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Abstract
This paper is concerned with the zero-relaxation limits for periodic smooth solutions
of the non-isentropic Euler–Maxwell system in a three-dimensional torus prescribing
the well/ill-prepared initial data. The non-isentropic Euler–Maxwell system can be
reduced to a quasi-linear symmetric hyperbolic system of one order. By observing a
special structure of the non-isentropic Euler–Maxwell system, we are able to decou-
ple the system and develop a technique to achieve the a priori Hs estimates, which
guarantees the limit for the non-isentropic Euler–Maxwell system as the relaxation
time τ → 0. We realize that the convergence rate of the temperature is the same as
the other unknowns in the L∞(0, T1; Hs), but the convergence rate of the tempera-
ture is slower than the velocity in L2(0, T1; Hs). The zero-relaxation limit presented
here is the transport equation coupled with the drift–diffusion system. However, the
limit of the isentropic Euler–Maxwell system is the classical drift–diffusion system.
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This shows the essential difference between the isentropic and non-isentropic Euler–
Maxwell systems.

Keywords The non-isentropic Euler–Maxwell system · Initial layer problem ·
Zero-relaxation limits

Mathematics Subject Classification 35Q35 · 76N10

1 Introduction andMain Results

1.1 Preliminary

On a three-dimensional torus T3 = (R/2π)3, the following nonlinear system, called
the non-isentropic Euler–Maxwell system,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ + div(ρv) = 0,
∂t (ρv) + div (ρv ⊗ v) + ∇ p = −ρ(E + γ v × B) − ρv

τ
,

∂tE + div (Ev + pv) = −ρvE − ρ|v|2
τ

− τE,

γ λ2∂t E − ∇ × B = γρv, λ2divE = b − ρ,

γ ∂t B + ∇ × E = 0, divB = 0, (t, x) ∈ [0,+∞) × T
3,

(1.1)

models the dynamics of electrons and ions under the influence of their self-consistent
electromagnetic field (Besse et al. 2004; Brenier et al. 2003; Chen 1984; Kawashima
1984; Markowich et al. 1990; Rishbeth and Garriott 1969; Ueda et al. 2012; Villani
2009). The unknowns are the density ρ > 0, the velocity v ∈ R

3, the absolute

temperature θ > 0, the internal energy e = 3

2
K Bθ , the total energy E = ρ

(
v2

2
+ e

)

,

the pressure function p = 2

3
ρe, the electric field E ∈ R

3, and the magnetic field

B ∈ R
3. The constants λ > 0, K B > 0,

1

γ
= c = (ε0μ0)

− 1
2 , ε0 and μ0 are the

scaled Debye length, Boltzmann constant, speed of light, vacuum permittivity and
permeability, respectively. Moreover, τ ∈ (0, 1) and b = b(x) > 0 stand for the
relaxation time and positively charged background ions, respectively. Throughout this
paper, we set λ = K B = γ = 1 for simplicity, because these parameters are not
essential for the zero-relaxation limits. Thus, ρ > 0 and θ > 0, system (1.1) is
reduced to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ + div(ρv) = 0,
∂tv + (v · ∇) v + 1

ρ
∇(ρθ) = −(E + v × B) − v

τ
,

∂tθ + v · ∇θ + 2
3θdivv = − τ

3 |v|2 − τθ,

∂t E − ∇ × B = ρv, divE = b − ρ,

∂t B + ∇ × E = 0, divB = 0, (t, x) ∈ [0,+∞) × T
3,

(1.2)

123



Journal of Nonlinear Science (2023) 33 :71 Page 3 of 28 71

subject to the initial condition

(ρ, v, θ, E, B) | t=0 = (
ρτ
0 , vτ

0 , θτ
0 , Eτ

0 , Bτ
0

)
, x ∈ T

3, (1.3)

satisfying the compatibility condition

divEτ
0 = b − ρτ

0 , divBτ
0 = 0, x ∈ T

3. (1.4)

Euler–Maxwell equations have been one of important typical systems in fluid
dynamics, and also extensively studied. In 2000, by using the fractional Godunov
scheme as well as the compensated compactness argument, Chen et al. (2000) proved
global existence of weak solutions to the initial-boundary value problem in one space
dimension for arbitrarily large initial data in L1. Then, Jerome (2003) provided a local
smooth solution theory for the Cauchy problem over R3 by adapting the classical
semigroup-resolvent approach of Kato (1975), and Peng andWang (2008) established
convergence of the compressible Euler–Maxwell system to the incompressible Euler
system for well-prepared smooth initial data. Late then, Wu (2016) investigated the
initial layer and relaxation limit of non-isentropic compressible Euler equations. See
also the other significant contributions in different cases, for example, the asymptotic
limits on small physical parameters (Li et al. 2021; Wasiolek 2016; Yang and Wang
2011; Yang and Hu 2019), the existence of global smooth irrotational flow (Germain
and Masmoudi 2014; Deng et al. 2017; Guo et al. 2016), the asymptotic behavior of
global solutions near a constant equilibrium state (Peng et al. 2011; Duan 2011; Ueda
et al. 2012; Xu 2011; Feng et al. 2021, 2014), the large time-decay rates of small non-
constant steady-state solutions (Liu and Zhu 2013; Wang and Xu 2016), the stability
of large non-constant equilibrium solutions (Peng 2015) and the instability of WKB
solution (Dumas et al. 2001).

The zero-relaxation limits for the Euler–Poisson system have been extensively
studied recently (Alì and Jüngel 2003; Jüngel and Peng 1999; Junca and Rascle 2000;
Lattanzio 2000; Li et al. 2021; Luo et al. 2019; Marcati and Natalini 1995; Yong
2004). In this paper, inspired by Hajjej and Peng (2012) for the initial layer problem
to the isentropic Euler–Maxwell system, we consider the zero-relaxation limit of the
non-isentropic Euler–Maxwell system (1.1). The usual time scaling for studying the
limit τ → 0 is t∗ = τ t . Since t = 0 is equivalent to t∗ = 0, this change of scaling
does not affect the initial condition (1.3). Rewriting still t∗ by t , system (1.2) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ + 1
τ
div(ρv) = 0,

∂tv + 1
τ

(v · ∇) v + 1
τ

∇(ρθ)
ρ

= − 1
τ
(E + v × B) − v

τ 2
,

∂tθ + 1
τ
v · ∇θ + 2

3τ θdivv = − 1
3 |v|2 − θ,

∂t E − 1
τ
∇ × B = 1

τ
ρv, divE = b − ρ,

∂t B + 1
τ
∇ × E = 0, divB = 0, (t, x) ∈ [0,+∞) × T

3.

(1.5)

The local existence of (1.5) is shown in Kato (1975), Majda (1984).

Proposition 1.1 (Local existence Kato 1975; Majda 1984) Let s ≥ 3 be an integer.
Suppose (ρτ

0 , vτ
0 , θτ

0 , Eτ
0 , Bτ

0 ) ∈ Hs(T3) with ρτ
0 , θτ

0 ≥ 2κ for some given constant
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κ > 0, independent of τ . Then, there exists T τ
1 > 0 such that problem (1.3)–(1.5) has

a unique smooth local solution which satisfies ρτ , θτ ≥ κ in [0, T τ
1 ] × T

3 and

(ρτ , vτ , θτ , Eτ , Bτ ) ∈ C1(
[
0, T τ

1

] ; Hs−1(T3)) ∩ C(
[
0, T τ

1

] ; Hs(T3)).

Remark 1.1 Note that the time scaling t∗ = τ t can reveal the large time behavior of
solutions. Obviously, t = t∗τ−1 = O(τ−1) for fixed t∗ > 0. Then for a fixed time
T∗ > 0, a local-in-time convergence for system (1.5) on the interval [0, T∗] means
the convergence for system (1.2) on a larger interval [0, T∗τ−1]. On the other hand,
as τ → 0, a convergence errorO(τm) with m > 0 implies a rateO(τ−m) of the large
time behaviors.

Notations For two quantities a and b, a ∼ b means ca ≤ b ≤ 1

c
a for a generic

constant 0 < c ≤ 1. For an integer s > 0, we denote by Hs , L2 and L∞ the usual
Sobolev spaces Hs(T3), L2(T3)) and L∞(T3)), and by ‖ · ‖s , ‖ · ‖ and ‖ · ‖L∞ the
corresponding norms, respectively. We use 〈·, ·〉 to denote the inner product over the
Hilbert space L2, i.e.,

〈 f , g〉 =
∫

T3
f (x)g(x)dx, ∀ f = f (x), g = g(x) ∈ L2.

In addition, for a multi-index, α = (α1, α2, α3) ∈ N
3, we denote

∂α = ∂
α1
1 ∂

α2
2 ∂

α3
3 = ∂α1

x1 ∂α2
x2 ∂α3

x3 , with |α| = α1 + α2 + α3.

For α = (α1, α2, α3) and β = (β1, β2, β3) ∈ N
3, β ≤ α stands for β j ≤ α j for

j = 1, 2, 3, and β < α stands for β ≤ α and β �= α.

Lemma 1.1 (Moser-type calculus inequalities Klainerman and Majda 1981; Majda
1984) Let s ≥ 3 be an integer. Suppose u ∈ Hs, ∇u ∈ L∞, v ∈ Hs−1 ∩ L∞
and f is a smooth function. Then for all multi-index α with 1 ≤ |α| ≤ s, one has
∂α(uv) − u∂αv ∈ L2 and

‖∂α(uv) − u∂αv‖ ≤ C
(‖∇u‖L∞‖D|α|−1v‖ + ‖D|α|u‖‖v‖L∞

)
,

∥
∥∂α f (u)

∥
∥ ≤ C(1 + ‖u‖Hs )s−1‖u‖Hs ,

where the constant C may depend on ‖u‖L∞ and s, and

‖Ds′
u‖ =

∑

|α|=s′
‖∂αu‖.

Lemma 1.2 (Peng and Wang 2007) Let s ≥ 0 be an integer. Suppose f ∈ Hs and
g ∈ Hs. Then, problem,

∇ × B = f , divB = g, div f = 0, M(g) = 0, (1.6)
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has a unique solution B ∈ Hs+1 in the class M(B) = 0, where

M(B) =
∫

T3
Bdx .

1.2 Main Results

In the following, we state the main results of this paper.

Theorem 1.1 (For well-prepared initial data) Let s ≥ 3 be an integer and (1.4) holds.
Assume (ρ j , v j , θ j , E j , B j ) ∈ Hs+1 for j ≥ 0 in the sense of

(ρτ , vτ , θτ , Eτ , Bτ )(0, x) =
∑

j≥0

τ 2 j (ρ j , τv j , τ
2θ j , E j , τ B j )(x),

x ∈ T
3, (1.7)

with ρ0, θ0 ≥ const . > 0 in T
3, and satisfy the compatibility conditions (2.11)–(2.12)

and (2.19)–(2.22) for j ≥ 1. Suppose m ≥ 0 to be any fixed integers and

∥
∥
∥
∥
∥
∥

(
ρτ
0 , vτ

0 , θτ
0 , Eτ

0 , Bτ
0

) −
m∑

j=0

τ 2 j (ρ j , τv j , τ
2θ j , E j , τ B j )

∥
∥
∥
∥
∥
∥

s

≤ C1τ
2(m+1), (1.8)

where C1 > 0 is a constant independent of τ . Then, there exist T1 > 0 and a constant
C2 > 0, independent of τ , such that as τ → 0, we have T τ

1 ≥ T1 and the solution
(ρτ , vτ , θτ , Eτ , Bτ ) to the periodic problem (1.3)–(1.5) satisfies

∥
∥
(
ρτ , vτ , θτ , Eτ , Bτ

)
(t) − (

ρm
τ , vm

τ , θm
τ , Em

τ , Bm
τ

)
(t)

∥
∥

s ≤ C2τ
2(m+1), ∀t ∈ [0, T1] .

Moreover,

∥
∥vτ − vm

τ

∥
∥

L2(0,T1;Hs (T3))
≤ C2τ

2m+3,
∥
∥θτ − θm

τ

∥
∥

L2(0,T1;Hs )
≤ C2τ

2(m+1).

Theorem 1.2 (For ill-prepared initial data) Suppose s ≥ 3 to be a fixed integer and
(ρ0, v0, θ0, E0, B0) ∈ Hs+1 with ρ0, θ0 ≥ const . > 0 in T

3. Assume that

∥
∥
∥
(
ρτ
0 , vτ

0 , θτ
0 , Eτ

0 , Bτ
0

) − (ρ0, τv0, τ
2θ0, E0, τ B0)

∥
∥
∥

s
≤ C1τ

2, (1.9)

where C1 > 0 is a constant independent of τ . Then there exists a constant C2 > 0,
independent of τ , such that as τ → 0, we have T τ

1 ≥ T1, and the solution
(ρτ , vτ , θτ , Eτ , Bτ ) to the periodic problem (1.3)–(1.5) satisfies

∥
∥
∥
(
ρτ , vτ , θτ , Eτ , Bτ

)
(t) − (ρ0, vτ,I , θτ,I , E0, τ B0)

∥
∥
∥

s
≤ C2τ

2, ∀t ∈ [0, T1] .
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Furthermore,

∥
∥vτ − vτ,I

∥
∥

L2(0,T1;Hs (T3))
≤ C2τ

3,
∥
∥θτ − θτ,I

∥
∥

L2(0,T1;Hs (T3))
≤ C2τ

2,

where vτ,I and θτ,I are defined by (3.18).

1.3 Features and Difficulties

As we see later, the proof of Theorems 1.1 and 1.2 for the non-isentropic Euler–
Maxwell system contains all the difficulties appeared in the isentropic Euler–Maxwell
system. Besides, it also includes the other troubles caused by the absolute temperature
θ . For the well-prepared initial data, we improve Hajjej-Peng’s asymptotic expansion
in Hajjej and Peng (2012) by adding the temperature expansion of the following form:

(ρm
τ , vm

τ , θm
τ , Em

τ , Bm
τ ) =

m∑

j=0

τ 2 j (ρ j , τv j , τ 2θ j , E j , τ B j ), m ≥ 0. (1.10)

With the help of this expansion, we overcome the difficulty generated from the energy
equationwhich contains the absolute temperature variable θ and prove the convergence
of the solution (ρτ , vτ , θτ , Eτ , Bτ ) of the non-isentropic Euler–Maxwell system (1.5)
to (ρm

τ , vm
τ , θm

τ , Em
τ , Bm

τ ) with the order O(τ 2(m+1)) when the initial data are well-
prepared, and the initial error has the same order. In order to prove it, we have to
treat the order of the remainder for B. Indeed, there is a loss of one order for Rτ,m

B in
comparison with those for variables ρ, v, θ and E . This can be overcome by introduc-
ing a correction term into Em

τ so that the new remainder Rτ,m
B = 0 without changing

the order of the other remainders (see Sect. 2 for details). On the other hand, for the
ill-prepared initial data, the results in Theorem 1.1 are not valid because the approxi-
mate solution does not satisfy the initial conditions (2.11)–(2.12) and (2.19)–(2.22). In
Sect. 3, we construct initial layer corrections with exponential decay to zero and prove
the convergence of the first order asymptotic expansion. The analysis shows that there
are no first-order initial layers on unknowns ρ, θ, E and B. Then, we have to consider
the second-order initial layer corrections to obtain the desired order of remainders.

Now, let us discuss the vital difference between the isentropic and the non-isentropic
Euler–Maxwell system. Firstly, the structure of the non-isentropic Euler–Maxwell
system is much more complex than that of the isentropic Euler–Maxwell system.
During the process of asymptotic expansion, in order to decouple the non-isentropic

system (1.5), we find the term
1

ρ
∇ (ρθ) has a special structure which can be expanded

as follows:

∑

j≥1

τ 2( j+1)

(
θ0

ρ0∇ρ j +
(

θ j

ρ0 − θ0ρ j

∣
∣ρ0

∣
∣2

)

∇ρ0 + ∇θ j + f j−1
((

ρk, θk
)

0≤k≤ j−1

))

+ τ 2
(

θ0

ρ0∇ρ0 + ∇θ0
)

.

123
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Then, by using this expansion, we can overcome the difficulties caused by the complex
structure of the non-isentropic Euler–Maxwell system. Secondly, the matrix form of
the non-isentropic Euler–Maxwell system (see (4.9)) for V τ

I is very different from that
of the isentropic Euler–Maxwell system. During the estimates for V τ

I , we choose a
new symmetrizer

AI
0

(
ρτ , θτ

) = Diag

(
θτ

ρτ
, 1, 1, 1,

3ρτ

2θτ

)

,

which implies that

AI
0

(
ρτ , θτ

)AI
i

(
ρτ , vτ , θτ

) = vτ
i AI

0

(
ρτ , θτ

) + QI
i

(
ρτ , θτ

)
, i = 1, 2, 3

is symmetric, where

QI
i

(
ρτ , θτ

) =
⎛

⎝
0 θτ et

i 0
θτ ei 0 ρτ ei

0 ρτ et
i 0

⎞

⎠ , i = 1, 2, 3.

Here,QI
i (ρτ , θτ ) is not yet a constant matrix (which is a constant matrix for the isen-

tropic Euler–Maxwell system). Therefore, we have to dealwith the difficulty caused by
this property (see details in Sect. 4). The limit equations of the non-isentropic Euler–
Maxwell system are the transport equation coupledwith the drift–diffusion system (see
Proposition 2.1). However, the limit system of the isentropic Euler–Maxwell system
is the classical drift–diffusion system (see Hajjej and Peng (2012)).

The paper is organized as follows. In Sect. 2, we derive asymptotic expansions
of solutions and state the convergence result to problem (1.3)–(1.5) for the well-
prepared initial data. In Sect. 3, we study the asymptotic expansions in the case of
ill-prepared initial data by constructing initial layer corrections which exponentially
decay to zero. In the last section, we give the rigorous justification of the both two
asymptotic expansions and prove Theorems 1.1 and 1.2.

2 Problem (1.3)–(1.5) withWell-Prepared Initial Data

2.1 Asymptotic Expansions

In the following, for well-prepared initial data, we investigate the zero-relaxation limit
τ → 0 of problem (1.3)–(1.5). Based on the discussion on the asymptotic expansion,
we make the ansatz (1.7) for initial data and the following ansatz for the approximate
solution

(ρτ , vτ , θτ , Eτ , Bτ )(t, x) =
∑

j≥0

τ 2 j (ρ j , τv j , τ 2θ j , E j , τ B j )(t, x),

(t, x) ∈ [0,+∞) × T
3, (2.1)

123
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where (ρ j , v j , θ j , E j , B j ) j≥0 are given smooth data with ρ0, θ0 ≥ const . > 0 in T3.
The motivation of this expansion is the following consideration. If we replace v by
τv, θ by τ 2θ and B by τ B, then system (1.5) becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ + div(ρv) = 0,

τ 2
(
∂tv + (v · ∇) v + ∇(ρθ)

ρ

)
= −E − τ 2v × B − v,

∂tθ + v · ∇θ + 2
3θdivv = − 1

3 |v|2 − θ,

∂t E − ∇ × B = ρv, divE = b − ρ,

τ 2∂t B + ∇ × E = 0, divB = 0, (t, x) ∈ [0,+∞) × T
3,

in which the only small parameter is τ 2.

For the term
1

ρ
∇(ρθ) in the second equation of system (1.5), we introduce a new

expansion

1

ρ
∇ (ρθ) =

∑

j≥1

τ 2( j+1)

(
θ0

ρ0 ∇ρ j +
(

θ j

ρ0 − θ0ρ j−1

∣
∣ρ0

∣
∣2

)

∇ρ0 + ∇θ j + f j−1
((

ρk , θk
)

0≤k≤ j−1

))

+ τ 2
(

θ0

ρ0 ∇ρ0 + ∇θ0
)

, (t, x) ∈ [0,+∞) × T
3, (2.2)

where f j−1 for j ≥ 1 is a function depending only on (ρk, uk)0≤k≤ j−1.
Next, we determine the profiles (ρ j , v j , θ j , E j , B j ) for all j ≥ 0. Plugging expres-

sions (2.1) and (2.2) into system (1.5) and identifying the coefficients in powers of τ ,
we find that (ρ j , v j , θ j , E j , B j ) j≥0 satisfies

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ
0 + div(ρ0v0) = 0,

E0 + v0 = 0,

∂tθ
0 + v0 · ∇θ0 + 2

3θ
0divv0 = − 1

3

∣
∣v0

∣
∣2 − θ0,

∇ × E0 = 0, divE0 = b − ρ0,

∇ × B0 = ∂t E0 − ρ0v0, divB0 = 0, (t, x) ∈ [0,+∞) × T
3,

(2.3)

and for j ≥ 1,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ
j +

j∑

k=0
div(ρkv j−k) = 0,

∂tv
j−1 +

j−1∑

k=0
(vk · ∇)v j−1−k +

(
θ0

ρ0 ∇ρ j−1 +
(

θ j−1

ρ0 − θ0ρ j−1

|ρ0|2
)

∇ρ0 + ∇θ j−1
)

= − f j−2
((

ρk, θk
)

0≤k≤ j−2

)
− E j −

j−1∑

k=0
vk × B j−1−k − v j ,

∂tθ
j +

j∑

k=0
vk · ∇θ j−k + 2

3

j∑

k=0
θkdivv j−k = − 1

3

j∑

k=0
vkv j−k − θ j ,

(2.4)

123
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⎧
⎨

⎩

∇ × E j = −∂t B j−1, divE j = −ρ j ,

∇ × B j = ∂t E j −
j∑

k=0
ρkv j−k, divB j = 0, (t, x) ∈ [0,+∞) × T

3.
(2.5)

In (2.3), equation ∇ × E0 = 0 implies the existence of a potential χ0 such that
E0 = −∇χ0. Then, (v0, χ0) satisfies a drift–diffusion system

{
∂tρ

0 + div(ρ0∇χ0) = 0,
−�χ0 = b − ρ0, (t, x) ∈ [0,+∞) × T

3,
(2.6)

with the initial condition
ρ0 (0, x) = ρ0, x ∈ T

3. (2.7)

By the similar procedure in Hajjej and Peng (2012), Markowich et al. (1990), we
obtain the existence of smooth solutions to problem (2.6)–(2.7), at least locally in
time. The solution χ0 is unique in the classM(χ0) = 0. Then, (v0, E0) are given by

v0 = ∇χ0, E0 = −∇χ0. (2.8)

Moreover, (2.8) together with the third equation of (2.3) imply that θ0 solves a
linear transport equation

∂tθ
0+∇χ0·∇θ0+

(
2�χ0

3
+ 1

)

θ0+1

3

∣
∣
∣∇χ0

∣
∣
∣
2 = 0, (t, x) ∈ [0,+∞)×T

3, (2.9)

with the initial condition
θ0 (0, x) = θ0, x ∈ T

3. (2.10)

It admits a unique global smooth solution (see Jüngel (2009)).
Due to the fact that (ρ0, v0, θ0, E0) is achieved, B0 solves the linear system of

curl-div equations of type (1.6) in the class M(B0) = 0.
It follows from the last equation in (2.3) and (2.8)–(2.9) that the first-order com-

patibility conditions are

v0 = −E0 = ∇χ0, ∂tθ
0 (0, x) + v0 · ∇θ0 +

(
2

3
divv0 + 1

)

θ0 + 1

3
|v0|2 = 0,

B0 = B0(0, x), (2.11)

where χ0 satisfies

− �χ0 = b − ρ0, x ∈ T
3, and M (χ0) = 0. (2.12)

For j ≥ 1, we can get the profiles (ρ j , v j , θ j , E j , B j ) by induction in j . Suppose
that (ρ j , v j , θ j , E j , B j )0≤k≤ j−1 have alreadybeenobtained in steps above.Equations
for B j are of curl-div type (1.6) and admit a unique smooth solution B j in the class
M(B j ) = 0. In addition, it follows from divB j = 0 that there exists a vector ω j
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such that B j = −∇ × ω j . Hence, equation ∇ × E j = −∂t B j−1 in (2.5) turns into
∇ × (E j − ∂tω

j−1) = 0, which implies that there exists a potential function χ j such
that

E j = ∂tω
j−1 − ∇χ j , (t, x) ∈ [0,+∞) × T

3. (2.13)

In view of (2.4), we have

v j = ∇χ j −
(

θ0

ρ0 ∇ρ j−1 +
(

θ j−1

ρ0 − θ0ρ j−1

∣
∣n0

∣
∣2

)

∇ρ0 + ∇θ j−1

)

− f j−2
((

ρk , θk
)

0≤k≤ j−2

)

−
⎛

⎝∂tv
j−1 + ∂tω

j−1 +
j−1∑

k=0

(vk · ∇)v j−1−k +
j−1∑

k=0

vk × B j−1−k

⎞

⎠ . (2.14)

Then, in the class, M(χ j ) = 0, (ρ j , χ j ) satisfies the following linearized system:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tρ
j − div

(
θ0∇ρ j−1 +

(
θ j−1 − θ0ρ j−1

ρ0

)
∇ρ0 + ρ0∇θ j−1 − ρ0∇χ j

)
+ div

(
ρ j v0

)

= h j
((

W k , ∂t W k , ∂x W k , ∂t∂x W k , ∂2x W k
)

0≤k≤ j−1

)

+ div
(
ρ0∂tω

j−1
)

,

�χ j = ρ j + ∂t

(
divω j−1

)
, (t, x) ∈ [0, +∞) × T

3,

(2.15)
with the initial condition

ρ j (0, x) = ρ j (x), x ∈ T
3, (2.16)

where h j is a given smooth function and W k = (ρk, vk, θk, ωk). Linear problem
(2.15)–(2.16) admits a unique global smooth solution (ρ j , χ j ). Then, (v j , E j ) follows
by (2.13)–(2.14). On the other hand, the existence of v j togetherwith the third equation
of (2.3) indicates that θ j solves the following linear transport equation:

∂tθ
j +

j∑

k=0

vk · ∇θ j−k + 2

3

j∑

k=0

divv j−kθk = −1

3

j∑

k=0

vkv j−k − θ j , (2.17)

with the initial condition

θ j (0, x) = θ j (x), x ∈ T
3. (2.18)

It admits a unique global smooth solution θ j .
Therefore, for j ≥ 1, we obtain the high-order compatibility conditions

v j = ∇χ j −
(

θ0

ρ0
∇ρ j−1 +

(
θ j−1

ρ0 − θ0ρ j−1

|ρ0|2
)

∇ρ0 + ∇θ j−1

)

− f j−2 ((ρk , θk)0≤k≤ j−2
)

−
⎛

⎝∂tv
j−1 (0, x) + ∂tω

j−1 (0, x) +
j−1∑

k=0

(vk · ∇)v j−1−k +
j−1∑

k=0

vk × B j−1−k

⎞

⎠ , x ∈ T
3,

(2.19)
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∂tθ
j (0, x) +

j∑

k=0

vk · ∇θ j−k + 2

3

j∑

k=0

divv j−kθk = −1

3

j∑

k=0

vkv j−k − θ j , x ∈ T
3. (2.20)

E j = ∂tω
j−1 (0, x) − ∇χ j , B j = B j (0, x) , x ∈ T

3, (2.21)

where χ j satisfies

�χ j = ρ j + ∂t

(
divω j−1

)
(0, x) , x ∈ T

3, and M
(
χ j

) = 0. (2.22)

Summarizing what mentioned in the above, we get the existence of an approximate
solution as follows.

Proposition 2.1 Let integer s ≥ 3. Suppose (ρ j , v j , θ j , E j , B j ) ∈ Hs+1 for j ≥ 0,
with ρ0, θ0 ≥ const . > 0 in T

3, and satisfy the compatibility conditions (2.11)–
(2.12) and (2.19)–(2.22) for j ≥ 1. Then, there is a unique asymptotic expansion up
to any order of the form (2.1), i.e., there are T1 > 0 and a unique smooth solution
(ρ j , v j , θ j , E j , B j ) j≥0 in the time interval [0, T1] for problems (2.6)–(2.10) and
(2.13)–(2.18) for j ≥ 1. Furthermore, it holds ρ0, θ0 ≥ const . > 0 in [0, T1] × T

3

and

(ρ j , v j , θ j , E j , B j ) ∈ C1([0, T1] ; Hs) ∩ C([0, T1] ; Hs+1), ∀ j ≥ 0.

In particular, the formal zero-relaxation limit τ → 0 of the non-isentropic Euler–
Maxwell system (1.5) is the transport equation (2.9) coupled with the drift–diffusion
system (2.6) and (2.8).

2.2 Convergence

Let m ≥ 0 be an integer and denote

(ρm
τ , vm

τ , θm
τ , Ẽm

τ , Bm
τ ) =

m∑

j=0

τ 2 j (ρ j , τv j , τ 2θ j , E j , τ B j ), (t, x) ∈ [0,+∞)×T
3,

(2.23)
as an approximate solution of order m, where (ρ j , v j , θ j , E j , B j )0≤ j≤m are con-
structed in the section above. It follows from the construction of the approximate
solution that

divẼm
τ = b − ρm

τ , divBm
τ = 0, (t, x) ∈ [0,+∞) × T

3. (2.24)
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Let us define the remainders Rτ,m
ρ , Rτ,m

v , Rτ,m
θ , Rτ,m

E and R̃τ,m
B by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ
m
τ + 1

τ
div(ρm

τ vm
τ ) = Rτ,m

ρ ,

∂tv
m
τ + 1

τ

(
vm
τ · ∇)

vm
τ + 1

τ

∇(ρm
τ θm

τ )

ρm
τ

= − 1
τ
(Em

τ + vm
τ × Bm

τ ) − vm
τ

τ 2
+ Rτ,m

v ,

∂tθ
m
τ + 1

τ
vm
τ · ∇θm

τ + 2
3τ θm

τ divvm
τ = − 1

3

∣
∣vm

τ

∣
∣2 − θm

τ + Rτ,m
θ ,

∂t Ẽm
τ − 1

τ
∇ × Bm

τ = 1
τ
ρm

τ vm
τ + Rτ,m

E ,

∂t Bm
τ + 1

τ
∇ × Ẽm

τ = R̃τ,m
B , (t, x) ∈ [0,+∞) × T

3.

(2.25)
Obviously, the convergence rate depends on the order of the remainders with respect to
τ . Due to the fact that the last equation in the non-isentropic Euler–Maxwell equations
is the same as that in the isentropic Euler–Maxwell equations (see Hajjej and Peng
(2012)), for sufficiently smooth profiles (ρ j , v j , θ j , E j , B j ) j≥0, it follows from (1.5),
(2.1), (2.5) and (2.23) that

R̃τ,m
B = −τ 2m+1∇ × Em+1 −

∑

j≥m+2

τ 2 j−1∇ × E j −
∑

j≥m+1

τ 2 j+1∂t B j

= τ 2m+1∂t Bm −
∑

j≥m+1

τ 2 j+1(∂t B j + ∇ × E j+1)

= τ 2m+1∂t Bm . (2.26)

Similarly, we also get

Rτ,m
ρ = O

(
τ 2(m+1)

)
, Rτ,m

θ = O
(
τ 2(m+1)

)
, Rτ,m

E = O
(
τ 2(m+1)

)
,

Rτ,m
v = O

(
τ 2m+1

)
. (2.27)

In (2.26)–(2.27), there is a loss of one order for the remainders Rτ,m
v and R̃τ,m

B .
For Rτ,m

v , this loss will be recovered in the error estimate of convergence due to the
dissipation term for v. However, the situation is different for R̃τ,m

B since the equation for
B is not dissipative. Inspired byHajjej and Peng (2012), we remedy this by introducing
a correction term into Ẽm

τ so that

Em
τ = Ẽm

τ + τ 2(m+1)Em+1
c =

m∑

j=0

τ 2 j E j + τ 2(m+1)Em+1
c , (2.28)

where Em+1
c is defined by

∇ × Em+1
c = −∂t Bm, divEm+1

c = 0, M
(

Em+1
c

)
= 0. (2.29)

Then, we obtain that the new remainder Rτ,m
B of B satisfies

Rτ,m
B

�= ∂t Bm
τ + 1

τ
∇ × Em

τ = 0, (2.30)
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and we also get
divEm

τ = b − ρm
τ , divBm

τ = 0. (2.31)

The orders of the remainders Rτ,m
ρ , Rτ,m

v , Rτ,m
θ and Rτ,m

E are not changed due to the

fact that the correction term is of orderO (
τ 2(m+1)

)
. Furthermore, the correction term

does not affect assumption (1.8).We conclude the above discussion with the following
result.

Proposition 2.2 Let the assumptions of Proposition 2.1 hold. For all integers m ≥ 0
and s ≥ 3, the remainders Rτ,m

ρ , Rτ,m
v , Rτ,m

θ ,Rτ,m
E and Rτ,m

B satisfy (2.30) and

sup
0≤t≤T1

∥
∥
(
Rτ,m

ρ , Rτ,m
θ , Rτ,m

E

)
(t, ·)∥∥ ≤ Cmτ 2(m+1), sup

0≤t≤T1

∥
∥Rτ,m

v (t, ·)∥∥ ≤ Cmτ 2m+1,

(2.32)
where Cm > 0 is a constant independent of τ .

3 Problem (1.3)–(1.5) with Ill-Prepared Initial Data

In this section, we study the asymptotic expansions in the case of ill-prepared initial
data by constructing initial layer corrections which exponentially decay to zero.

3.1 Initial Layer

In Theorem 1.1, we introduce compatibility conditions on the initial data, namely the
initial profiles (v j , θ j , E j , B j )(0, ·) are determined through the resolution of the prob-
lems (2.3)–(2.5) for (ρ j , v j , θ j , E j , B j ). Therefore,we cannot show (vτ

0 , θτ
0 , Eτ

0 , Bτ
0 )

explicitly. The phenomenon of initial layers must appear as long as these conditions
are not satisfied. In the following, we investigate problem (1.3)–(1.5) with ill-prepared
initial data. Similarly as that for the isentropic Euler–Maxwell equations considered in
Hajjej and Peng (2012), we also look for the simplest possible form of an asymptotic
expansion with initial layer corrections such that its remainders are at least of order
O(τ ) for variable u.

Assume that the initial data of an approximate solution (ρτ , vτ , θτ , Eτ , Bτ ) has an
asymptotic expansion of the form

(ρτ , vτ , θτ , Eτ , Bτ ) |t=0 =
(
ρ0, τv0, τ

2θ0, E0, τ B0

)
+ O

(
τ 2

)
, (3.1)

where the given function (ρ0, v0, θ0, E0, B0) is smooth. Regarding the expansion for
the well-prepared initial data, we give an asymptotic expansion including initial layer
corrections as

(ρτ , vτ , θτ , Eτ , Bτ ) (t, x)

=
(
ρ0, τv0, τ 2θ0, E0 + τ 2E1

c , τ B0
)

(t, x) +
(
ρ0

I , τv0I , τ
2θ0I , E0

I , τ B0
I

)
(z, x)

+ τ 2
(
ρ1

I , τv1I , τ
2θ1I , E1

I , τ B1
I

)
(z, x) + O

(
τ 2

)
, (3.2)
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where z = t

τ 2
∈ R, and E1

c is the correction term defined by (2.29) with m = 0.

Remark 3.1 It should be pointed out that the expansion (3.2) is enough to give the
remainders at least of order O(τ ) for variable u, which is the case of well-prepared
initial data for m = 0.

It is easy to see that (ρ0, v0, θ0, E0, B0) always satisfies system (2.3). The rest is
to determine the initial layer profiles (ρ0

I , v
0
I , θ

0
I , E0

I , B0
I ) and (ρ1

I , v
1
I , θ

1
I , E1

I , B1
I ).

Plugging (3.2) into system (1.5) and using (2.3), we have

∂zρ
0
I = 0, ∂zθ

0
I = 0, ∂z E0

I = 0, ∂z B0
I + ∇ × E0

I = 0, (3.3)

and
∂zv

0
I + v0I = 0. (3.4)

It follows from (3.3) that there are no first-order initial layers for variables ρ, θ, E
and B. Therefore, up to a constant for variable B, we may take

ρ0(0, x) = ρ0(x), θ0(0, x) = θ0(x), E0(0, x) = E0(x), B0(0, x) = B0(x).

(3.5)
Furthermore, by (3.1) and (3.2), we obtain

v0I (0, x) = v0(x) − v0(0, x), (3.6)

where v0(0, x) is given by (2.11)–(2.12). And then, by (3.4), we get

v0I (z, x) = v0I (0, x)e−z =
(
v0(x) − v0(0, x)

)
e−z . (3.7)

In a similar way, we find that the second-order initial layer functions satisfy

v1I = 0, θ1I = 0, (3.8)

∂zρ
1
I (z, x) + div

(
ρ0(0, x)v0I (z, x)

)
= 0, (3.9)

∂z E1
I (z, x) = ρ0(0, x)v0I (z, x), (3.10)

and
∂z B1

I (z, x) + ∇ × E1
I (z, x) = 0. (3.11)

Suppose (ρ1, E1, B1) to be smooth functions such that

E1(x) = −ρ0(0, x)
(
v0(x) − v0(0, x)

)
, (3.12)

and
ρ1 = divE1, divB1 = 0. (3.13)
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We also set

(
ρ1

I , E1
I , B1

I

)
(0, x) = (ρ1, E1, B1) (x).

Then together with (3.7) and (3.9)–(3.12), we easily obtain

ρ1
I (z, x) = ρ1(x) − div

(
ρ0(0, x)

(
v0(x) − v0(0, x)

)) (
1 − e−z) , (3.14)

E1
I (z, x) = −ρ0(0, x)

(
v0(x) − v0(0, x)

)
e−z (3.15)

and

B1
I (z, x) = B1(x) + ∇ ×

(
ρ0(0, x)

(
v0(x) − v0(0, x)

)) (
1 − e−z) . (3.16)

Finally, it follows from (3.13) that

0 = divE1
I + ρ1

I , divB1
I = 0. (3.17)

Therefore, the initial layer functions (ρ0
I , v

0
I , θ

0
I , E0

I , B0
I ) and (ρ1

I , v
1
I , θ

1
I , E1

I , B1
I ) are

constructed by (3.3), (3.7)–(3.8) and (3.14)–(3.16). These functions are bounded with
respect to z.

3.2 Convergence

In view of the previous asymptotic expansions, we introduce

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρτ,I (t, x) = ρ0(t, x) + τ 2ρ1
I (t/τ

2, x),

vτ,I (t, x) = τ
(
v0(t, x) + v0I (t/τ

2, x)
)
,

θτ,I (t, x) = τ 2θ0(t, x),

Eτ,I (t, x) = E0(t, x) + τ 2
(
E1

c (t, x) + E1
I (t/τ

2, x)
)
,

Bτ,I (t, x) = τ
(
B0(t, x) + τ 2B1

I (t/τ
2, x)

)
.

(3.18)

It follows that

(ρτ,I , vτ,I , θτ,I , Eτ,I , Bτ,I )(0, x)

= (ρ0, τv0, τ
2θ0, E0, τ B0) + τ 2(ρ1, 0, 0, E1 + E1

c (0, x), τ B1). (3.19)

On the other hand, by (2.3), (2.31) and (3.17), we obtain

divEτ,I = b − ρτ,I , divBτ,I = 0. (3.20)
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The remainders Rτ,I
ρ , Rτ,I

v , Rτ,I
θ , Rτ,I

E and Rτ,I
B are defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρτ,I + 1
τ
div(ρτ,I vτ,I ) = Rτ,I

ρ ,

∂tvτ,I + 1
τ

(
vτ,I · ∇)

vτ,I + 1
τ

∇(ρτ,I θτ,I )

ρτ,I
= − 1

τ
(Eτ,I + vτ,I × Bτ,I ) − vτ,I

τ 2
+ Rτ,I

v ,

∂tθτ,I + 1
τ
vτ,I · ∇θτ,I + 2

3τ θτ,Idivvτ,I = − 1
3

∣
∣vτ,I

∣
∣2 − θτ,I + Rτ,I

θ ,

∂t Eτ,I − 1
τ
∇ × Bτ,I = 1

τ
ρτ,I vτ,I + Rτ,I

E ,

∂t Bτ,I + 1
τ
∇ × Eτ,I = Rτ,I

B .

(3.21)
With the help of (2.3), (2.29), (3.3)–(3.4) and (3.8)–(3.11), we get

Rτ,I
ρ = div

((
ρ0(t, x) − ρ0(0, x)

)
v0I (z, x)

)
+ τ 2div

(
ρ1

I (v
0 + v0I )

)

= τ 2zdiv
(
∂tρ

0(λ, x)v0I (z, x)
)

+ τ 2div
(
ρ1

I (v
0 + v0I )

)

= −τ 2ze−zdiv
(
div

(
ρ0v0

)
(λ, x)

(
v0 − v0(0, x)

))
+ τ 2div

(
ρ1

I (v
0 + v0I )

)

= O
(
τ 2

)
,

where λ ∈ [0, t] ⊂ [0, T1], and we have also used the fact that the function z �→ ze−z

is bounded for z ≥ 0. And similarly, we have

Rτ,I
v = 1

τ

(
∂zv

0
I + v0I

)
+

(
v0I · ∇

) (
τ(v0 + v0I )

)
+v0 · ∇

(
τv0I

)
+τ E1

I + τ3v0I × B1
I

+ v0I ×
(
τ B0 + τ3B1

I

)
+ 1

τ

⎛

⎝
∇

((
ρ0 + τ2ρ1I

)
τ2θ0

)

ρ0 + τ2ρ1I

−
∇

(
ρ0τ2θ0

)

ρ0

⎞

⎠

= O (τ ) ,

Rτ,I
θ = τ2v0I · ∇θ0 + 2

3
τ2θ0divv0 + 1

3
τ2

(∣
∣
∣v

0
I

∣
∣
∣
2 + 2v0v0I

)

= O
(
τ2

)
,

Rτ,I
E =

(
ρ0(t, x) − ρ0(0, x)

)
v0I (z, x) + τ2

(
ρ1I (v0 + v0I ) + ∂t E1

c − ∇ × B1
I

)

= τ2z∂tρ
0(λ, x)v0I (z, x) + τ2

(
ρ1I (v0 + v0I ) + ∂t E1

c − ∇ × B1
I

)

− τ2ze−zdiv
(
ρ0v0

)
(λ, x)

(
v0 − v0(0, x)

)
+ τ2

(
ρ1I (v0 + v0I ) + ∂t E1

c − ∇ × B1
I

)

= O
(
τ2

)
,

and

Rτ,I
B = 0.

The above discussions about the remainders yield the following error estimates.
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Proposition 3.1 Let integer s ≥ 3. For given smooth data, the remainders Rτ,I
ρ , Rτ,I

v ,

Rτ,I
θ , Rτ,I

E and Rτ,I
B satisfy

sup
0≤t≤T1

∥
∥
∥

(
Rτ,I

ρ , Rτ,I
θ , Rτ,I

E

)
(t, ·)

∥
∥
∥ ≤ Cτ 2, sup

0≤t≤T1

∥
∥
∥Rτ,I

v (t, ·)
∥
∥
∥ ≤ Cτ, Rτ,I

B = 0.

(3.22)

4 Proof of Theorems 1.1 and 1.2

In this section, we give the rigorous justification of the both two asymptotic expansions
and prove Theorems 1.1 and 1.2. To this end, we establish a more general convergence
theorem which implies the convergence of the both expansions.

4.1 General Convergence Theorem

In the following, we justify rigorously the asymptotic expansions of solutions
(ρτ , vτ , θτ , Eτ , Bτ ) to the periodic problem (1.3)–(1.5) developed in Sects. 2–3.
We establish a more usual convergence result which yields both Theorems 1.1 and
1.2. As a result, we acquire the existence of exact solutions (ρτ , vτ , θτ , Eτ , Bτ ) in a
time interval independent of τ . In order to justify the asymptotic expansions (2.1) and
(3.18), we should establish the uniform estimates of solutions to (1.5) with respect to
τ .

Assume that (ρτ , vτ , θτ , Eτ , Bτ ) is the exact solution to (1.5) with initial data
(ρτ

0 , vτ
0 , θτ

0 , Eτ
0 , Bτ

0 ) and (ρτ , vτ , θτ , Eτ , Bτ ) is an approximate periodic solution
defined on [0, T1], with

(ρτ , vτ , θτ , Eτ , Bτ ) ∈ C1
(
[0, T1] ; Hs−1(T3)

)
∩ C

(
[0, T1] ; Hs(T3)

)
.

The remainders of the approximate solution are defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Rτ
ρ = ∂tρτ + div(ρτ vτ )

τ
,

Rτ
v = ∂tvτ + (vτ ·∇)vτ

τ
+ ∇(ρτ θτ )

τρτ
+ Eτ +vτ ×Bτ

τ
+ vτ

τ 2
,

Rτ
θ = ∂tθτ + vτ ·∇θτ

τ
+ 2θτ divvτ

3τ + |vτ |2
3 + θτ ,

Rτ
E = ∂t Eτ − ∇×Bτ

τ
− ρτ vτ

τ
,

Rτ
B = ∂t Bτ + ∇×Eτ

τ
.

(4.1)

We assume that

divEτ = b − ρτ , divBτ = 0. (4.2)

sup
0≤t≤T1

‖(ρτ , θτ , Eτ , Bτ ) (t, ·)‖s ≤ C1, sup
0≤t≤T1

‖vτ (t, ·)‖s ≤ C1τ, (4.3)

∥
∥
(
ρτ
0 − ρτ (0, ·), vτ

0 − vτ (0, ·), θτ
0 − θτ (0, ·), Eτ

0 − Eτ (0, ·), Bτ
0 − Bτ (0, ·)

)∥
∥

s ≤ C1τ
r+1,

(4.4)
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sup
0≤t≤T1

∥
∥
(
Rτ

ρ, Rτ
θ , Rτ

E

)
(t, ·)∥∥ ≤ C1τ

r+1, sup
0≤t≤T1

∥
∥Rτ

v (t, ·)∥∥ ≤ C1τ
r , Rτ

B = 0, (4.5)

where r ≥ 0 and C1 > 0 are constants independent of τ .

Theorem 4.1 Let s ≥ 3 be an integer and r ≥ 0. Under the above assumptions, there
exists a constant C2 > 0, independent of τ , such that as τ → 0 we have T τ

1 ≥ T1 and
the solution (ρτ , vτ , θτ , Eτ , Bτ ) of the periodic problem (1.3)–(1.5) satisfies

∥
∥
(
ρτ , vτ , θτ , Eτ , Bτ

)
(t) − (ρτ , vτ , θτ , Eτ , Bτ ) (t)

∥
∥

s ≤ C2τ
r+1, ∀t ∈ [0, T1].

(4.6)
Moreover,

∥
∥vτ − vτ

∥
∥

L2(0,T1;Hs )
≤ C2τ

r+2,
∥
∥θτ − θτ

∥
∥

L2(0,T1;Hs )
≤ C2τ

r+1. (4.7)

4.2 Proof of theMain Result

It follows fromProposition 1.1 that the exact solution (ρτ , vτ , θτ , Eτ , Bτ ) is defined in
a time interval [0, T τ

1 ]with T τ
1 > 0. Since ρτ , θτ ∈ C([0, T τ

1 ], Hs) and Hs ↪→ C(T3)

is continuous, we have ρτ , θτ ∈ C([0, T τ
1 ] × T

3). From (4.3)–(4.4) and assumption
ρτ
0 , θτ

0 ≥ 2κ > 0, we obtain that there is T τ
2 ∈ (0, T τ

1 ] and a constant C∗ > 0,
independent of τ , such that

κ ≤ ρτ (t, x), θτ (t, x) ≤ C∗, ∀(t, x) ∈ [0, T τ
2 ] × T

3.

Similarly, the function t �→ ‖(ρτ (t, ·), vτ (t, ·), θτ (t, ·), Eτ (t, ·), Bτ (t, ·))‖s is
continuous in C[0, T τ

2 ]. From (4.3), the sequence (‖(ρτ (0, ·), vτ (0, ·), θτ (0, ·), Eτ

(0, ·), Bτ (0, ·))‖s
)

τ>0 is bounded. Then, there is T τ
3 ∈ (0, T τ

2 ] and a constant, still
denoted by C∗ such that

∥
∥
(
ρτ (t, ·), vτ (t, ·), θτ (t, ·), Eτ (t, ·), Bτ (t, ·))∥∥s ≤ C∗, ∀t ∈ (0, T τ

3 ].

Set T τ = min{T1, T τ
3 } > 0 and introduce the perturbation variable as follows:

(
ζ τ ,V τ ,�τ , Fτ , Gτ

) = (
ρτ − ρτ,v

τ − vτ,θ
τ − θτ,E

τ − Eτ,Bτ − Bτ

)
,

(t, x) ∈ [0, T τ ] × T
3. (4.8)

Obviously, (ζ τ ,V τ ,�τ , Fτ , Gτ ) satisfies the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tζ
τ + 1

τ
(vτ · ∇ζ τ + ρτ divV τ ) = 1

τ
(V τ · ∇ζ τ − ζ τdivvτ − V τ · ∇ρτ ) − Rτ

ρ,

∂tV
τ + 1

τ

(
(vτ · ∇)V τ + θτ

ρτ ∇ζ τ + ∇�τ
)

= − 1
τ

(
(V τ · ∇) vτ +

(
θτ

ρτ − θτ

ρτ

)
∇ρτ

)
− V τ

τ 2

− 1
τ

(Fτ + (V τ + vτ ) × Gτ + V τ × Bτ ) − Rτ
v ,

∂t�
τ + 2

3τ θτ divV τ + 1
τ
vτ · ∇�τ = 1

τ
V τ · ∇θτ

− 2
3τ �τdivvτ − 1

3V
τ (2vτ + V τ ) − �τ − Rτ

θ ,

∂t Fτ − 1
τ
∇ × Gτ = 1

τ
(ζ τV τ + ζ τ vτ + ρτV

τ ) − Rτ
E , divFτ = −ζ τ ,

∂t Gτ + 1
τ
∇ × Fτ = 0, divGτ = 0, (t, x) ∈ [0, T τ ] × T

3,

(4.9)
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with the initial condition

(
ζ τ ,V τ ,�τ , Fτ , Gτ

) |t=0

= (
ρτ
0 − ρτ (0, ·), vτ

0 − vτ (0, ·), θτ
0 − θτ (0, ·), Eτ

0 − Eτ (0, ·), Bτ
0 − Bτ (0, ·)

)
, x ∈ T

3.

(4.10)

Let us define

V τ
I =

⎛

⎝
ζ τ

V τ

�τ

⎞

⎠ , V τ
I I =

(
Fτ

Gτ

)

, V τ =
(

V τ
I

V τ
I I

)

,

AI
i

(
ρτ , vτ , θτ

) =

⎛

⎜
⎜
⎜
⎝

vτ
i ρτ et

i 0
θτ

ρτ
ei vτ

i I3 ei

0
2

3
θτ et

i vτ
i

⎞

⎟
⎟
⎟
⎠

, i = 1, 2, 3, Rτ =
⎛

⎝
Rτ

ρ

Rτ
v

Rτ
θ

⎞

⎠ ,

H1
(
V τ

I

) = −

⎛

⎜
⎜
⎜
⎝

ζ τdivvτ + V τ · ∇ρτ

(V τ · ∇) vτ +
(

θτ

ρτ
− θτ

ρτ

)

∇ρτ

2

3
�τdivvτ − V τ · ∇θτ

⎞

⎟
⎟
⎟
⎠

, H2
(
V τ

I

) = −
⎛

⎜
⎝

0
V τ

τ 2

�τ

⎞

⎟
⎠ ,

H3
(
V τ

I

) =
⎛

⎝
V τ · ∇ζ τ

−Fτ − (V τ + vτ ) × Gτ − V τ × Bτ

0

⎞

⎠ ,

H4
(
V τ

I

) = −
⎛

⎜
⎝

0
0

1

3
V τ

(
2vτ + V τ

)

⎞

⎟
⎠ ,

where (e1, e2, e3) is the canonical basis ofR3, vτ
i denotes the ith component of vτ ∈ R

3

and I3 is the 3 × 3 unit matrix. Then, we rewrite system (4.9) for V τ
I in the matrix

form as

∂t V τ
I + 1

τ

3∑

i=1

Aτ
i (ρτ , vτ , θτ )∂i V τ

I = 1

τ

(H1
(
V τ

I
) + H3

(
V τ

I
))+H2

(
V τ

I
)+H4

(
V τ

I
)−Rτ .

(4.11)
It is symmetrizable hyperbolic with symmetrizer

AI
0

(
ρτ , θτ

) =

⎛

⎜
⎜
⎜
⎝

θτ

ρτ
0 0

0 ρτ I3 0

0 0
3ρτ

2θτ

⎞

⎟
⎟
⎟
⎠

,
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which is a positive definite matrix when 0 < κ ≤ ρτ = ζ τ +ρτ , θ
τ = �τ +θτ ≤ C∗.

Moreover,

ÃI
i

(
ρτ , vτ , θτ

) = AI
0

(
ρτ , θτ

)AI
i

(
ρτ , vτ , θτ

) = vτ
i AI

0

(
ρτ , θτ

) + QI
i

(
ρτ , θτ

)
,

i = 1, 2, 3 (4.12)

is symmetric, where the matrix QI
i (ρ

τ , θτ ) is defined by

QI
i

(
ρτ , θτ

) =
⎛

⎝
0 θτ et

i 0
θτ ei 0 ρτ ei

0 ρτ et
i 0

⎞

⎠ , i = 1, 2, 3.

It is easy to know that the existence and uniqueness of smooth solutions to sys-
tem (1.5) with (1.3)–(1.4) is equivalent to that of (4.9)–(4.10). Therefore, to prove
Theorem 4.1, we should obtain uniform estimates of V τ with respect to τ . In the
sequence, we denote by C > 0 various constants independent of τ and for α ∈ N

3,
(V τ

Iα, V τ
I Iα) = ∂α(V τ

I , V τ
I I ), etc. The main estimates are included in the following

two lemmas for V τ
I and V τ

I I , respectively.
We first consider the estimate for V τ

I I . Since the Maxwell equations in the non-
isentropic Euler–Maxwell equations are the same as that in the isentropic Euler–
Maxwell equations, we can obtain the estimate for V τ

I I by following the similar way
as that in Hajjej and Peng (2012). Here, we only list the results without details for
simplicity.

Lemma 4.1 (Hajjej and Peng 2012) Under the assumptions of Theorem 4.1, for all
t ∈ (0, T τ ], as τ → 0, we have

∥
∥V τ

I I (t)
∥
∥2

s ≤
∫ t

0

(
1

2τ 2
∥
∥V τ (ξ)

∥
∥2

s + C
∥
∥V τ (ξ)

∥
∥2

s + C
∥
∥V τ (ξ)

∥
∥4

s

)

dξ + Cτ 2(r+1).

(4.13)

Next, let us establish the estimate for V τ
I .

Lemma 4.2 Under the assumptions of Theorem 4.1, for all t ∈ (0, T τ ], as τ → 0, we
have

∥
∥V τ

I (t)
∥
∥2

s +
∫ t

0

(
1

τ 2

∥
∥V τ (ξ)

∥
∥2

s + ∥
∥�τ(ξ)

∥
∥2

s

)

dξ

≤ C
∫ t

0

(∥
∥V τ (ξ)

∥
∥2

s + ∥
∥V τ (ξ)

∥
∥4

s

)
dξ + Cτ 2(r+1). (4.14)

Proof For α ∈ N
3 with |α| ≤ s, applying ∂α to (4.11), we have

∂t V
τ
Iα + 1

τ

3∑

i=1

Aτ
i (ρτ , vτ , θτ )∂i V τ

Iα

= 1

τ

(
∂αH1

(
V τ

I

) + ∂αH3
(
V τ

I

)) + ∂αH2
(
V τ

I

) + ∂αH4
(
V τ

I

) − ∂αRτ
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+ 1

τ

3∑

i=1

(Aτ
i (ρτ , vτ , θτ )∂i V τ

Iα − ∂α
(Aτ

i (ρτ , vτ , θτ )∂i V τ
I

))
. (4.15)

By multiplying (4.15) by AI
0(ρ

τ , θτ ) and taking the inner product of the resulting
equations with 2V τ

Iα in L2, we get

d

dt

〈
AI

0(ρ
τ , θτ )V τ

Iα, V τ
Iα

〉
− 2

〈
AI

0(ρ
τ , θτ )∂αH2

(
V τ

I

)
, V τ

Iα

〉

= 2

τ

〈
AI

0(ρ
τ , θτ )

(
∂αH1

(
V τ

I

) + ∂αH3
(
V τ

I

))
, V τ

Iα

〉
+ 2

〈
AI

0(ρ
τ , θτ )∂αH4

(
V τ

I

)
, V τ

Iα

〉

+ 2

τ

〈J τ
α , V τ

Iα

〉 +
〈
divAI

τ (ρ
τ , vτ , θτ )V τ

Iα, V τ
Iα

〉
− 2

〈
AI

0(ρ
τ , θτ )∂αRτ , V τ

Iα

〉
, (4.16)

where

J τ
α = −

3∑

i=1

AI
0(ρ

τ , θτ )
(
∂α

(Aτ
i (ρτ , vτ , θτ )∂i V τ

I

) − Aτ
i (ρτ , vτ , θτ )∂α∂i V τ

I

)

and

divAI
τ (ρ

τ , vτ , θτ ) = ∂tAτ
0(ρ

τ , θτ ) + 1

τ

3∑

i=1

∂i ÃI
i (ρ

τ , vτ , θτ ). (4.17)

We estimate every term on both side of (4.16). A straightforward computation
yields

−
〈
AI

0(ρ
τ , θτ )∂αH2

(
V τ

I

)
, V τ

Iα

〉
=

〈
ρτ

τ 2
V τ

α ,V τ
α

〉

+
〈
3ρτ

2θτ
�τ

α,�τ
α

〉

≥ C−1

(∥
∥V τ

α

∥
∥2

τ 2
+ ∥

∥�τ
α

∥
∥2

)

. (4.18)

Next, due to the fact that matrix AI
0(ρ

τ , θτ ) is positive definite, we have

〈
AI

0(ρ
τ , θτ )V τ

Iα, V τ
Iα

〉
≥ C−1

∥
∥V τ

Iα

∥
∥2. (4.19)

Furthermore, in view of the expression ofHI (V τ
I ), we get

〈
AI

0(ρ
τ , θτ )∂αH1

(
V τ

I

)
, V τ

Iα

〉

= 3

2

〈
ρτ

θτ
�τ

α, ∂α

(

V τ · ∇θτ − 2

3
�τdivvτ

)〉

−
〈
θτ

ρτ
ζ τ
α , ∂α

(
ζ τdivvτ + V τ · ∇ρτ

)
〉

−
〈

ρτV τ
α , ∂α

(
(
V τ · ∇)

vτ +
(

�τ + θτ

ζ τ + ρτ

− θτ

ρτ

)

∇ρτ

)〉

.
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Then by (4.3) and Lemma 1.1, we have

1

τ

〈
AI

0(ρ
τ , θτ )∂αH1

(
V τ

I

)
, V τ

Iα

〉

≤ C

τ

(∥
∥ζ τ

∥
∥

s

∥
∥V τ

∥
∥

s + τ
∥
∥ζ τ

∥
∥2

s + τ
∥
∥V τ

∥
∥2

s + τ
∥
∥�τ

∥
∥2

s + (1 + τ)
∥
∥�τ

∥
∥

s

∥
∥V τ

∥
∥

s

)

≤ ε

τ 2

∥
∥V τ

∥
∥2

s + Cε

∥
∥V τ

∥
∥2

s , (4.20)

where and in the sequence, ε denotes a small constant independent of τ and Cε > 0
denotes a constant depending only on ε.

On the other hand, for the terms containingH3 andH4, by an integration by parts,
we obtain

2

τ

〈
AI

0(ρ
τ , θτ )∂αH3

(
V τ

I

)
, V τ

Iα

〉

= 2

τ

〈
θτ

ρτ
∂α

(
V τ · ∇ζ τ

)
, ζ τ

α

〉

− 2

τ

〈
ρτV τ

α , ∂α
(
Fτ + (V τ + vτ ) × Gτ + V τ × Bτ

)〉

≤ ε

τ 2

∥
∥V τ

α

∥
∥2 + Cε

∥
∥∂α

(
Fτ + (V τ + vτ ) × Gτ + V τ × Bτ

)∥
∥2 + Cε

∥
∥ζ τ

∥
∥4

s

≤ ε

τ 2

∥
∥V τ

α

∥
∥2 + Cε

(∥
∥V τ

∥
∥2

s + ∥
∥V τ

∥
∥4

s

)
, (4.21)

and

2
∣
∣
∣

〈
AI

0(ρ
τ , θτ )∂αH4

(
V τ

I

)
, V τ

Iα

〉∣
∣
∣ =

∣
∣
∣
∣

〈
ρτ

θτ
∂α

(
V τ

(
2vτ + V τ

))
,�τ

α

〉∣
∣
∣
∣

≤ C
(
τ + ∥

∥V τ
∥
∥

s

) ∥
∥V τ

∥
∥

s

∥
∥�τ

∥
∥

s

≤ ε

τ 2

∥
∥V τ

α

∥
∥2 + Cε

(∥
∥V τ

∥
∥2

s + ∥
∥V τ

∥
∥4

s

)
. (4.22)

Next, we consider the estimate for the term containing J τ
α . By the definition of

AI
i (ρ

τ , vτ , θτ ) and AI
0(ρ

τ , θτ ), it follows

〈
AI

0(ρ
τ , θτ )

(
∂α

(Aτ
i (ρτ , vτ , θτ )∂i V τ

I

) − Aτ
i (ρτ , vτ , θτ )∂α∂i V τ

I

)
, V τ

Iα

〉
�

6∑

j=1

Ji j ,

where

Ji1 =
〈
θτ

ρτ

(
∂α

((
V τ + vτ

)

i∂iζ
τ
) − (

V τ + vτ

)

i∂
α∂i N τ

)
, ζ τ

α

〉

,

Ji2 =
〈
θτ

ρτ

(
∂α

((
ζ τ + ρτ

)
et

i ∂iV
τ
) − (

ζ τ + ρτ

)
et

i ∂
α∂iV

τ
)
, ζ τ

α

〉

,

Ji3 =
〈

ρτ

(

∂α

(
�τ + θτ

ζ τ + ρτ

∂iζ
τ ei

)

− �τ + θτ

ζ τ + ρτ

∂α∂iζ
τ ei

)

,V τ
α

〉

,
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Ji4 = 〈
ρτ

(
∂α

((
V τ + vτ

)

i∂iV
τ
) − (

V τ + vτ

)

i∂
α∂iV

τ
)
,V τ

α

〉
,

Ji5 =
〈
ρτ

θτ

(
∂α

((
�τ + θτ

)
∂iV

τ · et
i

) − (
�τ + θτ

)
∂α∂iV

τ · et
i

)
,�τ

α

〉

and

Ji6 =
〈
ρτ

θτ

(
∂α

((
V τ + vτ

)

i∂i�
τ
) − (

V τ + vτ

)

i∂
α∂i�

τ
)
,�τ

α

〉

.

It follows from (4.3) and Lemma 1.1 that

|Ji1|+ |Ji4|+ |Ji6| ≤ (
τ + ∥

∥V τ
∥
∥

s

) ∥
∥V τ

I

∥
∥2

s ≤ ε

τ

∥
∥V τ

α

∥
∥2 +Cετ

(∥
∥V τ

∥
∥2

s + ∥
∥V τ

∥
∥4

s

)
,

and

|Ji2| + |Ji3| + |Ji5| ≤ (
1 + ∥

∥ζ τ
∥
∥

s + ∥
∥�τ

∥
∥

s

) (∥
∥ζ τ

∥
∥

s + ∥
∥�τ

∥
∥

s

) ∥
∥V τ

∥
∥

s

≤ ε

τ

∥
∥V τ

α

∥
∥2 + Cετ

(∥
∥V τ

∥
∥2

s + ∥
∥V τ

∥
∥4

s

)
.

Then, in view of the expression of J τ
α , we have

2

τ

〈J τ
α , V τ

Iα

〉 ≤ ε

τ 2

∥
∥V τ

α

∥
∥2 + Cε

(∥
∥V τ

∥
∥2

s + ∥
∥V τ

∥
∥4

s

)
. (4.23)

Noticing the expression of AI
0(ρ

τ , θτ ), we easily get

−2
〈
AI

0(ρ
τ , θτ )∂αRτ , V τ

Iα

〉
= −2

〈
θτ

ρτ
ζ τ
α , ∂α Rτ

ρ

〉

− 2
〈
ρτV τ

α , ∂α Rτ
v

〉 − 3

〈
ρτ

θτ
�τ

α, ∂α Rτ
θ

〉

.

In view of (4.5), we obtain

− 2
〈
AI

0(ρ
τ , θτ )∂αRτ , V τ

Iα

〉
≤ C

∥
∥V τ

∥
∥2

s + ε

τ 2

∥
∥V τ

∥
∥2

s + Cετ
2(r+1). (4.24)

In the end, for i = 1, 2, 3, it follows from (4.12) and (4.17) that

divAI
τ (ρ

τ , vτ , θτ )

= ∂ρτAτ
0(ρ

τ , θτ )

(

∂tρ
τ + 1

τ
∇ρτ · vτ

)

+ 1

τ
AI

0

(
ρτ , θτ

)
divvτ

+ ∂θτAτ
0(ρ

τ , θτ )

(

∂tθ
τ + 1

τ
∇θτ · vτ

)

+ 1

τ

3∑

i=1

∂i

(
QI

i

(
ρτ , θτ

))

= divuτ

τ

(
AI

0

(
ρτ , θτ

) − ρτ ∂ρτAτ
0(ρ

τ , θτ )
)

+ 1

τ

3∑

i=1

∂i

(
QI

i

(
ρτ , θτ

))

+ ∂θτAτ
0(ρ

τ , θτ )

(
1

3

∣
∣V τ + vτ

∣
∣2 − (�τ + θτ ) − 2

3τ
θτdivvτ

)
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= divvτ

τ

(

AI
0

(
ρτ , θτ

) − ρτ ∂ρτAτ
0(ρ

τ , θτ ) − 2

3
θτ ∂θτAτ

0(ρ
τ , θτ )

)

+ ∂θτAτ
0(ρ

τ , θτ )

(
1

3

∣
∣V τ + vτ

∣
∣2 − (�τ + θτ )

)

+ 1

τ

3∑

i=1

∂i

(
QI

i

(
ρτ , θτ

))
.

(4.25)

In view of κ ≤ ρτ = ζ τ + ρτ , θ
τ = �τ + θτ ≤ C∗, vτ = V τ + vτ and vτ = O(τ ),

we get

∥
∥
∥
∥
divvτ

τ

(

AI
0

(
ρτ , θτ

) − ρτ ∂ρτAτ
0(ρ

τ , θτ ) − 2

3
θτ ∂θτAτ

0(ρ
τ , θτ )

)∥
∥
∥
∥

L∞

≤ C

∥
∥
∥
∥
divvτ

τ

∥
∥
∥
∥

L∞
≤ C

(

1 + 1

τ

∥
∥V τ

∥
∥

s

)

,

and
∥
∥
∥
∥∂θτAτ

0(ρ
τ , θτ )

(
1

3

∣
∣V τ + vτ

∣
∣2 − (�τ + θτ )

)∥
∥
∥
∥

L∞
≤ C

(
1 + ∥

∥V τ
∥
∥2

s

)
.

On the other hand, by noticing the expression of QI
i (ρ

τ , θτ ), we obtain

1

τ

3∑

i=1

〈
∂i

(
QI

i

(
ρτ , θτ

))
V τ

Iα, V τ
Iα

〉

= 1

τ

〈∇θτV τ
α , ζ τ

α

〉 + 1

τ

〈
ζ τ
α

(∇θτ
)t + �τ

α

(∇ρτ
)t

,V τ
α

〉
+ 1

τ

〈
V τ

α ∇ρτ ,�τ
α

〉

≤ C

τ

∥
∥V τ

∥
∥

s

∥
∥ζ τ

∥
∥

s

(
1 + ∥

∥�τ
∥
∥

s

) + C

τ

∥
∥V τ

∥
∥

s

∥
∥�τ

∥
∥

s

(
1 + ∥

∥ζ τ
∥
∥

s

)

≤ ε

τ 2

∥
∥V τ

∥
∥2

s + Cε

(∥
∥V τ

I

∥
∥2

s + ∥
∥V τ

I

∥
∥4

s

)
.

Then, (4.25) together with the three estimates above yield

〈
divAI

τ (ρ
τ , vτ , θτ )V τ

Iα, V τ
Iα

〉

≤ C

(

1 + 1

τ

∥
∥V τ

∥
∥

s + ∥
∥V τ

∥
∥2
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)
∥
∥V τ

Iα

∥
∥2 + ε

τ 2

∥
∥V τ

∥
∥2

s + Cε

(∥
∥V τ

I

∥
∥2

s + ∥
∥V τ

I

∥
∥4

s

)

≤ ε

τ 2

∥
∥V τ

∥
∥2

s + Cε

(∥
∥V τ

I

∥
∥2

s + ∥
∥V τ

I

∥
∥4

s

)
. (4.26)

Thus, by combining (4.16), (4.18), (4.20)–(4.24) and (4.26), we get, for all α ∈ N
3

with |α| ≤ s,

d

dt

〈
AI

0(ρ
τ , θτ )V τ

Iα, V τ
Iα

〉
+ C−1

(
1

τ 2

∥
∥V τ

α

∥
∥2 + ∥

∥�τ
α

∥
∥2

)
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≤ ε

τ 2

∥
∥V τ

∥
∥2

s + Cε

(∥
∥V τ

I

∥
∥2

s + ∥
∥V τ

I

∥
∥4

s

)
+ Cετ

2(r+1). (4.27)

Integrating (4.27) over (0, t) and taking summation over |α| ≤ s, choosing ε > 0

small enough such that the term containing
ε

τ 2

∥
∥V τ

α

∥
∥2 can be bounded by the left-

hand side. Therefore, (4.14) follows by combining the resulting inequality of (4.27),
(4.4) and (4.19). We have finished the proof of Lemma 4.2. ��
Proof of Theorems 1.1, 1.2 and 4.1 Once Theorem 4.1 has been proved, we easily find
that Theorems 1.1 and 1.2 follow. In fact, r = 2m + 1 with m ≥ 0 in Theorem 1.1
and m = 1 in Theorem 1.2, since

∥
∥
∥
(
ρτ,I , θτ,I , Eτ,I , Bτ,I

)
(t) −

(
ρ0, τ 2θ0, E0, τ B0

)
(t)

∥
∥
∥

s
= O

(
τ 2

)
,

uniformly with respect to τ . Thus, the rest is to prove Theorem 4.1.
Let τ → 0 be small enough. It follows from Lemmas 4.1–4.2 that

∥
∥V τ (t)

∥
∥2

s +
∫ t

0

(
1

2τ 2
∥
∥V τ (ξ)

∥
∥2

s + ∥
∥�τ(ξ)

∥
∥2

s

)

dξ

≤ C
∫ t

0

(∥
∥V τ (ξ)

∥
∥2

s + ∥
∥V τ (ξ)

∥
∥4

s

)
dξ + Cτ 2(r+1), ∀t ∈ (0, T τ ]. (4.28)

Set

�(t) = C
∫ t

0

(∥
∥V τ (ξ)

∥
∥2

s + ∥
∥V τ (ξ)

∥
∥4

s

)
dξ + Cτ 2(r+1).

Then from (4.28), we have

∥
∥V τ (t)

∥
∥2

s ≤ �(t),
∫ t

0

(
1

2τ 2
∥
∥U τ (ξ)

∥
∥2

s + ∥
∥�τ (ξ)

∥
∥2

s

)

dξ ≤ �(t), ∀t ∈ (0, T τ ],
(4.29)

and

�′(t) =
(∥
∥V τ (t)

∥
∥2

s + ∥
∥V τ (t)

∥
∥4

s

)
≤ C

(
�(t) + �2(t)

)
with �(0) = Cτ 2(r+1).

And then we get

�(t) ≤ Cτ 2(r+1)eCt ≤ Cτ 2(r+1)eCT1 , ∀t ∈ (0, T τ ].

Hence, the inequality above together with (4.29) yields

∥
∥V τ (t)

∥
∥

s ≤ �
1
2 (t) ≤ Cτ r+1,

∫ t

0

∥
∥�τ(ξ)

∥
∥2

s dξ ≤ �(t) ≤ Cτ 2(r+1),
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∫ t

0

∥
∥U τ (ξ)

∥
∥2

s dξ ≤ 2τ 2�(t) ≤ Cτ 2(r+2), ∀t ∈ (0, T τ ].

In particular, we obtain that V τ is bounded in L∞(0, T τ ; Hs), so is (ρτ , vτ , θτ , Eτ ,

Bτ ). By the standard argument on the time extension of smooth solutions, we get
T τ
3 ≥ T1, which implies that T τ = T1. The proof of Theorem 4.1 is completed. ��
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