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Abstract

We consider non-isentropic Euler-Maxwell equations with relaxation times (small physical parameters)
arising in the models of magnetized plasma and semiconductors. For smooth periodic initial data sufficiently
close to constant steady-states, we prove the uniformly global existence of smooth solutions with respect to
the parameter, and the solutions converge global-in-time to the solutions of the energy-transport equations
in a slow time scaling as the relaxation time goes to zero. We also establish error estimates between the
smooth periodic solutions of the non-isentropic Euler-Maxwell equations and those of energy-transport
equations. The proof is based on stream function techniques and the classical energy method but with some
new developments.
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1. Introduction

The three-dimensional non-isentropic Euler-Maxwell equations describe the motions of par-
ticles in plasmas, which can be written as (see [1,11,20])

opn + div(nu) =0,
oy (nu) +divinu Qu) + Vb)) = —n(E +u x B) — %,
2
00 +u- Vo +30divu=-245 (7L - L)~ Lo-), (1.1)
0wE—-—VxB=nu, divkE=1-—n,
B+VxE=0, divB=0, (', x)e(0,+00)x T3,

3
where T3 = (%) is a torus, x = (x1, X2, xX3) € R3 is the space variable and ¢’ > 0 is the usual

time. Here n > 0 is the scaled density, u is the velocity field, 6 is the electron temperature, E
is the electric field and B is the magnetic field, which are all functions of (t’ , x). The physical
parameters 7, and T, are the momentum relaxation time and the energy relaxation time, respec-
tively.

Obviously, (1.1) admits a steady-state

(n,M,Q,E,B):Ueé(l,O,l,O,Be), (1‘2)

where B, € R3 is an arbitrary constant vector.
Next, we introduce

t=e¢t’, t,=e€(0,1], 1y =é,
and
n®(t,x)=n(',x), u(t,x)= éu (7', x), 6°@t,x)=0( x),
E°(t,x)=E(t',x), B°(t,x)=B (! x).
Then (1.1) turns into
n® +div (nu’) =0,
B (1) i (10 © u) 5V (1°6°) = 5 (= (B + eu x B) —n'uc),
(2-e) (6" 1),

€;BE +V x E* =0, divE®=1-n®,
e ES —V x B =enu®, divB°=0, (t,x)€(0,400)x T3,

|u|? (1.3)

2
0;0° +u® .- Vo°© + 508 divu® =

with initial conditions
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MS
(n®,uf,0%, E¢, B®)—o=US £ (nf) ?0,65, Eg, Bg) , (1.4)
which satisfy the compatibility conditions
divES =1—n§, divBf=0, xeT>. (1.5)

Formally, as ¢ — 0, if denoting the limits of (n®, u®, 0%, E¢, B?) as (n, i, 0, E, 13’), we get
that the formal limiting equations of (1.3) are
o + div(nu) =0,

V(#10) = —nE — nit,

2o 2l
8,9+u-V9+§9d1vu_T—(9—1) (1.6)
VxE=0 divE=1-n
VxB=0, divB=0, (& x)e€(0,+o00)x T3.

Apparently, it follows from the fifth equation in (1.6) that B is a constant vector. And since
V x E =0, there is a potential function ¢ satisfying E = V¢. Hence, (1.6) implies the energy-
transport model

a1 — A(mB) — div(aVe) =0,

9,0 +i-Vo+ 9d1VM—|T|2—(9—1) )
Ap=1—n,
and
E=V¢, i=-V(p+6)—6Vina. (1.8)
For the uniqueness of q_ﬁ, the following is needed,
my(t) £ /qS(r,x)dx:O, Vi > 0. (1.9)

Asymptotic limit problems with small parameters for important physical models are well-
known research highlights. Especially, the relaxation time usually plays a crucial role in many
physical models for the fluid dynamics [9,13,16]. And the zero relaxation time limit is a well-
known problem in asymptotic analysis and singular perturbation theories [10,12,24,27-29]. In
[9], Hajjej-Peng investigated the local-in-time initial layer problem to the isentropic Euler-
Maxwell system. Next, Wasiolek [26] proved the global existence of smooth solutions and the
global-in-time convergence of the isentropic Euler-Maxwell system with respects to the pa-
rameters by uniform energy estimates. Later, Li-Peng-Zhao [17] showed us the global-in-time
convergence rates for isentropic Euler-Maxwell equations.
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For the non-isentropic Euler-Maxwell system (1.3)-(1.4), when all parameters are taken to be
unity, Feng-Wang-Kawashima [6] proved the L? time decay rate for the global smooth solution
by carrying out uniform energy estimates, which showed us that the density and temperature
of electron converge to the steady states with the same rate. We also mention the important
developments about the wellposedness of solutions to Euler-Maxwell equations in [2-4,7,8,18,
22,21,23,25,26]. However, these results did not take into account the dependence with respect to
the physical parameters.

Recently, Feng-Li-Mei-Wang [5] studied the local-in-time initial layer problem to the non-
isentropic Euler-Maxwell system. However, the global convergence and convergence rate for
non-isentropic Euler-Maxwell system (1.3)-(1.4) are still open, of course, it is more interesting
to investigate the global convergence as well as the convergence rates. To solve these questions
is the main purpose of the present paper. Our main results are stated as follows.

Theorem 1.1 (Global existence). Let k > 3 be an integer, there exist constants g9 > 0, wy > 0
and C > 0, independent of € and any time, such that, for all ¢ € (0, &¢], if

76 = Uy + luecll e + 166 = 1l + 1 E6 ] + 86 = Bl <o,
then the system (1.3)-(1.4) admits a unique global solution (n®, u®, 0%, E¢, B®), satisfying
n®—1,eu,0° — 1, E°, B* — B, € C <R+; Hk> nc' (R+; Hk_l> .
Moreover, it holds,

@) = 1 + [ewt @ + 65 @) = 1e + [ES )¢ + [ B° ) = Be

t

[ (It =11+ e @I + o0~ 1]7) e (110

0
2 2 2 2 2
<C (In = 12 + s I+ 165 — 12+ 252+ B — 212). ve =0,

Theorem 1.2 (Zero-relaxation limit). Let (n®,u®, 6%, E¢, B®) be the global solution given by
Theorem 1.1. Assume that there exist constants no > 0 and 6y > 0, which are independent of ¢,
satisfying as € — 0,

né — no, weakly in H*, (1.11)
and

05 — 6o, weakly in H*. (1.12)

Then there exist functions n, u, 0,E,B within—1,0 —1,E,B — B, € L™ (R+; Hk) and u €
L2 (R*; Hk), such that, as ¢ — 0, it holds

- - - 3
(n* = 1,6° =1 E*,B* = B,) —~ (i — 1,0 — 1, E, B = B,), weakly-*in (L (R*; H*))",
(113)
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and
U — ii, weakly in L2 (R+; Hk> . (1.14)
Moreover, for any T > 0 and any k; € [0, k), it holds, as ¢ — 0,
nt =i, 6°— 8, stronglyin C ([0, T]: Hk‘) , (1.15)
and (ii, ¢, 0) is the unique global smooth solution of the following energy-transport model
a1 — Amf) — div(nVe) =0,

%0 — (V(@+60)+6VIni)- Vo — %édiv (V(@+6)+0VIni) = L —@ -1, (1.16)

Ap=1—1,

with the initial condition

(i1, 0)|i=0 = (no. 6o). (1.17)

Note that ¢ is unique up to addition by a constant. Additionally, it holds

B=B,, E=V¢$, u=-V(@p+6)—0Vinq, (1.18)
where B, is a constant vector.

Theorem 1.3 (Convergence rates). Let k > 3 be an integer, (n®,u®, 0%, E¢, B®) and (n,u,
E,B) respectively be the unique smooth solutions to (1.3)-(1.4) and (1.7)-(1.8). Denote Eo =
E (0, -). There exists a constant § > 0, which is independent of ¢, such that if

6 = Ul + sl + 166 = 11, + 1 £6], + 185 = Bell, =8, (1.19)
and for any given positive constants p and C1 independent of € satisfying
lutlle—s + 11 E6 = Eoll_y + [ B — Be[l,_; = Cre?. (1.20)

then for p1 = min{p, 1} and € € (0, 1], there exists a constant C, independent of ¢, such that

376



Y.-H. Feng, R. Li, M. Mei et al. Journal of Differential Equations 414 (2025) 372—-404

sup ([0 =7, +8 [ 0 = [, + [0 B0 [ + [ B0 - Bl
te

HBw - sl
+00

+ [ (@ =@l + e =l + o' -0, + |20 - Eo i
0

+|vB @} _,)dr

§C282m.

Now let us describe key steps of proof for Theorems 1.1-1.3 and explain the vital difference
in proof between the local-in-time convergence rates (see Theorem 4.1 in [5]) and the global-in-
time convergence rates in Theorem 1.3 for the non-isentropic Euler-Maxwell system (1.3)-(1.4).

In fact, in the local-in-time convergence result, the convergence rate was clearly shown and it
depends on the local existence time. In [5], Feng-Li-Mei-Wang used the asymptotic expansion
and energy estimates to prove the local-in-time convergence result. However, when we establish
the global-in-time convergence rates, since the classical energy estimates for the symmetrizable
hyperbolic system are not sufficient, the error estimate for n® —n € L2(R*; L2(T3)) is not trivial
(see (4.21)). Then by means of classical energy estimates, we cannot derive it. Therefore, we have
to employ the stream function techniques to get this error estimate.

More precisely, we first prove the uniformly global existence and global-in-time convergence
of smooth solutions for equations (1.3)-(1.4) by using energy estimates but with some new de-
velopments, see the proofs of Theorems 1.1-1.2 in Section 3. Next, we should point out that,
note that the presence of the temperature equation, it is much more complicated and difficult
to obtain the uniform energy estimates. On one hand, the proof of Theorems 1.1-1.3 for the
non-isentropic Euler-Maxwell system includes every difficulty appeared in the isentropic Euler-
Maxwell system. On the other hand, we should deal with the additional troubles caused by the
absolute temperature 6 (see the proof of Lemma 4.6, for instantance). In addition to this, we find
that the zero-relaxation limits presented here are also the transport equations but have different
forms comparing with the limit of the isentropic Euler-Maxwell system in [17]. The original
system is hyperbolic. The limiting system is parabolic. The error system is neither hyperbolic
nor parabolic, which leads to loss of a strictly convex entropy and the structure of symmetrizable
hyperbolicity, and furthermore loss of the L? error estimate and the estimate of the highest order
derivatives. Therefore, it is difficult to obtain the convergence rates of the system with the help
of the classical energy methods. Here, we employ stream function techniques to establish error
estimates between smooth periodic solutions of the non-isentropic Euler-Maxwell equations and
those of the limit equations in Theorem 1.3, which creatively expand the research results on the
convergence rates of solutions for the non-isentropic Euler-Maxwell equations.

We conclude this section by stating the arrangement of the rest of this paper. In Section 2,
we give the important preliminaries such as the local existence theory and Moser-type calcu-
lus inequalities. In Section 3, we study the global existence and convergence of solutions for
non-isentropic Euler-Maxwell system (1.3)-(1.4) and prove Theorems 1.1-1.2. In Section 4, we
investigate the global convergence rate for the non-isentropic Euler-Maxwell system (1.3)-(1.4)
and finish the proof of Theorem 1.3.
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2. Preliminaries

For later use, let us introduce some notations. For any integer k, we denote the usual spaces
H* (T3) VL2 (T3) and L*® (T3), by H* L? and L, respectively. Furthermore, we denote by
II.llx the usual norm of H*, and by ||l and ||.||cc the norms of L? and L™, respectively. For a
multi-index « = (x1, o2, a3) € N3, we denote

glel )
BO‘:W with |a|=a1+a2+a3.
1 2 3

Now let us recall some results on Moser-type calculus inequalities in Sobolev spaces, and the
local existence of smooth solutions for symmetrizable hyperbolic systems.

Lemma 2.1 (Moser-type inequality [15,19]). Let k > 1 be an integer. Suppose u € H*, Vu € L™,
and v e H*=1 N L. Then for every a € N3 with |a| <k, it holds 3% (uv) — ud*v € L?, and

8% (o) — ud®v| < Ci (||W||Oo H Dk_ll)H n HDkuH ||v||oo),

where Cy denotes a constant only depending on k, and

| Dful = 3 flo=u]

| |=k
In particular, when k > 3, the Sobolev inequality yields
|8% @v) —ud®v|| < CellVullk-1llvllk—1- 2.1)
Lemma 2.2 (Local existence of smooth solutions; [14,19]). Let k > 3 and (ny — 1,ug, 65 —
1, E5, B — Be) € H* with ng >1/2, 65 > 1/2. Then there exists T; > 0 such that the problem
(1.3)-(1.4) has a unique smooth solution (n®, u®, 0%, E¢, B?) satisfying
(n® —1,eu°,0° — 1, E°, B — B,) € C ([0, T.): Hk) nc! ([0, T,): H’H) .

Throughout this paper, a basic assumption on the initial data is

1
. 6= X for ¢ € (0, 1].

| =

(n§—1,u§, 05 — 1, E§, B — B.) € H*,  with n§>

3. Global existence and convergence of solutions for non-isentropic Euler-Maxwell system
(1.3)-(1.4)

3.1. Global existence of solutions
In this subsection, we establish the global existence result for the non-isentropic Euler-
Maxwell equations (1.3)-(1.4) uniformly with respect to €. For simplicity, we drop the superscript

ein (nf,u®, 0%, E¢, B?), and set
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G=B-B,,

N=n—-1, ©=60-1,
Wé=(N,eu,®,E,G)T.

Wi=N,u,®", W=(N,u0,EGT",

Since system (1.3) is symmetrizable and hyperbolic, Lemma 2.2 can be applied directly. Let
T > 0 and W be a smooth solution of (1.3), defined on time interval [0, T'], and k > 3 be an
integer. From now, we denote C > 0 as a generic constant independent of any time and the

parameters ¢. For convenience, let us introduce

N7 = sup

0<t<T

(INOI +leu®IF + 10OIF + 1E® 1} + ||G(t)||,%)1 :
and
K (W) = INIE+ I + 101
We first prove two lemmas as follows, then it holds
Lemma 3.1. For any ¢ € (0, 1],

d
> (Ao w0 W)+ IEIZ +IGIE | + lulf + 1©1F < CATiC (W) (3.)

O<lo|<k
Lemma 3.2. It holds
d
= (Aovya“w! 0" w!) < =2(n B, 0%u) — [9°u]* — o7 0| + CATIC (W) (32)
Proof. The first three equations in (1.3) can be written in the following form
0
3 1 u
AW+ 345 (W) o, w! = —H(E+eux G+B) - & (33)
j=1
’ Bl - 0
with
T
Uj 1+ N)ej 0
L 14+0©
Aj <W1> =] 22 11—1\/3/ ujls 7€)
0 %Her U

Here I3 is the 3 x 3 unit matrix, (eq, 2, e3) is the canonical basis of R3, and u; denotes the
Jj-th component of u € R3. Since n > 1/2,0 > 1/2, it is easy to know that the matrix
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1+0
I+N 0 0
2
Ao(N) = 0 e(1+N)I3 0
3(1+N)
0 0 2(1+0)

is symmetrically and positively definite, at the same time, the matrix

ou; (1+0)e] 0

i (W[)ZAO(N)Aj <W1> _| 0+, E2(1+Nujlz (1+N)e,
T 3(1+N)

0 (1+N)€j 2(1+(~))”J'

is symmetric forall 1 < j <3.
Let o € N3 with 0 < |a| < k. By applying 9% to (3.3), and taking the inner product with
2A0(N)3*W! in L? (T3), we have

% <A0(N)8“WI, 8“W’>

= (0 Aoy 8w 0* W)+ 3 (o, (A; (W) 0 W, 07 W!) = 2(n3” E, 5%u)

3.4)

~
—_

— 26 (14 N)3*u, 9%(u x G)) — 2(nd*u, 9°u) + (2— 82) <a“ <|u|2) , ga“@))
—3(3“@, ga“®>+2<1“,a°‘w’>

with J% =0, and, for any « satisfying 1 < |a| <k,
3 3
o= a0 Y (A5 (W) oo (8, wh) =0 (a; (Wh) o, wh)) =32,
=1 j=1

J

with the corresponding J1*, J3', J5'.
Let us rewrite equality (3.4) as

3 3
d
Z<Ao(1\7)a"fw’, a”w’): h+Y Lj+h+L+Is+ls+h+Y Is,
=1 =1

with the natural correspondence for I, ..., I 3. Then we analyze each of these terms.

By developing I, I, j and I3 j, using repeatedly relaxation of spacial embedding in Sobolev
space and inequalities (2.1), we have

h=CNPR(W!), by =CNpK (W), sy = CNpic(W!). (3.5)
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Noticing n € [%, %], we obtain
Is = =2{(1+ N)3%u, 3%u) < — ||9%u|*. (3.6)
We note that /4 can be rewritten as
Iy=—=2e((1+ N)3%(u x G), 0%)=—2¢((1 + N) (3%(u x G) — 0%u x G), %), (3.7
then inequality (2.1) yields
I3 = CIVG k-t lullior 0] < CIGIelul} < CATK (W'). (3:8)
Using (2.1), the Young’s inequality and Cauchy-Schwarz inequality, we obtain
Is = (2 _ 52) <a°‘ (|u|2) , ga"‘@) <CNTK (W’) , (3.9)
n=-3(0"0.50"0) <~ |a"0|’. (3.10)
Adding (3.5)-(3.6), (3.8)-(3.10), and using (3.4), we have proved Lemma 3.2. O
Lemma 3.3. It holds
% (lo“E|* +0°G|*) = 2(nd” E. 9%u) + A (W) 3.11)
Proof. We start with the fifth equation in (1.3)
o E— écurl(G) =nu.
Applying 0% and taking the inner product with 9% E, we obtain
d 2 2
o [o“E||” - " (curl (0%G) , 0% E) =2(0% (nu), 3* E), (3.12)
then we take the fourth equation in (1.3)
;G + écurl(E) =0.
Applying 0% and taking the inner product with d*G, we have
%||8°‘GH2+%(curl(a"‘E),a‘)‘G):O. (3.13)
Adding (3.12) and (3.13), and using the vector formula, we have
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A (a2 L e~ [2) _nla «
= (1 + 06 [) =2(o% 0o, 6% E) o1
=2(n0%u, 3" E) + 2(0*(Nu) — No“u, 0“E).
For the last term, due to inequality (1.11), satisfies
(0 (V) = No“u, 0" E) < CNKC (W),

together with (3.14), it implies Lemma 3.3. O

Proof of Lemma 3.1. Adding (3.2) and (3.11) leads to

d
= ([a0@na=w! 0= w!) + o E[]* + |0G|*) + |a*u] + [o"0 | < ez (W)

summing up this result over 0 < |«| <k, we arrive at Lemma 3.1. O
Next, we begin to prove Theorem 1.1. In fact, we need the following estimate :

t

||W8<r)||%+/(||N(r)||%+||u(r)||§+||®(r)||£)drscnw%mui, Vi€l0.T].  (3.15)
0

In fact, this estimate is similar to the proof obtained with Euler-Poisson system (see [21]),
which is mostly due to the fact E¢ and n® are linked with div £ = 1 —n® in (1.3). The following
identity is frequently used in the proof, which is satisfied for any vectors f, g € R:

g -curl(f) — f - curl(g) =div(f x g),

and we repeatedly use the continuous embedding H¥~! < L and the following inequality

I fllo <Cllfllk—1, VfeH~

Lemma 3.4. There exists a positive constant cy > 0, which is independent of € and any time,
satisfying

d 1
N|I? <co— — 3PN, 3PN} + (0P (divu), 9P N
I ||k_codt0<ﬂz<k_l(<l+N >+< (divu), 9 N)

+ CNTK (W) + col VO + collulf:
Proof. We begin with the second equation in (1.3):

1 V(no 1 u
8tu+(u-V)u+—2¥=——2(E+8uxB)——2.
e £ &
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By applying 87 to (1.3), with 0 < |B| < k — 1, and taking the inner product in L? (T3) with
e29P(VN), we obtain

<§8ﬁ(VN), aﬂ(vzv)> +(82(v0), 3 (VN)) + (0P E, 8P (VN))
= <§aﬁ(vzv) — 9P <%VN> : aﬂ(VN)> — &2 (0 (Bu), 8P (VN)) (3.16)

— &2 (0P[(u - V)ul, 8 (VN)) — £ (8P (u x G), 3P (VN))
—&((8Pu) x B., 3P (VN)) — (8Pu, 3P (VN)).

Next we analyze each of them in the following lemma.

Lemma 3.5. They hold,

<Qaﬁ(v1v), aﬂ(vzv)> >k 9P (V)| ? (3.17)

n
(8%(v@), 3P (VN)) < &' [|aP (VN) ||2 +Co ||3P(VO)| : (3.18)
(0P E, 9B (VN)) = 0P N, (3.19)
<Qaﬂ(v1v) — 3P (QVN) , a/’(VN)> < CNTINIIZ, (3.20)

n n

e* (3, (9Pu) , 8P (VN)) < 82% (87 (div(u)), P N) + Cllullf, (3.21)
e (0P (. Vyu), 3P (VN)) < Cllull;, (3.22)
—e(0% (u x G), 9P (VN)) < Cllull} + CNT|NIZ, (3.23)

£((8%u) x Be, 8P (VN)) < CllulliIVN k-1 <SIVNIz_; + Cslluly, ¥8>0,  (3.24)
and
—(0%u, 8F (VN)) < Cllulle IVN k-1 <SIVNIIz_; + Csllullz. V8 >0, (3.25)
where Cs > 0 is a positive constant only depending on §.
Proof. Since (ng, uf), 98 , ES, Bg ) stays in a small neighborhood of (1,0, 1, 0, B,), independent
of the parameter ¢, this allows us to suppose that n, 6 are in a bounded interval. Thus we can
obtain (3.17).
By the Cauchy-Schwarz inequality and the Young’s inequality, we get (3.18), where C,/ and

¢’ are usual constants with Cyr > ¢&’.
Using the first compatibility equation in (1.3), we obtain (3.19):

(0P E, 9P (VN)) = — (0B (VE), 0P N) = (0PN, 08 N) = |08 N .
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By using the Cauchy-Schwarz inequality and the inequality (2.1), we have (3.20):

<§3ﬁ(v1v) —9F (%vzv) , aﬁ(VN)> < H %aﬁ(vzv) — 9 <§VN> H S ELe2%]

°()

< CNT|INJIZ.

< Cr

IVNIlx—1
k—1

Integrating by parts yield (3.21). We directly arrive at (3.22) due to (3.21). We prove (3.23)

due to

—£(0P(u x G), 9P (VN)) < CIIVGlis |3Pu| IIN Ik + ClIVulloo |9 G| 1Nl
< ClIG I llullINlx
< Clu|} +CN7IN|3.

A direct bounding implies that
e((8%u) x Be, 3P (VN)) < Cllullk IVN k=1 < SIVNIIF_, + Csllullz,

for any § > 0. Then we obtain (3.24).
The proof of (3.25) is more complicated and it needs some calculus. Firstly, we note that

—(8Pu, 3P (VN)) = (8% (div(u)), 3P N).

Then using the first equation in (1.3) yields

B . 9B
_(3/3u,aﬂ(v]v)>= _ <M’ 8’3N>—<M, BﬁN>

1+ N 1+ N
B
+ M_aﬁ ﬂ ,aﬁN (3.26)
1+ N 1+ N
N u-a/f‘(vzv)_al3 u-VN Y
1+ N 1+ N

Now we analyze each term on the right-hand side of (3.26). The first one satisfies
<ClaNlls |9 N 3.27)
< Clldiv(nu) s | NI
< CN7K (W’ ) .
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The second one on the right-hand side of (3.26) satisfies

u-9B(VN)
1+ N

, aﬁN> <CN7K (W’) . (3.28)

By noticing inequality (2.1), we find that the third term satisfies

F@N) g IN\ s 1
<1+7N_3 (H——N>8 N>§CNTIC(W ). (3.29)

and the last term satisfies

w-P(VN) g (u-VNY 4 /
<1+7N_a (H—N)a N>§CNT/C(W ) (3.30)

combining (3.26)-(3.30), we arrive at (3.25). The proof of Lemma 3.5 is finished. O

End of the proof of Lemma 3.4.
We obtain the following inequality by summing up (3.17)-(3.25), for any § > 0,

@ —&) |0 (VN = co [0 v + 0P N |

d .
< &2 (0 (@iv(0), 9 N) + Collul} + SIVN Iy + CAKC (W)

Then summing up B, 0 < |B| <k — 1, taking § sufficiently small, we have

IVNIZ_, = IVOIZ_, +INIZ_,

50825 Z (aﬁ(divu),af’N)+C||u||,%+cNT/c<W’).
toslﬁlskfl

Finally, it is obvious to remark that there exists a constant C > 0 satisfying

IVNIE_; + NGy = C1INIE,
combining with Lemma 3.1 implies Lemma 3.4. O
Proof of Theorem 1.1. As we have seen, the proofs of Lemmas 3.1-3.4 are pretty technical.

Multiplying the result of Lemma 3.4 by any positive constant ¥ > 0 to be chosen, and adding it
to result of Lemma 3.1, we then integrate the final result over [0, 7] to obtain
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> (Ao e w! @), 0 W 0) + IEO IR+ 1GO I} + K IN O

0<|a|<k

— coke? Z (8P (div(u())), 3 (N (1))
0<|B|<k—1

t

+ [ [0 =0 i + 19N @R + (1 - olemR]dr
0

t
< CIWEO)|2 + CNy / k(W)
0

Now, considering the fact that Ag(N) is symmetric positive definite, and taking « small
enough, and combining with Lemma 3.4, we obtain

t t

||W8(r)||,%+/lc(w’(z)) dr<C ||W€(0)||,%+NT//C(W’(r)) dr |. (3.31)
0 0

Taking N7 sufficiently small, and noticing that the last term on the right-hand side of (3.31)
can be controlled by the left-hand side of (3.31), thus we obtain (3.15). So far, by the series
of energy estimates before, recalling the zero-relaxation limit, we find that (1.10) is a direct
consequence of estimate (3.15). It indicates the global existence of the solutions for the non-
isentropic Euler-Maxwell system (1.3)-(1.4). The proof of Theorem 1.1 is completed. O

3.2. Convergence of the solution as ¢ — 0
In this subsection, we study the global-in-time convergence from (1.3)-(1.4) to (1.16)-(1.17).
Proof of Theorem 1.2. We recall the non-isentropic Euler-Maxwell system (1.3)
o;nf + div (ngus) =0,
0 (nsus) + div (ngus ® ug) + 8—12V (n*:@s) = giz (—ns (Eg + eu® x BE) — nau‘e) ,

2
|u®|

2
9,0° +u®-Vo® + 598 divu® =

(2-&) = (6" - ).

€, BE+V x E¥ =0, divE*=1-n",

€0, Ef —V x B =¢nfu®, divB®=0,
and particularly the estimate (1.10) gives that

+o00
sug(||n8<t>—1||§+||98<t>—1||i+||E8<r>||i+||B€<r>—Be||i)+f Ju* @3 dr < e
>
- 0
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Consequently, the sequences (n°—1),.¢, (0% — Dgog, (E®)s~o and (B® — B.),.( are
bounded in L*® (R+; Hk), and (u?),- is bounded in L2 (R+; Hk).
Moreover, in D’ (R+ x K3 ), we have

g2 (8,148 + (u‘8 . V) ug) +¢ (u‘g x Bg) —0, as & — 0,
8(8,E8—n8u€) —0, as &— 0,
£0; B*—0, as &—0,

and that there exist functions 7 — 1,6 — 1, E, B — B, € L™ (R+; Hk) and i1 € L? (R+; Hk),
such that, the convergence (1.13)-(1.14) holds up to subsequences. Furthermore, we deduce that
(8;n%),~¢ is bounded in L? (O, T; Hk_l) for any T > 0 by using the first equation of (1.16).

Let 7 > 0. The sequence (n°),- is bounded in L? (O, T; Hk). Then, by classical compact-
ness theorems, for any ki € [0, k), the sequence (n?),.( is relatively compact in C ([O, T, H kl).
Moreover, up to a subsequence, we obtain the strong convergence (1.15) by the uniqueness of
the limit.

Therefore, we can pass the limit in each of the nonlinear terms of (1.3) to arrive at

i — A1) — div(nVe) =0,

20l

_ _ 2 _ _
00+ V6 + 0 divi= —@-1),

Ap=1—i.

This directly implies the existence of ¢ satisfying E = V¢. Consequently, we obtain the above
energy-transportation system (1.7).

Now we consider the initial condition of 7 and #. Since the strong convergence (1.15) is
uniform with respect to ¢ € [0, T'], then,

nf(0, )—a(0,.), 0°(0,)—0(0,.) inHM, as &—0.

Noticing n®(0, .) = ng and 6°(0, .) = 6, the equality (1.17) comes from (1.11)-(1.12) and the
uniqueness of the limit. Finally, as is known to all, the solution of the energy-transport system
(1.16) with smooth initial data (1.17) is unique. Thus the convergence of the whole sequence
(n®, u®, 0%, E¢, B®),. o can be obtained. The proof of Theorem 1.2 is completed. O
4. Global convergence rate for system (1.3)-(1.4)

The study of the error estimates is based on the results on the uniform global existence and
the global-in-time convergence from (1.3)-(1.4) to (1.16)-(1.17) established in the section above.

The result on the convergence rate for (1.3)-(1.4) is stated as Theorem 1.3. First of all, let us
recall the concept of stream function. For a conservative equation

oru +dive =0,
we call ¢ a stream function to this equation if ¢ satisfies

387



Y.-H. Feng, R. Li, M. Mei et al. Journal of Differential Equations 414 (2025) 372—-404
oo =v, divp=—u.

Next, we devote to finding an appropriate stream function for the non-isentropic Euler-
Maxwell system (1.3)-(1.4). We obtain the following conservative equation by subtracting the
first equation of system (1.6) from that of system (1.3),

o (ng — r_z) + div (ngue — r’zﬁ) =0.
Then the stream function ¢ satisfies

00 =nu® —nu,
divp =—m* —n).

The error of the electric field ¢ = Ef — E is a natural candidate of the stream function, since
diV(Eg —E_):—(ng —fz).

However, we can only get the information of div (8; E ) from the limiting system since we lose
the information of d; E after taking the limit ¢ — 0. As a result, we notice that d;¢ is not equal
to n°u® — nu, but takes the following form with the additional divergence free term K :

0o =nu® —nu+K.

Therefore, E¢ — E can be regarded as the stream function of the modified conservative equa-
tion below

8 (n® — i) + div (n°u® — fiii + K) = 0. (4.1)

Now, we begin to study the error _estimates. Let (n®, u®, 6%, E¢, B®) be the unique smooth
solution to (1.3)-(1.4), and (n,u, 0, E) be the unique solution to the energy-transport model
(1.7)-(1.8). Then, we denote

(N, B, ®°, F°,G*) = (n" —ii,u* —i,0° —0,E°* — E, B° — B,), 4.2)
(l’la, Uy, 90!3 E()lv BO!) = (aans’ 3aus’ aaes’ aaES’ 8”38) 5 (43)
(ia, s Ou, Eq, By) = (8%, 8%, 370, 3" E, 3*B), (4.4)
and
(Na» Ba, O, Foy, Go) = (0“N®,0“E®, 3%O°, 0¥ F*, 9°G*) . 4.5)

We prove the following result firstly.
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Lemma 4.1. Assume |[ng — 1|,
to the system (1.7)-(1.8) satisfies

9_0 — 1”k are sufficiently small, then the solution (n, u, 9_, E)

t
17 () = 1117 +/ I7(t) = iz dr <Clliig— 1z, Ve >0, (4.6)
0

t

@y + 13a@lz_s + / (NI} + l0@(DIF_,) de < Cllig— 117, Ve >0, @)
0

t
= = = 2
||9(z)—1||,%+/||9(r)—1||,%dr <Cléo—1],. Vvt>0, (4.8)
0

and

t
||E(r)||,%+||a,E(z)||,f_1+/(||E'(r)||,%+1+||a,E(r)||,f)drSC||ﬁ0—1||,3, Vi >0. (4.9)
0

Proof. Let 5 =7 — 1 and « € N3 be a multi-index with |a| < k. According to (1.7), for any
t > 0, we have

{a, p —div(V(76)) — div(iV¢) =0,
(4.10)

Ap=—p, my(1)=0.

then applying 9 to the first equation in (4.10), multiplying the resulting equation with 3% p, and
integrating it with respect to x, we have

1d 12 = _ _ _ - _ - _

577 19817 +1{00%(V5), 9 (Vp)) + {2d* (VO), 8% (V 3) + (87 (V). V (3% 5))

=(00%(V ) — 8%(EV ), 0 (V) + (0% (V) — 8% (AV8), 3% (V ) @.10)

— (376 V), V (375)).

where (-, ) is the inner product in L?. In view of the Poisson equation in (4.10), we have
(v, v (6)) = 0]

Noticing that 72, § are close to 1 and they are uniformly bounded, using the Cauchy-Schwarz
inequality and the Young’s inequality, there exist positive constants Py, &', C,r, such that

(60 (V5). 8*(V)) > Py |0V )|

and
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(70 (V8), 3%(Vp)) < &' [0 (V) | + Cor | 0% (V) |

Applying the Poincaré inequality to the Poisson equation in (4.10) yields
|Va*g| <cC|o*p| . (4.12)
With the help of Lemma 2.1, we have
(80 (V5) — 99V ), 8%(V5)) — (8%(5V ). V (8% 5)) < ClIAIKIAIE -
and
(70 (VO) — 0 (V0), 3 (V) < ClO k!l Al ey -
Then, the sum of (4.11) for all @ € N3 with |«| <k implies

1d

S IBIE + 151 + PUIVAIE < C (151 +1018) (1511 + 18121 ).

By noting that || 5|, ||@||x are small enough, integrating the above inequality over [0, 1], (4.6)
follows.
Moreover, it follows from (4.6) and (4.12) that

t
VEOIR + / VE@IZ, dT < Cllio— 112, Vi >0. (4.13)
0

Meanwhile, for a multi-index g with |8| <k — 1, from (1.8), it is easy to get
|o%a) < Cliplliprer. (4.14)
Applying 3,37 to both sides of the Poisson equation in (4.10), we have
A, 0P ¢ = div P (nin).
Then, it follows from (1.8) and (4.14) that
|0:97 E| < [0 @) || < Clipllipi+1- (4.15)

By (4.6), it implies that
t
o, + [ B de < Climo— 1. vi=o.
0

This, together with (4.13), implies (4.9).
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In the same way, by combining (4.6) and (4.14), we obtain
@Iz, + / li(0)lIgdr < Cllig— 1z, V¥t >0. (4.16)

For a multi-index y with |y| <k — 3, applying 9,9" to the equation for « in (1.8) implies

\% 0 0
8tayﬁ:—8y <—nat9— ﬁvnatn—i— VB,n—i—Vat@-I—a; >
n

In view of d;n = — div(nu), by (4.6) and (4.14), we have
“8,8VﬁH < Cllully+2 + ” B,E”M :

This, together with (4.16), yields (4.7).
From the second equation in (1.7), we have

_ 20it|?
G_1= |u]

_ 2.
— 0,0 —u-VO0 — §9div12.

Let @_ =6 — 1, then applying 9% to the second equation in (1.7) and taking the inner product
with 8% in L? yields

=12
(a“@,a“®)=<a“ (@),a“®> (8,070, 9°0)— (3% (@@ - VO), 3°0)— <§8°‘(§divﬁ),8°‘®>.

By the Cauchy-Schwarz inequality we have

Sar ||a“®|| +[0%0|* + (i - 9%(v ), %6 )+<§a“©divﬁ,a“©>

<\a

2 - _
( ar )H [0%©] + (i - 0% (VO), 8*©) — (3% (it - VO), 3°O) (4.17)
2 A e — aas = =
+ <§3“®dlvu, 8“®> — <§8“(«9 divir), 8“®>.
Noticing # is close to 0 and uniformly bounded, there exists a constant C*, such that

(i %(v6),06) < * 0], @],

By the Cauchy-Schwarz inequality, the Young’s inequality and (4.7), we obtain
Za_-—a_ 20{' s = e 5112
0“0 divie, 90 ) < | 29“O| || divil [oe] <c|e];,.

2 I a2
+e llully,

2
o (225 | 106l < § an o %6 <
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where C, and &’ are usual constants with Cy > ¢&’.
By Lemma 2.1, we have

(it-9%(V®),8*0) — (8%(ii - VO), 3*O) < C|O] kIOl 4,
and
2008 qivr _ 2a00F qiv iy 90 a ® 5112
'<§8 Odiva — ga (@ divir), d ®>‘ < ClO[klI®Ni -

Then, the sum of (4.17) for all @ € N3 with || < k yields

2 L1617 + 1617 < CIOII Ot

2dt
Since ||®|| is sufficiently small, integrating the above inequality over [0, 7] gives (4.8). O

From (1.7)-(1.8), we obtain

divd; V¢ = —d;1 = div(inir),

which indicates that there exists a function ¥ such that

WVo—nii=V x W,
(4.18)
divy =0.
We add the following restriction condition to make W uniquely determined,
my(t) = / Y(t,x)dx =0, Vr=>0. 4.19)

T3
The estimate for the function W is as follows.

Lemma 4.2. The solution W to (4.18)-(4.19) satisfies
Wel® (R+; Hk> and Ve l? <R+; Hk_l) .

Proof. By the similar way as that in Lemma 2.2 of [17], we can prove the Lemma 4.2. We omit
it for the sake of simplicity. O

Next, by modifying slightly the proof of Lemma 2.3 in [17], we can also obtain the following
uniform estimate with respect to €.
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Lemma 4.3. It holds that
t
[(E@R +1ve @i} ,)ar<clug-vl;. wzo. @20
0

where G¢ is defined by (4.2).
Next, by taking the difference of the first equations in (1.6) and (1.3), we have
9, N + div (ngus - ﬁﬁ) =0.
It follows from (1.3), (1.7)-(1.8) and (4.18) that
div F® = —N?, “4.21)
and
O F° = (n°u® —nu) + %v x G —V x W. 4.22)

According to the concept of stream function at the beginning of this section, F¢ is a stream
function of (4.1) with K =71V x GE = V x W.

In the following, we prove the estimates for the error function (N¢, E¢, ®Ff, F¢, G?).

Lemma 4.4. It holds
2 2 2 2
= A (”Ns(t)”kﬂ OO+ [F O], + ”Gs(t)”kfl)
+00
[ (V@I + e @l + 1P ol + V6 @) dr < e,
0

in which pq is defined in Theorem 1.3.

In details, we use several lemmas to complete the proof of Lemma 4.4. For T > 0, we first
take the difference of the second equations in (1.8) and (1.3) to get

&2 (8; (ngus) + div (nsus ® ug)) +V (nség) -V (ﬁé)
=— (nSEg - sz) —¢en® (ue X Bg) - (ngus - ﬁﬁ)

For o € N3 with |a| < k — 1, by applying 8% to the above equation, multiplying the resulting
equation with Fy, integrating it with respect to x and ¢, we have
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T T
o:/e2 Fy, 38, (n dt+/ Fy, 8% (n°u’ —nit))dt
0 0
T
+/(Fa,8°‘ (V (n°0°) — V (760)))dt
0
. . (4.23)
+/(Fa,8“nF dt+fFa,8“ (N°E))dt
0 0
7 6
+ / <Fa, £29 (div (neug ® ug)) + 0% (ngue X BE)>dl £ ZRj,
0 j=1

with the corresponding R ; where j is from 1 to 6. The parameters p; and § in Lemma 4.7-4.8
are defined in Theorem 1.3, and > 0 is an adequately small constant.

Lemma 4.5 (Estimate of R»). For all |a| <k — 1, it holds

1 1
Ro = > 1Fa(D? +  1Go(T)? = Ce¥' — €8 sup |GE()];_, — Cue / |[vGe@|;_,de
2 4 0<t<T
(4.24)

Proof. By (4.18), (4.22), (1.3), (1.10), (1.20), Lemma 4.2 and the Cauchy-Schwarz inequality,
we have

Q..|g_

T
1 1 1 1
Rz=5||Fa<T)||2+5||Ga<T>||2—5||Fa(0>||2—5||ca<0>||2—/ (eGa, 9*W)dt
0

T
—i—/ Gy, 0,0% \IJ
0

Sk

T T
1 1
= 2 IEDI 4 5 1Ga(T)IP = Ce271 / (6G o %0 dr+/eGa,a,a w)d
0 0

Then it follows from 7 € L™ (R™; Hk) and i € L™ (R*; Hk’l) that W is continuous at
t = 0. Hence, by the Young’s inequality

T
/%(sGa, W) dt| < |(Go(T), 3*W(T))| + & |(Gu(0), 3¥W(0))|
0

1
~NGa(T)|I* + Ce*.

.J;
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It is sufficient to prove the following inequality

T T
/(sGa, 8,0°W)dt| < Ce® +C5 sup |G°@)|;_, + u/ IVGE @) |7 _,dv. (425
0 0<t<T 0
In fact, for 1 < |a| <k — 1, (4.25) obviously holds by using (4.20) and Lemma 4.2. It needs
more calculations when o = 0. Noticing div G® = 0, there is a function n® such that

V x n® = G¥,
divn® =0.

Let us introduce a restriction condition to make 7° to be uniquely determined,

/ns(t,x)dx =0, Vt>0.
’]I‘3

Since div n® = 0, it follows from the Poincaré inequality and (1.10) that
[l =clvirol,_, =clé®],_,. ¥r=o. (4.26)

Then by the expression for W in (4.18), (1.7)-(1.8) and taking integration by parts, we get

(eG®, 9, W) = (en®, div(aw)it) + (en®, 10, VP) + <sn€, nd; (V(:e)». (4.27)

For the last term in (4.27), we obtain

<8n8, nd, (wsé) >> = —(en®, 0V Inad,a) — (en®, VO, 7).
Furthermore, substituting it into (4.27), we have
(eG®, 0, W) = (en®, div(nit)ir) — (en®, 0, Vi) — (en®, 6V Inad;n) — (en®, VO ).  (4.28)

Now let us estimate the four terms on the right-hand side of (4.28). First,

|e (n°. div@@i)i)| < Ce |G, _, lillz_,-
Next, by the Poisson equation in (4.10) and noticing the estimate (4.15), we have

e (n®. 8,9 Va)| < Ce [0, VAl |2 V] < Ce | G°[,_y 17 = Ty

Additionally, from (1.8), it is easy to get

—(OVIna+ Vo) =i+Vo=i+E.

395



Y.-H. Feng, R. Li, M. Mei et al. Journal of Differential Equations 414 (2025) 372—-404

Thus, for the last two terms on the right-hand side of (4.28), we have

l{en®, 6V Inad;n)+ (en®, VOd,n)|

\(en®. (@ + E)d, 1)

| (en®, (it + V) ;7|

(en®, wd;nn)| + |(en®, Vo)

Ce |G* ”k—l ”’2”/%4 +Ce|G* ”k—l I — 1”1%4

Ce|G* ”kfl (”ﬁ — 1+ ||L_t||%—1)-

NN

N

Combining all the estimates above, we obtain

(eG*.aw)] < Ce [ 6], (Wi =113, + ) -

Integrating it over [0, T'], using the estimates (4.6), (4.7) and (4.26) and noticing the Young’s
inequality, we get

T T
/(sGe,a,\Il)dt gc/ e <||ﬁ— 12 +||ﬁ||,%71)dt
0 0

T
+c52/ (||ﬁ— 12, + ||ﬁ||,%,1)dt
0
<C§ sup HG’E(t)Hi71~I—C82,
0<t<T

which indicates (4.25). The proof of Lemma 4.5 is finished. O

Lemma 4.6 (Estimate of R3). For all |a| <k — 1, there exists a constant ¢ > 0, such that

T T
2
> [ (0@ -5 10uolP) dr—caf(\N%)n%_l+||®8<r>Hk_l)dr, (429)
0 0
and
T
Ra+ ' 2 [0, +er [ (INIF +10a@IF) dr

0 (4.30)

_ caf<||N8(r>||,%_1 +e@];_dr.

396



Y.-H. Feng, R. Li, M. Mei et al. Journal of Differential Equations 414 (2025) 372—-404

Proof. By recalling and using (4.21), we have

T T
Ry = _f(div Fo, 9% (n°6° — i) )d1t = / (Na, 3% (n°6° — 1)) dt.
0 0

Let us introduce
P(n)=60n, P'n)=6>0, QO)=n%0, Q®) =n=>0.

Then we obtain

1
nf0° — i = /(P’ () N* + Q' (éf(s)) ©°%)ds,

0
where
A(s) =i+ sN,0%(s) =0 + sOF.
According to (1.10), (4.6), and (4.8), it is easy to obtain that n°(s) — 1, 6 (s) — 1 are suffi-

ciently small in L*° (]R%Jr X T3), uniformly with respect to ¢ € (0, 1] and s € [0, 1]. Additionally,
we have

1 1
a” (n’S@s—ﬁé):/P'( (s)) N ds+/ (n°(s)) N®) — P' (n°(s)) No) ds
0 0
1 1
—i—/Q’ <9£(s) @ ds—i—/ 95(s)) @8) —0 (és(s)> @a) ds.
0 0

First, using (1.10), (1.19), (1.20), (4.6) and (4.8), it is easy to find that n¢, 0¢ are uniformly
bounded from below for all ¢ € (0, 1] and s € [0, 1] when § is sufficiently small. Consequently,
the monotonicity and continuity of the pressure function P (p) and the temperature function Q(6)
indicate that there exists a positive constant cf > 0, such that

1
/NO,,P £(5)) Na)ds > 4c} | No I
0
Noticing that

1 1
[Na, 9 (S) ®a /Q/ 98(8) Na,@a)ds
0 0
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by using the Cauchy-Schwarz inequality and the Young’s inequality, there exists a positive con-
stant ¢;” > 0, such that

(No, Og) =

~/
- 2 A 2
> —¢1 || Nl Y 1O~

Denoting ¢} = ¢ Omax 0o’ (95 (s)) then C‘ = i Omvazl o’ (08(s)) additionally, we note ¢} <

c1 < cl, then we have

1
fNa,P £(5)) Na)ds > 4y [ NolI?, 4.31)
0
1
[ {Me 0 () 02} s = —cr 1Nl = 5 o 2. (432)
0

Letting & be sufficiently small, the weak convergence from (nf), ES) to (ﬁo, EQ) yields that
7o = Lllx + | Eol|, <.
Thus, by using the Moser-type inequalities, we obtain
[0% (P (7)) N¥) = P" (#°()) Ne[| = CE [Ny

0" (0 () 0) - ' (5 ) eu

which, along with the Young’s inequality and the Cauchy-Schwarz inequality, implies

<Cs|ef ”kfl .

1
f Na, 8% (P (7°()) N¥) = P’ (7°(s)) Na)ds = —c1 [INo 1> = C8 | N7 _, , (4.33)
0
and
1
/ N., a“ 9 (s)) @8) —0 (ég(s)) @a)ds > —c NP = CS|O°]7_,.  434)
0

Hence, by combining (4.31), (4.32), (4.33) and (4.34), it yields (4.29).
Subtracting the second equation of the system (1.7) from the third equation of the system
(1.3), we have

—®°.

_ 82 |u£|2 B 2|IZ|2

2 2 2
8,®8+u5‘VGS—IZ'VG—i—gGSdivus—§9divﬁ= 3
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Applying 9% to the above equation yields
- 2 . 2 P
30°O° + 3% (u° - VO) — 3%(ii - VO) + ga“ (6°divu®) — ga“(e divir)

2—¢? 2
=% e <|u8|2>——8a (|ﬁ|2)—a“®€,
3 3

noticing that
3 (u® - V) — 3% (@ - VO) = 3% (uf - VO©) + 3% (u® - V),
and
%a“ (0% divu®) — %a“(é divii) = %a“ (©° divu®) + %a“ (6 divu®),
then we have
300 + 9% (u° - VO©) + 9% (u® - VO) + %a“ (©°divu®) + %a“ (0 divu®)

2
_ 27 (|u8|2) Y (|12|2) —5%e°.
3 3

Taking the inner product with *®°¢ in L? yields
(004, Og) + (O, Og) + (3% (u® - VO), Of) + (3% (u® - VO) , Og)

+ <§a“ (©°divu®), ®a> + <§a“ (0 divu®), ®a>

- <2_382 0 (|u ). @a> - <§a“ (1a?). ®a>.

By the Cauchy-Schwarz inequality we have

% 1@ l1? + 18I + (uf - 8% (VOF), 8% OF) + (u - 3% (VH), 3* &)

N =

2 2
+ §B“®8 divu?®, 8“®£> + <§8“9 divu?®, 8“®8>

‘(5 wr) “(5r)
a( 3 |u| 9 3|u|

— (0% (u® - VO©),9°0°) +(U* - 8%(VH), 3°O°) — (3% (u® - VO), 3*©F)

< 06| +{ur - 0% (Vo). ae)

(4.35)

2 2
+ <§8°‘®8 divu?®, 8“®6> — <§8a (@‘s divu‘s) , 8“®8>
2
3

2 s _
+ <§a“9 divu®, a“®8> —< 8% (6 divu®), a“®8>.

399



Y.-H. Feng, R. Li, M. Mei et al. Journal of Differential Equations 414 (2025) 372—-404

Noticing (1.10) and u® is uniformly bounded, there exists a constant C > 0, such that

(u®-0*(ve®),0%e’)<c|e’|,_, |o°
(u - 0(v), 56" < || [o*(VO) | |o 07| < C |©°

i

s I©°1,

<§a°‘®8 div u®, a“®€> < %a“@f |diva®| [a%©°| < C|e°]:_,.

and

(ordam.irer) = | 2] lawa | frer] <c er[i,.

By the Cauchy-Schwarz inequality, the Young’s inequality, (1.10) and (4.7), we obtain

4 — 22
3

2 2
0 (5 [u[) ot 3w | Ja* | < Cor | ©° f_y +¢ iy

|o*ef| <
and

2 4
0§ i) | |a* | < 3 Nl oz |a“©° | < Cor O, +¢ Nl

where C, and ¢’ are usual constants with C,r > ¢’.
By the Moser-type inequality [15,19], we have

(u - 0%(V0r), 1) — (o° (u” - vOr) 0%6r) = C [ |2,

(uf - 9% (), 0%} — (0w’ - Vi), 0°0F) = C |° 2.

<§a”®8 div u®, a“®8> - <§a°‘ (©° divu®), a“®5> <cle®|r_,,
and

<§8“édivu8, a“®8> - <§3°‘ (6divu), 3“®8> =clef|i,-

Consequently, according to (4.35) and adding the above inequalities for all |ot| < k — 1, notic-
ing (1.10), (1.19), (1.20), (4.6) and (4.8), it is easy to find that when 8, |6 — 1|, are sufficiently

small, 7i(s) — 1, §%(s) — 1 are sufficiently small in L (R+ X T3), uniformly with respect to
e€(0,1] and s € [0, 1], then we have

1d
5 7 18al® +10al* < C |, [©°],

= = 4.36
<C|0® 1], + -1 _pef = 1]+ o 1] 39
< Ce?r,

400



Y.-H. Feng, R. Li, M. Mei et al. Journal of Differential Equations 414 (2025) 372—-404

5
Multiplying the above inequality (4.36) by %, then integrating over [0, T'], and adding it to
(4.29) yields

T T
19a (T +c1 / (IN @I + 186 (D)) d — caf(nNS(r)n;%_l + e @] dr
0 0
<R3+ Ce,

which proves (4.30). O
Next, we borrow two lemmas from [17] without proof as follows.

Lemma 4.7 (Estimate of R, see Lemma 2.5 in [17]). For all \a| <k — 1, it holds
| T
IRl < Ce2P1 4 1 | Fo (DI + 11 f |vGE@|;_;d. (4.37)
0

Lemma 4.8 (Estimates of Ra, Rs and Re, see Lemma 2.8 in [17]). For all |a| <k — 1, there
exists a constant ¢y > 0, such that

T T
Ri+Rs+Re > c2/ | Foe (D)1 dT — ca/ |Ne@)|3_, de — Ce?. (4.38)
0 0

Since Ry + R34+ Ra+Rs+Re = —R1, combining Lemmas 4.7-4.8, (4.21) and (4.23), and
summing up all |¢| <k — 2, we have

NS D, + 07D, + [FED, + G5 D5,

T
+ [ (v ol + 1o @I + 1ol ) e
0

T
<cer+s swp [G* 0, +Cu [ |96 @} ydr,
0<t<T 0

provided that § is small enough. By taking the superior limit with respect to 7', we obtain

2 2 2 2
sup ([N Ol + [0 @l + P ol +[6 0l

+00
+ [ (V@R + et @l + 1ol ) dr (4.39)
0
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+00
<™ —i—Cu/ Iv6E@)|;_, d.
0

The proof of Lemma 4.4 is ended after borrowing Lemma 2.9 in [17] as follows.

Lemma 4.9. It holds

+o00
VGE(D)|?  dt < CePr, (4.40)
k—2
0

Proof. We omit it for the sake of simplicity. O
The proof of Theorem 1.3 follows from the estimate below.

Lemma 4.10. It holds

+00
sup &2 |E°()|7_, + / |&s@|;_,di < Cce?r. (4.41)
teR+ 0

Proof. It is easy to find that the second equation in (1.3) is equivalent to

v (n°6°)

nS

e2u’ + &2 (u® - V)u® + —Ef —suf x B —u®.

We obtain the following equation by subtracting the equation for # in (1.8) from the above
equation

g2, B + B =HS, (4.42)

where

V@ne*) V(i0)

n¢ n

H‘i:—gz(u£~V)u8—< )—Fs—susts—sza,ﬁ.

Let 7 > 0. For all @ € N3 with |«| < k — 2, by applying 8% to (4.42), taking the inner product
with wy in L2 and integrating over [0, T'], we have

T T
- - a 2 -
||eaa<T>||2+/||aa(r>||2drs<:/||a H ()| dt + lleEq ()12 (4.43)
0 0

Because k > 3, we use the Moser-type inequality for the quadratic term
[ @ )| < Cllu® k=1l le—1,  Vu® 0" € HY, ol <k —1.
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Thus, for |a| < k — 2, we obtain

2
Jo% (w x G)| = € lu [ [G° s 19% (- V)| = € uf;:

Then by (1.10), (4.6), (4.8) and Lemma 4.4, we have

Thus, noticing (1.10) and (4.7) together with Lemma 4.4, we have

n€

epe =0
5" <V(" ) V(@))H = 8% (6°VInnt + VOF — GV Inii — V)| < Ce>".
n

T
94HE (1) |* dr < Ce2Pr.
“ 1 H
0

Additionally, (1.20) implies
leEa(0)]* < Ce?P.

Substituting these estimates into (4.43) and summing up all |a| < k — 2 leads to

T
o=l + [ 12 @l pdr < cen,
0

which proves (4.41). O
Proof of Theorem 1.3. Theorem 1.3 follows by combining Lemma 4.4 and Lemma 4.10. O
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