t) — Brui(t) = yi(t — 1),
iili—s =0, se[—t,0].

When ¢ € [0, T], we have

i@ (1) 4 Baua(t) — Brui (1) =0,
that is,

i (1) + it (t) = (B1 — B2u1 (1) > 0.
Then we can obtain
i(t)>e P, fortel0,1].
Repeating this procedure step by step, we can prove
ii(t)=e P forte[mr,(m+ 1)1,

and further

a@t)>=eP'>0, forteR,.
Namely,

uz(t) = uy ().

The proof of this lemma is complete. O

Lemma 3.3. Let 81 > 2 > |y |, and uy solves the problem

{ W (1) + Brur (1) = yui (t — 1),

Mllt:s = uO(S), RS [_Ta O]v

and uy solves the following problem

{ uh (1) + Baua (1) = |y lua(t — 1),

uz =5 = |ug(s)|, s € [—-7, 0L
Then

[ ()| <ua(2).
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Proof. As a consequence of Lemma 3.1 and Lemma 3.2, we can immediately deduce
Lemma 3.3, and we omit the details here. O

Note that e? 'e=P1 is the solution of the following problem

{u’(t)+ﬁu(t)=yu(t —1),

Ulimy =P, s €[—1,0],

where 7 := yefT and e’; " be defined in Lemma 2.1. We have the following decay estimates which
plays an key role in the asymptotic behavior of the solution of the problem (2.3).

Lemma 3.4. Let 81 > o > |y|. It holds

‘e?[;lte—ﬂlt <C ‘erfzte—ﬂzt < Ce—el(ﬂz—l)/l)t’ (3.1
where y; :=yePiT i =1,2. Let B > |y/|, we have
€| < clefte | < cem IV or 152 2 7. (3.2)

where €] = €1(B,y) > 0and

7)) =|peld@ A

el

Proof. First, by Lemma 2.2, for 8 > y > 0, we have

elle P! < Cemc1(F=1I, (3.3)

where 0 < €1 :=€1(B, y) < 1. By Lemma 3.1, we obtain that (3.3) is also established for § > |y|,
here y may be negative. Therefore, (3.1) is derived immediately from Lemma 3.2.

As for (3.2), by the assumption (J2), we have f(é) =1—«|&|* + 0o(|€]%) as &€ — 0 with
o € (0,2] and « > 0. Then there exist 0 < m; <m>,0 <n < 1 and a > 0, such that

{ milE¥ <1 —JE) <mal€|%, asl|E|<a, G

ni=ma® <1—JE) <mlgl*, aslE|>a.
Then, a simple calculation gives that
4@ + 81z |D (1-7®) +8| = |DI0F + 5| =B, &<RY,
and (3.2) followers by Lemma 3.2 immediately. The proof of this lemma is complete. O

Now, we are in the position to give the proof of Theorem 2.1.
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Proof of Theorem 2.1. By taking Fourier transform to (2.3), and denoting the Fourier transform
of u(t, x) by u(z, &), we have

du A .
oy TAG+Pi=yut —7.8),

(3.5
’2|t:s = ﬁ(svg)’ s € [_T,O],
where
A©=-D(J® -1).
From (2.2), the time-delayed equation (3.5) can be solved by
0, &) zeg(é)le*[A(é)ﬂg](lJrT)ﬁO(_T’ £)
0
+ / et?(E)(t—r—s)e—[A(E)-i-ﬂ](t—S) I:%ﬁo(s, &)+ (AE) + Buo(s, éj)] ds
=:G (1, £)iig(—T, €)
0 d
+ / G(t—1—5,8) [gfto(& &)+ (A) + Bito (s, E)} ds, (3.6)
where
7 (&) = ye(A(S)-i-ﬂ)f,
and

G(1,£) = oF @1 4O +BI1+)
Taking the inverse Fourier transform to (3.6), then

u(t,x)=G(t,-) *u(-rt,-)
; d
+ / Git—1—s5,)% [d—uo(S) — D(J *up —ug) + ﬁuo(S)} ds
R

-7

_ / ¢ FE TN OB 4 gy

1

ey

0
/ / o8 PO I—T =) ~(AE)+B1—5)
—TRN
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d
X [%ﬁw’ &) + (A) + B)ito (s, 5)} déds,
and its derivatives

1

k _
oyu(t,x)= 2N

N
/ [Tag)ksei€er @ e AOHBID 401 )
RN Jj=1

0
N
1 . kj ix-& y(E)(t—1—s) ,—[AE)+BI(t—s)
+(2n)N/fH(l§f)je ¢ ¢
—TRN j=1

d
X [gﬁo(s, §) + (A®) + Bito(s, %‘)] déds

0
=F LX)+ / F ULt —1—s,x)ds

-7

forkj=0,1,---,and j=1,2,---, N. Using Parseval’s equality, we have

0
ok z‘ <H9—11 t‘ f“?‘ll f—1— d
0] g, =17 1I0O] L + =7 =9 0 ds
—T
0
I Oz, + / 12t = 7 = )]l 2 evyds. (3.7)
-7

Next we are going to obtain the decay estimates of || /1(#)|| L2rny and [[12(f — T — s) || 2wy By
(3.7), we have

2
N
”Il(t)”iZ(RN):/ 1_[(ié;j)kje%’(é)teflA(S)Jrﬂ](Hr)ﬁo(_l—’é:) d&

Ry =1

N A 2

. 2| _ _

= / [T1& [ |er®reruro ‘e P(-T)e05, g ae
RN Jj=1

A it B+ |? —D(l—f@))<z+r>A ?
< / [Tle[™ [elre P01 e fio(—7.8)| dt
RN Jj=1

ol D(1-J 2

<cerer i [T jg e PO r ) @ a9)

RN Jj=1
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where € = €3(8, y) > 0. Furthermore, according to (3.4), we split (3.8) into two parts: low
frequency and high frequency

N .
NG (1T O)0 0 oy a
RN Jj=1

r 2D(1-7
= [ Tl e 07 e ey

lgj<a /=1

N ~
[ TTIe P e P07 i, oy
gl=a /=1
N N
< / [T 167 e72Pmler a0 (—, &) Pds + / [T 167 e72Pe* g (2. £)2ds
gl<a /=1 Elsa J=]

N
A 2k: _ o
<C sup lig(~1, §)? / [ 16 e72Pmiel a0 g

RN -
5 gj<a /="

N
+ / [1161% e 2P+ (—7, ) 2as
lgj>a /=1

o

E(1+t)0ti 1
dE(1 +1)a

2kj —2Dm;
e

N
. _ N+2lk 1
<C sup lig(—7.6)2(1+1) s f]"[\sj(1+t)a
£ecRN

gl<a /=1
N
e 2P / [Tles[™ tio(—=. &)1 de
glza /=1

N+2[k|

<C (||uo<—r)||il(RN) - ||uo<—r)||§,‘k.(RN)) I+~ . (3.9)
Here we have used the property of Fourier transform that

2

sup lio(—. &) < / uo(—2. )1 | = o= g
£eRN "

and

2

N
[ Mepsio-ro| a= [

Ry =1 RN

— 2
obuo(—7.6)| dg
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g,

]RN

k 2 2
Okuo(~, )| dx =< lluo(— )2 gy

Substituting (3.9) into (3.8), we immediately obtain

N+2Jk|

1O 2wy < € (luo(=D)ll L1way + luo(=D) | iy ) (L4172 e~ 2P (3.10)

As for || I(t — T — Lz wny, we also have

12 =7 = )l 72gx,

N
=f H\ifj!%j

RN j=1

eZ@)(l—f_s) e TAGE+BI(1—s)

2
dé§

2\ d
‘gﬁo(& €) + (AE) + Bido(s, §)

N “
<ce 2= [ T g, 22(1-i@)a-s

d 2
gﬁo(s,é)Jr(A(é)Jrﬂ)ﬁo(s,é) d§.

RN Jj=1
(3.11)

Similar to the approach as (3.9), we divide the last formula above into low frequency and high
frequency two parts

l 2% 20(1 i(s))(t )
[ L lsehe

RN Jj=1

N
2%; _ @ d
<C / H|g]| e 2Dmy [E|* (t—s) (‘auo(&é)

lgl<a /=1

J 2
aﬁo(s,E)Jr(A(é)vLﬁ)ﬁo(s,é) d§

2
+ |(Dmalal® + B)io (s, $)|2> dé§

N 2%k ; d
+C / H}é—j’ J g~ 2Dn(i=s) (‘aﬁo(&%—)

lg1>a 1=!

2
+ |(DmaE|* + B)ito s, s>\2) dg

2 N+2Jk|

- |ﬁo(s,s>|2> (t—s) @

d
<C sup ('—ﬁo(s,f)
£ecRN ds

N 1
x / [Tl -0 R L
lej<a /=1
N . d 2
+Ce2Pn=9) / IT&1™ (‘Eﬁo(&é) +!(sz|§|“+ﬁ)ﬁo<s,s)|2)ds
lejza /=1

/o2 2 2 2 _ N2k
=C (”Uo(s)”Ll(RN) + ”MO(S)”LI(RN) + Iluo(s)”H\k\(RN) + ”l’to(s)”H\lira(RN)) (=5 o,
(3.12)
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where we have used

a%(s\,@]zds <

afuo(s))

HeRN)

N
/l_[|sj|2"f |s|2“|ﬁo(s,s)|2d§=/|5|2“
]RN

RN Jj=1

Combining (3.11) and (3.12), then we obtain

0
/ [12(t — 7 —$)lL2wNyds

-7

0
N+2Jk|

<C / (luo ()l L1 @My ke @Yy + 116 | L1 @My AEEERY)) ¢ — )7 20 e 2B D=9 gg

-7

0
_ NA20K _
SC(] + t) 20 e e(f—lyDt / (”MO(S)||L1(RN)QH|k\+a(RN) + ||u6(s)”LI(RN)QHV"(]RN))

-7

_N-¢2-2|k\
N (’—S> < aBlvDs g
1+t
21k|
§CM’;0(1+r)‘N§—ae‘€2(’3“V‘”- (3.13)

Substituting (3.10) and (3.13) into (3.7), we immediately obtain (2.4). As for (2.5), taking a
similar approach, we can first obtain the estimates for higher order term. Then, (2.5) can be
concluded from the Sobolev’s embedding theorem. The proof of this theorem is complete. O

4. Case of 0 < g < 1: convergence to 0

In this section, basing on the results for linear problem in Theorem 2.1, we further consider
the asymptotic behavior of the solutions for the nonlinear problem (1.1). Note that the constant
equilibria for the equation (1.1) can be found by solving du = pue™"*. This equation admits
only two roots:

1. p
_=0, =—In=.
u 7 and

Next, we first study the decay estimate for case of 0 < g < 1, and derive the decay rate of the
solution u(#, x) to constant equilibrium state 0.

Lemma 4.1 (Boundedness). Let u(t, x) be a solution of the problem (1.1), then it holds

1
O<u(t,x)<—, (t,x)eRT xR,
a
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Proof. Fort €[0, ], i.e.,t —t € [—1, 0], then we have

{u, —D(J *u—u)+du=bu—1,x))=buyt —1,x)) >0,

Uly=s =uo(s,x) >0, s € [—1,0].
By maximal principle, we have
u(t,x)>0, for(r,x)el0,7]xR".
Repeating the same procedure on [7, 27], [27, 37], - - -, We can prove
u(t,x) >0, for (t,x) € [mt, (m+ 1)r] x RY,
and finally
u(t,x) >0, for(r,x) eRT x RV,

Next, we prove u(t, x) < % Let

v(t,x) = l —u(t,x),
a

then
d
vy —D(J*xv—v)+dv=——bu(t —r1,x)),
a
1
V|t=s = — —up(s,x) >0, s € [-7,0].
a
Since
d d d
S b -tz - =2[1-2]>0
a a ae a de

here we have used the condition 0 < g < 1. Therefore, similar to the above procedure, we obtain
v(t,x)>0.ie.,u(t,x) < % The proof of this lemma is complete. O

Motivated by [21], we will use the framework of Banach’s fixed point theorem to prove the
existence and uniqueness of the solution. Clearly, for (¢, x) € R* x RY, the solution u of the
equation (1.1) satisfies

v(t, x) =e Mu(0, x)

t

+ / ef“(t”)[D / J(x —y)u(s, y)dy + (u — D — d)u(s, x) +b(u(s — t, x))]ds,

0 RN
“.1)

where i :=1+d + p. Fix T > 0 and define a space
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N 1
Xr = ulu(,x) e C([—t, TIxR™),0 <u(r,x) < —,
a
u(s, x) = up(s, x), (s, x) € [-7,0] x RN}
equipped with the norm

lullx, = sup e ™ Jlu()] Lo @n)-
1€[0,T]

It is clear that X7 is a Banach space. Then, we define an operator St : X7 — X7 as follows:

Sru =
e My 0, x) + fot e Hi—s)
x [D Jaw JGc = yus, y)dy + (u — D — dyu(s, x) + b(u(s — 7, x))]ds,
(t,x) €[0,T] x RN,
uo(s, x), (s,x) €[—7,0] x RV

Next, we will obtain the existence and uniqueness of the solution as a fixed point of the operator
St.

Lemma 4.2 (Existence and uniqueness). Let uy(t, x) € C([—t,0]; C(RN)) with 0 < uo(t, x) <
%for (t,x) € [—1,0] x RN, then the solution to (1.1) uniquely and globally exists, and satisfies
that u € C'([0, 00]; C(RM)), and 0 < u(t,x) < L for (t,x) e Ry x RV,

Proof. Now we are going to prove that S7 is a contractive operator from X7 to X7. We first
prove that S7 maps X7 to Xr. In fact, if u € X7, using the fate that fRN J(x)dx =1, and
u—1—d > 0, then we have

0<Stu

t
| 1 1 1
Se_l”__'_/e—u(t—s) D/J(x_y)_dy+(M—D—d)—+b(_) ds
a a “ a
0

=

’

Q| =

which combined with the continuity of St proves Stu € X7, namely, S7(X7) C Xr.
Now, we prove that S7 is a contractive operator. In fact, let u1,u2 € X7, and v =u; — uo,
then we have
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t

St (u1) — St (u2) =/e”‘(H) [D / J(x = y)vls, y)dy + (= D = d)v(s, x)
0 RN

+ (bui(s —1,x)) —bur(s — 7, x)))]ds.

So, we have
|S7(u1) — Sr(uz)| e
t
< / e MU () vl xp ds
0
T [T e |y| x, ds, fort>7T
b/ e 0 Xrdsd, =
+uerﬁ)?1,)¢(+]| (u)|{0’ forO<t<rt
1
<5 (et (1 =70 4 T (@ 2 o,
uw+d+p
STIIUIIXT
m
2L
= v
21 Xr
=:pllvlx,
for0 < p:= % < 1, namely, we prove that the map St is contractive

ST (1) — St llx, <pllur —uzllx;-
Hence, by the Banach fixed-point theorem, S7 has a unique fixed point u in X7, i.e., the integral
equation (4.1) has a unique solution on [0, 7] for any given 7 > 0. Differentiating (4.1) with
respect to ¢, we get the unique solvability of the original problem (1.1). By the equation itself,
we can easily confirm that u € C ([0, o0]; C(RN)). The proof of this lemma is complete. O

Now, we are in the position to give the proof of Theorem 2.2.

Proof of Theorem 2.2. For 0 <u(t,x) < % linearize f(u) by Taylor’s formula, then

b// (ﬁ)

b(u(t —t,x)) =b(0) +b' O)u(t —7,x)+ u?(t — 7, x)

=pu(t — 7, x) —o(Du*(t — 7, x)

<pu(t —7,x),
provided that iz € (0, u(¢ — 7, x)). So the problem (1.1) can be rewritten as
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b// (ﬁ)

ur—D(J xu—u)+du—pu(t—1,x)= uz(t—t,x), 42)
u];=s = up(s, x).

Noting that b(u) = pue ", then b(u) concave downward in [0, %], and b” (1) < 0 for u € [0, %].

Applying the fundamental solution formula to (4.2), we have

u(t,x)=fG(t,0;x,y)uo(—f, y)dy
RN

0
d
+/ / G(t,s;x,y) [%uo(s,y) —D(J*Mo—uo)+duo(&y)} dyds

—TRN
? 1 o~
+//G(t,s;x,y)#uz(s—r,y)dyds
0 RN

< / G (1, 0: x. yyuo(—7, y)dy
RN

0
d
+/ / G(t,8;x,y) [Euo(s,y) - D(J*uo—uo)+duo(s,y)} dyds,
—TRN

where G (¢; x) is the fundamental solution of the time-delayed dispersal equation
ur — D(J xu —u)+du=pu(t —t,x).

On the concrete expression and properties of G (z, x), we can refer to Lemma 2.1. Furthermore,
by Theorem 2.1 and the properties of convolution, we have the following L?-decay estimate,

@l 2Ry

0
d
<ING@) *uo(=0)llL2@®Ny + / HG([, 5) * |:—u0(s) — D(J xug —ug) + duo(s)] ds
ds LZ(RN)
-7
=CIGOIl 2@y luo(=D) I L1 RN
; d
+ f 1G (@, )l 2Ny ‘—uo(s) — D(J xug —ug) + dup(s) ds
ds (RN
2 LIRY)
4.3)

<CMO (14 1) 3@,

where €3 = €3(d, p) > 0. Next, we prove the decay estimate of the higher order derivation. Note
that
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Fu(r, x) = / kG (1,0; x, yyuo(—1, y)dy
RN

0
d

+/ / 3fG(t,S;x,)’)[d—uo(s,y)—D(J*Mo—uo)+duo(s,y)} dyds
N

—TRN

//akG(t S5 X, y)[ (@) 2(s—r y)i|dyds

0 RN

Then, combining with (4.3), for N > « and |k| < %, we have

fu)]

L2(RVN)

£G (o) (=)

L2(RN)

d
+ [ [9*G (. s) * [—uo(s) — D(J *up — up) +du0(s)] ds
dS LZ(RN)
—T
ds
L2(RN)
0
Ny ||M0(—T)||L1(RN)
—ug(s D(J *uy — ug) +dug(s ds
L®RY ‘ 0(s) = D(J *uo — uo) 0(s) -
t
+C 2( — )H ds
L2(RN) LIY(RN)
0

k —
<CM, (1+1)" 2
t
_ o) (f— _ N+2[k|
+CMY, [Pt =)™ s = DI g, ds
0

N+2k|
<CMy (141)7 2 e s@pt

+ oM f(l bp ) B el (] 4 5 )X 2ald=p) D) g
0

k
<CM,,
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t

+CME ety / o~ 6(d=p)(s=21) [(1 i S Qs — T)*%] ds
0
et a+ N~ R e d=P i g s p,
= N+2[k| .
CME (140 5 ifd=p.
Here, we have used the following inequality

! C (1 + )~ minta.b}, if max{a, b} > 1,
/(1 +1—9)" A +s5)"lds<{ cA +)~minlab n2 +1), if max{a, b} =1,
0 C(l+n)t-ab, if max{a, b} < 1.

The proof of this theorem is complete. O

2

5. Caseof 1 < % < e“: convergence to u 4

In what follows, we consider the asymptotic behavior of the solutions for the case of 1 <
P

7< €2, and give the proof of Theorem 2.3. Let u(#, x) be the solution of the problem (1.1), and
denote

v(t, x) i=u(t,x) —uy, (¢,x)eRT xRN,
vo(s, x) :=uo(s,x) —ugy, sel[-1,0],xe RY.

Then v (¢, x) satisfies

dt

S.D
v|l‘=S = UO(S,x)a NS [_T,O],x € RN,

{@—D(J*v—v)+dv—b/(u+)v(t—r,x)=Q(v(t—t,x)), (t,x) e RT x RV,

where

Ot —1,x) :=bw(t—1,x)+uy) —buy)—bwy)v(t —1,x).

Obviously, |0/ (us)| = [d(1 —In§)| <d, for 1 < £ < e?, and

In£Z, for 1 <

!/ — p f— d
d—|b (u+)|_d—d‘1—lng‘—{d(z_lng) fore <

NSNS
AIA
. D~

Next, we give the proof of Theorem 2.3 in the two cases 1 < g <eande < g < €2 respectively.
5.1. Caseof 1< % < e: global convergence to u

When 1 < 5 < e, the birth rate function b(u) = pue™" is monotone. Let w(z, x) := —v(t, x),
ie., w(t,x) :=uy—u(t, x), we immediately obtain that w € [0, u4]. According to (5.1), we have
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d b// ~
@ —D(J*xw—w)+dw—b(up)wit—1,x)= %wz(t—r,x), (t,x) eRT x RV,

w|l=S = wo(s5x)7 s € [_T5 0]9x € RN,
5.2)
where i1 € (w(t — 7, x), uy). Applying the fundamental solution formula to (5.2), we have

w(tvx) = / S(tv O, X, y)wO(_Ts Y)dy
RN

0
d
+/ f S(,s;x,y) [awo(s, y) — D(J * wg — wop) + dwo(s, y):| dyds
—TRN

t
b”(ﬁ) 2
+/ S(t,s;x,y) > w(s — 1, y)dyds

0 RN

S/S(t,O;x,y)wo(—r, y)dy
]RN

0
d
+/ / S(t,s5x,y) [awo(s, y) = D(J * wo — wo) + dwo(s, y)} dyds,
-7 RN

provide that " (u) < 0 for u € [0, uL], since 1 < § <e. S(t; x) is the fundamental solution of
the time-delayed dispersal equation

w; — D(J xw—w)+dw=>bup)wl —r1,x).
Similar to the proof of Theorem 2.2, we have the following L? decay estimate
lw®Il2@®wy

ds
L2(RN)

0
d
<|IS() * wo(—T)”LZ(]RN) + / HS(t, s) * [awo(s) — D(J *wp — wo) + dwo(s)]

<CISO N 2™y llwo(=) L1 wN)

ds
LI(RN)

0
d
+/ ISz, S)”LZ(RN) ‘gwo(s) — D(J * wo — wo) + dwo(s)
—T

_N r
<CM, (141) e dlng!

and
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xw(t)’ L2(RN)
L2(RN)
k d
+ 9, S(t,8) % | ——wo(s) — D(J % wp — wp) + dwo(s) ds
K dS LZ(RN)
2
St s)*w (s — 1) L2(RN)dS
0
L2RM) 0(—T)||L1(]RN)
d
S, 5) L@®Y) | ds ——wo(s) — D(J * wo — wo) + dwo(s) LI(RN)ds
t
c s, ‘ 2(s — ’
+ 1 S(t,5) RN (s—1) LI(RN)
0

_ N4k L
<CMY, (1417 3 masdinat

oM /(1 b ) M madn B ( g )= p=2eidin ) g
wo

IR ey
+CM§1 —eadIn g t/ —e4dIn & (s—21) [(l+t—s) (1+S—‘L') ]
0
B (1+t)_ Mtlemadnfr f1 < B <o,
- 2” —€4dt P __
(1 +1)” , if g=e,

with N > « and |k| < % Then, we complete the proof of Theorem 2.3 in the case of 1 < % <e.
5.2. Case of e < % < e%: local convergence to u
When e < 5 < ez, the birth rate function loses its monotonicity, and the above method for
monotone birth rate function is no longer applicable. Here we adopt a continuous extension
method. For T > 0, we define the solution space for (5.1) as follows
Xr—t,T+r)= {v|v(t,x) eC(r—t,T+r]; H"?®Y)NnL'RY)),

dsuo(s, ) e L' ([r — 7, T +r]; H"RY)n L' RY)),
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N+2\k| d(27ln B)t
sup (141) 2 o5 v(t)‘ < 00,
telr—t,T+r] klz_O * L2(RN)
0= [kl <m, es=es(d. p) >0},
equipped with the norm
ML jesd(2—In &)
NAT)= sup Z(l +1) sd(2-ing) xv(t)‘ L2RN)

telr—t,T+r] |k| 0

Particularly, N'(T) := Ny(T) for r = 0. It is easy to see that Theorem 2.3 for the original problem
(1.1) in this case is equivalent to the following theorem for the problem (5.1).

Theorem 5.1. Let e < § < €2, vy(s, x) € X(—1, 0), then there exists a constant 8o = 8o(d, p) <
1 such that, when Mﬁo < 8o, the solution v(t,x) of (5.1) uniquely and globally exists in
X(—1, 00) and satisfies

(140 28 e M

L2(RN) — vo’

()

fort €10, 00).

The proof of Theorem 5.1 is based on the following local existence and the a priori energy
estimates. By a standard approach, we first have the local existence as follows.

Proposition 5.1 (Local existence). Suppose that vy € X(—t, 0), and ./\/lkO < 81 for a given posi-
tive constant 81 > 0. Then there exists a small to = t9(81) > 0 such that the local solution v(t, x)
of (5.1) uniquely exists for t € [—1, ty] and satisfies v € X(—1, t9) and N, (ty) < CiN,(0) for
some constant C.

Next, we will pay more attention on the following a priori energy estimates.
Proposition 5.2 (A priori estimates). Assume that e < £ < ¢%. Let v € X(—1,T) be a local

solution of the problem (5.1) for a given constant T > 0, then there exist positive constants
0 < 8, < 1 and Cy independent of T such that N'(T) < 8,, which implies

f

N+2[k|
= eE5d(27ln )t < 2M

<r<
LR S v 0=t=T.

(1+1)

o)

Proof. The solution of the problem (5.1) can be expressed by

v(t,x) = / K(,0;x, y)vo(—7, y)dy
RN

0
d
+/ / K(I,S:x,y)[gvo(s,y)—D(J*vo—vo)+dvo(s,y)} dyds
—TRN
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t
+//K(t,szx,y)Q(v(s—T,y))dyds,

0 RN

and its derivatives

v, x) = / K (1,0; x, y)vo(—7, y)dy
RN

0
d
—i—/ / 8§K(t,s;x,y) [d—vo(s,y)—D(J*vo—vo)+dvo(s,y)i| dyds
s
—TRN

t
+/ / MK (t,5:x, ) Q(v(s — 7, y))dyds,

0 RN
where K (¢; x) is the fundamental solution of the equation
v, — D *xv—v)+dv=>b(uy)v(t —1,x).

By Theorem 3.1, we obtain the L2-decay estimate of fundamental solution K (¢; x). Furthermore,
we have

ai‘v(t)‘ L2(RN)
< |BK O] g, 0Dy
0
[ otk o] L | 529060 = DO 00— )+ dunts) o
s
t
+f K (t,s) Loy 1206 =)l @y, ds

0

<CME (140~ 5 e )
t
N+2Jk|
+CM;, /(1 br—s) T A2 g) =)y (s — RIFTNE
0

<CM (141 5 emesd@Ing)

1
2
n C/\/lﬁo /(1 e S)_N;_iwk\e_esd(z—ln BY(t—s) [(1 45— T)_Ngczim o—€5d(2—1n 5)(s—r)]
0
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k|
x [ sup (145 —m) 5" sdCmi)o- ”nv(s—r)an(RN)] ds

0<s<T
<CM§ (1+1 (2=Ing)r
t
2|k
+CMllc)Oe—e5d(2—ln§)t/ —e;d(2 In & )(v 21)(1+t ) (1+S—‘L’)_N+H
0
d(2-1 2
x[ sup (1+s—r) eesd(2-In 7)(s— T)||U(S—T)||L2(RN)] ds
0<s<T
k 2-Ink
<cMk (2=Ing):
p N-+2k| 2
cME (141 (271n’g)t|: 1+ jesd(2—In ) t‘ ]
+ UO( + oi?ET( +0) 5 V() L2(RN)
When N(T) < §;, we have
NA2[k|
sup (141) 2@ eesd(2-Ing vt‘
0<t£)T( ) V(D) L2(RN)
NA+2]k|
<CME +CMEs 1) 5 eesd(-Inf)r |
<CM, + zoi?fr( +1) cv() RN
which implies that
N+2Ik| p
- CMb5) L4075 sl g k(| cME,.
( w2 OilzlET( 0 O] g, =
Taking 0 < §3 < 1 small enough, we obtain
N+21K oesd(2-In} k ko
sup (14+1) 2 esd@-nf)r ok (t)‘ poapy = CM,

0<t<T
The proof of this proposition is complete. O

Based on the local existence and a priori estimates obtained in Propositions 5.1 and 5.2,
similar to [28,29], we can employ the usual continuous extension method to give the proof of

Theorem 5.1, which immediately implies Theorem 2.3 in the case of e < § <é.

6. Remarks

In this section, as a direct application of the results of Theorems 2.1, 2.2 and 2.3, we give the
corresponding results for the following Nicholson’s blowflies type equation with local dispersion

ad
—u—DAu—i—du:b(u(t—t,x)), >0, xeRY,
ot 6.1)

Uli=s = uo(s, x), se[-1,0], x e RN,
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where b(u(t — 1, x)) = pu(t — v, x)e~(¢=7%) (Clearly, there exist two constant equilibria u_ =
0 and uy = éln %. Similar to the proof of Theorems 2.1, 2.2 and 2.3, we first consider the
following linear local diffusion problem

o pAu+p (t —1,x) t>0, xRV
— = u u=yu(t—r,x), . X ,
a1 v (6.2)
uli=s = up(s, x), se[-1,0], x e RV,

Repeating the same procedure as in the proof of Theorem 2.1, we can derive a similar result for
the linear problem (6.2) as follows.

Theorem 6.1. Let B > |y|, assume that uo(s,-) € C([—t,0]; WL RN)) and d5uo(s, ) €
LYRM) for all s € [—7,0], then there exists a constant 0 < €5 = €6(B,y) < 1 such that the
solution of the problem (6.2) satisfies

O] gy = C (o=l 11 @y + 0]l 1 e 0wt vy (14 1)~ F =5 emeetB=lrbr,
t>0,
M(f)HLDO(RN < C (lluo(— Dl wyy + luoll L1 =105 WZI(RN))) (1+l)____ —e6(B=lyDr
t>0.

For the nonlinear local diffusion problem (6.1), we have the following results.

Theorem 6.2. When 0 < g < 1, suppose that the initial data ug satisfies 0 < ug(s, x) < é,
up € L! ([—7,0]; w2 1(]RN) and uo(—t, ) € LYRYN). Then the problem (6.1) admits a unique
solution u(t, x), such that:

e when 0 < g < 1, then u(t, x) converges globally to u = 0 time-exponentially

u(t)‘

L2(RN) — (HMO( T)”Ll(RN)"‘”uO”Ll —7,0], WZI(]RN))) (1+t)____ —er(d— I’)f

where constant €7 = €7(d, p) > 0O;
e when § =1, then u(t, x) converges globally to u = 0 time-algebraically

_N_ |k
C (luo(— Dllprwyy + lluollLi f,o],Wll(RN)))(l'i‘f) iz,

0]

L2(RN) ~
with k| < 5 andN > 3.

Theorem 6.3. When 1 < 5 <é? suppose that 0 <ug <uy, ug —u4 € Ll([—‘l,', 0]; Wz'l(RN))
andup(—7t,-)—uy € L! (RN). Then the problem (6.1) exists a unique solution u(t, x), such that:
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e when 1 < g <e, then u(t, x) converges globally to uy = % In g in the exponential form

o —u)0)|

L®RY) <C(lu(=1) - utll gy + lluo — ”+||Ll([_r,o];w2,1(RN)))

for some €3 = €3(d, p) > 0;

e whene < % < €, then u(t, x) converges locally to uy = élng in the exponential form

o —u)0)|

LRY) =C (||M(—T) —uillprryy + lluo — u+||Ll([_f,()];W2~l(IRN)))

x (1 —I—t)_%_@e_@d(z_ln %)t, t>0,

for some positive number €9.
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