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Abstract

The initial value problems of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell
(CNS-M) systems arising from plasmas in R3 are studied. The main difficulty of studying the bipolar
isentropic/non-isentropic CNS-M systems lies in the appearance of the electromagnetic fields satisfying
the hyperbolic Maxwell equations. The large time-decay rates of global smooth solutions with small am-
plitude in L9 (R3) for 2 < g < oo are established. For the bipolar non-isentropic CNS-M system, the
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341
difference of velocities of two charged carriers decay at the rate (1 + ¢) 4135 which is faster than the
341 _2
rate (1 +1¢) it (In(3+ t))1 4 of the bipolar isentropic CNS-M system, meanwhile, the magnetic field

decay at the rate (1 + t)_%+% (In(3 + t))l_§ which is slower than the rate (1 + t)_%—’_% for the bipolar
isentropic CNS-M system. The approach adopted is the classical energy method but with some new de-
velopments, where the techniques of choosing symmetrizers and the spectrum analysis on the linearized
homogeneous system play the crucial roles.
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1. Introduction and main results

A plasma is a collection of fast-moving charged particles. It is believed that more than 9/10 of
the matter in the universe is in the form of plasma, from sparse intergalactic plasma, to the interior
of stars to neon signs. At high temperature and velocity, ions and electrons in a plasma tend to
become two separate fluids due to their different physical properties (inertia, charge). One of the
basic fluid models for describing plasma dynamics is the bipolar compressible Navier-Stokes-
Maxwell (CNS-M) system, in which two compressible ion and electron carriers interact with
their own self-consistent electromagnetic field. Generally, it takes the form of the bipolar CNS
equations forced by the Electric field force ¢, & and the Lorenz force g, %" x 2 in electromag-
netic field, which is governed by the self-consistent Maxwell equations. Here the index v =e, i,
stands for the electrons and the ions in plasmas, respectively. The symbols & € R3, % € R?,
%" € R? and A" > 0 represent the electric field, the magnetic field, the velocity and the density

of the two charged carriers, respectively. The thermodynamic variables 7" > 0, 0, = EIC sT"

2
and &, = — A"V 0, stand for the absolute temperature, the internal energy and the pressure of

the charged carriers, respectively. The total energy of the charged carriers is defined by
v 1 V2 .
Ey=my, N ﬁv+§|62/ “], v=e,li.

In the following, we first consider the initial value problem to the scaled bipolar non-isentropic
CNS-M system (see [1,4,13,16,21,25,26])

QN+ V- (ANUV) =0,
O (my N U+ - (myN"U QU")+V P,
=qy N (cg"—l—n%” x%)+uvA%”+u;V(V~%”),

Ey — NI, (1.1
T

W+ (EU + PU) = qu N U E - +UNY,

M2 E -V x B=—n (qe,/WZ/e +qiwf%i) L A E =g N g,

NB+VXxE=0, V-B=0, (t,x)el0,+00) xR,

where the physical parameters 7T, > 0, Z, = %ICB7;, Kg>01>01t>0 nl=c=
(eouo)_%, g0 >0, wo >0, uy >0, ), my,>0,g,=—1 and ¢; = 1 are the back ground tem-
perature, the background internal energy, the Boltzmann constant, the scaled Debye length, the
energy relaxation time, the speed of light, the vacuum permittivity, permeability, the shear vis-
cosity coefficient, the bulk viscosity coefficient, the masses, the charges of the electrons and ions,
respectively. Notice that the similar terminology “Maxwell-Navier-Stokes system” was used in
Masmoudi [22] but for a different system. Throughout this paper, we set

To=Kp=A=t=n=p,=m,=1 and pn,=0, v=e,i,
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without loss of generality. This assumption is not an essential restriction in the investigation of
global existence of smooth solutions for system (1.1). Otherwise, the smallness conditions on
the initial data in the main results in Theorem 1.1 would depend on these parameters. Then, for
smooth solutions with A4, TV > 0, system (1.1) is equivalent to

QN+ V- (ANUV) =0,
a,%“+(%“.v)%”+% =q (E+ %" x B) + i/
8,T"+§T”V~02/”+%”-VT”+%|%”|2:—(7’”—1), (1.2)
E -V XB=NU—NU', V-E=N - ¢,
BB+VxE=0, V-B=0, (t,x)el0,+00)xR3,
supplemented with the initial condition
N U T, E Blimo= (N, %0, T, &, A%, v=e,i, xeR, (1.3)
which satisfies the compatibility condition
V- =0 0 v.8'=0, xeR’. (1.4)

Due to the fact that A4V, TV > 0, system (1.2) is symmetrizable hyperbolic-parabolic (see
(2.25)). Then it follows from the result of Kato [17] and the pioneering work of Matsumura-
Nishida [23] that the initial value problem (1.2)-(1.3) admits a unique local smooth solution as
long as the initial data are smooth.

Lemma 1.1 (Local existence to the bipolar non-isentropic CNS-M system [17,20]). Assume in-
teger s > 3 and (1.4) holds. Suppose (N0 —1, %0, T —1, &°, °) e H*(R3) with /"0,
T > 2 for some given constant k > 0. Then there exists T1 > 0 such that problem (1.2)-(1.3)
has a unique smooth solution which satisfies N, T" >k in [0, T;] x R? and

" ec'((10.1i 72 (R?) ) ne ((10.701; 1 (RY)).
N =L T =18, B ec (0.1 H (RY)) ne (0.7 1 (RY)).

Before stating the main results, let us recall some previous related work. For the CNS-M
systems, Fan-Li-Nakamura [7] proved the convergence of the non-isentropic CNS-M system to
the incompressible magnetohydrodynamic equations in a bounded domain. Late then, Fan-Jia
[6] established the local well-posedness of the non-isentropic CNS-M system with vacuum (the
density may be zero). By means of the Green’s function method and energy estimates, Duan [4]
further proved the global existence and the large time decay rates of smooth solutions near a
constant steady-state in unipolar isentropic case (in which the energy equation is not contained).
By using classical energy methods and the techniques of symmetrizer, Feng-Peng-Wang [8] and
Wang-Xu [32] generalized the results to the unipolar non-isentropic CNS-M systems.
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On the other hand, the CNS-M systems turn into the incompressible Navier-Stokes-Maxwell
(INS-M) systems when the densities of the charged carriers are invariant. For INS-M systems,
by using the Fujita-Kato’s method in /! based (for the Fourier coefficients) functional spaces,
Ibrahim-Yoneda [15] proved the local existence of unique solution and loss of smoothness of
the velocity and magnetic field for periodic problem. Then, Ibrahim-Keraani [14] showed the
existence of global small mild solutions in three dimensions and the same results in a space
‘close’ to the energy space in 2 dimensions. With the help of a priori Ltz(Lf?O)-estimates for
solutions of the forced Navier-Stokes (NS) equations, Germain-Ibrahim-Masmoudi [10] proved
the local existence of mild solutions for arbitrarily large data in a space similar to the scale
invariant spaces classically used for NS systems and refined the results of [14]. By means of
Littlewood-Paley analysis, Yue-Zhong [33] proved the global well-posedness of solutions in the
Besov spaces B122,1 X B3/22,1 X B3/22,1 provided with some sufficiently small initial data.

If we neglect the friction forces in charged fluids, the CNS-M systems become the Euler-
Maxwell (E-M) systems for the ideal smooth charged carriers. For the E-M systems with velocity
damping terms, Duan [3] and Duan-Liu-Zhu [5] studied the asymptotic behaviors of global so-
lutions of the isentropic model, meanwhile, Feng-Wang-Kawashima [9] and Wang-Feng-Li [31]
investigated the long time decay properties of global solutions for the non-isentropic models. We
also recall the global existences results of solutions for E-M systems without damping terms in
[2,11,12].

Based on the fact that the friction forces exist between any moving particles in any real fluids,
the CNS-M systems for viscosity fluids are more meaningful than the E-M systems for smooth
fluids. However, besides the structure of the characteristic equations of the CNS-M systems are
much more complex than that of the E-M systems, the dissipative property of the CNS-M systems
in R? is much weaker than the one of the E-M systems, because the velocity function is no
longer integrable in time-space, there are no results on the asymptotic decay of solutions to the
bipolar isentropic or non-isentropic CNS-M systems up to now. A natural question is: how about
the solution behaves as time goes to infinity? The goal of the present article is to consider this
problem. The first main result can be stated as follows.

Theorem 1.1 (Global existence and time decay rates for the bipolar non-isentropic CNS-M sys-
tem). Let s > 4 and (1.4) hold. Then, there are 59 > 0 and Co > 0 such that if

< do,

H(JV\)O A go’go)‘ -

then problem (1.2)-(1.3) admits a unique global solution (N, %", T", &, B) satisfying
%" e ' (10, +00); H <R3>) n ¢ (10, +00); H* (]R{3)> ,
N =1L T" = 1,6,2) e C' (10, +00): B~ (R*)) N C (10, +00); H° (RY)),
and

sup (A0 = L2, T (1) = 1, E@), BO)| o g3

>0

<Co H(,/V”O — 1,2, 7~ 1’50"%0)”113'(11&3)'
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Moreover, there exist 51 > 0 and C1 > 0 such that if

H(,/V"O—1,%”0,7'”0—1,(530,%70)” +H(L/VUO_l’%UO,TVO_LéaO’%O)H <8,
HO(R3) LI(R3)

then, the solution (N, U, T", &, PB) satisfies forany t >0,V 2 < q < +00,

(A0 =170 = 1) g gy < QL1 +0)7F, (1.5)
)(%E(t)+ﬁz/"(z)"Lq(R3) <C1+073, (1.6)
A0 _%i(t)HLfI(R3) <Ci(l 47T, (1.7)
16O oy < CL1+0)7 4, (1.8)

and
1B agsy < C1(1+07 T a3 + 1) 77 (19

Remark 1.1. It should be emphasized that the appearance of the energy relaxation term in the
third equation of system (1.1) plays a key role in the proof of Theorem 1.1.

Remark 1.2. Note that in system (1.1), the masses of two charged carriers are assumed to take
the same value 1. In fact, this assumption is not physical. That is, if we remove this assumption,
similar results with the same time decay rate as in Theorem 1.1 can be obtained even though
the disparate masses could induce a new difficulty in carrying out the linearized analysis of the
coupling system for obtaining the time decay. We omit this.

Remark 1.3. It is well known that for classical CNS equations, the density, the absolute temper-

. . s _3
ature and the velocity converges to its equilibrium state at the L2 rate (1 4)~ 4. However, as one
can see in Theorem 1.1 that for CNS-M equations, the L? decay rate of the density, the absolute

c. _3 c
temperature and the total of velocity is (1 + 7)™ %, which is the same as the L? rate of the CNS
equations. This shows that these estimates are optimal in comparison with the CNS equations

for g = 2. However, these decay estimates are not optimal when g > 2. Notice that without con-
3 1
sidering the extra (1 + t)’% decay, the time-decay rate of L4 norm has to be (1 + t)ff(l*ﬁ) for

2 < g < o0. Thus, the rate (1 +¢)~% corresponds to the case g = 2 only.

Remark 1.4. During the discussion of the linearized CNS-M system, since the electric field &

satisfies a time evolution equation and initial data &% e L1(RY), the higher time rate (1 + t)_%
3 1 .

of ||&] is natural. Moreover, the time decay rate (1 + 1" of |wet) — % (t)| e for the

velocity component is slower than (1 + t)_% in the case of the NS system. This point essentially
results from the magnetic field effect of || %] L« which has the slowest time decay rate (1 +

3,3 2
134 (In(3 + t))lf? among all the components of the solution to the bipolar non-isentropic
CNS-M system.
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Remark 1.5. The principal difference and the chief difficulty for proving the large time decay
rates between the CNS-M systems and the E-M systems stem from the fact that the two char-
acteristic equations corresponding to their linearized homogeneous systems are very different.
Indeed, for the E-M systems, we only need to consider the asymptotic properties of character-
istic roots when |k| goes to O and when |k| approaches +o0o. However, due to the much more
complex structure of the CNS-M systems, we have to divide the frequency space into three parts
and even more (see the proof of Lemmas 3.1 and 3.2).

Remark 1.6. The essential difficulty between the unipolar CNS-M system and the bipolar CNS-
M system lies in the fact that the structure of the bipolar system is much more complex than that
of the unipolar model. For removing the difficulties caused by two charged carriers, we introduce
the ‘total functions’ and ‘difference functions’ for unknowns. Then the linearized homogeneous
equations of the bipolar non-isentropic CNS-M system (3.1) can be written as two decoupled
subsystems (3.9) and (3.12).

In comparison with the bipolar non-isentropic CNS-M system, the bipolar isentropic CNS-M
systems are the other important class of equations due to their concise applications in plasmas.
Besides the density .4 > 0, the velocity %" € R3, the electric field & € R? and the magnetic
field Z € R3, we use &, = P, (A"") to represent the pressure functions of two charged carriers
with &) > 0, then the bipolar isentropic CNS-M system with all the parameters equal to unity
is written as

QN+ V(N UV) =0,
W (NYU)+N - (NU QU )+ VP (NY)=qu N (E+U" x B)+ AU,
WE-NXB=NU— N Y, V- E=N — N,

WB+VXxE=0, V-B=0, (1,x)€l0,+00)xR3.
(1.10)
For smooth solutions with .4#¢, 4 > 0, we introduce the enthalpy functions 7%, which sat-
isfies AVIE (NV) = D] (A7) Since P, s strictly increasing on (0, +00), so is J%,. Then
system (1.10) is equivalent to

YNV AV (NUY) =0,

AU
U’ + (U’ - NYUY +VH,(NY)=qg, (E+U" x B) + ——,
A+ (1) (4) =au R R
6E-NXB=NU— N Y, V- E=N —N°,
KB+V xE=0, V-B=0, (t,x)el0,+00)xR>,
supplemented with the initial condition
N U E, B)li—o = (N, %", 8° B°), xeR v=e,i, (1.12)

which also satisfies the compatibility condition (1.4).
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It follows that system (1.11) is also symmetrizable hyperbolic-parabolic provided that .4V is

positive. Then problem (1.11)-(1.12) admits a unique local smooth solution when the initial data
are smooth.
Lemma 1.2 (Local existence of solutions to the bipolar isentropic CNS-M system). Assume in-
teger s > 3 and (1.4) holds. Suppose (JV”O —1, %, &9 ,@0) e H (R3) with N0 > 2 for
some given constant k > 0. Then there exists T1 > 0 such that problem (1.11)-(1.12) has a unique
smooth solution satisfying N >« in [0, Ti] x R3 and

#’ec'((10.1i 172 (R?) ) ne ((10.7v): 1 (RY)).
NV =1, B)eC! (([o, T H! (R3)) nc (([o, 71 H* (R3)) .
Next, let us state the second main results of this paper as follows.

Theorem 1.2 (Global existence and time decay rates for the bipolar isentropic CNS-M system).
Let s > 4 and (1.4) hold. Then, there are 5o > 0 and Cqy > 0 such that if

oo,
then problem (1.11)-(1.12) has a unique global solution (N, %", &, %) satisfying
%" e ' (10, +00); H2 (R?) ) n € (10, +00); H* (R?)),
(N'=1,6,8) € C' (10, +00); B (RP) ) N C (10, +00); H° (RY)),

and

sup [ (A (1) = 1,2V (), £0). B s s, < Co "(JV”O— 1,02/“0,5’0,,%0)”

>0 HS(R3).
Moreover, there exist 51 > 0 and C1 > 0 such that if
v0 V0 @0 0 v0 V0 @0 0
H(JV L% ’g’%)“y6(R3)+“(W L#™. & %)HLI(]IU = o,
then the solution (N, UV, &, B) satisfies foranyt >0,V 2 < q <400,
3

|4V @ =1 g gsy = 10 +D7F, (1.13)

H% 0+ (I)H ary SC10+0” i, (1.14)

[ -2 0], b =40 G 40!, (1.15)

_3
||éa(t)||Lq(]R3)§C1(1+f) 4, (1.16)
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and
_343
1B Laws) < Cr(1+1) "%, (1.17)

Remark 1.7. The crucial difference between the isentropic CNS-M system and the non-
isentropic CNS-M system results from the fact that the characteristic equation corresponding
to (3.22) (the linear wave equation of ‘total’ functions for the non-isentropic system) which is of
order three, while the characteristic equation of the density or velocity equations in the isentropic
model is of order two (see (5.33)), and hence it is much more complex to obtain the time decay
rate of the linearized systems.

Remark 1.8. It should be pointed out that due to the fact that temperatures are variant in the
bipolar non-isentropic CNS-M systems, the difference of velocities of two carriers decay at the

3
rate (1 + t)_1+5 which is faster than that in (1.15) for the isentropic model, meanwhile, the

3 3 2
magnetic field decay at the rate (1 + AR (In(3 + t))lf? which is much slower than that in
(1.17) for the isentropic system.

The main difficulty of studying the bipolar isentropic/non-isentropic CNS-M systems lies in
the appearance of the electromagnetic fields satisfying the hyperbolic Maxwell equations. For
overcoming this difficulty, we complete the proof of existence in Theorems 1.1 and 1.2 by using
the elaborate energy estimates but with some new developments. The techniques of symmetrizer
and the skew-symmetric dissipative structure of the bipolar models play the crucial roles in the
proof (see [27-29]). The dissipative structure of the linearized equations around constant states
were well analyzed in the previous works for unipolar CNS-M systems (see [4,32]). The current
work focuses on the large time behaviors of global smooth solutions near constant equilibrium
state for bipolar models. The key point here is to obtain the a priori estimates as follows,

%&(7/0)) +D,(W (1) =0,

where %/ (¢) is the perturbation of solutions, and &(-), ©,(-) denote the energy functional and
dissipation functional. Although along the same procedure, our construction of &(-) and D;(-)
is very different from that for the unipolar isentropic [4] or non-isentropic [32] cases because of
the much more complex structure of bipolar systems. In particular, since the CNS-M systems are
degenerate over some components of the whole solution, we have to construct some interactive
functionals in order to capture the energy dissipation rate which plays a key role for the study of
time-decay property of solutions to the nonlinear system.

Furthermore, for establishing the time decay rates of solutions in Theorems 1.1 and 1.2, we
use the combination of the spectrum analysis on the linearized system and the refined energy
estimates together with the Duhamel’s principle. Here we recall the general theory of hypocoer-
civity [30] and [18] for the systematic study of hyperbolic-parabolic composite type systems, and
also mention that the theoretical framework developed can not be directly applied to the bipolar
isentropic/non-isentropic CNS-M systems.

In order to remove the difficulties caused by two charged carriers, we introduce the ‘total
functions’ and ‘difference functions’ for unknowns. Then the linearized homogeneous equations
of the bipolar non-isentropic CNS-M system (3.1) can be written as two decoupled subsystems
(3.9) and (3.12). Simultaneously, the bipolar isentropic CNS-M systems (5.16) can be written
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as two decoupled subsystems (5.22) and (5.24). Thus, we first discuss the L” — L9 time decay
rates of the linearized equations. For (3.9) or (5.22), the corresponding results can be obtained in
the way as [32,4]. For (3.12) or (5.24), we first achieve the basic L estimates for the Fourier
transform of the solution. And then we solve the dissipative linear wave system by the Fourier

analysis methods. It should be emphasized that the Fourier transforms of ‘total’ functions e+

and k - (?2 ¢ + /') satisfy the same dissipative linear wave equation which is of order three (see
(3.22) and (3.46)), while the corresponding density and velocity equations in the isentropic case
is of order two (see (5.31) and (5.35)), and hence it is much more complex to obtain the time
decay rate of the linearized systems. This phenomena reflects that there is an essential difference
between the non-isentropic and the isentropic cases.

For overcoming the difficulty arising from the non-isentropic case, we have to divide the
whole space R? into three parts as R = €U Q| U Qq, and then study the properties of the roots
of the characteristic equation corresponding to (3.22) on each domain, respectively. Lemma 3.1
shows the asymptotic behavior of roots on domains 2 and 2,,. However, on the domain 21,
the main difficulty lies in the case that this characteristic equation might have multiple roots. To
deal with this difficulty, we split €21 into Q1 = Q2 o U Q1,— U 21 4. On domain 21 o, it follows
that both |r; — (1 — 7)r2 — 73| and |(1 — 7)r2 + 13| have a positive lower bound. Meanwhile,
we find that |[rp — 13| has a uniform lower bound over domains €21 _ and € . Then we get
|Z11| < Ce 7", as k € Q). Furthermore, the time frequency estimates on (22, @22, fz) follow
(see Lemma 3.2). On the other hand, with the help of techniques of decomposition of frequency
space, we can get the estimates on (22, @22) in isentropic case (see Lemma 5.2).

Finally, by combining the preliminary works above, we are able to prove the large time behav-
ior in Theorems 1.1 and 1.2. By means of the Duhamel principle, we apply the energy estimates
above to the nonlinear problem satisfied by the error functions, whose solutions can be repre-
sented by the semigroup operator for the linearized problem. For the non-isentropic model, we
obtain that the electric field, the densities, the total velocities and the temperatures of two charged

3 .
carriers converge to the equilibrium states at the same rate (1 +¢)~ 4. However, the difference of
341 .
velocities of two charged carriers decay at the rate (1 4 ¢) 4147 and the magnetic field decay at

3 3 2
the rate (1 +¢) #73 (In(3 + t))l_ﬁ. On the other hand, in the isentropic case, we find that the
electric field, the densities and the total velocities of two charged carriers also converge to the

3 . . .
steady states at the rate (1 4 ¢)~ 4. Meanwhile, due to the fact that the temperatures are invariant,

3 1 2
the difference of velocities of two charged carriers decay at the rate (1 + t)_ZJrW (In(3 + t))1_5
which is slower than that in the non-isentropic case, and the magnetic field decay at the rate

A4+ it which is faster than that in the non-isentropic case. This phenomenon on the charge
transport shows the essential relation between the isentropic and the non-isentropic cases of the
bipolar CNS-M systems.

We end this section by stating the arrangement of the rest of this paper. In Section 2, we give
the detailed estimates for the proof of the global existence of solutions to the initial value problem
of the bipolar non-isentropic CNS-M system. In Section 3, the linearized homogeneous systems
corresponding to the bipolar non-isentropic CNS-M system are studied carefully to obtain the
LP — L1 decay properties and the explicit representation of solutions. In Section 4, we study the
large time behavior of solutions to the nonlinear problem of the bipolar non-isentropic CNS-M
system and complete the proof of Theorem 1.1. In Section 5, we study the asymptotic decay of
the bipolar isentropic CNS-M system and finish the proof of Theorem 1.2. In the last Section 6,
we give our conclusion on the bipolar isentropic/non-isentropic CNS-M systems.
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2. Global existence for the non-isentropic CNS-M system
2.1. Preliminaries

For later use, we split the whole space R3 into three parts as

R3 = QU QU Q0.

where

Q=1{keR3| |k|<e}, Q={keR? e<lk|<L} and Qo ={keR3| [k|> L},

in which constant € > 0 is small enough and L > 0 is sufficiently large.
Next, we introduce some notations. For a constant 0 < A < 1, the expression f ~ g means

1
rg < f< xg. We denote by || - || the norm of the usual Sobolev space H* = H*(R?), and

by | - || the norm of L? = L2(R3). We also denote by (-,-) the inner product over L2. For a
multi-index & = (a1, a2, @3) € N3, we denote

0% =9y 0220y) = 07105705 and ol =oy + o2 + a3

For o = (a1, a2, a3) and B = (B1, B2, B3) € N3, B < a stands for B; < «a; for j =1,2,3, and
B <« stands for 8 <« and B # «.
And then, we recall the elementary properties of cubic equations, the Moser-type calculus

inequalities and lemmas on time decay rates, which will be used in the proof of our main theorem.

Lemma 2.1 ([24]). For constants a, b, c,d € R}, a # 0. The solutions of the cubic equation

ax® +bx*+cx4+d =0, 2.1

can be represented as

Xy = —33 DTG L VR4S - VR, k=1,2,3, (22
a

where

3
be b\ d ¢ b\*
G=——(—) —-=—, ®m=6&2 — — | = . 2.3
6a? <3a> 2a +(3a <3a>) 23)

Moreover, SR is called as the discriminant of (2.1). Indeed, the solutions of (2.1) will be one
real root and two conjugate complex roots as R > 0, and three roots as R < 0. In case of R =0,
the solutions will be one real root with three multiples as © = 0, and two real roots, one of which
with two multiples as G # 0.
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Lemma 2.2 (Moser-type calculus inequalities [19,20]). Let s > 1 be an integer. Suppose U €
HS, V% € L™ and ¥ € H*~' N L®. Then for all multi-index a with 1 < || <'s, it holds

UV — UV € L?,
and
1% (% V) — U3V < Cs(IVU Lo I D117 | + 1 D2 ||V | 1),

where

1D =" %],

la|=s"
Furthermore, if s > 3, then the embedding H* —l s [ s continuous and we have
1%V Nls—1 < CAZ st 1V Nls—1, Y%,V e H ',

and for all %,V € H® and all smooth function %,

[0°Z )| < Coc(l + 1% 1)~ 1% N,
10UV — UV < CZNs| ¥ lls—1, ¥ le| <s.

Lemma 2.3 (see Lemma 2.1 in [4]). Assume that for any initial data #°, the linear homogeneous
solution W (t) = o (t)#° obeys the point-wise estimate

W(t, k)‘ < Ce P

PO,

forallt >0, k € R3, where ¢ (k) is a strictly positive, continuous and real-valued function over
k € R? and satisfies

:0(1)|k|"+ as |k| — 0,
k) =

ok~ as k| — oo,

for two constants o_ > oy > 0. Let j > 0 be an integer, 1 < p,r <2 <q <ooandl > 0. Then,
W (1) = o () WO obeys the time-decay estimate

HWW(”‘)HM <ct+n i)+

0w +canE

‘VY(jJrl,s,q)WO(k) H ’
LV

for any t > 0, where and in the sequel, % (j,r, q) is defined by
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o 11
0, if j+3l-——-) <0,
roq

S Gorg) =1 J. if jz0,r=q=2, and jis integer,

1 1
[j +3 (— — —>:| + 1, otherwise.
roq

Lemma 2;4 (see Lemmas 2.3, 2.4 gnd 2.6 in [32]). For any integer j,m >0, 1 < p,r <2<g <
+oo, if | (t,k)| < |k|™e™ QD! |4 (k)| L, there exists a constant y > 0 such that

IV/H e < Ce ™" [ #pllLr.

And if |W (1, k)| < k" e~ OOy (k) 1, then

j+m

VI N < C+07 2505 155010,
Moreover, if | ¥ (t, k)| < |k|_me_0(l)t|%(k)|lgoo, then
IV # Nla < Ce VT I DA 1
2.2. Reformulation of problem (1.2)-(1.3)

Now, let (A, %", T",&,AB) be a local smooth solution to the initial value problem for
system (1.2) with initial data (1.3) satisfying (1.4). Set

N =14+¢", T =147, v=e,i. 2.4)

Then problem (1.2)-(1.4) can be rewritten as

W'+ V- ((1+c") %) =0,
WU+ (U VU’ + V((1+2")(1+ 7)) (E+u’ x B)+ ekl
. = X ,
' 1+¢v o 1+¢v
2 1
0T A+ T U U VT 4 %" =-7",
8t5—VX%—%e+%i=Ce%e—§i%i, V~£}=§'i—§e,
KB+VXxE=0, V-B=0, (t,x)el0,+00) xR,
(2.5)
with the initial condition
Wlmo=W" =0, ", 70,6° B, xeR? v=e,i, (2.6)

which satisfies the compatibility condition
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v.&0=70-¢0 v.2°=0, xeR> 2.7

Here, 0= 4" —land 70 =70 — 1.

For proving Theorem 1.1, we always assume s > 4. Moreover, for # = (¢", %", 7", &, B),
we also use E; (7 (1)), @?(”‘//(t)), Ds(# (1)) and CD?(”//(I)) to denote the energy functionals,
the higher order energy functionals, the dissipative functionals and the higher order dissipative
functionals for two charged carriers. They satisfy

)~ > € w T+ 1E. B2, 2.8)
)~ Y Ve w T +IVE B, 2.9)
o, w~ Y (IVe I+ 1v2° |+ 7°1) + 196, + [ 2]+ oo
o (2.10)
and
h 202 P 2 2 0|
st~ 3 ([« [eo ][, +1v7 i) <[]

v=e,i ‘ @2.11)

2 T

v+ [ve-of

respectively. Now, concerning the transformed initial value problem (2.5)-(2.6), we obtain the
global existence result as follows.

Proposition 2.1. Assume that #° = (¢*0, %0, 70, &9, ) satisfies the compatibility condi-

tion (2.7). Then, if & (#O) is small enough, the initial value problem (2.5)-(2.6) admits a unique
global solution W = (¢¥, %°, T, &, PB) which satisfies

%’ ec! (R% 172 (RY)) ne (RY: 1 (R)),

2.12)
&, 7", & B)ecC (R+; ! <R3>) nc (]Ri*; H (R3)) ,
and
& (1)) +/t©3(7//(r))dr <&,7%, Vi>o. (2.13)
0

Based on Proposition 2.1, it is standard to prove the existence result in Theorem 1.1.
Moreover, solutions of Proposition 2.1 may decay under some extra conditions on #° =
@0, V0, 70 £0 8%, For that, we introduce the definition of ws, #0) as:
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s, () = IIlls, + Il 1, (2.14)
for s, > 4. Then, the time decay results we obtained are as follows.

Proposition 2.2. Let W = (¢V, %V, T, &, B) be the solution to the initial value problem
(2.5)-(2.6) with initial data #° = (0, %0, 70, &0, BY) satisfying (2.7) in the sense of
Proposition 2.1. Then, if ws41(#°) is sufficiently small,

17 0)lly < Cosn(#)A+075, Viz0. (2.15)

Moreover; if wgy5(#°) is sufficiently small, then, the solution also satisfies

IV (D)ll,—1 < Canes(P (A +0)78, Vi=0. (2.16)

Thus, decay rates (1.5)-(1.9) in Theorem 1.1 follow by combining the bootstrap method and
Proposition 2.2.

2.3. Global existence

In this subsection, we give the proof of Proposition 2.1 for the global existence and unique-
ness of solutions to the initial value problem (2.5)-(2.6). Due to the local existence results in
Lemma 1.1, the global existence of solutions satisfying (2.12) and (2.13) follows by combining
the standard continuity argument and the a priori estimate as follows.

Theorem 2.1 (The a priori estimate for the bipolar non-isentropic CNS-M system). For any t €
(0, T) with T > 0, suppose W = (", U°, T, & DB) to be the solution to the initial value
problem (2.5)-(2.6), in which (¢¥, 7V, &, %) € C' ([0, T]; H~') N C ([0, T]; H®) and %" €
C' ([0, T1; H*2) N C ([0, T1; H). Then, if

sup [ (D)5 <do (2.17)
0<t<T

with 8o sufficiently small, there exist €;(-) and D(-) in the form of (2.8) and (2.10) such that for
any0<t<T,

d 1

7 (W (1) +Ds(W (1)) < CEW (1)2D5(W (1)). (2.18)
Proof. We will use five steps to complete the proof. Step 1 is to estimate the bipolar non-
isentropic CNS part and the Maxwell part of system (1.2), respectively. And then we obtain
the dissipative estimates for V%" and 7. Steps 2-4 are to establish the dissipative estimates
for ¢V, & and Z by using the skew-symmetric structure of the bipolar non-isentropic CNS-M
system.
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Step 1. It holds that

d
X X ()0 e+ 16N + 120

la|<s v=e,i

NV >
L2 v P+ < ,3%7"> (2.19)
; (N » ;; = |
=ciis Y (Ve [y + v [ +17°13).
v=e,i
where
=%, 7)), 7/:(7/6,7/")T, W=, 8 B)
and
Tl)
A 0
Ay =y (N T )= 0 A3 0 . (2.20)
3NV
R X

Here and in the rest of this paper, I3 is the 3 x 3 unit matrix and we use ()T to denote the
transpose of (-).
In fact, the bipolar non-isentropic CNS equations in (2.5) can be rewritten as

3
3[”/”4—252{/? (JVV’%V’TV) 0V =Y W)+ A (7/\;)’ 2.21)
j=1
where
v v, T
%j N €; 0
T )
Jij (</VV752/V’7—U)= </V‘)ej %13 ej ,j=1,2,3, (2.22)
2 v T
0 ST ej %jv
and
0 0
W)= | &+ xB) | A (V) = Aj/v , (2.23)
I, .2
_g‘% | _gv
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where (e1, €2, e3) is the canonical basis of R3.
For a € N3 with |a| < s. Applying 8% to (2.21) and multiplying the resulting equations by
the symmetrizer matrix .52/0”, we have

oy 39V + iﬂ}” (AU T)0;0%VY =y 3% (6 W)+ 5 (V) + I
= (2.24)
where
JTVUV wP Tel 0
a0 T )= Tlej ANUT  NVe |, j=1,2.3, (2.25)
0 NV %“7: U
and
3
== (VT (aa (%ju (JVU’%U,TV)W,/U) — (Wu’%vju)aaajw)_
= (2.26)

By Lemma 2.2 and the Cauchy-Schwarz inequality, we get

|2l =l (" T o ([0 ()

2
e ) = e v
(2.27)

Taking the inner product of (2.24) with 29%#" in L?, we obtain

%(wov (NV, T84, 999 =2( 7Y, 099 ") + (dives” (N, %", TV) 8% ¥, 8 ")
F2[elg (T Y0 (7 O+ 5 (1),
(2.28)
where
3 ~
dives” (N, %Y T") = opay (N TY) + Y 05} (N U T). (2.29)

j=1

Obviously, it follows from the density equation and the temperature equation in (2.5) that
[l =clver],. Jas’|~=clver], (2:30)
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and
lo7" | <c(ver],+17°0). a7~ <c(vZ l,+17"]5).  @3D
The above inequalities together with (2.20) and (2.22) imply
|dive” (A, %", T")| o =C |7, - (2.32)

Now, we estimate each term on the right hand side of (2.28). For the first two terms, by
noticing (2.26), when |a| =0, we get ¢, = 0. This together with (2.29)-(2.31), we obtain

2({ 7y 0%V ) + (dive” (N, %Y, T") 0%V, 9%v")

YUY . NTVY
L)

(/1/1) v JVV

|§V|2 v TV v U2 v v v
= T2Vt ) s 2w Ve, T +
3
wafr v 02

N _§< N
TV 2\|TvP?
<cle’l, (Ive" i+ v 7+ 177 1) + < el (196 1+ 92 )

|f”|2,a,yV> |9v|2,az/v.v9”>

w7l (Ivet P+ v 1) + el (Ive [T+ Iva [F+17°17)
|l (v 1P+ Ivz 1) + c [ | 174 P+ el (V2 1+ 12°1]5)
<c|7l (Ive' I+ v 5+ 17°13). as lai=o.
(2.33)

And when 1 < |a| <5, by (2.27) and (2.32), we have
2 g2V (dived” (N, UV T) 00y, ) < ||, |V, 234
For the last term, by Lemma 2.2 and (2.23), we get
(A (W T) 09, 0% o)
—afoe () o) 5 (0
+ay Y CE((vovar b u < 02 P B)— (9 Perobu” . 9°8))

B<a

0*T", %”8“%”>

(2.35)
1 NV

_ Bl qagv aqe—BgvaBagsv

2§ca<uay,a %adzz>

B<a
=qu (0° (¥ 0") 0" 6)+C |(77, 6. B) | |Vl
and
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(o (4 T) 00 ot ()
/VV

=(0%U", 9" AU") +ZC’3<JVV3°‘%V 9 5(% )aﬁM/”>——<

B<a

o7 P)

< |rva P -

9”|2>+CW||S > (Ve l + vz 2+ 12717)

(2.36)

Then it follows from (2.28) and (2.33)-(2.36) that

J 3N
dt 2 el(% (JVV Tu) oYY 9oy v>+2]}§i (’|8av%unz+§< = yu}2>>
(o (Hiu' = vewe) s\ i, Y (Ive s + Iv2 i +17°)7).

v=e,i

(2.37)

On the other hand, for |«| < s, standard energy estimates on 9*& and 9% from (2.5) yield
% (lo=s ) + |o= ) =2(0= (#e2* — ¥ %")  0°5). (2.38)

Then, combining (2.37) and (2.38), summing the resulting inequalities over || < s yields (2.19).
Step 2. Tt holds that

O Y e e X Ve e

|la|<s—1v=e,i v=e,i

(2.39)
=< Y (v} +17° )+ cri, X (Ive' I+ v |+ 1771).
where ¢ is a positive constant.
Step 3. It holds that
d (% — Ut V&
d_1<|az<s_1< ( )06 + o IVEIE,
<C |71, (Z (Ive' oy + v [ +17707) + ||v@@||§_2) +e| 40

v

O3 (Ve v [ +1771).

v=e, l
where ¢ > 0 is a small constant to be chosen later.
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Step 4. 1t holds that

% Z (0°€, =V x 0% B) + co HVZQ

1<|o| <52

2
K

-3
(2.41)
<c|vell +o X v eim, ¥ (19 + 192 L),

v=e,i v=e,i

Step 5. Based on the steps above, we establish (2.18). We define the energy functionals as

C W)= 3 () (N TV, 9% ) + |62 + 112112

la|<s v=e,i
D DD BN £ U S RN SN (i CAR A R
la|<s—1v=e,i 1<|a|<s—1

+8 Y (996, -V x 3"B),

I<|a|<s—2

where constants 0 < R3 < R < K] < 1 are to be chosen later. It follows from the fact that
gy (AV,T") is positive definite that

EW )~ IV112,
as long as 0 < & <« 1, j =1,2,3, are sufficiently small. Furthermore, by letting ¢ > 0 and
0 < R3 € R K R < 1 be sufficiently small with 2¢ & < &3, summing (2.19), (2.39)x &1,
(2.40)x Ry and (2.41)x K3, we get (2.18). The proof of Theorem 2.1 is finished. O

3. Linearized homogeneous equations of the non-isentropic CNS-M system

In this section, in order to obtain the time decay properties of solutions for the nonlinear
systems (2.5), we study the decay properties of solutions for the linearized systems.

3.1. Linearized homogeneous systems

Now, we rewrite system (2.5) as

até‘v_'_v'%v:glva
(U +V"+VTY —q,& — AU =%,

2
at<7“+gv-62/“+<7”=%u, 3.1

o .
atéE—Vx%—ﬁZ/"+02/l=§(g4e—544i), V.-&=¢"—¢",

BB+VXE=0, V-B=0, (t x)el0,+00)xR>,
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where
glv = — V- ({vgz/v) ,
v_ g VA
Gy =— (" V) + LN g (0 x B) - Y
1+¢v 1+¢v 3.2)
2 1 ’
g3v=—§y"v.%”—%”.vyv—§|%v 2,
G =20"U",  (t,x) €]0, +00) x R3.
Next, we introduce
e _ +i Qe _ %i g — yi
§1=§2§, %1=T and %:T. (3.3)
Then, from system (3.1), #1 = (¢1, %, T, &, PB) satisfies:
1
w1 +V-U = > (“1e —%11),
1
U +VO+VNA+E— AN = 3 (e — i),
2 1
0T+ 3V U+ = 5 e =) (34)
1 1
0,6 =V x B—-27 =§(g4e—g4i), EV'éa=—§1,
$B+VxE=0, V-B=0, (t,x)€[0,400) xR,
with the initial condition:
Wilimo =1 i= (0. %0, 70.6°. "), xR,
which satisfies the compatibility condition:
1
Ev-goz—;?, V- #°=0, xeR’
where (;10, %10, 910) is given from (g‘ vO g0 ﬂ”o) due to (3.3).
Moreover, we also introduce
e i qye 02/1' e 91‘
{2 = § ;é‘ s 02/2 = 7;’— and % = 7—2{’_ . (35)

Then W5 = (&, Y, Fh) satisfies:
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W+ V- -U= % (“1e +“11),
U+ V0 4V T~ My = 5 oo+ ), (3.6)
&P+ %v-%+%=%(%e+%i), (t,x) € [0, +00) x R?,
with the initial condition:
Walimo = WP = (gzo, %P, 920) . xeR3,

where ({S Uy, 320) is given from (¢"°, "%, 7°) due to (3.5). Therefore, we define the solu-
tion 1 = (¢1, Y, A, &, B) and #> = (o, YU, T»), respectively, as follows

t
1
Wity =e 4w+ > / NG, — G, Do — Gris Gre — Gais Gae — Gai) ()T, (3.7)
0

and

t
1
Wa(t) = L5 + 2 / TG+ G, G + is G + i) (T)dT, (3.8)
0

where ¢'Z1 7/10 and ¢'% 7/20, respectively, denote the solutions of the homogeneous initial value

problems (3.9)-(3.10) and (3.12)-(3.13), which are given as follows.
The linearized homogeneous system of (3.4) is:

81(1+V'%1:0
U +VO+VA+E—AY =0,

2
8;%+§V-%1+<71=0, (3.9)

1
;6 —V x B—-29 =0, Ev.g’:_;l’

KB+VXxE=0, V-B=0, (t,x)el0,+00) xR,
with the initial condition:
Wilimo =170 i= (e, %0, 70.6°. "), xR, (3.10)

which satisfies the compatibility condition:

1
Ev.g’o:—g{), v-#°=0, xeR>. (3.11)
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And the linearized homogeneous system of (3.6) is:

8;{2+V'%2=07

U +Voo+Vh — A =0, (3.12)

2
0T+ V- U+ T =0, (1,x)€[0,+00) x R3,
with the initial condition:
Walimo =13 = (. %0, 7). xeR’. (3.13)

In the sequel, we denote # = (&1, %1, T, &, ) as the solution to the initial value problem
(3.9)-(3.10), and #5 = (g2, U, F») as the one to the initial value problem (3.12)-(3.13).
For the initial value problem (3.9)-(3.10), we obtain the L? — L7 decay property as follows.

Proposition 3.1. Let #1(t) = ! 7/10 be the solution to the initial value problem (3.9)-(3.10)
with initial data 7/10 = ({f), 02/10, ZO, &0, B satisfying (3.11). Then, for any t > 0, there
exist constants C > 0 and y > 0 such that #1 satisfies the following time decay property:

i@ Ao ce ™ [ef] | +casni](#6)|  +carn i)
+Ce V! ({10,02/10,?10)),
lzol<ca+ i@l 72| | +ca+n7i|(46°)|

FCA+8 H%PHU FCA+nF H‘fOHU FCa+n3 H%O‘

L!

et am A seasn (ol (), )
(3.14)
lswl sca+n=i(#.6%)|  +ca+ni|(5.2°)|
YC(+0)F %IOHLIJFC(HW% gO‘LI+C(1+t)*% %’OHLI

+ Ce V!

(at.en. )] cea o (0], (. )],.)
(up.27)

+ca+n7E|u| +ca+nTHe| +ca+nTE

120 <C A +1)73

_7
L1+C(1+t) 1

%0‘

Ll

@0‘

Ll

ceen |t casnt (0], |65 #],.)
(3.15)
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11, ZD) (@) oo < Ce™ !

+ca+n?| (% 6)

0
‘i .

L'NnAH?

+ca+n || +cer (|
Ll

mt H 7
(.29

], s et |

i)

12Ol =€ A +072 @, 7029 | +ca+n73 )

(3.16)
+C(+0)73

w|, +ca+n
(e )]+ | (6% 2)])
2]+ (2] ).
(#.6%)]  +ca+n2|(70.2°)

A, veanns

L1
+Ce ! (

.+
H!

3
+C(1+t)‘7(

16D L < C (1473

L!

+CA 407 | % 2

_9
L1+C(1+t) 3

6]+ (- #)])

i)

%0

Ll
+cer (|7

.+
H!

3
+C(1+t)*?(

ot ()

12l =€ A +072 | (%, 6°)

_3
L1+C(l+t) p

Ll

+ca+ot || +casn 2

) +ca+n

Ll

)

(3.17)

+Ce™ V!

(62/10, &0, %70) H FC+40)3 (

o], ()

IV24 (1) < C (1+1)~%

@ 70| +ca+n

()],

+C(1+t)_% @/10 go“Ll+c(1+;)—%

FC(4+0)%
LI

71,

4+ Ce™ ! 50”@0
(s )

(C?, w0, 72, (5’0,930) ” +CU+0)3 (

(5.

P H +

)

IVE@I<C+n73

(%10,6’0) ”Ll +C(+1)7

|
FC+0)% 02/10”L1+C(1+r)—%7 6"0”L1+C(1—|L-t)_% %"HU
reer (|60, +|(@. 2 )
reasn(|9],+|(82)] ).

V2Ol <ca+07%|(20,6°)|  +ca+n7i| 2|
+ca+n7F || +ca+n || +ca+nTE|2|
+cer (w0, 6 2°) |+ ca+ni (| % ot (¢, 2°) )

(3.18)
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and

|v22w| <ca+n

(.27

+ca+n e +ca+n¥

+C(1+t)_l4_1
Ll

@01

Ll

o rearoi]#

L1

reer|(w.60 )|+ caro(|af] + (. 2)] )

[vs @& w. 2@ <ca+n (20,6, 2)

L2nHs+2°

(3.19)
Proof. The proof is similar to that of Theorem 2.8 in [32], we omit it here for simplicity. O
3.2. Explicit solutions

In the following, we study the explicit Fourier transform solution #5 = ({2, %, ) to
problem (3.12)-(3.13). From (3.12), we obtain

8
011182 + 01 (S — AL2) — gatAQ —Ap =0, (3.20)
supplemented with the initial condition:

&m0 =23,
o limo ==V - U, (3.21)
dilalimo = ALY — AV -2 + AT,

By taking the Fourier transform on (3.20) and (3.21), we get
P 2 2 § 249 % 24
062+ (L + [k|%)01 82 + 3 k17 0: 52 + |kI7 62 =0, (3.22)
with the initial condition:

O limo =83,
32 limo = —ilkIk - 75, (3.23)
0ilrlimo = — k128D + i lkIPk - 2 — k25,

where and in the sequel k=k /1k|.
The characteristic equation corresponding to (3.22) is:

8
C@ =0+ A+ KD+ 2 ke + k2 =0, (3.24)
whose roots may be written as: r =r12,3.
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Then we write the solution of (3.22)-(3.23) as:

0 = Cref!! + Cre®™ + C3e®. (3.25)
For the roots of the characteristic equation (3.24) and their properties, we have
Lemma 3.1. Assume |k| # 0. Then, there exist domains Qo and Q2 in the form of that in sec-

tion 2.1 such that € (xr) =0, r € C has one real root t| € (—1,0) and two conjugate complex
roots r2.3 when k € Qq, or three real roots 12,3 as k € Q. Moreover, it holds

2
n=-1+ §|k|2 +Oo)kl*,

(3.26)
5 2 4 . 2
x2,3=—g|k| + OIk" £ilkl[y/1+ O(D)]k|%,
whenever |k| — 0 is small. And it also holds
5 31 _ _
v=—lkl+ 3 + kT + Ok,
—44+VT (11 -8YDWT—1) _
p=—1—+ o7 k|2 + 0Dk, (3.27)
447 WM+8VDWT+D 4
13=- - kI~ + Ok,
3 97
whenever |k| > L is large.
Proof. Let us denote p = |k|2, and then (3.24) becomes
3 2 8
CW=r+ U+ +3pr+p=0. (3.28)

2
Obviously, we obtain that €(0) = p > 0 and € (—1) = 3 p < 0, which deduces that € (x) =0

has at least one real root in (—1, 0). Denote ¢ = ¢(p) is a real root in (—1, 0). Then we may
rewrite

8
CO=C—¢) (zcz +d+p+d)r+ <§p + (1 +p)o +¢>2>) . (3.29)

The remaining two roots, denoted by ¢, which satisfy

8
A +p+r+ (gp +(1+p)g +¢2) =0. (3.30)
Then it follows that
1 1
(ﬂi=—§(1+0+¢)i§\/¢, 3.31)
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in which
2 26 2
Y=—|3¢ +2¢+2p¢+?p—p —-1). (3.32)
In view of Lemma 2.1, the characteristic equation (3.28) may be rewritten in the form:
C)=ar’ +by’* +cr+d=0, (3.33)
where
8
a=1, b=1+p, c:g,o, d=np. (3.34)

A direct computation gives

1
=——(20% - 18p2 2
S 54<,o p°+9p + )

I

= (—84p> +1180p% — 435p + 108) .
2916( p- 4 11s0p Pt )

It is easy to check that R > 0 when p > 0 is sufficiently small, and that R < 0 when p > 0 is
large enough. Then there exist domains €2¢ and Q4 in the form of that in section 2.1 such that
R > 0 over p and R < 0 over Q4. By Lemma 2.1, we obtain that there are one real root and
two conjugate complex roots over ¢, while there are three real roots over Q4.

In case of k € ¢, we denote r1 = ¢ € (—1,0) and 123 = ¢+. Let us expand ¢(p) at zero
point as

$(p) =7 anp".

n=0
Substitute it into (3.33), we have
— _ 2 _ 4
a=-1 a=3 @=g
Then it follows that
2 2
3| =¢(,0)=—1+§,0+0(1),0 , (3.35)

provided p > 0 is sufficiently small. In view of the expression of ¢+ in (3.31) and the expression
of ¢ in (3.32), we get the real part and the imaginary part as

5
Re(ps) =—2p+ O(p* and ZIm(ps) =+/p+ O(1)p2,

respectively. Hence,
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5
Iz,3=90i=—6/0+0(1)/02:|:i\/,0+0(1)02, (3.36)

when p > 0 is sufficiently small. Then, (3.26) follows by combining (3.35)-(3.36).
On the other hand, in case of k € Q,, we may rewrite (3.28) as

3 2

1 8 1

(E) F (45 (£> +_£+_2:0, (3.37)
p P \p 3pp P

Because the uniqueness of the real root in (—1, 0) is unclear, we just set

r o0
- = dn p_n )
P n=0

provided p is sufficiently large. Substitute it into (3.37), we have

5 31
a0=_11 alzgs aZZE,

or
0 —4+7 (11 =8VN(WT-1)
apy=0, ag=——"", ar= s
0 1 3 2 9\/7
or
o 4 4+ VT . (1 +8VD(WT+ 1)
0 s 1 3 s 2 —9ﬁ .
Thus, we get
5 31
n=—p+i+ e +0Me
379
. _—4+f7+(11—8f7)(ﬁ—1)p_1+0(1)p_2
2 3 9\/7 s
" __4+\/7_ (1l+8ﬁ)(ﬁ+1)p_1+0(1),0_2
3 3 9\/7 5

when || is large enough. Then (3.27) follows by noticing p = |k|2. The proof of Lemma 3.1 is
completed. O

Remark 3.1. On the domain Q1 = {k € R3| € < |k| < L}, the main difficulty lies in the case that
the characteristic equation (3.24) might have multiple roots.
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Now, by the initial condition (3.23) and (3.25), we obtain

Ci+Crt+C3=10),

11C1 + 1202 +13C3 = —ilklk - ?220, (3.38)
11C1+ 130 +13Cs = — |k P8) + ik Pk - 7)) — k1> 55,
which implies
—nor3(1411) ik" (1+711) |k|?
Ci @ —)@-—r) @-w)@-rn) @-n)@-—r) £9
_ T 2 L
G| = sl +1r2) ik (14+12) k| i 70 |,
T —)@ -1 @-)@-r3) ¢ -2 —13)
C3 ST 2 jo
—r152(1 +13) ik® (1+r3) Lq] 2
@-—n)@E-—r) @-3)@-rn) @3 -1
(3.39)

where we have used 11213 = —|k|? and r1 412 + 13 = —(1 + |k|?). Substitute (3.39) into (3.25),

we get
3
b= (G, Fn. ) | k- | (3.40)
9‘20
where
Ty = — e'nr(l+r)  ePrs(4+n) e +rs)
@ -—0)@-—rn) @-@-13) ©@-)@-)
ikT (14 pp)ett! ikT (14 r2)e®! ikT (14 p3)e®! (341)
2= , .
@ —)@-—r) @ —r2)-13) @@-—r3)@E—1)
|k |?eF1! |k|?e¥2! |k |?e¥3!
%13 = .
@ —)@—r) @ —r02)C-—r3) @ —-r3)@—r1)

Next, we try to solve 9} From (3.25), the first and the third equations in (3.12), we have

(3.42)

N o 2 . 2
0+ = §3t§2 = g(?leﬂtcl + 126" Cy + 13¢" C3).

A direct computation implies
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t
o A 2
T =" T+ geft / et (1157 C + 12e"27Cy 4 13€"37 C3)dt
0

(3.43)
2 net'Cr | ne™Cy | 136" Cs
3 14y 1+ 1413
where we have used the fact that
AO:%( ncC 216) 13C3
273 4 I+ 14
Then substitute (3.39) into (3.43), we have
&3
T = (31, Bza. B33 | k- | (3.44)
<7;0
where
By = — 20 npars 2eMTprs 28
3 —)@—r) 3@ —w)@ - 3@@-p)@@-—r)
@ 2ikT ekt 2ikT pper2! 2ikT pzers!
3 = ,
31— —r) 3@ —w)@—13) 3@ —r3)@—r1)
@ 20k|%r et 2lk|*rpe® 2|k|rzes
33 = :
3(+rD@—r2)@—r1)  3(1+r2) (@1 —r2) (x2—13) 3(1+x3)(:cz—:c3)(x3—§31)45)
Next, again from (3.12), we obtain
- A - A 8 - A L.
2 S 2 ) 2 (7. _
O (k- 22) + U+ 1k P (k- 20) + 5 P o (k- %) + kP (k- 22) =0, (3.46)
with the initial condition:
k . %AZ == % . %20,
t=0
o (k)| _ == K& — kPR %y i1k T (3.47)
. . 5 L. R
O (k- 0)|_ =1 kP 8+ (k1" = S kP 2o+ ik + kD T
It follows from (3.46)-(3.47) that
&y
kk - Uy = (Fa1, Bz, Boa) | Kk -4 | (3.48)
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where
P ike*1" (1 +11) ike®! (1 +17) ike®3' (1 +13)
21 = ,
@ —)@—r) @ —r02)C-r3) @30 —1)
1 Lt 1 rt 1 3t
Tory = — nd4+we™  pd+p)e i3 +r)e ’ (3.49)
@ —2)@—r) @ -—r)@-—r) @E@-13)@-—1)
P ikpye!! ikrpe*?! ikrze®3!
23 = ,
@ —)@—r) @ —r02)C-—r3) @ —-r3)@—r1)

8
where we have used p; + 12 + 313 =—(1 + |k|2) and 1132 + 1283 + 1381 = 3 |k|2.

Moreover, taking the curl for the second equation of (3.12) and then taking the Fourier trans-
form on the resulting equation, we have

3 (k x %}) + k2 (k x @22) =0, (3.50)
with the initial condition:
k x . =kxU. (3.51)
1=

Then from (3.50)-(3.51), we obtain
fox %y =e Pt (12 x 62220) . (3.52)
Moreover, by the Helmholtz decomposition A%Z =V (V- %) —V x (V x %), we have
Uy =Rk %~ x (k x ). (3.53)

Then it follows from (3.40), (3.44), (3.48), (3.52) and (3.53) that the explicit Fourier transform
solution %5 = (22, U, F>) as follows.

Theorem 3.1. Let %5 = ({2, Y, F3) be the solution to the Initial value problem (3.12)-(3.13).
For (t,k) e Rt x R3 with |k| #0,

& (t, k) & (t, k) 0
Wby | =| k- a0 |+ | =k x (k x @22) @5 | (3.54)
r(t, k) r(t, k) 0
Then, it holds
Ga(t, k) &3 (k) 0
k) | =20k | #2020 |+ <kx (kx@)w |, 353
(e, k) T (k) 0
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where the 5 x 5 matrix Z(t, k) is defined as:

K11t k) Za(t k) ZFs(t, k)
RH(t, k)= | Xt k) Lot k) it k)
Fa(t, k) Hn(t k) K3zt k)

Here, Z;j, 1 <i, j <3 is explicitly determined by representations (3.41), (3.45) and (3.49).
3.3. L? — L4 decay properties

In this subsection, we want to get the L” — L9 decay property for each component of the
solution %5 = (&, Y, ). To this end, we investigate the rigorous time frequency estimates
on #5 = (s, %, P).

Lemma 3.2. Let W5 = (5o, Y, 5) be the solution to the initial value problem (3.12)-(3.13).

Then, there are constants y > 0, C > 0 and domains Qq, 21 and Qo in the form of that in
section 2.1 such that for all (t,k) € Rt x R3,

C (1Kl k(%) 2000+ € (77 W ke ™) |20 0|

+C (|k| e vIkP |k|2e*’) ‘9"20 as keQo,

Ce ! (‘ég(k)( + ‘%zo(k)‘ n ‘%O(k)‘) . as keQ,

&0 < (3.56)
C(e‘y’+ i )\c ®|+ 1 o e TP
+c(ﬂ'+#e""'2’> Ex as ke Qe

C (WP g ke ) |00 + € (WP 4 i) |0
+C (ke M 4 k) | 50 as ke,
RAGGIE ce ([Bw]+|@w|+|Fw]). a kea, (3.57)

|i| (e 2R z)‘g (k)‘+C(e e r)‘%O(k)‘

C N
—i—m(e vty oI I)‘%O(k)’, as ke Quo,

and
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C (k1 W 1k2e ) 000+ € (k1 W ke ) |20 k)|
e (e*V'k'Zf + e*f) ‘9}0(1@) . as keQo,
cer (|| + | 20w +|Hw)|). as ke,

C
Ik]|

| 55,0 < (3.58)

c <e—w + #e-'“) B+ (7 e ) [ 20w

, as keQq.

1 A
+C (e—yt + We_|k|2t> )%O(k)

Proof. For establishing estimates (3.56)-(3.58), we have to get the estimates for each compo-
nent in matrix %(t, k), namely, %;;, (1 <i, j < 3). From Lemma 3.1, we obtain that there are
domains ¢, 21 and Q4 in the form of that in section 2.1 such that

011 = € (Ik1e ¥ 4 ki), 10l 1] = € (77 4 ke,

1311911 < C (1K1 79 4 kPe™), 1m] < € (775 4 Pe),

(3.59)
9831 < C (K17 WP0 4 ke ™), 19252] = € (Kl M0 4kl e,
|%331 < C (e_ylklz’ +e_’>,
as k € Qq, and
C C C
|%Z11| < Ce™ "' + Wef|k|217 |%Z12| < % (eiyt +€7|k|2t> . | Zis < Ce + Weilklzlv

¢ C
|21 < T (e"” + e"k'2t> , %0l =C (e‘” +e‘““2’) . |3 < i (e—yt +e—\k\2t> 7

c c c
Bl = Ce7" oo W il < f (77 e Y ) Bl e e

kI? |kl
(3.60)

ask € Q.
Then, (3.59)-(3.60) together with (3.55) imply that

62000 <1201 [ W) | + 10 |4 0| + 1811 | 2 k)|
<C (kle M 4 1k1% ) (| + € (M 4 hPe) |2 w|  GeD

+C (ke WP e )| F0|, s ke,

(%, 0| <1221 |20 + (122] + 1) |20 k)| + 12231 | 2K
<C (e*V|k|21+|k|3efz) ’220(]()‘+C<6*V|k|2t+|k|2671) ’@220(,{)’ (3.62)

+C (ke o) | Fw|,  as ke,
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|B50.10| = 12311 [ K| + 12521 |20 )| + 12531 | 06|
<C (e W 4 ke [0 | + € (e W7 ke ) [0 (3.63)

+C (e—y\klzt + e—t) ‘zo

as ke,

‘&(z,k)‘g(&rw |kC|2 eIkl ’)‘g ®)| + (e R TG

Ikl (3.64)
n <Ce_V’ " %e—m,) ‘jzo as ke Q.

‘%(r k)’ = (e el ’) ]gg(k)\ e (e*V’ +e*'k'2f) ‘62220(@‘

(3.65)
n |i| <e el f) ‘90(k)’ as k€ Qoo
and

‘%(r,k)‘ 5<Ceyf+ “j e K f)(g (k)‘ T (e vt 4 oIk ’))%O(k)(

(3.66)

C ~
+ (Ce”l + We|k|2t> ‘920 as ke Quo.

Furthermore, we begin to establish the L°° estimates for 22, 5222 and jz on 2. For this goal,
we have to estimate %; j» (1 <1, j <3)on . Since all K j may be estimated in a similar way,
we only study the estimate for %11 (t, k) for simplicity.

In view of Remark 3.1, we define

A={pj, j=1,2,-,jot=1lp | <p<L? NR=0}

It is easy to check that (3.24) can’t have roots with three multiples. Then, according to
Lemma 2.1, we may suppose ¢ to be the 1-multiple real root, and ¢4 the 2-multiple real roots of
% (r) =0 (see (3.28)) when |k|2 = p;. Hence,

Cr) =1 —)x— i)’
Then we have

d
d_ﬁ%(” |(I=¢,p=0_/) =@ —¢)?>0, ¥ |P:Pj =0.

For some 8y > 0 and n > 0 small enough, there are pairwise disjoint neighborhoods
B(pj,€;) S 2, such that

min  inf % (x) >8p, max su <. .
1<j<jo B (p;, ej)dx |I ¢ 1<]<]0‘B(p]p€/)w 1 (3.67)
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We further split €21 into

Q=Q 00U U4,

where
3 2 2 Jo
Quo={keR’| € =p=L’ pe U Bpj.€)),
J=
3 2 2 Jo
Q_=keR’| e<p<L* p¢ ,Ul%(pj,ej), R=<0}
J=
and
3 2 2 Jo
Qi={keR’| e<p=<L", p¢ ,Ul%(pj,éj), R > 0}.
j=

Since all %;; may be estimated in a similar way, we only study the estimate for #(t, k) for
simplicity. When k € Q1 o, the expression of %1, may be rewritten in the form

dt

I
I+ 1+t 1+0)Qr—
0 =—I1P2I3/e”< vr A+9Ce—n)

r@ =) (1 —p)? )x=rx3+(1—f)12 (3.68)

(I +1)
@ —)@—n)

For briefness, we still use ¢ and ¢4 to stand for solutions of % (r) = 0 as usual, namely:

n=9,
0D3=¢4 = 5 5
By (3.67), we have
) 8 d
(T =)@ —)=3¢"+2pd+2¢ + 3P= d—;f(zﬂ) > do. (3.70)
=¢

In order to estimate the last term on the r.h.s. of (3.68), we have to establish the lower bound
ofr;1 — (1 — t)r2 — 73 and (1 — )12 + T3 With T € (0, 1). By noticing (3.69), we get

I+p+3 W
n-(—nm -t = 2 oYY
2 2
1 WV
(l—r)zc2+r}:3=—+++¢+(l—21)71//, if rp3 are real,

504



Y.-H. Feng, X. Li, M. Mei et al. Journal of Differential Equations 301 (2021) 471-542

and
I+p+3 . -
R - (B R e
1 /—
(l—r);2+r;3=—+++¢+i(l—2t)T1//, if xp3 are complex.

Then (3.67) and the smallness of n imply that both |r; — (1 — 7)r2 — 7r3]| and | (1 — )2 4 T3]
have a positive lower bound.
Therefore, combining the estimates above, we obtain

| %11
1
e (1+11) w(1+0+t  (1+pQr—11)
Sl |t nrs | e 5 5 dt
(x1 —1r2) (23 —11) , @ -0 (@ —r =3+ (1—1)12
<Ce™"', aske Q1,0-
(3.71)
On the other hand, when k € Q2 4, it is easy to see that
—r=iy/—¥, as keQq,
and
n-=y¥, askeQ_.
Then |r2 — r3| has a uniform lower bound over €21 4. Thus, it follows that
etz (1 411) ez (l+12) e (1 +13)
|Z11| <
T — 2@ —11) (1 —r2) (X2 —13) (r2 —13) (3 —11) (3.72)
<Ce ", as ke Q.
Hence, from (3.71)-(3.72), we obtain
|%Z11| < Ce™ "', as keQ. (3.73)

Similarly, we also get

\Z12|, | R3], | Ro1 | | R | %3, | %31, | Rsa |, | Fs3| < Ce™',  as k€ Q. (3.74)

Based on (3.73)-(3.74) and (3.55), we obtain
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6a0.0| < 192011 |E000)| + 121021 |20 0| + 122031 | 700
sce (|Bw|+| 2 w]+ |2 w)).
%.0| < 1% [E 0| + 1] |20 0| + V2] | 700

A A A (3.75)
= ce (|Bw|+ |7 w|+| 2 w)).

| Fa0.0| = 1231 |E2 0| + 1 | 4 (0| + 198331 | T )

=ce (|Bw|+ |7 w|+ |2 w)|). ws ke

Thus, (3.56)-(3.57) follow by combining (3.61)-(3.66) and (3.75). We have finished the proof of
Lemma3.2. O

Next, by applying Lemma 2.4 to the estimates in Lemma 3.2 above, it is straightforward to
get the decay property for every component of the solution #3 = (&2, %, F3).

Theorem 3.2. Let j > 0 be an integer and 1 < p,r <2 < g < 0o. Suppose #>(t) = e’“%%o to
be the solution to the initial value problem (3.12)-(3.13). Then, for any t > 0, #, satisfies the
following time decay property:

(2.2, 70)] , +ca+ G-

()

[vel,, <o

LP

rea+n 3Gt ay) (3.76)
s o @) o ],

”V'j%z La =Ce™ (ég’%zo’ (720>HLP+C(1+Z‘)_%(%_$)_% <§g’%20>‘m
e G0 20 (3.77)

LP
seon(oma @], o]
and

|via| | <ce (.. 7)|  +ca+n G- F ()|

veasn )1 g0 (3.78)
L?

e (oo . 2)

i—1.r, 0
oo

v)

For later use, we list the following result which is an immediate corollary from Theorem 3.2.
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Corollary 3.1. Let #5(t) = e["%%o be the solution to the Initial value problem (3.12)-(3.13).
Then, for any t > 0, #5 satisfies the following time decay property:

1l <ce| (.20 7| +ca+nF|(.79)| | +ca+niaf]
een (0.9
|2l <Ce™ (;“3,%0, %°)HL1+C(1+t)‘% (;3,%0)”L1+C(1+t)‘% N
oo |(ut, )]
1721 <ce™ (8.2, )| | +ca+ni(d.4)|  +ca+ni| ) |
e (.
(3.79)
IVl sce™| (.20, 7)| | +ca+o7i| (8. 2)|  +ca+ni| | |
reer([v(a 7))+ |22]),
Ivaal sce™| (2. %, 70)| | +ca+n7i| ()| +ca+ni|7] |
+eer([(a.20)] + [va]).
IVl <ce | (8.2, 7°)| | +ea+nF|(@.a)|  +carni 7] |
reer ([v (e 72) | + %)),
(3.80)
and
162l <ce | (8.2, )| +ca+n?| (. 2)|  +ca+nie] |

+Ce 7! (

v (. 7)) + v,

1%l <ce™| (8.2, 7) |, +ca+n7

()], rearn] 2],

+Ce V! (

v(a.7)| + |2,
(8.2, 7)| L HCa+n7 (e %) Hu +CU+n"2

v (. 7)) + [v])

|2l <Ce™

7%,

+Ce V! (

(3.81)
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4. Time decay rates for the non-isentropic CNS-M system
4.1. Time decay rates for energy functionals

In this subsection, we prove the decay rate (2.15) in Proposition 2.2 for the energy ||# () ||f.
We begin with the following Lemma which can be seen directly from the proof of Theorem 2.1.

Lemma 4.1.Let W = (", %", TV,&,9B) be the solution to the initial value problem
(2.5)-(2.6) with initial data #° = (0, %0, 70, &0, B°) satisfying (2.7) in the sense of
Proposition 2.1. Then, if €;(#°) is small enough, for any t > 0,

d

EQES(WU)) +D,(# (1)) <0. 4.1)

For p > 0, it follows from Lemma 4.1 that

t
(1+0P& (W (1) + f (1 4+ )79, (¥ (1))de
0

t
. 2
seory+op [asor(|(ze -2 )@ +1s@P 12O + 198 @1
0

+ H (e +¢) @ ”2 + H (z+2") @) H2 + D (F (2))dr,
where we used
eoran <|(z - ) o] F1sor 1z or IvaorR+ (¢ ) of
+| (% + ) (r)H2 + Dy (F (D).

By using (4.1) again, we obtain

t
(1 +DP& (W (1) + / (1 4+ )79, (¥ (1))d<
0

t
. 2
et [avor (|2 - @) o] +1E@F + 12 OF + 192 @
0

+ H (ge + ;") (r)”2 + H (% + %") (t)Hz)dt, vV p 0.
4.2)

Next, we begin to establish the estimates on the integral term on the right hand side of (4.2).
Applying the estimates on %/, & and £ in (3.14)-(3.15), the estimate on V£ in (3.18) and the
estimates on ¢ and % in (3.79) to (3.7) and (3.8), respectively, we have
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(7 ~) o
sca+o7i|(e )| L +carnTi(|a) L +]e], )
+CU+073 %O‘mm +cj(1+z—z)3||(%e—%,%e—%i)(t)llumzdf (4.3)
0

t
+ C/ S (e — %) @l p1nz2 + 1 se — D4i) (Ol i) dT,
0

16O <C+07] (H%P\

50‘

)+C(1+t)_‘5“

7|

+ ‘
L'nH! L'nL2nH? L'ne?

+C(l +t)_%

@0‘

t
_3
I +C/<1+r—r> I (@se = G) (Dl pi2d
0

t
+ C/ (I+1- t)*% <II(%e =) (Ol a2 + 1(&ae — Yai) (0l : )dr,
L'NL2NH?2
0

“4.4)
—5 1,0 ~2] 20 -1 2°
Izol <ca+ni|a|  rcaro|e| o rcavotie] |
t
+cf(1 bt =) (@ — D) (Ol pipod
0
t
9
+C/(1+t—r>—§||<%e—%-)(r>|| dr,
L'NL2NH3
0
(4.5)
IV B0
sca+n7i|u| L+Ca+nT¥ s LHca+nTi| 2 .
L'NL2NH? L'NnL2NH* L'NL2NH*
t
+c/<1 bt D) @ — %) (D] de
L'NL2NH?
0
t
1
+cf<1+t—r>—?'||<%e—%><r)|| dr,
L'NL2NH*
0
(4.6)
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[(c+¢) o] sca+ni

(g?, 920) ”leL2 +cd +t)_%

0
& ”leLl

t
+ C[ (14t — r)_?_‘ 1(“1e +1i. e +G3i) (T) 1A 2dT
0

“@.7
t
+ C/ (41 —1)73 (G + %) (Ol 1ng2dr,
0
and
o i -3 -3
(s o] 03 9)] 01| ],
t
+c/(1+t—r>*%||(%e+%,%e+%,~><r>||mudr
4.8)
0

t
—i—C/(l—i—t—T)_%II(%e+%i)(f)||leL2dT~
0

It is direct to check that forany 0 <7 <,

1(“1e + %1, %20 + i, D3¢ +931) (Dl p1ap2 < CE(# (1)) < C(1 + f)_%es,oo 7)),
and

1(“1e—%1i, e —%i) O pine + (G —%:) (t)llleL o + 1(Gse —%4i) (O L1 74

N

<C+1) 1€ 00 (K (1)),

where and in the rest of this paper

oo (W (1) = sup (1+1)1€ (#(1)).
0<r<r

Putting the two previous inequalities into (4.3)-(4.8) implies, respectively,

[(ze-2") 0| sca+ni(| (020 70.6.2°)| | +Er ). @9)

L'nL?
”éB([)” S C(l + t)—%( (%UO’ <?UO7 @@0’ L@()) HleLzml_I'3 + GS,OO (W(t))), (410)
1BOI=ca+n3([(20. 60 2)| | FEe @) @D

Do ngs T8 7)), 4.12)

(@), Fexrwm). @13
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and

[(ze+2") 0| sca+ni(

0 4,0
(9. %) HmLz FEo (1), (414
. 3 . . . . .
Next, choosing p = 1 + ¢ in (4.2) with ¢ > 0 sufficiently small and using (4.9)-(4.14), we obtain

17 Wl < C&OF )2 = Capr (#°) 1 +075, Viz0,
that is (2.15).

4.2. Time decay rates for higher order energy functionals

2

In this subsection, we investigate the decay estimate of the higher order energy |V# (1)[5_,,

that is (2.16) in Proposition 2.2. We start with the following Lemma.

Lemma 4.2.Let W = (', %", T",&,9B) be the solution to the initial value problem
(2.5)-(2.6) with initial data #° = (0, %0, 70, &0, BY) satisfying (2.7) in the sense of
Proposition 2.1. Then, if €;(#°) is small enough, there exist the higher order energy func-
tionals Gﬁ‘() and the higher order dissipative functionals C‘Df’ () in the form of (2.9) and (2.11)
such that for any t > 0,

%@fﬁ’ W (1) + D" (1) <0. 4.15)

Proof. The proof is similar to that in Theorem 2.1. Indeed, by choosing || > 1, then corre-
sponding to (2.19), (2.39), (2.40) and (2.41), it can also be checked that

d
| 22 2 T e 0 )+ IVEIR + IV,

1<|a|<s v=e,i

VLY WD 3Pt ey
b By
sen, ¥ ([ s el s v,
- qul X praraveta $ v " eol|vee ol
SCEZ- (Hvz%” o HW“Hfl)
A (HV%” " e+ ||V9”||f_1>’

v=e,i
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% 3 <3“(%e—%i>,8“£>+COHV2£

2<]al<s—1

2
s—

2 2 2 2
<CI7ly Z(H otV IV ) + N B A
e ¥ ([ +[eel +1voE
. s—2 s—1 s=1 )
v=e,li
and
d 36, —V x 3°%B via|’
7 L Vs ralvia]
2<|al<s =2
<c”v2£2 +c Y [var L e Y |2 i + |V ’
- s—3 . s—3 $ . s—2 s—1)°
v=e,i v=e,1
Next we define the higher order energy functionals as
Epan= Y D (g (N TV )+ IVEIT, + VAT,
1<|a|<s v=e,i
Ry Y (v s Y (o (-t 008)
1<|a|<s—1v=e,i 2<|a|<s—1
+8 Y (996, -V x 9°4).
2<|a|<s =2
(4.16)

Similarly, we choose 0 < ¢ < 1 and 0 < f3 K R2 < K] < 1 to be sufficiently small with
2e Ry K Rz, such that Gﬁ’ (1)) ~ |[VH# (1)|]>_,, that is QE? (+) is a higher order energy function-

s—1°
als which satisfies (2.9), and furthermore, the summation of the four previously estimates with
coefficients corresponding to (4.16) gives (4.15). We have finished the proof of Lemma 4.2. O

It follows from Lemma 4.2 that

%e’:(m)) + &L ()

<c(|v (7~ )o| +1Ivew i +ivzor + [V20| + v 0 + [V 20|
v (Yol + v (ze e ool

which gives
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t
e (1) <e '€+ C / e*“*f)(ﬂv (% _ Ozzf)(z)Hz FIVEDIR + IVB@))?
0

t[vzo| + e+ v e+ |v (e + )o

+|v (7 + %i)(t))‘2)dt.
@.17)

In what follows, we estimate the time integral term on the right hand side of (4.17).

Lemma 4.3.Let W = (", %", TV, &, B) be the solution to the Initial value problem
(2.5)-(2.6) with initial data #° = (0, %0, 70, &0, B°) satisfying (2.7) in the sense of
Proposition 2.1. Then, if ws5(#°) is small enough, for any t > 0,

v (w-) (r)H2 +IVE DO+ |22 @ H2
+|v @B +|v(cc+¢) (z)”2 +|v (% +2") (t)H2 (4.18)
<cC (st (7/0»2 (4071

Proof. By applying the estimates on V%, V&, VA, V% and V* (&, PB) in (3.18)-(3.19) to
(3.7), respectively, and using (2.15), we have

Gl

&

9
C(l+1)"8
L10L2+ d+0

4Cl+07F
LINL2NH?

IV2 ()| <C(1+1)73

&P ‘

L'nL?

+Cd —l—t)7§

%’0‘

L'ﬁLzﬂHZ
t
7
+ C/ A4+t =074 (G1e — Dis G3e — %) (Dl p1np2dT
0
t

+ C/ A +1—1) 5 (G — %) (Ollp1nr2dT

0
t
5
+c/<1+r—r)—1||<%e—%->(r>|| dv
L'NL2NH?
0
<Cos(# (1 +077,
_3 0 _7 0 _3 0
IVEDI <Cc1+n~1 %, HLlﬂLGH.z—}—C(l—l—t) i ‘L10L2+C(1+t) e HmHmm
t
fCcl+nF %“OH 4 +c/(1+z—r)—%||(%e—%i)(r)|| dr
LINL2NH* L'NL2NH?
0
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t
+ C/ A+1—1) (s — ) (Ollp1nr2dT
0

t
_35
+Cf(1+t—r) | (“ae — i) (Ol dr
L'INnH!NH*
0
<Cos(A+1)77,
Ivaol<ca+nt|2| - sca+nRe|
L'NL2NH?2 LINL2NH4
+CA+173 @0\ .
L'NL2NH*
t
7
+c/(1+r—r>—§||<%e—%,-><r>|| dv
L'NL2NH?
0
t
11
+C/(1+r—r)‘T||(%e—%)(r)n dr
L'NL2NH*
0
<Cos(# 1 +1)7F,
[v220)| <ca+n73| %) e A
L'NL2NH3 L'NL2NHS
rCc+nF |2 ,
L'NL2NH>
t
_9
+c/<1+r—r> e — 9 @ ‘
L'NL2NH3
0
t
+C/(1+t—r)‘%||<£¢4e—%i>(r)|| dr
L'NL2NH>
0

<CwsW°) (1+1)77,
and

[v* @&.2) 0] <ca+n7!| (2.6 2)

L2NHs+2

t
+C/(1+t_7:)7]||(g26_g2ivg4e_g4i)(f)||L2mHs+2dT
0

<Cos s (1+1) "1 InB +1),

where we have used the smallness of w;5(#?). Furthermore, by (2.15) and applying the esti-
mates on V¢, and V%5 in (3.80) to (3.8), respectively, we get
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(8.579) o

LInH

£ ]

[v(cs+ ) o] sca+n

LINnL2

t
+C/(1+t—f)_%ll(%e +%i, % +%) (DI - dr
L'nH!
0

t
+ C/ 1+t —1) (@ + %) (Ml ing2dr
0

<CosWO)(1+1)77,
and

0

IV 24 <C(1 407 (HQOH +| %

>+C(1 —I—t)_%

7|

L'nL? L'nH! L'NL?

t
5
+ C/(l +t—1)" 4 <||gle +%illpince + 1% +%illmm> (v)dr
0

t
+c/(1+r—rr%n(%e+%l~><r)||mder
0

<Cas(#Y)(1+1)77.
The proof of Lemma 4.3 is completed. 0O

Then, putting (4.18) into (4.17), we have
2
el ) = e € r) +C (s (#°)) a+n7i

Since @é’ W () ~ ||[VH (1) ||f_1 holds true for any ¢ > 0, (2.16) follows. We have completed the
proof of Proposition 2.2. O

4.3. Time decay rates in L1
In this subsection, we investigate the decay rates of solutions # = (¢, %", TV, &, PB)
to problem (2.5)-(2.6) in L? with 2 < g < 400, and complete the proof for the second part of

Theorem 1.1. In what follows, we always suppose wg(#) to be sufficiently small. For s > 4, it
follows from Proposition 2.2 that if w1 (#°) is sufficiently small,

1 )5 < Cwgar (#O)(1+1)75. (4.19)

Next we establish the estimates on 2, % ¢ — UL E, U+ U =, T - T e+
and .7¢ + .7 in turn as follows.
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Estimate on || %8| q. For L? rate, in view of (4.19), we have
3
11 < Cos(# )1 +1)75.

For L° rate, by applying L estimate on % of (3.17) to (3.7), we get

18O <ca+n |7 | +ca+n

%O‘

(520‘

LINL2NHS

Y +d

LINL2NHS

t
+c/(1 N [CATTR dr
0

INnL2nH3

13
+C/(1+t—f)_%ll(%e—%i)(f)llL
0

INL2NHS
By (4.19), since

(&2 — i) D)l -+ 1 — G5 Dl e VAGI
LInL2nH3 LINL2NHS

N
2
= C (ws#") (14075,
we obtain

1Bl 1 < Cas(#°)(1+ 1)~ In(3 +1).

Then, it follows from L2 — L® interpolation that

1Bt e < Cos#O(1+1) 1 (G +1)' "7, Y2<g<-doo.  (420)

Estimate on | %€ — | 1q. For L? rate, by applying the L? estimate on % in (3.14) to (3.7),
we obtain

[(ze-2") 0| <ca+ni

(-t 760 2)

t
+ C/ A+t = 1) e — Gt G — Goi» Gse — Dot oo — Yai) (Ol pin2de.
0

By (4.19), in view of
1“1 — G1is e — i, G3e — Bis Gae — Dai) Ol 12 < C I 02
2
=C(ws#") (4074,
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we have
; 5
|~ 20| < cosora+ni. @21

For L*° rate, by applying the L™ estimate on %/ in (3.16) to (3.7), we get

|(# - ) o),

<ca+n || +ca+n?|F| - +ca+rni]s] A
LInH! LINnH! L'NL2NH3
t
3
+C(1+t)"H%’°H » +c/(1+t—r)*z||£44e—g4i|| (t)dt
L'NL2NH3 L'NL2NH3
0

t
5
+C/(1+I—‘L’)_Z||g28—gzl'HleHl(‘L')d‘L’
0

t
+C/(1+t—r)_2ll%,e—%i|| - (t)dr.
LInH!
0

In view of
o) -3
1920 = Dol + 1% =Sl | =Sl < (0s0P0) (407
LInH! L'NL2NH3
we have
(% = %))~ < CosWO)(A +1)71,

where we have used the smallness of ws(#°).
Then, it follows from L? — L interpolation that

. 3 1
(% = %) O)llLe < Cos(WO(1+1)73F 3%, ¥2<g <+oo. 4.22)
Estimate on | & | Lq. For L? rate, by applying the L? estimate on & in (3.15) to (3.7), we obtain
€@

<c+ni (H@/]O‘ 7

|

ooz * | ],
LInH! H LNL2NH3 LINL? L'NL2NH?3

t
+ C/ (I+1— r)‘% <II(%e — i, Ge —Gi) (Dl pinr2 + 1(Gae — Yai) (Tl : )
LINL2NH?
0
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In view of (4.19), by

1(%2e — i G3e —%3i) (D p1np2 + 1 (Gse — Yai) (t)||LlﬂL2ﬂH2
2
=ClIPmI}=C (osr) a+n73,
we have

I6@] < Cos(#O)(1+1)71. (4.23)

For L° rate, by applying the L estimates on & in (3.17) to (3.7), we get

160l o

<Cc+n7i (H%O‘

{ |#°
L'NL2NH3 H L'NH2NH5 LINLZNHS

+ca+n|ef|
L'nH!

t
3
+C/(1+t—f)_7 <||%e—%i|| - A NG =Gl )(T)df
L'NL2NH? L'NH2 N HS
0

t
+ C/ 1+t— ‘L’)72||§43e — % - (t)dr.
L'nH!
0

Since

192e — i | - ANGBe—Gill - A= Gl

LINL2NH3 LInH! LINH2N HS
2 3

=CIr 013 = (06) A +07H,

we get
3
1@ L= < Cos(# )1 +0)71,

where the smallness of wg(#) is used. Therefore, by L?> — L™ interpolation

1E@Le < Cop(#O)A+1)77, V2<q<+oo. (4.24)

Estimate on | %€ +%"|| 4. For L? rate, by applying the L? estimates on % in (3.79) to (3.8),
we have

518



Y.-H. Feng, X. Li, M. Mei et al. Journal of Differential Equations 301 (2021) 471-542

| (7 + ) o]

<C( —I—t)_%

+Cd +t)_%

7|

L!

t
5
o + Cf(l +1—1) 2 (Ge + i) (D p1ar2dT.
0

By (4.19), since

2
|re+Sir, Gae + i, e+ 550) Ol iz = CIV O1F < (0570)) (1 41)”

it follows that
H " +62/")(r)H < Caos(?")(1+1)71.
For L° rate, we use the L estimates on %5 in (3.81) to (3.8) to obtain

(7 + )] .

§C(1+t)_% (HQO’

%)

+CA+1)72 H %0]

2] ) |
LinH! LINH? LInH!

t
3
+ C/ (I+1 =072 (1%1e + il ping + 1950 +%aill 10 jp2) ()T
0

t
+c/(1 =) 2B+ D) (Ol .
0

By (4.19), since

141 + il gt + %0 +Dill piag2 + 13e +9530) (Ol ping

<Ol = (0sr) 1407t
we get
12¢(0) + 2 (D)1~ < Cos(#O)(1+1)73.
Therefore, by L? — L™ interpolation

%) + % () e < Cos(#O)(1+1)73, Y2<gq<+o0.
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Estimate on || (¢¢ — ¢, 7¢ — T ) |l and || (¢ + ¢, T¢ + T7) || Lg. For L? rate, by apply-
ing the L? estimates on ¢1 and 77 in (3.14) to (3.7), we have

(e 7 7) o] scer

+C(1+1)73 (H% H

o)

+[e°]
LiNnL?

|

LINL?

+C(+07F ﬂPH

L'nL?
t

e / DN — Gl (1
0

+ c/a b= (195 — Dol s + 1Fse — Dl ) ()dT

7
+ C/(l +1t—1) 4G, —Gillp1q2dT.

(4.26)
Since
141 —%illpinre + 1% —%illpinre + 195 — Gill pinpe + 1%e — Yaill
2
<C (a)s(z//o)) (401
Then (4.26) implies the decay estimate
|(ze=¢'. 7= 7") 0| = CosrOa+ni. @.27)

Similarly to that for || (ge —¢h T — 95) |, by applying the L? estimates on ¢ and .7 in (3.79)
to (3.8), we obtain the decay estimate

H (g%;",ﬂ%ﬁ)(r)” < Cos(#) 1 +1)71. (4.28)

Combining (4.27) and (4.28), we obtain

[ T 0] < Cos# )1 +1)73 (4.29)

For L rate, by applying the L°° estimates on ¢; and .7 in (3.16) to (3.7), we have the decay
estimate

520



Y.-H. Feng, X. Li, M. Mei et al. Journal of Differential Equations 301 (2021) 471-542

(e —e.7- 7)o, el

L'nAH? +Cd+ t)_z (H%lOHL'mHI + ”gOHU)

t
{ZOHL'mFﬂ +C / eTrtmo 1“1e — i | 12 (T)dT
0

+C(1+t)_%

t
+ c/ U417 — ) (15 — Gaill i + |Fse — G 111) (DT
0

1
5
+C/(1 +1t—1) 2 |GBe — Gill p1qgrdT.
0

(4.30)
Notice that
191 —%1ill prape + 1% — il pingt + 1193e — Bill inge + 1%ae — Yaill
<C (ws(w‘)))z (14074, 30
Together with (4.30) yields
H (;f g y") ) H L =CosrOa )i (4.32)

For || (g‘e +¢h, T+ yi) |l oo, by applying the L estimates on ¢ and %5 in (3.81) to (3.8),
we have the decay estimate

[(z ¢ 74 7) 0] = CosrD+n7E. (433)

Combining (4.32) and (4.33), we obtain

1", T ()] ;oo < Cos(#O)(1 +1)75. (4.34)

Then from (4.29) and (4.34), by L? — L™ interpolation, it follows that

12", 7)) 10 < Cos#O) (1 +D7F, V2<g<+oo. (4.35)

Thus, (4.35), (4.25), (4.22), (4.24) and (4.20) give (1.5), (1.6), (1.7), (1.8) and (1.9), respectively.
We have finished the proof of Theorem 1.1. O

5. Global existence and asymptotic decay of the isentropic CNS-M system
5.1. Reformulation of problem (1.11)-(1.12)

Next, let (A, %", &, P) be alocal smooth solution to the initial value problem for system
(1.11) with initial data (1.12) satisfying (1.4). Based on the transformation (2.4) about .4, we
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can rewrite (1.11)-(1.12) as

3"+ V- ((1+c")%") =0,

AU

1+¢" 5.
WE-VXB—-—U AU =cU - U, V-E=0—¢°,
WB+VxE=0, V-B=0, (i x)el0,400) xR

WU+ (U VYU + VA1 +") =g, (E+U" x B) +

with the initial condition:
Wlimo = W0 = (0, %0, £°, #%), xeR3, (5.2)

which also satisfies the compatibility condition (2.7).

In order to establish Theorem 1.2, for W = (¢, %V, &, $B), we use E;(W (1)), G?(W(t)),
Ps(W(t)) and .@Sh (W(2)) to denote the energy functionals, the higher order energy functionals,
the dissipative functionals and the higher order dissipative functionals for two charged carriers.
They satisfy

E (W (1)) ~ Zj | 2|2+ 1 B2, (5.3)

ENW (1) ~ _Z V@ w2, +1IVE B2, (5.4)

D (W (1)) ~ Z'(“Vf””f—l + |V |2) +1vEIR, + | v i3+ Jee— ¢ " s
and

atovon~ 3 (| [oo | )+ [oel [+ v -]

v=e,i

(5.6)
respectively. Now, for problem (5.1)-(5.2), we obtain the global existence result as follows.
Proposition 5.1. Assume that W° = (¢'0, %0, &0, 2°) satisfies the compatibility condition

(2.7). Then, if E, (WYY is small enough, the initial value problem (5.1)-(5.2) admits a unique
global solution W = (¥, %", &, PB) satisfying

2 ec' (RYH 72 (RY))ne (RY 1 (RY), o
.8 B)eC! (R*; ! <R3>) nc (R*; HY (]R{3)> ,
and (2.13) in which Eg(# (t)) and Ds(# (1)) are replaced with E;(W (t)) and Ds(W (1)).
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From Proposition 5.1, it is easy to get the existence result in Theorem 1.2. Furthermore, we
obtain the following decay results.

Proposition 5.2. Let W = (¢, %", &, B) be the solution to the initial value problem (5.1)-(5.2)

with initial data W° = (¢"°, %0, &9, 2°) which satisfies (2.7) in the sense of Proposition 5.1.
Then, if wg+1(WO) is sufficiently small,

IW @)l < Cosn (WA +07F, Vi=0. (5.8)

Moreover; if wg4+6(W?) is sufficiently small, then, the solution also satisfies

IVW )1 < Copss(WO (1 +0)7 3 InG+1), Vi=0. (5.9)
5.2. Global existence for system (5.1)

Similarly to that in the subsection 2.3, the global existence of solutions satisfying (5.7) and
(2.13) follows by combining the standard continuity argument and the a priori estimate as fol-
lows.

Theorem 5.1 (A priori estimates for the bipolar isentropic CNS-M system). Let W = (¥, %",
&, PB) be the solution to the initial value problem (5.1)-(5.2) satisfying the compatibility condi-
tion (2.7) for t € (0, T) with T > 0, in which ({*, &, %) € C' ([0, T1; H*~') N C ([0, T1; H),
and %" € C' ([0, T1; H*~2) N C ([0, T1; H®). Then, if

sup [W(@)lls <o (5.10)

0<t<T

with 8¢ sufficiently small, there exist €;(-) and D (-) in the form of (5.3) and (5.5) such that for
any0<t<T,

d |
77 W)+ Is(W (1)) < CEW(1))2 D5 (W (1)). (5.11)

Proof. Corresponding to (2.19), (2.39), (2.40) and (2.41), we get the estimates as follows.

%||W||§+ > vz |? < ciwiy Z(HV{“H?,] Sver). en
58 Y ave)ralv (e ) el -]

la|<s—1v=e,i

<C 3o v s+ e 3 (1ve o + v l).

v=e,i v=e,i

(5.13)

where ¢ is a positive constant.
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di Yo (o (e -at). o)+ o1Vl

1<|o|<s—1

2
=ci@E Bl | X (Ive I, + V2 ) +Iv612, | +e V2] 614
v=e,i
oY (Ive s +Ivels).
v=e,i
in which ¢ > 0 is a small constant to be chosen later.
d 2
=Y (6 -V x 0" %)+ o |V
1<lal<s—2 3
(5.15)

2
<C Hv%ﬁ’HHJrC Z v |} s+l Y |V 7)), .

v=e,i v=e,i
Finally, combining estimates (5.12)-(5.15), we define the energy functionals as

SWO =W +m Y D (ot Vo e Y (o7 (20— '), 0%6)

loe] <s—1v=e,i 1<|a|<s—1

tus Y (996, -V x 0°8),

I<|o|<s—2
where constants 0 < u3 < uy < 1 < 1 are to be chosen later. It follows that
E (W) ~ [IWII3,
as long as 0 < u; < 1, j =1,2,3, are small enough. Furthermore, by letting ¢ > 0 and
0 < u3 K pup K p1 < 1 be sufficiently small with 2euy << @3, summing (5.12), (5.13)x g,
(5.14)x 2 and (5.15)x 3, we get (5.11). The proof of Theorem 5.1 is finished. O
5.3. Linearized homogeneous systems for system (5.1)

Next, we rewrite system (5.1) as

8;§V+V'OZ/V Zglvv
QU+ — b — AU =G,

| . (5.16)
atéa—Vx%—%e—F@/l:5(%4e—§§4i), V-&=¢t—¢°,
KB+VXxE=0, V-B=0, (t,x)€l0,+00)xR3,

where ¢, and ¥, are defined in (3.2) and
k v v v v v é‘UA%V

524



Y.-H. Feng, X. Li, M. Mei et al. Journal of Differential Equations 301 (2021) 471-542

Then it follows from system (5.16) and the transformation (3.3) on ¢; and %) that W) =
(C1, %, &, B) satisties

1
%1+ V- = E(gle_gli)s

J— 1 * *
(U +VO+E— AU = > (%5, —95) . (5.18)

1 1
atg—VX%—Z%lzi(g4e—g4i), Evg:—é‘l,

B+VXxE=0, V-B=0, (1, x) €0, +00) x R3,

with the initial condition
Wilizo= W0 = (¢, %0, 6% %), xeR?,

which also satisfies (3.11). Here (¢}, %) is given from (¢¢0, %0, ¢'0, %1°) due to (3.3).
Moreover, based on the transformation (3.5) about ¢, and %5, we obtain that W, = (¢, %5)
satisfies

1
0+ V-9 = > (e +%11),
(5.19)

WU+ N — ANy =5 (95, +95). (t.x) €[0,+00) x R?,

N =

with the initial condition
Wali—o = Wy = (é’é), 6//2()) . xeR’,

where (£3, %) is given from (¢"°, %"°) due to (3.5). Therefore, we define the solution W; =
(1, 2, &, PB) and W, = (&2, Yh), respectively, as follows

t

1
Wi(t) =elrw) + 5 / TG, — G, G — G Gae — D) (DdT, (5.20)
0
and
t
_ tLyy0 1 (t—1)Ly . * *

W) = WS + / I (g, + Gy, G+ D) (D), (5.21)

0

where e’ W{) and ¢'12 Wg , respectively, denote the solutions of the homogeneous initial value
problems (5.22)-(5.23) and (5.24)-(5.25), which are given as follows.

525



Y.-H. Feng, X. Li, M. Mei et al. Journal of Differential Equations 301 (2021) 471-542

The linearized homogeneous system of (5.18) is

B8 +V % =0,
U +Vo+E— AU =0,

1 (5.22)
até"—VXﬂ—Z%l:O, Eng—gl,
KB+VxE=0, V-B=0, (1 x)el0,+00)xR3,
with the initial condition
Wilimo =W i= (e, %0, 6. 2°). xR, (5.23)
which satisfies the compatibility condition (3.11).
And the linearized homogeneous system of (5.19) is
at§2+V'%2=09
3 (5.24)
U+ Vo — A =0, (t,x)€l0,+00) xR,
with the initial condition
Wali—o = W0 = (;20, %0) ., xeR3. (5.25)

In the following, we use W| = (¢, %1, &, %) to denote the solution of the initial value problem
(5.22)-(5.23), and W, = (&2, %) as the one to the initial value problem (5.24)-(5.25).

For the initial value problem (5.22)-(5.23), we also get the L” — L9 decay property as fol-
lows.

Proposition 5.3. Let Wy (1) = 'l Wl0 be the solution to the initial value problem (5.22)-(5.23)

with initial data Wf) = (;?, %10, &9, B°) satisfying (3.11). Then, for any t > 0, there exist
constants C > 0 and y > 0 such that Wy satisfies the following time decay property

e <C1+1)73

(. 0)

¢f)

HleLZ’

12O <C+673 20 pipp2+C 14173

(%10, g’o) HmLerca 413

550‘

LnL?’

+C(141)78

3
[EOI<CA+1)"4
L'NL2NH?2

w| , +ca+nTi
LinL?

go]

|

LnL2ne?’
+C(140)78

+C(1+t)_%
LINL2nH3

1B <C(1+1)"F
L'nL?

%P \

50‘

@01

Linc2ng!’
(5.26)
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61l < Ca+072] (52, 27)

+Ce?! (H;{’ |+
H!

16D~ <CA+D73 <”%10H

1B < C(1+1)7 (H%lo”

||%<t)||Lwsc<1+t)—1(Hc?HL,+ %

LInH3

+Ce ! (H (%, ")

LInH3

reen (.ot

Journal of Differential Equations 301 (2021) 471-542

)
H2 H!

. )+C(1+t)_‘5'*(H?/10‘

LInH3

.+ )]).

), )

)
o)

e ([

I

LlﬂH3>

.+
LInH!

2+

Sl #)]

LZ)’

(5.27)
and
vzl ca+n (o] +[ (2.6 2)| )
4 Ce V! (H (é.l()’ 50”@0> ” + u(l) H1> >
IVEOI<Cca+n7" <Hu?‘ leH1+H£0HUmH1ﬁH3+H BOHL'”m)
et (H (%0, 2°)| + | &° HH1> : (5.28)
IvEol<ca+n || | +cavni(e02)|
HV2%(I)H <Ca+n™ <”%10‘ L'NL2NH? Hgo L2nH* H 0’ L10L2034)
+Ce ! (%10, &°, %") :
[V @& @, 2@ <ca +1)7 (%10, &, 930) L2Es43

Proof. The proof is similar to that of Corollary 5.1 in [4], we omit it here for simplicity. O

5.4. Explicit solutions of linearized system (5.24)

Next, we consider the explicit Fourier transform solution W> = ({2, %) of the initial value
problem (5.24)-(5.25). It follows from (5.24) that

att§2 - AatQ - AQ =0,

(5.29)
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with the initial condition

& limo = &3,
{ ' 2 . (5.30)
at§2 |t=0 =-V. %2 .
Taking the Fourier transform on (5.29) and (5.30), we have
i fa + k29,20 + |kPE2 =0, (5.31)
with the initial condition
O limo = &3,
{ N oo (5.32)
082 lr=0 = —ilklk - 02/2 .
The characteristic equation of (5.31) is
L) =2+ kPA+ k> =0, (5.33)
whose roots may be written as A = A .
Then the solution of (5.31)-(5.32) can be written as
. )\.lekzt —)Lze)”t A0 e)»]l‘ _ e)uzt ~0
= — ik - YL (5.34)
? AL — A2 2 M= 2

For the roots of the characteristic equation (5.33) and their properties, by a direct computation,
we obtain

Lemma 5.1. Assume |k| # 0. Then, £ (L) =0, A € C has two real roots

LG L M
2

- , as |k|=2,
1,2 > k| >
or two conjugate complex roots
kP> k4 — k|2
)»1,2=—%:|:i7| | 5 k] . as k| <2.

Moreover, the following asymptotic behaviors hold true:
|hi2] =0k, A1 = =ilkly/4— k> =i01)|k],
whenever |k| — 0 is small.
aM=-0(), k=—0WMkP i —r=Ikl\/[kI>—4=0D)k>

whenever |k| > 2 is large. Here and in the sequel O (1) denotes a generic strictly positive con-
stant.
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Next, again from (5.24), we obtain
3 (k : 6222) + k%8, (k : %}) + kP (k : @22) —0, (5.35)

with the initial condition

o o A (5.36)
3 (k : 02/2)) =Pk =i .
=
It follows from (5.35)-(5.36) that
5 R e)qt _ e}nzt R Alek]t _)Lze)»zl R
k-9 =— i |k 0 7](.52/0’ 5.37
2 Al — A2 Fkg + A—22 : o3
where we have used the fact that A; + Ay = — |k|2.

Furthermore, taking the curl for the second equation of (5.24) and then taking the Fourier
transform, it also follows that (3.50) with the initial condition (3.51). And then, we get (3.52).
Then by combining (3.48), (3.52) and (3.53), we have

e)»]l‘_ekzt )\,leklt—)\,zexzt~~

A T ) B0 — o RP (K x w0 5.38
=== Ik R e kx(kxa).  639)

Now, it follows from (5.34) and (5.38) that the explicit Fourier transform solution Wy =
(&2, %) as follows.

Theorem 5.2. Let W) = (¢2, %) be the solution to the Initial value problem (5.24)-(5.25). For
(t,k) e RT x R3 with |k| # 0, it holds

ot k) e4(3)
. =A@tk | , (5.39)
Ur(t, k) U (k)

where the 4 x 4 matrix Z*(t, k) is defined as:

CRY (1K) Rt k)
(1, k) =
| %5, (t, k) R3,(t, k)
_ )Llekzt _ Xzeklt e)nlt _ ekzt (_lkT)
Al — A2 Al — A2
F o ity o <13 _k® k) et — e k@ k
L A — A2 k|2 A =22 k|2
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5.5. LP — L1 decay properties for system (5.24)
In this subsection, we want to get the L? — L9 decay property for every component of the
solution Wy = (&2, %). To this end, we consider the time frequency estimates on Wy = (&2, %)

as follows.

Lemma 5.2. Let Wy = (¢2, %) be the solution to the initial value problem (5.24)-(5.25). Then,
there are constants € >0, L >0, y > 0 and C > 0 such that for all (t,k) € Rt x R3,

ce W (|| +|20w]). i k=e

b)) < { ce ([Bw| +|2wl). i esk=L (5.40)
Ce ! gg(k)“%e—w Bw)|. i k=L,
and
ce W (|| + | W), i k=
.| < | c ([Bw]+|Zw]). foe<k<L.  (s41)
;—le‘” ES(k)M&e—W UK. i k=L

Proof. In order to get estimates (5.40)-(5.41), we need to establish the estimates for every com-
ponent in matrix Z*(t, k), namely, %’;;, (1 <i,j <?2). It follows from Lemma 5.1 that there
exist constants € <2 < L satisfying 0 < € < 1 <« L < 0o such that

PApEC—
|\ %8| + | %3] < Ce= Wt < comv I (5.42)

—1k|? _ L2 _ 2
| %3, < Ce W - Cem2WT < eV as k| <€,

and

il e o
k]

C/_ -
|202] + %3 Sm(e PRFE 4 et (5.43)

|23, | < Ce WP 4 %e*W e WP < C vt oo P a1k > L.

13 |k|?

Thus, based on (5.42)-(5.43) and (5.39), we get, when |k| < ¢,
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G2 0| = 21| |8 0| + 81| |20 0| < ce W (|| + |20 w0 ).

‘52220, k)‘ < |23 ‘25’(1@‘ + || ‘62220(@‘ < Ce VPt ((25)(1@‘ n ‘62220(@‘) , G4
and
‘;z(t k)‘ <c< 1| o VK | o ”)‘é“z(k)‘ (e YK yr)‘%o(k))
<Ce ! ;z(k)‘ me —yt %O(k)),
(5.45)
| < (7 e w>\:z<k>\+c( ) [
<me vt ‘{2 (k)‘ + We vt ‘52220 as |k|>L.

Moreover, we establish the estimates on the domain {e < |k| < L}. For briefness, we only
consider the estimate for %7, (t, k).

By Lemma 5.1, we have

ekll _ e}»zt
lim ———— =t <Ce™ ",
k|—>2+ Al — A2

and
26~ 3P gin (L jkp /4 — kP2
e}»]t _ e)uzt € sin E' | - | | s
lim — = lim =te ' <Ce .
k|—>2— Al — A2 |k|—2 k|4 — |k|?

Then there is a constant § > O such that

e)»lt _ e}»zt
| <Ce ", as ||k|—2| <38,
Al — A2
which implies
e}\]t _ Aot
|%7,| = — (—ikT)| <Ce7 ", as ||k|—2] <3$. (5.46)
— A2

On the other hand, when ¢ < |k| < L and ||k| — 2| > §, due to the fact that

A2 <0, if A1 are two real roots,

1
Reiir=— 3 |k|2, if Ay aretwo conjugate complex roots,

we have
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e)\lt _ekzt
|%7,| = ﬁ(—ikT) <Ce™', as |k|—2|>8 and e < |k|<L. (5.47)
1 — A2

Therefore, it follows from (5.46) and (5.47) that

e}»]l _ LAt
| %7, | = |————(—ik")| < Ce™"", as e<|k|<L. (5.48)
Al — A2
Similarly, we also obtain
| %5\ | | %5, |, |%5,| < Ce™', as e <|k| <L. (5.49)

Based on (5.48), (5.49) and (5.39), we obtain, when ¢ < |k| < L,

60,00 < |20 |E20)| + 21| |20 0| < cer (|0 00| + |20 w)), 550
%20 <1851 |8 0)| +] 5] |4 w0 | <ce (|| +| 7 w)). |

Thus, (5.40)-(5.41) follow by combining (5.44)-(5.45) and (5.50). We have finished the proof
of Lemma5.2. 0O

Next, by applying Lemma 2.3 to the estimates in Lemma 5.2 above, it is straightforward to
get the decay property for every component of the solution W = ({2, %4).

Theorem 5.3. Let j > 0 be an integer and 1 < p,r <2 < g < co. Suppose Wa(t) = e'12 Wg to

be the solution to the Initial value problem (5.24)-(5.25). Then, for any t > 0, W, satisfies the
following time decay property:

HWQHM <c+n 1G-i)4

(. %)

L Ce (H ymira) g0 H 4 H ymU=lra) g0
Lr

. s

Lr)’

and

. _é(i_l)_l
[vr2a],, zea+n 7360

(1.90)

L Ce ! (vau—l,r,q);zo

3

For later use, we list the following result which is an immediate corollary from Theorem 5.3.

Corollary 5.1. Let W»(t) = e'2 Wg be the solution to the initial value problem (5.24)-(5.25).
Then, for any t > 0, W, satisfies the following time decay property:

(&), + cer | (s 2]
R R

532

leall < C(1+1)73

(5.53)

’

%] < C(1+1)"3

+Ce V!
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(8. 28)],, v e (|68l + 4.

CROI Sl (CRS

5
Vol =C+16)"4

(5.54)

’

5
IVl <CA+1)~4

and

3
I82llpe =CA+1)"2

(8. 98)],+ e (e8], + [#1,,),

(. 0)], - e (1, + ]

5.6. Time decay rates for energy functionals of system (5.1)

3
%o < C(1+1)"2

In this subsection, we prove the decay rate (5.8) in Proposition 5.2 for the energy ||W(t)||§.
We begin with the following Lemma which can be seen directly from the proof of Theorem 5.1.

Lemma 5.3. Let W = (¢V, %", &, B) be the solution to the initial value problem (5.1)-(5.2)
with initial data WO = (¢"°, %0, &0, B°) satisfying (2.7) in the sense of Proposition 5.1. Then,
if € (WO is small enough, for any t > 0,

%GS(WO» + (W (1)) <0. (5.56)

For p > 0, the same procedure as that for the non-isentropic case, from Lemma 5.3, we also
have (4.2), in which &;(# (¢t) and D;(# (t) are replaced with &;(W (¢) and Z;(W(¢), respec-
tively. Next, let us estimate the terms on the right hand side of (4.2). Applying the estimates on
2, & and £ in (5.26), the estimate on V.% in (5.28) and the estimates on &, and %> in (5.53)
to (5.20) and (5.21), respectively, we have

|(z-#) o
~5 .0 -3 0 20 -3
sca+n il | +carni|(we0)|  +ca+ni|e|
t
+C / (U +1 =1 @1 = ) (Ol ppod 637
0
t
+cf<1+t_f>—%|| (G = 535 Gre — Gas) (O] 127,
0
€@
<C(l+n71 %1()”L1QL2+C(1+”_% go)‘leLzmyz+C(l+t)_% %0‘L10L2OH3

(5.58)

’

t
_3
+ cf (+t—0)73 (II (e = 95) (O 12 + 1 Gae — i) (f”'leLzm,{'z)
0
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1B
<C(1 413 %0) FC(+1)% éaOH 4 CO 408 ,@OH
1 LNL2 L'NL2NH3 L'NL2NH!
t (5.59)
+ C/ I+t— T)_% (” (gz*c - %2*1) (T)”leLz + 1(Gae — Yai) (T)||L1QLZF1H3> dr,
0
VA
t
scaro i), e [avi-0 @ - %) Ol
0
t
_3 0 20 -3
+CA+n78 H (éa & ) leLzmHS + C/ (41 =)0 (Fae = Fi) (T)”leﬂmﬁ
0
(5.60)
and
[(e+ Yo sca+ni| (2],
, 3 (5.61)
e / (U +1 =03 | (e + %, G +93) )| 12T
0
and
[(#eva)w|scarn (2.2, .
(5.62)

t
+C/(1~|—l‘—T)_‘3_‘H(gle+g1i,%*e +95) (O i 2T
0

It is direct to check that for any 0 <7 <7,

| Sre + %1, G5+ 955) ()| 12 < CE WD) < CA+1) 1E 00 (W),
and

3
[~ %1 %5, = 45) Ol e +1re =G O | <CO+D)H 0 (W),

2NH
Plugging the two previous inequalities into (5.57)-(5.62) implies, respectively,
[(ze -2 o] =ca+ni(

(%UO’ 50,«%’0)‘

(guo’ pv0, £, %o)

LinL? +€S,OO (W(t))), (563)

& @l SC(1+I)*%( + & 00 (W), (5.64)

L'NL2NH?
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120l <ca+nTi(|(20.6 )| | Fen W) (6569
IvAOI=ca+nF(|(20.602)] |+ EW@)). (6566
[+ Yo scasnTi(|(8.20)|, +ExWan). 66D

and
(7 + ") o sca+nTi(|(8.2)],, +ExcWn). 668

3
Next, we also choose p = 7 + ¢ in (4.2) with ¢ > 0 small enough and using (5.63)-(5.68), we
have

IW D), < CEW ()2 < Cap1 (WO) (+0"%, Vi>0,

that is (5.8).

5.7. Time decay rates for higher order energy functionals of system (5.1)

2

In this subsection, we consider the decay estimate of the higher order energy VW (1)[l<_,

that is (5.9) in Proposition 5.2. We begin with the following Lemma.

Lemma 54. Let W = (", %", &, B) be the solution to the Initial value problem (5.1)-(5.2)
with initial data WO = (£"°, %0, &9, 2°) satisfying (2.7) in the sense of Proposition 5.1. Then,
if €, (W) is small enough, there exist the higher order energy functionals in’(~) and the higher
order dissipative functionals .@Sh () in the form of (5.4) and (5.6) such that for any t > 0,

%eﬁ?(W(t)) + 7" w @) <o. (5.69)

Proof. By letting || > 1, then corresponding to (5.12), (5.13), (5.14) and (5.15), we also get

d
SNV + Y (vl =ciwi Y (Ve + Ve ll),

v=e,i v=e,i
A (12
v (e ¢)]

v (e 6)].
e Y <HV2;” 21>

=e,i

% Do > e 0*veY) + co

1<|a|<s—1v=e,i

<c Y |var
v=e,i

+co
2

2

2 2
+| v
s s—2
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d o e i o 2 2
=Y (e (e -w) o) v e vie |
2<]al<s—1
<g‘)v3@2 +eiwi [ Y Hv%”z +”v2%”2 +”v2(§2
- s—4 $ . s—2 s—1 s—3
v=e,i
e (IPel e l)
. s—2 s—1 ’
v=e,li
and
d 3%, —V x 3° % val|
7 2 e d)e|via|
2<|a|<s—2
<c|v RS | v BRIl [v2 (e 2) ’
- s—3 . s—3 § . ’ s=2
v=e,i v=e,l
Now, let us define the higher order energy functionals as:
EWO)=IVWIT +w Y. > (8%, VoY)
1<|a|<s—1v=e,i
' (5.70)
tur 3 (0 (we—w) o) s Y (06, -V x 8°),

2<]al<s—1 2<|al<s =2

Similarly, we choose 0 < ¢ « 1 and 0 < 3 < p2 K pu1 < 1 to be sufficiently small with
2¢e 1y <K 13, such that @?(W(t)) ~ ||VW () ||2 that is @f(-) is a higher order energy function-

s—1°
als which satisfies (5.4), and moreover, summing the four previously estimates with coefficients

corresponding to (5.70) gives (5.69). This ends the proof of Lemma 5.4. O

Based on Lemma 5.4, we obtain (4.17) for the isentropic case in which L’Eﬁ’ (W (1)) and (’Eﬁ.’ %
are replaced with @?(W(t)) and @?(WO). Next, we estimate the time integral term on the right
hand side of (4.17) for the isentropic case.
Lemma 5.5. Let W = (¢, %", &, PB) be the solution to the initial value problem (5.1)-(5.2)

with initial data WO = (0, %0, &0, 2°) satisfying (2.7) in the sense of Proposition 5.1. Then,
if ws4+6(WY) is small enough, for any t >0,

[v(z a0 +1ve.mor+|ve.snol
o <fofese)of sforw)of  em
< (s (WO)>2 1+~ G +0).
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Proof. Applying the estimates on V%, V&, VA, V2% and V*(&, %) in (5.28) to (5.20),
respectively, and using (5.8), we get

IV @l sca+n07 (o | + | (%6 2°)|

LlnH1>
t
+ cf U+t =) (1Ge — %) Ol + (G5 — D5 Gae — Y1) (O|| 1) AT
0

<Cws(WO) (1 +1)"1In(3 +1),

ivsan <ca+ot(|a7)

ggo‘

L‘ﬂH3)

t
+ c/ (I141—7)" (H (“e = 953) O 1w + 1 Gae = Gai) <f>”mf,.m,‘3) dt
0

{ |
LInH! H LINH!'NH3

<Cws(W) (1+0)~ 1 InG +1),

IV#@I <C(1 4073 (H%o\ 4| (e0.9)

L'nL? leLZmH3)

1
_3 * *
—I—C/ (I+1—1)78 (“ (. = 95) O 12 + 1 Gae _%i)(r)”mmms)dr
0

<Cos(WO) (1 +1)7F,

[7#0] ca+om (o] 5

|
L'NLZNH? ‘ L2NH4 H leL2mH4>

t
n C/ (At1—1)"! <H (95, —45) (T)”LlnLZﬂHz + | (Gse — %ai) (r)llemm) dt
0

<Cws(WO) (1 +0)~ 1 InG +1),

and

|V (&, 2) )| <c1+n73

&0, B
(" 8")

L2NHs+3

t
+ cf A+t =13 |(G — G55, Gae — i) (O] f2ngs3dT
0

<Cas (WO (14171 InB +1),

where the smallness of w;¢(W?) is also used. Moreover, by (5.8) and applying the estimates on
V¢ and V%, in (5.54) to (5.21), respectively, we obtain
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[v (e +) o]

<CcQ +t)_‘5_‘

(2.92)

- dt
LInH! InH!

t
, +c/(1+z—r)—%|\(%e+£¢1i,§4;e+g;,.)(r)||L
0

<Cos(WO) (1+1)77
and

IVl

<C(1+n73

(gé’, 02/20) ‘ L

0 _3
<Caos(W)(A +1)"4.

t
ot € [ = e 9 G54 05) O e
0

We have finished the proof of Lemma 5.5. O

Then, plugging (4.18) into (4.17), we have
2
LW ) = e W) +C (06 (W) A +07F G+,

Since G?(W(r)) ~ ||VW(t)||§_1 holds true for any ¢ > 0, (5.9) follows. The proof of Proposi-
tion 5.2 isended. O

5.8. Time decay rates in L9 for system (5.1)
In this subsection, we consider the decay rates of solutions W = (¢V, ", &, %) to the initial
value problem (5.1)-(5.2) in L9 with 2 < g < 400, and prove the second part of Theorem 1.2.

Throughout this subsection, we suppose wg(W?) to be small enough. Firstly, for s > 4, Proposi-
tion 5.2 shows that if w1 (W?) is small enough,

IW ()]l < Casp1 (WOY(1 +1)" %, (5.72)

Next, we also estimate B, %€ — U, &, U+ U, ¢¢ — ¢! and ¢¢ + ¢! in turn as follows.
Estimate on || 2|| 4. For L? rate, it follows from (5.72) that

1B < Cos(WO) (1 +1)75.

For L° rate, by applying L*° estimate on 4 of (5.27) to (5.20), we obtain

1B~ < CA+07F (H%P\

()]

L'NL2NH?3 leL2nH5>

-+ (% — %) (T - )dr
o T 1 = i) ( ”'mms)

1
e [avi-n (@ - o,
0
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By (5.72), we also have

S — gk A — Gy A 2
&= )0l G =GOl | < CIWOIS

2NH
o) -3
= (wsW") 407,
which implies
3
1B @) < Cap(WO)(1+1)71.
Therefore, by L? — L™ interpolation
3 3
1B @llLe < Cog(WO(A+0) 7373, V2<q <+oo. (5.73)

Estimate on | %€ — %"| 4. For L? rate, we apply the L? estimate on % in (5.26) to (5.20)
to get

[(ze-2") 0| <ca+ni

(CIO’ %10’ &0, @0>

oo

t
+ C/ (I4t—1)75 (e — 1. %5, — 5. %ae — i) (O | 1247
0

By (5.72), since

2 k
[@e = %10 G5, = S5 Gae = Gai) O] 11y = CIWOIE = € (05(W) (14073,
we obtain

H 0 H < Cas(WO(1 +1)"%. (5.74)

For L rate, by applying the L estimate on % in (5.27) to (5.20), we have

|(# - ) o,

<t ([t + 1981 )

leL2mH3)

t
+c/(1+z—z)*1
0

x \ %1 —%i -+ Y — 9 Y — Y 4>‘L'dt.
(n =%l | G- A e =Gl ) ()
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Since

|Gre =G ON |+ (%5~ %5) N e =G O

® HLIOH1 NH 1ﬂL2ﬁH3

o)’ 2
< (@sW") (4073,
we obtain
(@ —2") 1)l < Cos(WO)(1 +1)"F InG +1),
where the smallness of ws(W?) is used. Therefore, by L?—L>® interpolation
e i 0 -3+ 1-2
(%€ =2 )Dlle < CosWOA+0)7 5 (InG+0) 77, V2<g=<+oo. (575

Estimates on ||& e, | %€ + X' L4, 11C¢ — ¢ || e and ||2€ + ¢'||pa. By using the same pro-
cedure as that in subsection 4.3 for the non-isentropic case, we achieve that

1€ e < Cag(WO(A+1)"1, V2<g <o, (5.76)
1% (6) + % ()10 < Cos(WO(A +1)7F, ¥V2<q<+oo, (5.77)

and
” (¢, ;l’)(r)”m < CosWO)(1+1)"1, V2<g<-+oo. (5.78)

Therefore, (5.78), (5.77), (5.75), (5.76) and (5.73) give (1.13), (1.14), (1.15), (1.16) and (1.17),
respectively. The proof of Theorem 1.2 is completed. O

6. Conclusion

We studied the initial value problems to bipolar isentropic/non-isentropic CNS-M systems
arising from plasmas in R3. The main difficulty of studying the bipolar CNS-M systems lies
in the appearance of the electromagnetic fields satisfying the hyperbolic Maxwell equations.
It should be pointed out that the dissipative property of the CNS-M systems in R3 is much
weaker than the one of the E-M systems. After carefully considering this problem, we have three
observations as follows.

(1) The principal difference and the chief difficulty for proving the large time decay rates
between the CNS-M systems (for viscosity charged carriers) and the E-M systems (for ideal
smooth charged carriers) stem from the fact that the two characteristic equations corresponding
to their linearized homogeneous systems are very different. Indeed, for the E-M systems, we only
need to consider the asymptotic properties of characteristic roots when |k| goes to 0 and when |k|
approaches +o00. However, due to the much more complex structure of the CNS-M systems, we
have to divide the frequency space into three parts and even more (see the proof of Lemmas 3.1
and 3.2).

(2) The essential difficulty between the unipolar CNS-M system and the bipolar CNS-M sys-
tem lies in the fact that the structure of the bipolar system is much more complex than that of
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the unipolar model. For removing the difficulties caused by two charged carriers, we introduce
the ‘total functions’ and ‘difference functions’ for unknowns. Then the linearized homogeneous
equations of the bipolar non-isentropic CNS-M system (3.1) can be written as two decoupled
subsystems (3.9) and (3.12).

(3) The important difference between the isentropic CNS-M system and the non-isentropic
CNS-M system results from the fact that the characteristic equation corresponding to (3.22) (the
linear wave equation of ‘total’ functions for the non-isentropic system) which is of order three,
while the characteristic equation of the density or velocity equations in the isentropic model is
of order two (see (5.33)), and hence it is much more complex to obtain the time decay rate of the
linearized systems.

Based on the three previous observations, with the help of the elaborate energy method
but with some new developments, the techniques of choosing symmetrizers and the spectrum
analysis on the linearized homogeneous system corresponding to the CNS-M system, we estab-
lished the large time-decay rates of global smooth solutions with small amplitude in L7 (R3) for
2 < g < oo. For the bipolar isentropic/non-isentropic CNS-M systems, we obtain that the elec-
tric field, the densities and the total velocities of two charged carriers converge to the equilibrium

states at the same rate (1 + 7)™ 4. Simultaneously, for the bipolar non-isentropic CNS-M system,
we find that the temperatures of two charged carriers also converge to the equilibrium states at

the rate (1 + t)’%. However, for the bipolar non-isentropic CNS-M system, the difference of
3 1
velocities of two charged carriers decays at the rate (1 + t)_ﬂ_ﬁ which is faster than the rate
3 1 2
1+ t)_Z+W (In(3 + t))l_a of the bipolar isentropic CNS-M system, meanwhile, the magnetic

3 3 2 3 3
field decay at the rate (1 + )" T4 (In(3 + t))1_5 which is slower than the rate (1 +¢) 374
for the bipolar isentropic CNS-M system. This phenomenon on the charge transport is caused by
the fact that temperatures are variant in the bipolar non-isentropic CNS-M systems.
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