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Abstract

In this paper, we study a three-dimensional full hydrodynamic model in a bounded domain with insulating 
and adiabatic boundary. The model takes the form of nonisentropic Euler-Poisson system and incorporates 
recombination/generation terms, describing the bipolar transport of hot carriers in semiconductor optoelec-
tronic devices. Of particular concern are the existence, uniqueness and exponential stability of thermal 
equilibrium states to the model, since these mathematical results are rendered useful in numerical simula-
tion and physical theory of semiconductors. They are rigorously proved by the perturbation argument and 
energy method.
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1. Introduction

As a result of the rapid expansion of the semiconductor industry, the technology of devices 
combining optical and electrical ports has expanded enormously in the past few years. Solar 
cells, light emitting diodes (LEDs) and laser diodes are of some prevailing semiconductor opto-
electronic devices for commercial use. In the field of simulation of semiconductor optoelectronic 
devices [2,43,45], the following three-dimensional (3D) full hydrodynamic (FHD) model, which 
is used to describe the bipolar transport of charge carriers (electrons and holes), becomes in-
creasingly popular:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

nit + div(niui ) = −R, (a)

(niui )t + div(niui ⊗ ui ) + ∇(niθi) = (−1)i−1ni∇φ − niui

τm

, (b)

niθit + niui · ∇θi + 2

3
niθidivui − 2

3
�θi = 2τe − τm

3τmτe

ni |ui |2 − ni(θi − θL)

τe

, (c)

�φ = n1 − n2 − D(x), x ∈ � ⊂ R3, t > 0, i = 1,2, (d)

(1.1)

in which the i-notation is adopted, namely, for electrons i = 1 and for holes i = 2; the unknowns 
ni(t, x), ui (t, x), θi(t, x) and φ(t, x) represent the density, velocity, temperature of carriers and 
the built-in electrostatic potential; the physics parameters τm, τe and θL stand for the momen-
tum relaxation time, energy relaxation time and lattice temperature, all assumed to be positive 
constants, usually τm ≤ τe; the given function D(x) is called doping profile, modeling the dis-
tribution of dopants in semiconductors; the smooth bounded domain � represents the device 
geometry, that is the bulk of semiconductor devices; the quantity R is referred to as the net 
recombination rate, describing the balance between carrier recombination and generation in 
semiconductor devices, and it can be regarded as a certain kind of collision term in continuity 
equations (1.1a). As for the collision terms in momentum equations (1.1b) and energy equations 
(1.1c), however, we only consider the momentum relaxation time approximation and energy re-
laxation time approximation, respectively. As a matter of fact, the validity of introducing the 
recombination/generation effects into the collision terms in momentum and energy equations 
remains to be confirmed by semiconductor physics.

Compared to the classic drift-diffusion (DD) model for simulation of semiconductors, the 
merit of the FHD model is that the information provided by the model makes it possible to 
describe the behavior of semiconductor optoelectronic devices in which hot-carrier effects play 
a significant role, see [4,6].

In semiconductors, carrier generation and carrier recombination are processes by which elec-
trons and holes are created and eliminated. More precisely, carrier generation describes the 
processes by which electrons gain energy and move from the valence band to the conduction 
band, producing electron-hole pairs; while carrier recombination describes processes by which 
conduction band electrons lose energy and reoccupy the energy state of holes in the valence 
band. Carrier generation and recombination processes are fundamental to the operation of semi-
conductor optoelectronic devices, and are always happening in these devices both optically and 
thermally.
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Engineers and physicists in the field of semiconductors have already found multiple recom-
bination/generation mechanisms, for more details, we refer the interested reader to [6,37,45,46]. 
Below, we merely list several common types of net recombination rates and indicate phenomeno-
logically their physical mechanisms responsible for recombination/generation:

• Photon transition or radiative recombination/optical generation,

ROPT (n1, n2) := Q
(
n1n2 − n̄2

)
, x ∈ �, (1.2)

where the positive constant Q is the capture-emission rate; the positive constant n̄ is the 
electron concentration in intrinsic semiconductors at the equilibrium.

• Phonon transition or Shockley-Read-Hall recombination/generation,

RSRH (n1, n2) := n1n2 − n̄2

ι1(n1 + n̄1) + ι2(n2 + n̄2)
, x ∈ �, (1.3)

where the positive constants ι1 and ι2 are carrier lifetimes; the physical parameters n̄1 and 
n̄2 are carrier concentrations if the trap energy coincided with the Fermi energy, satisfying 
n̄1n̄2 = n̄2.

• Three particle transitions or Auger recombination/generation,

RAU(n1, n2) := (c1n1 + c2n2)
(
n1n2 − n̄2

)
, x ∈ �, (1.4)

where the positive constants c1 and c2 are Auger capture coefficients.
• In addition to recombination/generation in the bulk of semiconductor device, electrons and 

holes may also be recombined/generated at a surface S ⊂ � ∪ ∂�. For the purpose of 
modeling the surface recombination/generation, one usually assumes a formula which is 
structurally equivalent to the Shockley-Read-Hall expression for bulk recombination/gener-
ation,

RSURF (n1, n2) := n1n2 − n̄2

1
s1

(n1 + n̄1) + 1
s2

(n2 + n̄2)
, x ∈ S, (1.5)

where the positive constants s1 and s2 denote the surface recombination velocities for elec-
trons and holes, respectively.

• Impact ionization or avalanche generation, this effect is a pure generation process which is 
seen to be microscopically identical to the Auger generation process,

RII (n1, n2,u1,u2) := − (o1|n1u1| + o2|n2u2|) , x ∈ �, (1.6)

where the positive constants o1 and o2 are the ionization rates for electrons and holes de-
fined as generated electron-hole pairs per unit length of travel and per electron and hole, 
respectively. For instance, an electron generates over a distance 1/o1 one electron-hole pair 
on average.
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Note that the device geometry � is a bounded domain, so we have to propose some physically-
motivated boundary conditions for analytical and simulating use. To this end, we split the bound-
ary ∂� into two pieces,

∂� = ∂�O ∪ ∂�I , (1.7)

where ∂�O denotes the part of the boundary corresponding to ohmic contacts; ∂�I is the inter-
face to adiabatic and insulating material.

At ohmic contacts between semiconductors and metals, we have Dirichlet boundary condi-
tions for the electrostatic potential, carrier densities and carrier temperatures: for all t > 0 and 
x ∈ ∂�O ,

φ(t, x) = 	(x), (1.8a)

ni(t, x) =
√

D2(x) + 4n̄2 + (−1)i−1D(x)

2
, i = 1,2, (1.8b)

θi(t, x) = θL, i = 1,2, (1.8c)

where the given function 	(x) represents the applied bias; the boundary conditions for carrier 
densities and temperatures mean that carriers keep the thermal equilibrium and vanishing space 
charge state at ohmic contacts, which corresponds to infinite surface recombination velocities 
(namely, s1 = +∞ and s2 = +∞ on ∂�O ). The boundary conditions (1.8) are called voltage-
driven ohmic contact boundary condition. The other type of boundary conditions at ohmic 
contacts is current-driven ohmic contact boundary condition, given in integral form, which is 
of the nonlocal boundary condition.

At the interfaces between semiconductors and adiabatic insulators, we have Neumann bound-
ary conditions for the electrostatic potential and carrier temperatures, and the nonlinear boundary 
conditions for carrier densities and carrier velocities: for all t > 0 and x ∈ ∂�I ,

∇φ(t, x) · ν(x) = 0, (1.9a)

∇θi(t, x) · ν(x) = 0, i = 1,2, (1.9b)

(niui ) (t, x) · ν(x) = (−1)iRSURF (n1, n2), i = 1,2, (1.9c)

which corresponds to Gauss’s law for the electrostatic potential, Fourier’s law for carrier temper-
atures, and the surface recombination/generation mechanism for carrier densities and velocities, 
respectively. Here, the notation ν denotes the unit outer normal vector to the boundary ∂�. Quite 
often the existence of surface recombination is simply ignored by assuming vanishing surface 
recombination velocities (namely, s1 = s2 = 0 on ∂�I ) which leads to the boundary conditions: 
for all t > 0 and x ∈ ∂�I ,

ui (t, x) · ν(x) = 0, i = 1,2. (1.10)

Under certain circumstances, this reduced boundary conditions (1.10) can be justified by physical 
experiment on semiconductor optoelectronic devices. The boundary conditions (1.9) are called 
adiabatic and insulating boundary condition. For more general applications and details about the 
boundary conditions, see [5,45].
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Except for the physical reasoning of these boundary conditions, their applicability remains 
to be justified by mathematical reasoning. That is one point of interest in the present paper and 
the future study. Together with the other point of interest, how the recombination/generation 
channels affect the bipolar transport of hot carriers, the main focus of this paper will be on the 
following initial-boundary value problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nit + div(niui ) = −ROPT (n1, n2), (a)

(niui )t + div(niui ⊗ ui ) + ∇(niθi) = (−1)i−1ni∇φ − niui , (b)

niθit + niui · ∇θi + 2

3
niθidivui − 2

3
�θi = 1

3
ni |ui |2 − ni(θi − 1), (c)

�φ = n1 − n2 − D(x), x ∈ � ⊂ R3, t > 0, i = 1,2, (d)

(1.11)

subject to the initial conditions

(ni,ui , θi)(0, x) = (ni0,ui0, θi0)(x), i = 1,2, ∀x ∈ �, (1.12)

and boundary conditions

ui · ν|∂� = 0, ∇θi · ν|∂� = 0, i = 1,2, ∇φ · ν|∂� = 0,

∫
�

φ(t, x)dx = 0, ∀t > 0,

(1.13)
where we have chosen the photon transition mechanism to describe the carrier recombination 
and generation processes in the bulk of semiconductor optoelectronic device, leaving the other 
recombination/generation regimes to the future study; we have also adopted the adiabatic and 
insulating boundary conditions on the entire boundary, assuming that there are no defects on the 
whole interface; the integral form condition for the electrostatic potential in (1.13) is the charge 
neutrality condition. Without loss of generality, we have assumed that τm = τe = 1 and n̄ = θL =
1 in the system (1.11), in turn, we will use the following net recombination rate hereafter,

ROPT (n1, n2) = Q(n1n2 − 1) . (1.14)

Thermal equilibrium is an important concept of semiconductor physics, which implies that 
no external forces such as voltages, electric fields, magnetic fields, or temperature gradients 
are acting on the semiconductor devices. All properties of the semiconductor devices will be 
independent of time in this case, and devices themselves are electrically neutral as well. Under 
thermal equilibrium conditions, the total current in semiconductor devices is of course identically 
zero. Because electron and hole activity is totally decoupled in thermal equilibrium, electron 
and hole velocities must also independently vanish. Therefore, thermal equilibrium states to 
the initial-boundary value problem (1.11)∼(1.13) are a special classification of steady states 
(ñ1, ũ1, θ̃1, ñ2, ũ2, θ̃2, φ̃)(x) with vanishing carrier velocities ũ1 = 0 and ũ2 = 0. Then thermal 
equilibrium states are supposed to satisfy the time-invariant system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = −Q(ñ1ñ2 − 1), (a)

∇(ñi θ̃i ) = (−1)i−1ñi∇φ̃, (b)

−2

3
�θ̃i = −ñi (θ̃i − 1), i = 1,2, (c)

�φ̃ = ñ − ñ − D(x), x ∈ �, (d)

(1.15)
1 2
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and Neumann boundary conditions

∇ θ̃i · ν|∂� = 0, i = 1,2, (1.16a)

∇φ̃ · ν|∂� = 0,

∫
�

φ̃(x)dx = 0. (1.16b)

Note that the partially decoupled system (1.15) consists of algebraic-partial differential equa-
tions (PDEs). From the algebraic equation (1.15a), it can be easily seen that the product of the 
electron and hole densities at thermal equilibrium is a constant (ñ1ñ2 ≡ 1), maintained by the 
net recombination rate ROPT vanishing. Experimental results of semiconductor optoelectronic 
devices obtained in [3] indicate that when there is a surplus of carriers (i.e. n1n2 > 1 ≡ ñ1ñ2), 
the recombination process dominates the generation process, driving the system back towards 
thermal equilibrium in a very short time. Likewise, when there is a deficit of carriers (i.e. 
n1n2 < 1 ≡ ñ1ñ2), the generation process overwhelms the recombination process, again driving 
the system back towards thermal equilibrium in a very short time. To mathematically verify this 
experimental observation is one motivation, in this paper, for establishing the existence, unique-
ness and exponential stability of thermal equilibrium states to the initial-boundary value problem 
(1.11)∼(1.13). The other motivation in doing so is derived from our interest in the mathematical 
theory itself of semiconductor PDEs. In order to clarify this motivation, in what follows we will 
review necessary mathematical results in the existing literature concerning semiconductor PDEs.

Over the past three decades, major advances in the mathematical theory of semiconductor 
PDEs have been made by a lot of mathematicians. Due to the growing body of literature on this is-
sue, we can not walk the reader through all the aspects. Instead, we will only present those results 
pertaining closely to the object of this paper. The earliest hydrodynamic (HD) models studied 
systematically are of so-called unipolar category, modeling the transport of just single type of 
charge carrier, such as n- or p-type semiconductors. For unipolar isothermal, isentropic and non-
isentropic HD models, there are many mathematical results on the well-posedness, asymptotic 
limits with respect to small physical parameters, large time behaviors of smooth and/or weak 
solutions to Cauchy problem, periodic boundary value problem and/or initial-boundary value 
problem, see for instance [8,9,15,17–21,24–26,30,33,38,39] and references therein.

As for bipolar HD models in which the recombination/generation effects are not taken into 
account, there are relatively few mathematical outcomes due to the strong coupling caused by 
carrier drift-current terms (−1)i−1ni∇φ (for i = 1, 2) in momentum equations. The essential 
difficulty consists in the weakening of dissipative properties of bipolar models by this kind of 
strong coupling structure. However, via more or less restrictive conditions, some researchers did 
contribute interesting findings to this field. For example, Gasser et al. [13] discovered the non-
linear diffusion phenomenon of Cauchy problem of the one-dimensional (1D) isentropic HD 
model with the zero doping profile (i.e. D(x) ≡ 0) and two identical pressure functions, and 
proved that the global smooth solutions algebraically decay to a self-similar solution as time 
goes to infinity. Different from the previous studies in [13], Donatelli et al. [10] realized that 
the asymptotic profiles of Cauchy problem of the 1D isentropic HD model with two different 
pressure functions and a non-flat doping profile are stationary waves rather than the diffusion 
waves. Subsequently, Hu et al. [22] generalized the investigations in [10] to an initial-boundary 
value problem of the 1D FHD model over a bounded interval subject to the voltage-driven ohmic 
contact boundary condition, however, the doping profile has to be flat. Furthermore, Li et al. [27]
considered the periodic boundary value problem of the 3D nonisentropic HD models without 
470



Y.-H. Feng, H. Hu, M. Mei et al. Journal of Differential Equations 403 (2024) 465–509
temperature diffusion terms and showed that the non-constant steady state is time-asymptotically 
stable; since the model is posed on the spatial periodic domain T 3 := R3/Z3, the constraints on 
doping profile can be relaxed to being non-flat but possessing a positive lower bound. Up to 
now, the bipolar models without net recombination rates are still a subject of active research. 
Very recently, Peng et al. [41,42] confirmed the global quasi-neutral limit of classical solutions 
to Cauchy problem of the isentropic HD model, however, the results are still confined to the zero 
doping profile and 1D settings.

So far as semiconductor PDEs including net recombination rates are concerned, the relevant 
mathematical analyses are few and far between. Besides, a majority of pioneering and earlier 
results prefer handling the traditional DD models (see [34,35,12,47]) to dealing with more ef-
fective HD models. Regarding the HD models, Zhu et al. [50] first obtained the global existence 
of smooth solutions to Cauchy problem of the 1D isentropic HD model with ROPT . Recently, 
Hu et al. [23] and Wu et al. [49] extended the studies in [50] to Cauchy problem of the 1D FHD 
model with ROPT and the initial-boundary value problem of the 1D isothermal HD model with 
ROPT , respectively. For more physical backgrounds and mathematical results of semiconductor 
PDEs, the interested reader could refer to the monograph [31] and references therein.

In the final analysis, we form an intuition that the net recombination rates should be indis-
pensable for the mathematical analysis of hydrodynamics-based bipolar models. We guess that 
the net recombination rate R, apart from RII , could compensate for the loss of dissipative prop-
erties of bipolar HD models (as put forth above), thereby enabling us to investigate the 3D bipolar 
FHD model in a bounded domain with physical boundary conditions. The aim of this paper is to 
substantiate this guess, taking the net recombination rate ROPT and the insulating and adiabatic 
boundary condition as the first attempt. The discussion about the rest types of net recombination 
rates and physical boundary conditions will be left to the future studies.

We are now in a position to state the main results of the present paper.

Theorem 1.1 (Existence and uniqueness of thermal equilibrium states). Suppose that D ∈
H 2(�), for arbitrary constant d ∈ R, there exist two positive constants δ0 and C such that 
if ‖D − d‖H 2(�) ≤ δ0, then the boundary value problem (1.15)&(1.16) has a unique solution 

(ñ1, θ̃1, ñ2, θ̃2, φ̃) ∈ [H 4(�)
]5

satisfying the estimates

‖(ñ1 − n1d , ñ2 − n2d, φ̃)‖H 4(�) ≤ C‖D − d‖H 2(�), (1.17a)

0 < b ≤ ñ1(x), ñ2(x) ≤ B, θ̃1(x) = θ̃2(x) ≡ 1, ∀x ∈ �, (1.17b)

where the positive constants n1d , n2d , b and B are defined by

n1d := d + √
d2 + 4

2
, n2d := 1

n1d

, b := min{n1d, n2d}
2

, B := 2 max{n1d, n2d}. (1.18)

In particular, (ñ1, 0, 1, ñ2, 0, 1, φ̃)(x) is exactly the unique thermal equilibrium state to the 
initial-boundary value problem (1.11)∼(1.13).

Remark 1.1. In fact, Theorem 1.1 also holds true for the periodic domain � = T 3. The proof 
closely parallels that of Theorem 1.1, so we will not repeat it in this paper.
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Theorem 1.2 (Exponential stability of thermal equilibrium states). Let (ñ1, 0, 1, ñ2, 0, 1, φ̃) be 
the thermal equilibrium state in Theorem 1.1. Assume that the initial data (ni0, ui0, θi0) for 
i = 1, 2 satisfy ni0 − ñi ∈ H 3(�), ui0 ∈ H 3(�; R3), θi0 − 1 ∈ H 4(�) and are compatible with 
the boundary conditions (1.13) (see Lemma 4.1). Then there exists a positive constant δ1 such 
that if ‖D − d‖2

H 2(�)
≤ δ2

1 and

2∑
i=1

(
3∑

j=0

‖(∂j
t (ni − ñi ), ∂

j
t ui )(0)‖2

H 3−j (�)
+

1∑
j=0

‖∂j
t (θi −1)(0)‖2

H 4−j (�)
+‖θitt (0)‖2

H 1(�)

)
≤ δ2

1,

(1.19)
then the initial-boundary value problem (1.11)∼(1.13) has a unique global solution (ni, ui , θi, φ)

satisfying ni − ñi ∈ ⋂3
j=0 Cj ([0, ∞); H 3−j (�)), ui ∈ ⋂3

j=0 Cj ([0, ∞); H 3−j (�; R3)), θi −
1 ∈ ⋂1

j=0 Cj ([0, ∞); H 4−j (�)), θitt ∈ C([0, ∞); H 1(�)) ∩ L2([0, ∞); H 2(�)) for i = 1, 2

and φ − φ̃ ∈ ⋂3
j=0 Cj ([0, T ]; H 3−j+2(�)). Moreover, there are positive constants γ and C

such that for all t ∈ [0, ∞),

2∑
i=1

(
3∑

j=0

‖(∂j
t (ni − ñi ), ∂

j
t ui )(t)‖2

H 3−j (�)
+

1∑
j=0

‖∂j
t (θi − 1)(t)‖2

H 4−j (�)
+ ‖θitt (t)‖2

H 1(�)

)

+
3∑

j=0

‖∂j
t (φ − φ̃)(t)‖2

H 5−j (�)

≤C

[
2∑

i=1

(
3∑

j=0

‖(∂j
t (ni − ñi ), ∂

j
t ui )(0)‖2

H 3−j (�)

+
1∑

j=0

‖∂j
t (θi − 1)(0)‖2

H 4−j (�)
+ ‖θitt (0)‖2

H 1(�)

)]
e−γ t . (1.20)

Remark 1.2. The same result in Theorem 1.2 applies to the periodic domain � = T 3 as well. 
The proof of Theorem 1.2 covers the case of periodic boundary conditions, and will become 
simpler in this case because there is no need to control the boundary integrals.

We conclude this section by illustrating the main ideas in the proofs of Theorems 1.1 and 1.2. 
Though both the proofs are lengthy, the basic ideas are easily comprehensible.

First of all, we elucidate the proof strategy of Theorem 1.1. As mentioned above, the thermal 
equilibrium system (1.15) is of the partially decoupled form. By using an illuminating derivation, 
the boundary value problem (1.15)&(1.16) can be reduced to the Neumann boundary value prob-
lem of the Poisson-Boltzmann (PB) equation, see (3.2). Although there have already been some 
results about Neumann problems of the PB equation, such as Looker [28] proved the unique 
solvability of (3.2) by the monotone operator theory, and then Allaire et al. [1] reconsidered this 
problem in the variational framework. However, these results can not provide us with a suitable 
flatness estimate of thermal equilibrium states in terms of the flatness level of the doping pro-
file. What matters is that the flatness estimate will play a crucial role in the study of large time 
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behavior of transient solutions. To get around this difficulty we will choose the so-called pertur-
bation argument (see [11]), which is based on Banach’s Fixed Point Theorem, as an alternative 
method to establish the well-posedness of boundary value problem (3.2). Meanwhile, the flat-
ness estimate can be directly derived by applying this novel approach to the PB equation, see 
Lemma 3.1.

The proof of Theorem 1.2 is completed by using the standard continuation principle (see 
[29]). To carry through the proof process, we first establish the local existence of time-dependent 
solutions by combining the energy method and a standard contraction mapping argument. Next, 
to extend the local-in-time solution to the global-in-time one, we have to close the uniform a 
priori estimate in an appropriate Sobolev smooth norm (see (5.2) for definition) by making the 
most of the enhanced dissipation mechanism of the system (1.11). In truth, by the refined energy 
method, we found that the recombination/generation terms compensate for the dissipation loss 
engendered by the bipolar drift-current terms.

The organization of this paper is as follows. Some useful preliminaries are listed in Section 2. 
The proof of Theorem 1.1 is given in Section 3. The proof of Theorem 1.2 is given in Sections 4
and 5, including the local existence lemma, a series of lemmas for energy estimates, and the 
continuation of local-in-time solutions.

2. Preliminaries

In this section we gather some miscellaneous results that are more or less standard, but these 
preliminaries will be used repeatedly hereafter.

Firstly, we introduce the standard L2-theory of the linear elliptic Neumann problem, which is 
excerpted from Grisvard’s monograph [14].

Proposition 2.1 (L2-theory of the linear elliptic Neumann problem). Let � be a smooth bounded 
domain in Rm. Then for every f ∈ Hk(�) with k ≥ 0 an integer number, and λ > 0, there exists 
a unique solution u ∈ Hk+2(�) solving the Neumann boundary value problem

⎧⎨
⎩

−�u + λu = f, in �, (a)
∂u

∂ν
= 0, on ∂�, (b)

(2.1)

and satisfying the elliptic estimate

‖u‖Hk+2(�) ≤ C(k,λ,�)‖f ‖Hk(�). (2.2)

In addition, Moser [36] proved the following result concerning composition in Sobolev spaces.

Proposition 2.2 (Composition in Sobolev spaces). Let � be a smooth bounded domain in Rm, 
k ≥ 1 an integer number and 1 ≤ p < ∞. If u ∈ Wk,p(�), with kp > m and � ∈ Ck(R), then 
� ◦ u ∈ Wk,p(�) and its weak derivatives could be calculated by Faa di Bruno’s formula

∂α
x (� ◦ u) =

|α|∑
j=1

∑
β1+···+βj =α

cα,j,β1,··· ,βj

(
�(j) ◦ u

)
∂β1
x u · · · ∂βj

x u, a.e. x ∈ �, (2.3)
|βl |�=0
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where α ∈ Nm with 1 ≤ |α| ≤ k.

For convenience, we also state a new explicit formula for higher order derivatives of a quotient. 
For more details about this useful formula, we refer the reader to [16].

Proposition 2.3 (Quotient rule). Let u and v be n times differentiable functions of a single vari-
able t , for any n ∈N and at each point where v �= 0, we have that

(u

v

)(n) = n!
n∑

l=0

u(n−l)

(n − l)!
P(l)∑
k=1

ck

v
1+∑l

q=1 pkq

l∏
q=1

(
v(q)

q!

)pkq

, (2.4)

where the vector (pk1, · · · , pkl) is called the k-th partition of the nonnegative integer l provided

pk1 + 2pk2 + · · · + lpkl =
l∑

q=1

qpkq = l,

and note that 0 ≤ pkq ≤ l while 1 ≤ q ≤ l;the number of all possible partitions of an integer l is 
denoted by P(l) and hence 1 ≤ k ≤ P(l);the combinatorial coefficient is denoted by ck and its 
exact expression is described in [16].

Next, the following div-curl lemma can be found in [48], and in effect has been widely used 
in references [7,15,40].

Proposition 2.4 (Div-curl lemma). Let � be a smooth bounded domain in R3, ν the unit outer 
normal vector of the boundary ∂�, k ≥ 0 an integer number and 1 < p < ∞. Then for u ∈
Wk+1,p(�; R3) with u · ν = 0 on ∂�, there exists a constant C = C(k, p, �) > 0 such that

‖u‖Wk+1,p(�;R3) ≤ C
(‖divu‖Wk,p(�) + ‖curlu‖Wk,p(�;R3) + ‖u‖Lp(�;R3)

)
(2.5)

Finally, we give a technical inequality that follows from Sobolev’s embedding theorem. It will 
be utilized many times in the proof of nonlinear stability.

Proposition 2.5. Let � be a smooth bounded domain in R3. Then for all u1, u2 ∈ H 1(�), there 
exists a constant C = C(�) > 0 such that

‖u1u2‖L2(�) ≤ C‖u1‖H 1(�)‖u2‖H 1(�) (2.6)

3. Thermal equilibrium states

This section is committed to proving Theorem 1.1. To this end, we first note that the 
boundary value problem (1.15c)&(1.16b) can be decoupled from the boundary value problem 
(1.15)&(1.16) whenever ñi > 0 is solved a priori. In that case, it is trivially verified that θ̃i(x) ≡ 1
is the unique solution to the boundary value problem (1.15c)&(1.16b), which in turn implies from 
the algebraic equation (1.15a) and gradient equation (1.15b) that
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ñ1 = eφ̃+C > 0, ñ2 = ñ−1
1 = e−(φ̃+C) > 0, (3.1)

where C is the arbitrary additive constant. For simplicity of notation, write z(x) instead of φ̃(x) +
C. Substituting (3.1) into the boundary value problem (1.15d)&(1.16b) yields

⎧⎨
⎩

�z = ez − e−z − D(x), in �, (a)
∂z

∂ν
= 0, on ∂�, (b)

(3.2)

which is the Neumann problem of the Poisson-Boltzmann equation. Once the unique solvabil-
ity of the boundary value problem (3.2) is in hand, owing to the condition 

∫
�

φ̃(x)dx = 0, the 
arbitrary additive constant C can be uniquely determined, that is, C = z� := 1

|�|
∫
�

z(x)dx. 

Therefore, (ñ1, θ̃1, ñ2, θ̃2, φ̃)(x) := (ez, 1, e−z, 1, z − z�)(x) is exactly the unique solution to 
the boundary value problem (1.15)&(1.16). Furthermore, it is clear that (ñ1, 0, 1, ñ2, 0, 1, φ̃)(x)

is the unique thermal equilibrium state to the initial-boundary value problem (1.11)∼(1.13).
Next, it remains for us to prove that the boundary value problem (3.2) is well-posed under an 

appropriate restriction on the doping profile D(x). The corresponding result is summarized in 
the following lemma.

Lemma 3.1. Let � be a smooth bounded domain in R3. Suppose that d ∈ R is an arbitrary 
real number, and the doping profile D ∈ L2(�). There exist two positive constants δ2 and C =
C(d, �) such that if ‖D − d‖L2(�) ≤ δ2, then the boundary value problem (3.2) admits a unique 
strong solution z ∈ H 2(�) satisfying the basic estimate

‖z − zd‖H 2(�) ≤ C(d,�)‖D − d‖L2(�), (3.3)

where the constant zd is defined by

zd := ln

(
d + √

d2 + 4

2

)
. (3.4)

Furthermore, if the doping profile D ∈ Hk(�) for any integer k > 0 and ‖D−d‖Hk−1(�) is small 
enough, then the strong solution possesses the higher order regularity z ∈ Hk+2(�) and satisfies 
the higher order estimate

‖z − zd‖Hk+2(�) ≤ C(d,�,k)‖D − d‖Hk(�), (3.5)

where C = C(d, �, k) is a positive constant.

Proof. The main idea of the proof is the application of Banach’s Fixed Point Theorem by the 
perturbation argument. For clarity, we divide the proof into three steps below.

Step 1. Background solution. Let us temporarily fix the doping profile D(x) ≡ d in equation 
(3.2a), where d ∈ R is an arbitrary real number. It is obvious that the boundary value problem 
(3.2) now has a unique constant solution zd satisfying the equation

ezd − e−zd − d = 0. (3.6)
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Solving (3.6) directly, we get

zd = ln

(
d + √

d2 + 4

2

)
, (3.7)

which in turn serves as the background solution of the perturbation argument in the next step.
Step 2. Perturbation argument. It is well-known that the perturbation argument based on 

Banach’s Fixed Point Theorem usually casts a small nonlinear modification as a contraction 
mapping. The hallmark of such arguments is the occurrence of a parameter which must be taken 
small enough to ensure the strict contraction property (see [11]). Here we choose the following 
quantity

δ := ‖D − d‖L2(�) (3.8)

as the corresponding parameter. This main step is divided into four pieces:
Firstly, the perturbation argument is carried out in the complete metric space

B := {v ∈ H 2(�)
∣∣ ‖v‖H 2(�) ≤ Nδ

}
, (3.9)

with the induced metric

ρ(v1, v2) := ‖v1 − v2‖H 2(�), ∀v1, v2 ∈ B, (3.10)

where the positive constant N will be determined later, see (3.15). Let the solution operator A be 
defined as follows. Given a function u ∈B, set f (x) := h(u(x)), x ∈ �, and the function h(u) is 
defined by

h(u) := 2
[
sinh(u + zd) − sinh(zd) − sinh′(zd)u

]
, (3.11)

where the function sinh(z) := 1
2 (ez − e−z) is the hyperbolic sine. In light of Proposition 2.2, we 

see f ∈ H 2(�). Consequently, the L2-theory set forth in Proposition 2.1 ensures that the linear 
elliptic Neumann problem

⎧⎨
⎩

�w − λdw = f (x) − (D(x) − d) , in �, (a)
∂w

∂ν
= 0, on ∂�, (b)

(3.12)

where λd := 2 cosh(zd) > 0, has a unique solution w ∈ H 2(�) satisfying the elliptic estimate

‖w‖H 2(�) ≤ C(λd,�)‖f − (D − d)‖L2(�). (3.13)

Define A : B → H 2(�) by setting A[u] = w.
Secondly, we now claim that there exists a positive constant N which only depends on λd and 

� such that if δ is small enough, then A is a mapping from B to itself. To prove this, it suffices 
to further estimate the right-hand side of (3.13), that is
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‖A[u]‖H 2(�) =‖w‖H 2(�)

≤C(λd,�)‖f − (D − d)‖L2(�)

≤C1‖f ‖L2(�) + C1‖D − d‖L2(�)

=C1‖h(u)‖L2(�) + C1δ

=C1‖ sinh(zd + ξ1u)u2‖L2(�) + C1δ

=C1O(zd)|�|‖u‖2

C
0, 1

2 (�)
+ C1δ

≤C2N
2δ2 + C1δ, (3.14)

where the positive constants C1, C2 only depend on zd and �. There ξ1 ∈ (0, 1) because of 
Taylor’s formula. We have also used Sobolev’s Embedding Theorem in the second-last line of 
(3.14). Define

N := 2C1, (3.15)

and let δ < 1
4C1C2

, consequently A[u] ∈ B.
Thirdly, we can further claim that if δ is small enough, then A : B → B is a strict contraction 

mapping. To prove this, choose u1, u2 ∈ B, and define w1 = A[u1], w2 = A[u2] as above. Con-
sequently, for i = 1, 2, we know that wi verifies (3.12) for fi(x) = h(ui(x)). We consider the 
difference w1 − w2, which satisfies the boundary value problem

⎧⎨
⎩

�(w1 − w2) − λd(w1 − w2) = h(u1(x)) − h(u2(x)), in �, (a)
∂(w1 − w2)

∂ν
= 0, on ∂�. (b)

(3.16)

Utilizing the elliptic estimate (2.2) when taking the value k = 0, we can then calculate from 
(3.16) that

‖A[u1]−A[u2]‖H 2(�) = ‖w1 − w2‖H 2(�)

≤C(λd,�)‖h(u1) − h(u2)‖L2(�)

=2C(λd,�)
∥∥[sinh(u1 + zd) − sinh(u2 + zd)] − sinh′(zd)(u1 − u2)

∥∥
L2(�)

=2C(λd,�)‖[sinh(zd + ξ3(u2 + ξ2(u1 − u2)))(u2 + ξ2(u1 − u2))(u1 − u2)‖L2(�)

≤C3δ‖u1 − u2‖L2(�), (3.17)

where the positive constant C3 only depends on zd and �. There ξ2, ξ3 ∈ (0, 1) because we have 
used Taylor’s formula twice in the calculations of (3.17). Thus A is a strict contraction, provided 
δ > 0 is so small that C3δ < 1.

Finally, set

δ2 := 1
min

{
1

,
1
}

> 0. (3.18)

2 4C1C2 C3
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Given the doping profile D ∈ L2(�) satisfying ‖D − d‖L2(�) ≤ δ2, we can then apply Banach’s 
Fixed Point Theorem to the solution operator A to find a unique strong solution η ∈ B of the 
semi-linear elliptic Neumann problem

⎧⎨
⎩

�η − λdη = h(η) − (D(x) − d) , in �, (a)
∂η

∂ν
= 0, on ∂�, (b)

(3.19)

which is obviously equivalent to the boundary value problem (3.2) after defining z(x) := η(x) +
zd .

Step 3. Higher order regularity. To prove the higher order estimate (3.5), we shall use the 
induction on the order k ≥ 1.

First we consider the base case k = 1, namely, D ∈ H 1(�). Let η = z − zd , and then the 
right-hand side h(η) − (D −d) of (3.19a) belongs to H 1(�). It follows from Proposition 2.1 that 
the unique solution η ∈ H 3(�) satisfies the elliptic estimate

‖z − zd‖H 3(�) =‖η‖H 3(�)

≤C(1, λd,�)‖h(η) − (D − d)‖H 1(�)

≤C‖h(η)‖L2(�) + C
∑
|α|=1

‖h′(η)∂α
x η‖L2(�) + C(1, λd,�)‖D − d‖H 1(�)

≤C‖η‖H 1(�) + C(1, λd,�)‖D − d‖H 1(�)

≤C‖D − d‖L2(�) + C(1, λd,�)‖D − d‖H 1(�)

≤C(d,�,1)‖D − d‖H 1(�), (3.20)

where we have used the same technique as in (3.14) to deal with ‖h(η)‖L2(�), and also appealed 
to the smallness of δ = ‖D − d‖L2(�).

Now assume inductively that k > 1, that is, D ∈ Hk(�) and we have already proven the 
fact that η ∈ H(k−1)+2(�) and satisfies the inequality (3.5) for orders k − 1. We shall use a 
similar argument to the preceding one. Precisely, Proposition 2.2 now implies h(η) ∈ Hk+1(�), 
which in turn yields the right-hand side h(η) − (D − d) of (3.19a) is of class Hk(�). Hence, by 
Proposition 2.1, we obtain that η ∈ Hk+2(�) and satisfies the elliptic estimate

‖z − zd‖Hk+2(�) =‖η‖Hk+2(�)

≤C(k,λd,�)‖h(η) − (D − d)‖Hk(�)

≤C‖h(η)‖L2(�) + C
∑

1≤|α|≤k

‖∂α
x (h(η))‖L2(�) + C(k,λd,�)‖D − d‖Hk(�)

≤C‖h(η)‖L2(�)

+ C
∑

1≤|α|≤k

∥∥∥∥∥∥∥∥
|α|∑
j=1

∑
β1+···+βj =α

|β |�=0

cα,j,β1,··· ,βj

(
h(j) ◦ η

)
∂β1
x η · · · ∂βj

x η

∥∥∥∥∥∥∥∥
2
l L (�)
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+ C(k,λd,�)‖D − d‖Hk(�)

≤C‖η‖Hk(�) + C(k,λd,�)‖D − d‖Hk(�)

≤C(d,�,k − 1)‖D − d‖Hk−1(�) + C(k,λd,�)‖D − d‖Hk(�)

≤C(d,�,k)‖D − d‖Hk(�), (3.21)

where we have utilized the formula (2.3) and the smallness of ‖D − d‖Hk−1(�). �
We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Drawing upon the equivalent analysis at the very beginning of this sec-
tion and the well-posedness result in Lemma 3.1, we may easily prove all the conclusions in 
Theorem 1.1 by directly using the transformation (ñ1, θ̃1, ñ2, θ̃2, φ̃) = (ez, 1, e−z, 1, z − z�) and 
the similar calculations to that in Step 3 of the proof of Lemma 3.1. �
4. Reformulation and local existence

In what follows, the main focus is on the suitably small global-in-time solutions to 
the initial-boundary value problem (1.11)∼(1.13), approaching the thermal equilibrium state 
(ñ1, 0, 1, ñ2, 0, 1, φ̃) constructed in Theorem 1.1. For convenience, we denote the perturbation 
by

ψi := ni − ñi , ui := ui − 0, χi := θi − 1, σ := φ − φ̃, i = 1,2, (4.1)

and introduce a vector w := (ψ1, u1, χ1, ψ2, u2, χ2), thereby equivalently rewriting the original 
problem (1.11)∼(1.13) into the following form which is more amenable to energy method:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ψit + div(ñiui ) + Q(ñ2ψ1 + ñ1ψ2) = fi(w), (a)

uit + ui + ∇(ñeψi) + ñe∇ñiχi + ∇χi + (−1)i∇σ = gi (w), (b)

ñiχit + 2

3
ñidivui − 2

3
�χi + ñiχi = hi(w), (c)

�σ = ψ1 − ψ2, i = 1,2, (d)

(4.2)

subjected to the initial conditions

(ψi,ui , χi)(0, x) = (ψi0,ui0, χi0)(x) := (ni0 − ñi ,ui0, θi0 − 1), x ∈ �, (4.3)

and boundary conditions

ui · ν|∂� = 0, ∇χi · ν|∂� = 0, ∇σ · ν|∂� = 0,

∫
�

σ(t, x)dx = 0, t > 0, (4.4)

where the nonlinear right-hand side terms fi(w), gi (w) and hi(w) are defined by

fi(w) := −div(ψiui ) − Qψ1ψ2, (4.5a)
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gi (w) :=
[

ψiχi

ni ñi

∇ñi − ψ2
i

ni ñ
2
i

∇ñi + Q(ñ2ψ1 + ñ1ψ2 + ψ1ψ2)

ni

ui

]

+
(

ψi

niñi

∇ψi − χi

ni

∇ψi

)
− ui · ∇ui , (4.5b)

hi(w) := −ψiχit − niui · ∇χi − 2

3
(ψiχi + ψi + ñiχi)divui + 1

3
ni |ui |2 − ψiχi. (4.5c)

We shall adopt the continuation principle to prove the global existence in the next section. As 
we all know, this principle consists of two underlying ingredients: existence of local-in-time so-
lutions and uniform a priori estimates for the local-in-time solutions. Therefore, we first state the 
local existence result in the following lemma. The proof will be omitted because it is reminiscent 
of that in [32,44].

Lemma 4.1 (Local existence). Suppose that the initial data satisfy ∂j
t ψi(0) ∈ H 3−j (�) (j =

0, 1, 2, 3), ∂j
t ui (0) ∈ H 3−j (�; R3) (j = 0, 1, 2, 3), ∂j

t χi(0) ∈ H 4−j (�) (j = 0, 1), ∂2
t χi(0) ∈

H 1(�) and the compatibility condition 
∫
�
(ψ10 − ψ20dx) = 0, ∂j

t ui (0) · ν|∂� = 0 (j = 0, 1, 2), 

∇∂
j
t χi(0) ·ν|∂� = 0 (j = 0, 1), here ∂j

t ψi(0), ∂j
t ui (0) and ∂j

t χi(0) are the j th time derivative at 
t = 0 of any solutions to the initial-boundary value problem (4.2)∼(4.4), and their expressions 
in terms of (ψi0, ui0, χi0) could be directly calculated out of (4.2). Then there exists a unique 
solution (ψi, ui , χi) to the initial-boundary value problem (4.2)∼(4.4), defined on a maximal 
interval of existence [0, Tmax), Tmax ≤ ∞ such that for any T ∈ [0, Tmax),

ψi ∈
3⋂

j=0

Cj ([0, T ];H 3−j (�)), ui ∈
3⋂

j=0

Cj ([0, T ];H 3−j (�;R3)),

χi ∈
1⋂

j=0

Cj ([0, T ];H 4−j (�)), χitt ∈ C([0, T ];H 1(�)) ∩ L2(0, T ;H 2(�)), i = 1,2.

(4.6)

Furthermore, if

sup
t∈[0,Tmax)

[
2∑

i=1

(
3∑

j=0

‖(∂j
t ψi, ∂

j
t ui )(t)‖2

H 3−j (�)
+

1∑
j=0

‖∂j
t χi(t)‖2

H 4−j (�)
+‖χitt (t)‖2

H 1(�)

)]
< ∞

(4.7a)
and

sup
(t,x)∈[0,Tmax)×�

2∑
i=1

∣∣(ψi,ui , χi)(t, x)
∣∣< 1

2
min{b,1}, (4.7b)

then Tmax = ∞.
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5. Global existence

In this section, we start establishing the uniform estimates of the local solutions, which is the 
key step to obtain the global existence put forth in Theorem 1.2. Careful examination of the linear 
part of the perturbed system (4.2) reveals that the thermal equilibrium state is linearly stable. That 
means the recombination/generation terms do provide the bipolar structure of the system (4.2)
with a certain dissipative property. As a matter of fact, the case will become more complicated 
when we wonder whether the dissipative mechanism of the system (4.2) is strong enough to 
guarantee that the thermal equilibrium state is non-linearly stable as well. In what follows, we 
shall figure out how the dissipative structure of the system (4.2) ensures the exponentially non-
linear stability of the thermal equilibrium state, and display the corresponding estimates in a 
series of lemmas. Based on these estimates, the proof of Theorem 1.2 will be given at the end of 
this section.

For convenience of notation, we introduce a small parameter

ε := ‖D − d‖H 2(�) , (5.1)

and the Sobolev smooth norm

|||w(t)|||2 :=
2∑

i=1

(
3∑

j=0

‖(∂j
t ψi, ∂

j
t ui )(t)‖2

H 3−j (�)
+

1∑
j=0

‖∂j
t χi(t)‖2

H 4−j (�)
+ ‖χitt (t)‖2

H 1(�)

)
.

(5.2)
Due to the boundary conditions, the spatial derivatives of local-in-time solutions are unknown 

on the boundary ∂�. However, inspired by an idea put forth in [15,40], we may estimate the 
time derivatives instead. The feasibility of this strategy lies in Proposition 2.4 and the structural 
features of the system (4.2).

Firstly, we estimate the divergence of the velocity field ui for i = 1, 2 and the higher order 
time derivatives of their divergence in the following lemma.

Lemma 5.1. Let ε and |||w(t)||| be sufficiently small. Then there exists a positive constant C > 0
such that for j = 0, 1, 2,

d

dt

⎡
⎣ 2∑

i=1

∫
�

1

2
ñi

∣∣∣div∂
j
t ui

∣∣∣2 dx +
∫
�

1

2

(
∂

j
t ψ1 − ∂

j
t ψ2

)2
dx − j (j − 1)

2
N(t)

⎤
⎦

+ 1

4
b

2∑
i=1

∥∥∥div∂
j
t ui

∥∥∥2

L2(�)

−
2∑

i=1

∫
�

∇
(
ñe∂

j
t ψi

)
· ∇div

(
ñi∂

j
t ui

)
dx −

2∑
i=1

∫
�

∇∂
j
t χi · ∇div

(
ñi∂

j
t ui

)
dx

≤Cε

2∑
i=1

∥∥∥(∂j
t uit , ∂

j
t ui ,∇∂

j
t ui ,∇∂

j
t χi, ∂

j
t χi

)∥∥∥2

L2(�)
+ j (j − 1)

2
C|||w(t)|||

2∑
i=1

∥∥∥∂3
t χi

∥∥∥2

L2(�)

+ C|||w(t)|||3, (5.3)
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where the index e := 2
i

corresponding to i = 1, 2; the quantity N(t) is defined by

N(t) :=
2∑

i=1

∫
�

1

2n2
i

(ψi − ñiχi)|∇ψitt |2dx

+
2∑

i=1

∫
�

{[(
χi

ni

)
t t

−
(

ψi

ñini

)
t t

]
∇ψi

+2

[(
χi

ni

)
t

−
(

ψi

ñini

)
t

]
∇ψit

}
· ∇div(ñiuit )dx,

which in turn satisfies the following inequality

|N(t)| ≤ C|||w(t)|||3. (5.4)

Remark 5.1. From the estimate (5.3), we found that the partial energy 
∫
�

1
2 (∂

j
t ψ1 − ∂

j
t ψ2)

2dx

gleaned from the bipolar structure of the system (4.2) is inoperative in comparison with the one 
in (5.57). However, it is harmless because of the nonnegativity. This is also the reason why we 
manage to gain the effective energy for the perturbed densities ψ1 and ψ2 from their continuity 
equations later (see Lemma 5.6).

Proof. First of all, in the following way

2∑
i=1

∫
�

∂
j
t (4.2b) ·

[
−∇div

(
ñi∂

j
t ui

)]
dx, for j = 0,1,2, (5.5)

we calculate

2∑
i=1

∫
�

∂
j
t uit ·

[
−∇div

(
ñi∂

j
t ui

)]
dx +

2∑
i=1

∫
�

∂
j
t ui ·

[
−∇div

(
ñi∂

j
t ui

)]
dx

+
2∑

i=1

∫
�

∇(ñe∂
j
t ψi) ·

[
−∇div

(
ñi∂

j
t ui

)]
dx +

2∑
i=1

∫
�

ñe∇ñi∂
j
t χi ·

[
−∇div

(
ñi∂

j
t ui

)]
dx

+
2∑

i=1

∫
�

∇∂
j
t χi ·

[
−∇div

(
ñi∂

j
t ui

)]
dx +

2∑
i=1

∫
�

(−1)i∇∂
j
t σ ·

[
−∇div

(
ñi∂

j
t ui

)]
dx

=
2∑

i=1

∫
�

∂
j
t gi (w) ·

[
−∇div

(
ñi∂

j
t ui

)]
dx, for j = 0,1,2, (5.6)

In addition, we scrutinize (5.6) one integral at a time. To start with, we consider the first 
integral on the left-hand side of (5.6). After integrating by parts, we obtain for j = 0, 1, 2,
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2∑
i=1

∫
�

∂
j
t uit ·

[
−∇div

(
ñi∂

j
t ui

)]
dx

=
2∑

i=1

∫
�

div∂
j
t uitdiv

(
ñi∂

j
t ui

)
dx

= d

dt

⎛
⎝ 2∑

i=1

∫
�

1

2
ñi

∣∣∣div∂
j
t ui

∣∣∣2 dx

⎞
⎠+

2∑
i=1

∫
�

div∂
j
t uit∇ñi · ∂j

t uidx

≥ d

dt

⎛
⎝ 2∑

i=1

∫
�

1

2
ñi

∣∣∣div∂
j
t ui

∣∣∣2 dx

⎞
⎠− Cε

2∑
i=1

∥∥∥(∂j
t ui , ∂

j
t uit ,∇∂

j
t ui

)∥∥∥2

L2(�)
, (5.7)

where we have used the flatness estimate (1.17a) of the steady-state densities, Sobolev’s Em-
bedding Theorem and the Cauchy-Schwarz inequality to further control the integral remainder. 
Similarly, we proceed to estimate the second and the fourth integrals on the left-hand side of 
(5.6) below, for j = 0, 1, 2, we have

2∑
i=1

∫
�

∂
j
t ui ·

[
−∇div

(
ñi∂

j
t ui

)]
dx ≥ b

2

2∑
i=1

∥∥∥div∂
j
t ui

∥∥∥2

L2(�)
− Cε

2∑
i=1

∥∥∥∂j
t ui

∥∥∥2

L2(�)
, (5.8)

and

2∑
i=1

∫
�

ñe∇ñi∂
j
t χi ·

[
−∇div

(
ñi∂

j
t ui

)]
dx ≥ −Cε

2∑
i=1

∥∥∥(∂j
t ui ,div∂

j
t ui , ∂

j
t χi,∇∂

j
t χi

)∥∥∥2

L2(�)
.

(5.9)

And as for the third and the fifth integrals on the left-hand side of (5.6), we keep them both 
unchanged because they can be canceled out by the corresponding integral appearing respectively 
in another two estimates later on, see (5.33) and (5.40). Concerning the last integral on the left-
hand side of (5.6), we have to pay more attention to it due to the influence of bipolar structure 
and net recombination rate. Precisely, integrating by parts yields that

2∑
i=1

∫
�

(−1)i∇∂
j
t σ ·

[
−∇div

(
ñi∂

j
t ui

)]
dx

=
∫
�

�∂
j
t σ

2∑
i=1

(−1)idiv
(
ñi∂

j
t ui

)
dx

=
∫ (

∂
j
t ψ1 − ∂

j
t ψ2

) 2∑
i=1

(−1)i
[
−∂

j
t ψit − Q

(
ñ2∂

j
t ψ1 + ñ1∂

j
t ψ2

)
+ ∂

j
t fi(w)

]
dx
�
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= d

dt

∫
�

1

2

(
∂

j
t ψ1 − ∂

j
t ψ2

)2
dx −

∫
�

∇
(
∂

j
t ψ1 − ∂

j
t ψ2

)
·
[
∂

j
t (ψ1u1) − ∂

j
t (ψ2u2)

]
dx

≥ d

dt

∫
�

1

2

(
∂

j
t ψ1 − ∂

j
t ψ2

)2
dx − C|||w(t)|||3, for j = 0,1,2, (5.10)

where we have employed the equations ∂j
t (4.2a) and ∂j

t (4.2d) when obtaining the second equal-
ity of (5.10); and have utilized the expression (4.5a) of the nonlinearity term fi(w) and the slip 
boundary condition ui · ν|∂� = 0 while establishing the third equality of (5.10).

Note that all the integrals calculated above are produced by the linear part of the velocity 
equation (4.2b), though there develops kind of the nonlinearity in (5.10). From now on, we shall 
face the genuinely nonlinear part of the velocity equation (4.2b), namely we take up estimating 
the integral on the right-hand side of (5.6). Firstly, the nonlinear terms of gi (w) can be grouped 
into three sorts by their common feature manifested in the process of estimation,

gi1(w) := ψiχi

ni ñi

∇ñi − ψ2
i

ni ñ
2
i

∇ñi + Q(ñ2ψ1 + ñ1ψ2 + ψ1ψ2)

ni

ui ,

gi2(w) := ψi

niñi

∇ψi − χi

ni

∇ψi,

gi3(w) := −ui · ∇ui , for i = 1,2.

Then we have got, for j = 0, 1, 2,

2∑
i=1

∫
�

∂
j
t gi (w) ·

[
−∇div

(
ñi∂

j
t ui

)]
dx

=
2∑

i=1

∫
�

∂
j
t gi1(w) ·

[
−∇div

(
ñi∂

j
t ui

)]
dx +

2∑
i=1

∫
�

∂
j
t gi2(w) ·

[
−∇div

(
ñi∂

j
t ui

)]
dx

+
2∑

i=1

∫
�

∂
j
t gi3(w) ·

[
−∇div

(
ñi∂

j
t ui

)]
dx

=I
(j)

1 + I
(j)

2 + I
(j)

3 . (5.11)

Since we observe that ∇ñi · ν|∂� = 0 and ∂j
t ui · ν|∂� = 0, the main property of the integral 

I
(j)

1 is that the boundary integral vanishes under integration by parts. To avoid redundancy, we 

only choose the first term in I (2)
1 as an example to illustrate the necessary skills in estimating all 

the integrals I (j)
1 for j = 0, 1, 2. We compute therefore by using integration by parts

2∑
i=1

∫
∂2
t

(
ψiχi

ni ñi

∇ñi

)
·
[
−∇div

(
ñi∂

2
t ui

)]
dx
�
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=
2∑

i=1

∫
�

∇ · ∂2
t

(
ψiχi

ni ñi

∇ñi

)
div
(
ñi∂

2
t ui

)
dx

=
2∑

i=1

∫
�

[
ñi�ñi − |∇ñi |2

ñ2
i

∂2
t

(
ψiχi

ni

)
+ ∇ñi

ñi

· ∇∂2
t

(
ψiχi

ni

)](
ñidiv∂2

t ui + ∇ñi · ∂2
t ui

)
dx

=
2∑

i=1

∫
�

(
∇ñi · χi

ni

∇∂2
t ψidiv∂2

t ui + the remaining third order terms

)
dx + lower order terms

≤C

2∑
i=1

‖∇ñi‖L∞(�) ‖χi‖L∞(�)

∥∥∥∇∂2
t ψi

∥∥∥
L2(�)

∥∥∥div∂2
t ui

∥∥∥
L2(�)

+ the remaining terms

≤C|||w(t)|||3 (5.12)

provided ε + |||w(t)||| � 1. The integral I (j)

1 , as is the case in (5.12), can be easily estimated 
below

I
(j)

1 ≤ C|||w(t)|||3, for j = 0,1,2. (5.13)

The strategy to handle the integral I (j)

2 actually depends on the order of time derivative. For 

j = 0, 1, in much the same way as (5.13), the integral I (j)

2 can be directly estimated below

I
(j)
2 ≤ C|||w(t)|||3, for j = 0,1. (5.14)

For j = 2, we walk one through computing merely the second term in the integral I (2)
2 because it 

has extra information on temperature unknowns χi and the first term can be calculated similarly, 
that is

2∑
i=1

∫
�

∂2
t

(
−χi

ni

∇ψi

)
·
[
−∇div

(
ñi∂

2
t ui

)]
dx

=
2∑

i=1

∫
�

[(
χi

ni

)
t t

∇ψi + 2

(
χi

ni

)
t

∇ψit

]
· ∂t∇div (ñiuit )dx

+
2∑

i=1

∫
�

χi

ni

∇ψitt · ∂2
t ∇div (ñiui )dx

=J1 + J2. (5.15)

And then, we compute

J1 = d

dt

2∑
i=1

∫ [(
χi

ni

)
t t

∇ψi + 2

(
χi

ni

)
t

∇ψit

]
· ∇div (ñiuit )dx
�
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−
2∑

i=1

∫
�

[(
χi

ni

)
t t t

∇ψi + 3

(
χi

ni

)
t t

∇ψit + 2

(
χi

ni

)
t

∇ψitt

]
· ∇div (ñiuit )dx

≤ d

dt

2∑
i=1

∫
�

[(
χi

ni

)
t t

∇ψi + 2

(
χi

ni

)
t

∇ψit

]
· ∇div (ñiuit )dx + C|||w(t)|||

2∑
i=1

∥∥∥∂3
t χi

∥∥∥2

L2(�)

+ C|||w(t)|||3, (5.16)

where, in order to estimate the term in the second line of (5.16), we have used Proposition 2.5
and also carried out the following calculations by the quotient rule (2.4), for m = 1, 2, 3,

∣∣∣∣∂m
t

(
χi

ni

)∣∣∣∣=
∣∣∣∣∣∣m!

m∑
l=0

∂m−l
t χi

(m − l)!
P(l)∑
k=1

ck

n
1+∑l

q=1 pkq

i

l∏
q=1

(
∂

q
t ψi

q!
)pkq

∣∣∣∣∣∣

≤

⎧⎪⎨
⎪⎩

C|||w(t)|||, if m = 1,

C|||w(t)|||2 + C|||w(t)||| |ψitt | + C |χitt | , if m = 2,

C|||w(t)|||3 + C|||w(t)||| |(ψittt ,ψitt , χitt )| + C |χittt | , if m = 3,

and

|∇div (ñiuit )| = |ñi∇divuit + ∇ñidivuit + (uit · ∇)∇ñi + (∇ñi · ∇)uit + ∇ñi × (∇ × uit )|
≤ Cε |(uit ,∇uit )| + C |∇divuit | .

Moreover, we calculate

J2 =
2∑

i=1

∫
�

ñiχi

ni

∇ψitt · ∂2
t ∇divuidx

+
2∑

i=1

∫
�

χi

ni

∇ψitt · [∇ñidivuit t + (uit t · ∇)∇ñi + (∇ñi · ∇)uit t + ∇ñi × (∇ × uit t )
]

dx

≤ −
2∑

i=1

∫
�

ñiχi

ni

∇ψitt · ∂2
t ∇
[
ψit + ui · ∇(ψi + ñi ) + Q(ñ2ψ1 + ñ1ψ2 + ψ1ψ2)

ni

]
dx

+ C|||w(t)|||3

≤ −
2∑

i=1

∫
�

ñiχi

n2
i

∇ψitt · ∂2
t ∇(ψit + ui · ∇ψi)dx + C|||w(t)|||3

= − d

dt

2∑
i=1

∫
ñiχi

2n2
i

|∇ψitt |2 dx +
2∑

i=1

∫
ñi

2

(
χi

n2
i

)
t

|∇ψitt |2 dx
� �
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+
2∑

i=1

∫
�

div

(
ñiχiui

2n2
i

)
|∇ψitt |2 dx + C|||w(t)|||3

≤ − d

dt

2∑
i=1

∫
�

ñiχi

2n2
i

|∇ψitt |2 dx + C|||w(t)|||3, (5.17)

where, in the third line of (5.17), we have used the continuity equation (4.2a) to deal with the 
term in the first line and applied the Cauchy-Schwarz inequality to the term in the second line. 
Substituting (5.16) and (5.17) into (5.15), we have

2∑
i=1

∫
�

∂2
t

(
−χi

ni

∇ψi

)
·
[
−∇div

(
ñi∂

2
t ui

)]
dx

≤ d

dt

2∑
i=1

⎧⎨
⎩−

∫
�

ñiχi

2n2
i

|∇ψitt |2 dx +
∫
�

[(
χi

ni

)
t t

∇ψi + 2

(
χi

ni

)
t

∇ψit

]
· ∇div (ñiuit )dx

⎫⎬
⎭

+ C|||w(t)|||
2∑

i=1

∥∥∥∂3
t χi

∥∥∥2

L2(�)
+ C|||w(t)|||3. (5.18)

The same goes for the first term of I (2)
2 , thereby replacing χi by −ψi

ñi
in (5.18), we get

2∑
i=1

∫
�

∂2
t

(
ψi

niñi

∇ψi

)
·
[
−∇div

(
ñi∂

2
t ui

)]
dx

≤ d

dt

2∑
i=1

⎧⎨
⎩
∫
�

ψi

2n2
i

|∇ψitt |2 dx −
∫
�

[(
ψi

ñini

)
t t

∇ψi + 2

(
ψi

ñini

)
t

∇ψit

]
· ∇div (ñiuit )dx

⎫⎬
⎭

+ C|||w(t)|||3. (5.19)

Summing up (5.18) and (5.19), together with (5.14), we now arrive at

I
(j)
2 ≤ j (j − 1)

2

(
d

dt
N(t) + C|||w(t)|||

2∑
i=1

∥∥∥∂3
t χi

∥∥∥2

L2(�)

)
+ C|||w(t)|||3, for j = 0,1,2.

(5.20)

Based on the calculations and techniques we have developed, one can easily see that the estimate 
(5.4) is true.

Finally, we start dealing with the last nonlinear integral I (j)

3 . Similarly to I (j)

2 , we easily get

I
(j)

3 ≤ C|||w(t)|||3, for j = 0,1. (5.21)

As far as I (2) is concerned, we calculate
3
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I
(2)
3 =

2∑
i=1

∫
�

∂2
t (ui · ∇ui ) · ∇div

(
ñi∂

2
t ui

)
dx

=
2∑

i=1

∫
�

ñi∂
2
t (ui · ∇ui ) · ∇div∂2

t uidx

+
2∑

i=1

∫
�

∂2
t (ui · ∇ui ) · [∇ñidivuit t + (uit t · ∇)∇ñi + (∇ñi · ∇)uit t

+∇ñi × (∇ × uit t )
]

dx

≤
2∑

i=1

∫
∂�

ñidiv∂2
t ui

[
∂2
t (ui · ∇ui ) · ν

]
ds −

2∑
i=1

∫
�

div
[
ñi∂

2
t (ui · ∇ui )

]
div∂2

t uidx

+ C|||w(t)|||3

≤Jbdr −
2∑

i=1

∫
�

ñi∂
2
t div (ui · ∇ui )div∂2

t uidx + C|||w(t)|||3

=Jbdr −
2∑

i=1

∫
�

ñi∂
2
t

[
ui · ∇divui + ∇ui : (∇ui )

T
]

div∂2
t uidx + C|||w(t)|||3

≤Jbdr −
2∑

i=1

∫
�

ñi

(
ui · ∇div∂2

t ui

)
div∂2

t uidx + C|||w(t)|||3

=Jbdr +
2∑

i=1

∫
�

1

2
div(ñiui )

∣∣∣div∂2
t ui

∣∣∣2 dx + C|||w(t)|||3

≤Jbdr + C|||w(t)|||3. (5.22)

There remains a boundary integral Jbdr still to be controlled. For this purpose, we borrow a useful 
trick from [15], which is further developed by introducing the tangent vector u⊥ := −u × ν in 
[7]. The trick makes the most of the slip boundary condition ui · ν|∂� = 0 and also enables us, 
on the boundary ∂�, to transfer one order of spatial derivative from the velocity field ui (t, x)

to the inwards-extended outer normal vector ν = ν(x). More precisely, we have the following 
computation

Jbdr =
2∑

i=1

∫
∂�

ñidiv∂2
t ui∂

2
t (ui · ∇ui · ν)ds

= −
2∑

i=1

∫
ñi∂

2
t div

(
u⊥

i × ν
)

∂2
t (ui · ∇ν · ui )ds
∂�
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=
2∑

i=1

∫
∂�

ñi∂
2
t

(
∇ × ν · u⊥

i

)
∂2
t (ui · ∇ν · ui )ds

≤C|||w(t)|||3, (5.23)

where we have used the slip boundary condition ui · ν|∂� = 0 in obtaining the second equality 
of (5.23). From the third equality of (5.23), one can see that there are at most second-order 
derivatives inside the boundary integral, thereby establishing the last inequality of (5.23) via the 
Trace Theorem in H 1(�). Substituting (5.23) into (5.22), in combination with (5.21), we now 
achieve

I
(j)

3 ≤ C|||w(t)|||3, for j = 0,1,2. (5.24)

Combining the estimates (5.7)∼(5.11), (5.13), (5.20) and (5.24) together, we now obtain the 
desired estimate (5.3). �
Remark 5.2. It is worth mentioning that the difficulty of controlling the boundary integral is 
brought about by the fact that the convection term ui ·∇ui encounters the slip boundary condition 
ui ·ν|∂� = 0. The same trouble, incidentally, also appears in the nonlinear stability analysis on the 
unipolar isentropic hydrodynamic model of semiconductors [15] and the compressible Naiver-
Stokes equations [7]. Inspired by [15,7], the typical boundary integral here is handled in the 
same fashion. Also, it should be pointed out that this problem will not occur in the case that one 
considers the linear stability no matter what kind of boundary conditions one chooses, and in the 
case of the nonlinear stability under the periodic boundary conditions.

As we have mentioned before, in order to apply the Div-Curl Lemma (2.5) to complete the 
estimation of ∇ui for i = 1, 2 and their higher order time-space derivatives, the estimation of the 
vorticity curlui for i = 1, 2 and their higher order time-space derivatives remains to be done. In 
the next lemma, we merely estimate the vorticity curlui for i = 1, 2 and their higher order time 
derivatives. Plus we leave the necessary estimation about the time-space derivatives of the vor-
ticity to Lemma 5.10 because we need to decide the necessary order of the derivatives according 
to what kind of the estimation for the perturbed densities we could have.

Lemma 5.2. Let ε and |||w(t)||| be sufficiently small. Then there exists a positive constant C > 0
such that for j = 0, 1, 2,

d

dt

2∑
i=1

∫
�

1

2
ñi

∣∣∣curl∂j
t ui

∣∣∣2 dx + b

2

2∑
i=1

∥∥∥curl∂j
t ui

∥∥∥2

L2(�)
≤ Cε

2∑
i=1

∥∥∥∇∂
j
t χi

∥∥∥2

L2(�)
+ C|||w(t)|||3.

(5.25)

Proof. Conducting the following operation

2∑
i=1

∫
�

curl∂j
t (4.2b) ·

[
ñicurl∂j

t ui

]
dx, for j = 0,1,2, (5.26)
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we have for j = 0, 1, 2,

2∑
i=1

∫
�

curl∂j
t (uit + ui ) ·

[
ñicurl∂j

t ui

]
dx −

2∑
i=1

∫
�

[
∇ñi × ∇

(
ñe∂

j
t χi

)]
·
[
ñicurl∂j

t ui

]
dx

=
2∑

i=1

∫
�

curl∂j
t gi (w) ·

[
ñicurl∂j

t ui

]
dx. (5.27)

The first integral on the left-hand side of (5.27) is routinely dealt with as follows, for j =
0, 1, 2,

2∑
i=1

∫
�

curl∂j
t (uit + ui ) ·

[
ñicurl∂j

t ui

]
dx

≥ d

dt

2∑
i=1

∫
�

1

2
ñi

∣∣∣curl∂j
t ui

∣∣∣2 dx + b

2∑
i=1

∥∥∥curl∂j
t ui

∥∥∥2

L2(�)
. (5.28)

To dominate the other integral on the left-hand side of (5.27), we need the special properties of 
the density components of the equilibrium state, that is, for i = 1, 2,

ñi ñe ≡ 1, which in turn implies, ∇ñi × ∇ñe ≡ 0. (5.29)

Then we calculate for j = 0, 1, 2,

−
2∑

i=1

∫
�

[
∇ñi × ∇

(
ñe∂

j
t χi

)]
·
[
ñicurl∂j

t ui

]
dx

= −
2∑

i=1

∫
�

[
(∇ñi × ∇ñe) ∂

j
t χi +

(
∇ñi × ∇∂

j
t χi

)
ñe

]
·
[
ñicurl∂j

t ui

]
dx

= −
2∑

i=1

∫
�

ñi ñe

(
∇ñi × ∇∂

j
t χi

)
· curl∂j

t uidx

=
2∑

i=1

∫
�

∇ñi ·
(

curl∂j
t ui × ∇∂

j
t χi

)
dx

≥ − Cε

2∑
i=1

∥∥∥(curl∂j
t ui ,∇∂

j
t χi

)∥∥∥2

L2(�)
(5.30)

The nonlinear integral on the right-hand side of (5.27) can be dominated by |||w(t)|||3 because 
the order of time derivatives is at most 2. Actually, we have
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2∑
i=1

∫
�

curl∂j
t gi (w) ·

[
ñicurl∂j

t ui

]
dx ≤ C|||w(t)|||3, for j = 0,1,2. (5.31)

We only pick up the most complicated part gi3(w) of the above nonlinear integral in the case 
j = 2 to go into details, which is attributed to the convection terms. The remaining parts and 
cases can be estimated in much the same way but easier computations.

2∑
i=1

∫
�

curl∂2
t gi3(w) ·

[
ñicurl∂2

t ui

]
dx

= −
2∑

i=1

∫
�

∂2
t curl (ui · ∇ui ) ·

[
ñicurl∂2

t ui

]
dx

= −
2∑

i=1

∫
�

∂2
t curl

(
1

2
∇ |ui |2 − ui × curlui

)
·
[
ñicurl∂2

t ui

]
dx

= −
2∑

i=1

∫
�

∂2
t (ui · ∇curlui + divuicurlui − curlui · ∇ui ) ·

[
ñicurl∂2

t ui

]
dx

≤ −
2∑

i=1

∫
�

ñiui · ∇curl∂2
t ui · curl∂2

t uidx + C|||w(t)|||3

= −
2∑

i=1

∫
�

ñiui · ∇
(

1

2

∣∣∣curl∂2
t ui

∣∣∣2)dx + C|||w(t)|||3

=
2∑

i=1

∫
�

1

2
div (ñiui )

∣∣∣curl∂2
t ui

∣∣∣2 dx + C|||w(t)|||3

≤C|||w(t)|||3. (5.32)

Substituting (5.28), (5.30) and (5.31) into (5.27), together with the smallness of ε, we get the 
desired estimate (5.25). �

Motivated by the estimates in Lemmas 5.1 and 5.2, we set about proving the following two 
lemmas. These two lemmas together can achieve two purposes at one stroke because we can not 
only capture the energy for ∇∂

j
t χi and ∇∂

j
t ψi but also construct the integral terms to cancel out 

the corresponding ones in Lemma 5.1.

Lemma 5.3. Let ε and |||w(t)||| be sufficiently small. Then there exists a positive constant C > 0
such that for j = 0, 1, 2,

d

dt

2∑
i=1

∫
3

4
ñi

∣∣∣∇∂
j
t χi

∣∣∣2 dx + 3

8
b

2∑
i=1

∥∥∥∇∂
j
t χi

∥∥∥2

L2(�)
+ 1

2

2∑
i=1

∥∥∥�∂
j
t χi

∥∥∥2

L2(�)
�
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+
2∑

i=1

∫
�

∇div
(
ñi∂

j
t ui

)
· ∇∂

j
t χidx ≤ C (ε + |||w(t)|||)

2∑
i=1

∥∥∥(∂j
t ui , ∂

j
t χi, ∂

j
t χit

)∥∥∥2

L2(�)

+ C|||w(t)|||3. (5.33)

Proof. Careful observation of the estimate (5.3), we implement the following operation

2∑
i=1

∫
�

∂
j
t (4.2c)

(
−3

2
�∂

j
t χi

)
dx, for j = 0,1,2, (5.34)

which yields

−
2∑

i=1

∫
�

3

2
ñi∂

j
t χit�∂

j
t χidx −

2∑
i=1

∫
�

ñidiv∂
j
t ui�∂

j
t χidx +

2∑
i=1

∥∥∥�∂
j
t χi

∥∥∥2

L2(�)

−
2∑

i=1

∫
�

3

2
ñi∂

j
t χi�∂

j
t χidx =

2∑
i=1

∫
�

∂
j
t hi(w)

(
−3

2
�∂

j
t χi

)
dx, for j = 0,1,2. (5.35)

And then we begin calculating the integrals of the linear principal part on the left-hand side 
of (5.35) one by one. For j = 0, 1, 2, we have

−
2∑

i=1

∫
�

3

2
ñi∂

j
t χit�∂

j
t χidx

=
2∑

i=1

∫
�

3

2
∇
(
ñi∂

j
t χit

)
· ∇∂

j
t χidx

≥ d

dt

2∑
i=1

∫
�

3

4
ñi

∣∣∣∇∂
j
t χi

∣∣∣2 dx − Cε

2∑
i=1

∥∥∥(∇∂
j
t χi, ∂

j
t χit

)∥∥∥2

L2(�)
, (5.36)

and then we have to technically construct a specific integral form in processing the second inte-
gral on the left-hand side of (5.35), that is

−
2∑

i=1

∫
�

ñidiv∂
j
t ui�∂

j
t χidx

= −
2∑

i=1

∫
�

[
div
(
ñi∂

j
t ui

)
− ∇ñi · ∂j

t ui

]
�∂

j
t χidx

≥
2∑

i=1

∫
�

∇div
(
ñi∂

j
t ui

)
· ∇∂

j
t χidx − Cε

2∑
i=1

∥∥∥(�∂
j
t χi, ∂

j
t ui

)∥∥∥2

L2(�)
, (5.37)
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and now we turn to the last integral on the left-hand side of (5.35), namely

−
2∑

i=1

∫
�

3

2
ñi∂

j
t χi�∂

j
t χidx

=
2∑

i=1

∫
�

3

2
∇
(
ñi∂

j
t χi

)
· ∇∂

j
t χidx

≥3

4
b

2∑
i=1

∥∥∥∇∂
j
t χi

∥∥∥2

L2(�)
− Cε

2∑
i=1

∥∥∥∂j
t χi

∥∥∥2

L2(�)
. (5.38)

Scrutinizing each terms in the expression (4.5c) of the nonlinearity hi(w), one can easily find 
that, by using the routine techniques repeatedly employed in Lemma 5.1, the integral on the 
right-hand side of (5.35) is able to be dominated as follows, for j = 0, 1, 2,

2∑
i=1

∫
�

∂
j
t hi(w)

(
−3

2
�∂

j
t χi

)
dx ≤ C|||w(t)|||

2∑
i=1

∥∥∥(∂j
t χit ,�∂

j
t χi

)∥∥∥2

L2(�)
+ C|||w(t)|||3.

(5.39)

Inserting (5.36)∼(5.39) into (5.35), and letting ε and |||w(t)||| be small enough, we complete 
the proof of the desired estimate (5.33). �
Lemma 5.4. Let ε and |||w(t)||| be sufficiently small. Then there exists a positive constant C > 0
such that for j = 0, 1, 2,

d

dt

⎡
⎣ 2∑

i=1

∫
�

1

2
ñe

∣∣∣∇∂
j
t ψi

∣∣∣2 dx − j (j − 1)

2
M(t)

⎤
⎦+ Q

∥∥∥∇ (ñ2∂
j
t ψ1 + ñ1∂

j
t ψ2

)∥∥∥2

L2(�)

+
2∑

i=1

∫
�

∇div
(
ñi∂

j
t ui

)
· ∇
(
ñe∂

j
t ψi

)
dx

≤Cε

2∑
i=1

∥∥∥(∂j
t ψi, ∂

j
t ψit ,∇∂

j
t ψi

)∥∥∥2

L2(�)
+ C|||w(t)|||3, (5.40)

where M(t) is defined by

M(t) :=
2∑

i=1

∫
�

ψi

2ñini

|∇ψitt |2 dx,

which further satisfies the following inequality

|M(t)| ≤ C|||w(t)|||3. (5.41)
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Proof. On closer examination of the estimate (5.3), we carry out the following procedure

2∑
i=1

∫
�

∇∂
j
t (4.2a) · ∇

(
ñe∂

j
t ψi

)
dx, for j = 0,1,2, (5.42)

which gives

2∑
i=1

∫
�

∇∂
j
t ψit · ∇

(
ñe∂

j
t ψi

)
dx +

2∑
i=1

∫
�

∇div(ñi∂
j
t ui ) · ∇

(
ñe∂

j
t ψi

)
dx

+ Q

∥∥∥∇ (ñ2∂
j
t ψ1 + ñ1∂

j
t ψ2

)∥∥∥2

L2(�)
=

2∑
i=1

∫
�

∇∂
j
t fi(w) · ∇

(
ñe∂

j
t ψi

)
dx, for j = 0,1,2.

(5.43)

Note that ∇ñe · ν|∂� = 0, then integration by parts gives the following estimate of the first 
integral on the left-hand side of (5.43) for j = 0, 1, 2, that is

2∑
i=1

∫
�

∇∂
j
t ψit · ∇

(
ñe∂

j
t ψi

)
dx

=
2∑

i=1

∫
�

∇∂
j
t ψit ·

(
ñe∇∂

j
t ψi + ∇ñe∂

j
t ψi

)
dx

= d

dt

2∑
i=1

∫
�

1

2
ñe

∣∣∣∇∂
j
t ψi

∣∣∣2 dx −
2∑

i=1

∫
�

∂
j
t ψitdiv

(
∇ñe∂

j
t ψi

)
dx

≥ d

dt

2∑
i=1

∫
�

1

2
ñe

∣∣∣∇∂
j
t ψi

∣∣∣2 dx − Cε

2∑
i=1

∥∥∥(∂j
t ψi, ∂

j
t ψit ,∇∂

j
t ψi

)∥∥∥2

L2(�)
. (5.44)

The form of the second integral on the left-hand side of (5.43) stays the same and will be used to 
cancel out the counterpart in (5.3).

As regards the nonlinear integral on the right-hand side of (5.43), a straightforward computa-
tion yields

2∑
i=1

∫
�

∇∂
j
t fi(w) · ∇

(
ñe∂

j
t ψi

)
dx ≤ C|||w(t)|||3, for j = 0,1. (5.45)

From the point of view of skill, the handling of the case j = 2 bears a resemblance to the estimate 
(5.17) of the integral J2 in the proof of Lemma 5.1. More precisely, we calculate by integrating 
by parts together with ∇ñe · ν|∂� = 0 that
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2∑
i=1

∫
�

∇∂2
t fi(w) · ∇

(
ñe∂

2
t ψi

)
dx

= −
2∑

i=1

∫
�

∇∂2
t [div(ψiui ) + Qψ1ψ2] · ∇

(
ñe∂

2
t ψi

)
dx

≤ −
2∑

i=1

∫
�

∇∂2
t div(ψiui ) · ∇

(
ñe∂

2
t ψi

)
dx + C|||w(t)|||3

≤ −
2∑

i=1

∫
�

ñe∇∂2
t ψi · ∂2

t ∇div(ψiui )dx + C|||w(t)|||3

≤ d

dt

2∑
i=1

∫
�

ψi

2ñini

|∇ψitt |2 dx + C|||w(t)|||3, (5.46)

where, to obtain the last inequality above, we have invoked (5.17) verbatim with χi

ni
replaced by 

−ñe and with ñi replaced by ψi . Plus, the estimate (5.41) is obviously true.
And lastly, substituting (5.44)∼(5.46) into (5.43), we obtain the desired estimate (5.40). �
Although we have got the energy part for ∇∂

j
t ψi in Lemma 5.4, the dissipation rate there is 

of the form Q‖∇(ñ2∂
j
t ψ1 + ñ1∂

j
t ψ2)‖2

L2(�)
due to the occurrence of the net recombination rate, 

which is ineffective for the purpose of closing the uniform estimate. Therefore, we manage to 
uncover the dissipative feature for ∇∂

j
t ψi in the next lemma.

Lemma 5.5. Let ε and |||w(t)||| be sufficiently small. Then there exists a positive constant C > 0
such that for j = 0, 1, 2,

− d

dt

2∑
i=1

∫
�

∂
j
t ψidiv∂

j
t uidx +

∥∥∥∂j
t ψ1 − ∂

j
t ψ2

∥∥∥2

L2(�)
+ b

4

2∑
i=1

∥∥∥∇∂
j
t ψi

∥∥∥2

L2(�)

≤Cε

2∑
i=1

∥∥∥(∂j
t ui , ∂

j
t χi

)∥∥∥2

L2(�)
+ (μ + Cε)

2∑
i=1

∥∥∥∂j
t ψi

∥∥∥2

L2(�)

+ Cμ

2∑
i=1

∥∥∥(div∂
j
t ui ,∇∂

j
t χi

)∥∥∥2

L2(�)
+ C|||w(t)|||3, (5.47)

where μ > 0 is arbitrarily small and Cμ is a positive constant dependent on μ.

Proof. Following the operation

2∑
i=1

∫
�

∂
j
t (4.2b) · ∇∂

j
t ψidx, for j = 0,1,2, (5.48)
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we obtain

2∑
i=1

∫
�

∂
j
t uit · ∇∂

j
t ψidx +

2∑
i=1

∫
�

∂
j
t ui · ∇∂

j
t ψidx +

2∑
i=1

∫
�

∇(ñe∂
j
t ψi) · ∇∂

j
t ψidx

+
2∑

i=1

∫
�

ñe∇ñi∂
j
t χi · ∇∂

j
t ψidx +

2∑
i=1

∫
�

∇∂
j
t χi · ∇∂

j
t ψidx +

∫
�

∇∂
j
t σ ·

2∑
i=1

[
(−1)i∇∂

j
t ψi

]
dx

=
2∑

i=1

∫
�

∂
j
t gi (w) · ∇∂

j
t ψidx, for j = 0,1,2. (5.49)

It is the most complicated case to deal with the first integral on the left-hand side of (5.49)
because we have to use the continuity equation (4.2a) to dominate it. This strategy will bring 
about a trouble because of the net recombination rate. Specifically, integrating by parts yields for 
j = 0, 1, 2

2∑
i=1

∫
�

∂
j
t uit · ∇∂

j
t ψidx

= − d

dt

2∑
i=1

∫
�

∂
j
t ψidiv∂

j
t uidx +

2∑
i=1

∫
�

∂
j
t ψitdiv∂

j
t uidx

= − d

dt

2∑
i=1

∫
�

∂
j
t ψidiv∂

j
t uidx

−
2∑

i=1

∫
�

[
div(ñi∂

j
t ui ) + Q(ñ2∂

j
t ψ1 + ñ1∂

j
t ψ2) − ∂

j
t fi(w)

]
div∂

j
t uidx

≥ − d

dt

2∑
i=1

∫
�

∂
j
t ψidiv∂

j
t uidx − Cε

2∑
i=1

∥∥∥∂j
t ui

∥∥∥2

L2(�)

− μ

2∑
i=1

∥∥∥∂j
t ψi

∥∥∥2

L2(�)
− Cμ

2∑
i=1

∥∥∥div∂
j
t ui

∥∥∥2

L2(�)
− C|||w(t)|||3, (5.50)

where we have also used Young’s inequality. Similarly to (5.50), the four integrals in the middle 
of the left-hand side of (5.49) can be estimated in turn.

2∑
i=1

∫
�

∂
j
t ui · ∇∂

j
t ψidx ≥ −μ

2∑
i=1

∥∥∥∂j
t ψi

∥∥∥2

L2(�)
− Cμ

2∑
i=1

∥∥∥div∂
j
t ui

∥∥∥2

L2(�)
, for j = 0,1,2,

(5.51)
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2∑
i=1

∫
�

∇(ñe∂
j
t ψi) · ∇∂

j
t ψidx ≥ b

2

2∑
i=1

∥∥∥∇∂
j
t ψi

∥∥∥2

L2(�)
− Cε

2∑
i=1

∥∥∥∂j
t ψi

∥∥∥2

L2(�)
, for j = 0,1,2,

(5.52)

2∑
i=1

∫
�

ñe∇ñi∂
j
t χi · ∇∂

j
t ψidx ≥ −Cε

2∑
i=1

∥∥∥(∂j
t χi,∇∂

j
t ψi

)∥∥∥2

L2(�)
, for j = 0,1,2,(5.53)

and

2∑
i=1

∫
�

∇∂
j
t χi · ∇∂

j
t ψidx ≥ −μ

2∑
i=1

∥∥∥∇∂
j
t ψi

∥∥∥
L2(�)

− Cμ

2∑
i=1

∥∥∥∇∂
j
t χi

∥∥∥2

L2(�)
, for j = 0,1,2.

(5.54)

And the last integral on the left-hand side of (5.49) is actually influenced by the bipolar structure, 
so it is worth going through this integral. Integrating by parts and invoking the Poisson equation 
(4.2d) gives

∫
�

∇∂
j
t σ ·

2∑
i=1

[
(−1)i∇∂

j
t ψi

]
dx

=
∫
�

∂
j
t �σ

(
∂

j
t ψ1 − ∂

j
t ψ2

)
dx

=
∫
�

(
∂

j
t ψ1 − ∂

j
t ψ2

)2
dx

=
∥∥∥∂j

t ψ1 − ∂
j
t ψ2

∥∥∥2

L2(�)
, for j = 0,1,2. (5.55)

As for the nonlinear integral on the right-hand side of (5.49), there is no need to introduce any 
new skill, and one can easily control it as follows.

2∑
i=1

∫
�

∂
j
t gi (w) · ∇∂

j
t ψidx ≤ C|||w(t)|||3, for j = 0,1,2. (5.56)

Inserting (5.50)∼(5.56) into (5.49), letting μ be suitably small, and allowing ε to be suffi-
ciently small, we have now established the necessary estimate (5.47). �

Incidentally, our computation in Lemma 5.5 shows that the bipolar structure of the system 
(4.2) prevents the electric field term (−1)i∇σ in the velocity equation (4.2b) from producing 
the dissipation rate for ∂j

t ψi , see (5.55). Compared with the unipolar case (see [15,17]), this 
is the reason why we claimed in the introduction section of the present paper that the bipolar 
structure would weaken the dissipative mechanism of the system. Fortunately, there is a chance 
to make up for the loss of the dissipative mechanism when constructing the energy part for ∂j

t ψi
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by the continuity equation (4.2a), due to the appearance of the net recombination rate. This novel 
finding will be summarized and proved in the following lemma.

Lemma 5.6. Let ε and |||w(t)||| be sufficiently small. Then there exists a positive constant C > 0
such that for j = 0, 1, 2,

d

dt

2∑
i=1

∫
�

ñe

2Q

∣∣∣∂j
t ψi

∣∣∣2 dx + b2
2∑

i=1

∥∥∥∂j
t ψi

∥∥∥2

L2(�)
+
∫
�

2∂
j
t ψ1∂

j
t ψ2dx

+
2∑

i=1

∫
�

ñe

Q
∂

j
t ψidiv

(
ñi∂

j
t ui

)
dx ≤ C|||w(t)|||3. (5.57)

Proof. Implementing the operation below

2∑
i=1

∫
�

∂
j
t (4.2a)

ñe

Q
∂

j
t ψidx, for j = 0,1,2 (5.58)

gives

d

dt

2∑
i=1

∫
�

ñe

2Q

∣∣∣∂j
t ψi

∣∣∣2 dx +
2∑

i=1

∫
�

ñe

Q
∂

j
t ψidiv

(
ñi∂

j
t ui

)
dx

+
∫
�

Q
(
ñ2∂

j
t ψ1 + ñ1∂

j
t ψ2

) 2∑
i=1

(
ñe

Q
∂

j
t ψi

)
dx

=
2∑

i=1

∫
�

∂
j
t fi(w)

ñe

Q
∂

j
t ψidx, for j = 0,1,2, (5.59)

where the first term on the left-hand side of (5.59) has been treated in the usual way. Also, 
we shall keep the second integral on the left-hand side of (5.59) unchanged for the purpose of 
cancellation with its counterpart in the next lemma. And the last integral on the left-hand side of 
(5.59) is impacted by the net recombination rate, producing an ill-behaved dissipative integral. 
More precisely,

∫
�

Q
(
ñ2∂

j
t ψ1 + ñ1∂

j
t ψ2

) 2∑
i=1

(
ñe

Q
∂

j
t ψi

)
dx

=
∫
�

(
ñ2∂

j
t ψ1 + ñ1∂

j
t ψ2

)2
dx

=
∫ [

ñ2
2

(
∂

j
t ψ1

)2 + 2ñ2ñ1∂
j
t ψ1∂

j
t ψ2 + ñ2

1

(
∂

j
t ψ2

)2
]

dx
�
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≥b2
2∑

i=1

∥∥∥∂j
t ψi

∥∥∥2

L2(�)
+
∫
�

2∂
j
t ψ1∂

j
t ψ2dx, for j = 0,1,2, (5.60)

where we have made the most of the properties (1.17b) and (5.29) of the thermal equilibrium 
state in the last line.

The nonlinear integral on the right-hand side of (5.59) is a normal one, so we can easily in the 
usual manner obtain

2∑
i=1

∫
�

∂
j
t fi(w)

ñe

Q
∂

j
t ψidx ≤ C|||w(t)|||3, for j = 0,1,2. (5.61)

Substituting (5.60) and (5.61) into (5.59), we reach the estimate (5.57). �
Remark 5.3. For the time being, the plausible dissipation rate b2∑2

i=1 ‖∂j
t ψi‖2

L2(�)
alone is still 

useless as a direct result of the recombination-generation phenomenon. In fact, the net recombi-
nation rate leads to the occurrence of the extra and bad dissipative integral 

∫
�

2∂
j
t ψ1∂

j
t ψ2dx. 

However, if we still bear the estimate (5.47) in mind, then it will help us to find that the 
harmless dissipative integral ‖∂j

t ψ1 − ∂
j
t ψ2‖2

L2(�)
can be put to use. Precisely, adding the 

dissipative integral ‖∂j
t ψ1 − ∂

j
t ψ2‖2

L2(�)
brought about by the bipolar structure and the other 

one 
∫
�

2∂
j
t ψ1∂

j
t ψ2dx caused by the net recombination rate, we can obtain an enhanced part ∑2

i=1 ‖∂j
t ψi‖2

L2(�)
of the dissipation rate b2∑2

i=1 ‖∂j
t ψi‖2

L2(�)
without any ill-behaved dissipa-

tive integrals, as what we will do later in Lemma 5.9.

Up to now, we have not established the estimates for ∂j
t ui and ∂j

t χi yet. The following two 
lemmas will be devoted to this task.

Lemma 5.7. Let ε and |||w(t)||| be sufficiently small. Then there exists a positive constant C > 0
such that for j = 0, 1, 2,

d

dt

⎛
⎝∫

�

1

2Q

∣∣∣∇∂
j
t σ

∣∣∣2 dx +
2∑

i=1

∫
�

ñi

2Q

∣∣∣∂j
t ui

∣∣∣2 dx

⎞
⎠+ b

Q

2∑
i=1

∥∥∥∂j
t ui

∥∥∥2

L2(�)

−
2∑

i=1

∫
�

ñe

Q
∂

j
t ψidiv

(
ñi∂

j
t ui

)
dx −

2∑
i=1

∫
�

ñi

Q
∂

j
t χidiv∂

j
t uidx ≤ C|||w(t)|||3. (5.62)

Proof. Executing the following computational process

2∑
i=1

∫
�

∂
j
t (4.2b) · ñi

Q
∂

j
t uidx, for j = 0,1,2 (5.63)

yields
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d

dt

2∑
i=1

∫
�

ñi

2Q

∣∣∣∂j
t ui

∣∣∣2 dx + b

Q

2∑
i=1

∥∥∥∂j
t ui

∥∥∥2

L2(�)
+

2∑
i=1

∫
�

∇
(
ñe∂

j
t ψi

)
· ñi

Q
∂

j
t uidx

+
2∑

i=1

∫
�

(
ñe∇ñi∂

j
t χi + ∇∂

j
t χi

)
· ñi

Q
∂

j
t uidx +

∫
�

∇∂
j
t σ ·

2∑
i=1

(−1)i
ñi

Q
∂

j
t uidx

≤
2∑

i=1

∫
�

∂
j
t gi (w) · ñi

Q
∂

j
t uidx, for j = 0,1,2, (5.64)

where the first two terms on the left-hand side of (5.64) have already been adjusted by adopting 
the general practice. And after applying integration by parts to the third integral on the left-hand 
side of (5.64), we find with ease that

2∑
i=1

∫
�

∇
(
ñe∂

j
t ψi

)
· ñi

Q
∂

j
t uidx = −

2∑
i=1

∫
�

ñe

Q
∂

j
t ψidiv

(
ñi∂

j
t ui

)
dx, for j = 0,1,2,(5.65)

which is of the same form as the last term on the left-hand side of (5.57) but with the opposite 
sign. As for the fourth term on the left-hand side of (5.64), by the special property (5.29) and 
integration by parts, we calculate

2∑
i=1

∫
�

(
ñe∇ñi∂

j
t χi + ∇∂

j
t χi

)
· ñi

Q
∂

j
t uidx

=
2∑

i=1

∫
�

1

Q

[
ñi ñe∂

j
t χi∇ñi · ∂j

t ui − ∂
j
t χidiv

(
ñi∂

j
t ui

)]
dx

=
2∑

i=1

∫
�

1

Q

[
∂

j
t χi∇ñi · ∂j

t ui −
(
∂

j
t χi∇ñi · ∂j

t ui + ∂
j
t χi ñidiv∂

j
t ui

)]
dx

= −
2∑

i=1

∫
�

ñi

Q
∂

j
t χidiv∂

j
t uidx, for j = 0,1,2. (5.66)

Sometimes the impact of the net recombination rate disappears when it meets the bipolar effect, 
the process of computing the last term on the left-hand side of (5.64) gives the best example. More 
precisely, using integration by parts, the continuity equation (4.2a) and the Poisson equation 
(4.2d), we calculate

∫
�

∇∂
j
t σ ·

2∑
i=1

(−1)i
ñi

Q
∂

j
t uidx

=
∫

1

Q
∂

j
t σ

2∑
i=1

(−1)i
[
∂

j
t ψit + ∂

j
t R(n1, n2) + div∂

j
t (ψiui )

]
dx
�
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= −
∫
�

1

Q
∂

j
t σ�∂

j
t σtdx +

∫
�

1

Q
∂

j
t σ

2∑
i=1

(−1)idiv∂
j
t (ψiui )dx

≥ d

dt

∫
�

1

2Q

∣∣∣∇∂
j
t σ

∣∣∣2 dx − C|||w(t)|||3, for j = 0,1,2. (5.67)

Similarly to (5.61), using the standard method, we obtain for j = 0, 1, 2,

2∑
i=1

∫
�

∂
j
t gi (w) · ñi

Q
∂

j
t uidx ≤ C|||w(t)|||3. (5.68)

Substituting the estimates (5.65)∼(5.68) into (5.64), we get the desired estimate (5.62). �
Lemma 5.8. Let ε and |||w(t)||| be sufficiently small. Then there exists a positive constant C > 0
such that for j = 0, 1, 2,

d

dt

2∑
i=1

∫
�

3ñi

4Q

∣∣∣∂j
t χi

∣∣∣2 dx + 3b

2Q

2∑
i=1

∥∥∥∂j
t χi

∥∥∥2

L2(�)
+ 1

Q

2∑
i=1

∥∥∥∇∂
j
t χi

∥∥∥2

L2(�)

+
2∑

i=1

∫
�

ñi

Q
∂

j
t χidiv∂

j
t uidx

≤j (j − 1)

2
C|||w(t)|||

2∑
i=1

∥∥∥∂3
t χi

∥∥∥2

L2(�)
+ C|||w(t)|||3. (5.69)

Proof. Actually, one can easily check the estimate (5.69) as per the following strategy

2∑
i=1

∫
�

∂
j
t (4.2c)

3

2Q
∂

j
t χidx, for j = 0,1,2, (5.70)

together with the standard methods used repeatedly. Besides, the fourth integral on the left-hand 
side of (5.69) is directly generated by the second term on the left-hand side of the energy equation 
(4.2c) and stay put in order to cancel out its counterpart in (5.62). �

While proving the above lemmas, we have noted that some integral terms appearing in certain 
estimates could cancel each other out. Therefore, we are going to make this observation work in 
the next lemma.

Lemma 5.9. Let α > 0, ε and |||w(t)||| be sufficiently small. Then, for j = 0, 1, 2, there exist 
positive constants ϒj > 0 and C > 0 such that

d

dt
Ej (t) + ϒjFj (t) ≤C (ε + |||w(t)|||)

2∑
i=1

∥∥∥(∂j
t ψit , ∂

j
t uit , ∂

j
t χit

)∥∥∥2

L2(�)
+ C|||w(t)|||3,(5.71)
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where Ej(t) and Fj (t) are defined by

Ej(t) :=
2∑

i=1

∫
�

1

2
ñi

∣∣∣div∂
j
t ui

∣∣∣2 dx +
∫
�

1

2

(
∂

j
t ψ1 − ∂

j
t ψ2

)2
dx − j (j − 1)

2
N(t)

+
2∑

i=1

∫
�

1

2
ñi

∣∣∣curl∂j
t ui

∣∣∣2 dx +
2∑

i=1

∫
�

3

4
ñi

∣∣∣∇∂
j
t χi

∣∣∣2 dx

+
2∑

i=1

∫
�

1

2
ñe

∣∣∣∇∂
j
t ψi

∣∣∣2 dx − j (j − 1)

2
M(t)

− α

2∑
i=1

∫
�

∂
j
t ψidiv∂

j
t uidx + α

2∑
i=1

∫
�

ñe

2Q

∣∣∣∂j
t ψi

∣∣∣2 dx

+ α

∫
�

1

2Q

∣∣∣∇∂
j
t σ

∣∣∣2 dx + α

2∑
i=1

∫
�

ñi

2Q

∣∣∣∂j
t ui

∣∣∣2 dx

+ α

2∑
i=1

∫
�

3ñi

4Q

∣∣∣∂j
t χi

∣∣∣2 dx,

and

Fj (t) :=
2∑

i=1

(∥∥∥(∂j
t ψi, ∂

j
t ui , ∂

j
t χi

)∥∥∥2

H 1(�)
+
∥∥∥�∂

j
t χi

∥∥∥2

L2(�)

)
.

Proof. It seems preferable, for clarity’s sake, to merge all the estimates built in the previous 
lemmas into the unified one. Closer scrutiny of these estimates inspires us to do certain nec-
essary calculations in which a suitably small positive constant α will be chosen to adjust the 
miscellaneous orders of magnitude among these estimates. The outline of calculations is listed 
below

[
(5.3) + (5.25) + (5.33) + (5.40)

]
+ α

[
(5.47) + (5.57) + (5.62) + (5.69)

]
. (5.72)

Avoiding unnecessary details, we merely demonstrate several main points:

1. During the computations in the first square bracket above, the last two integral terms on 
the left-hand side of (5.3) will be used to cancel out their counterparts in (5.33) and (5.40), 
respectively; similarly, among the calculations in the second square bracket above, the last 
two integral terms on the left-hand side of (5.62) will be separately counterbalanced by their 
counterparts in (5.57) and (5.69).

2. We could dispense with the ineffective dissipation rate Q‖∇(ñ2∂
j
t ψ1 + ñ1∂

j
t ψ2)‖2

L2(�)
on 

the left-hand side of (5.40) due to its positivity and the estimate (5.47).
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3. Recalling what we have claimed in Remark 5.3, we can, in the computational process of 
(5.47) + (5.57), obtain the augmented dissipation rate for j = 0, 1, 2,

∥∥∥∂j
t ψ1 − ∂

j
t ψ2

∥∥∥2

L2(�)
+ b2

2∑
i=1

∥∥∥∂j
t ψi

∥∥∥2

L2(�)
+
∫
�

2∂
j
t ψ1∂

j
t ψ2dx

=
(
b2 + 1

) 2∑
i=1

∥∥∥∂j
t ψi

∥∥∥2

L2(�)
, (5.73)

which can further absorb the corresponding term (μ + Cε)
∑2

i=1 ‖∂j
t ψi‖2

L2(�)
on the right-

hand side of (5.47) by fixing suitably small positive constants μ and ε. In the meantime, the 
positive constant Cμ is fixed as well because the small positive constant μ has already been 
fixed. And then we can further opt for an appropriately small positive constant α to make 
the term Cμ

∑2
i=1 ‖(div∂

j
t ui , ∇∂

j
t χi)‖2

L2(�)
on the right-hand side of (5.47) absorbed by the 

corresponding dissipation rates in the estimates (5.3) and (5.33), respectively.
4. Note that the constant α has already been determined, and therefore for j = 0, 1, 2

we are able to apply Proposition 2.4 with (k, p) = (0, 2) to obtain the dissipation rate ∑2
i=1 ‖∂j

t ui‖2
H 1(�)

in the process of the calculation (5.3) + (5.25) + α(5.62).

Keeping the essentials of the strategy (5.72) listed above in mind and using the straightforward 
but tedious computations, we get the predigested and unified estimate (5.71) provided both ε and 
|||w(t)||| are small enough. �

Up to now, we have not yet derived the amply dissipative mechanism from the system (4.2)
to close the uniform a priori estimate in terms of the Sobolev smooth norm |||w(t)|||2. Actually, it 
remains for us to establish some necessary estimates for the higher-order spatial derivatives and 
space-time mixed derivatives of the vorticity curlui for i = 1, 2.

Lemma 5.10. Let ε and |||w(t)||| be sufficiently small. Then there exists a positive constant C > 0
such that for the integer pairs (l, m) = (1, 0), (2, 0), (1, 1),

d

dt

2∑
i=1

∫
�

1

2

∣∣∣∇ lcurl∂m
t ui

∣∣∣2 dx + 1

2

2∑
i=1

∥∥∥∇ lcurl∂m
t ui

∥∥∥2

L2(�)

≤Cε

2∑
i=1

∥∥∇∂m
t χi

∥∥2
Hl(�)

+ C|||w(t)|||3. (5.74)

Proof. Similarly to the proof of Lemma 5.2 but somewhat complicatedly, we follow the compu-
tational procedure for integer pairs (l, m) = (1, 0), (2, 0), (1, 1),

2∑
i=1

∫
�

∇ lcurl∂m
t (4.2a) : ∇ lcurl∂m

t uidx, (5.75)
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where the notation “:” represents the Frobenius inner product, to establish the desired estimate 
(5.74) without difficulty. Since there are no technical points need to be emphasized, so we do not 
lay out the details here. �

Based on the predigested estimate in Lemma 5.9 and the supplemented estimate in 
Lemma 5.10, we are now in a position to complete the final step of establishing the desired 
a priori estimate for local-in-time solutions.

Lemma 5.11. Let ε and |||w(t)||| be sufficiently small. Then there exist positive constants ϒ > 0
and C > 0 such that

d

dt
E(t) + ϒF(t) ≤ C (ε + |||w(t)|||)R(t) + C|||w(t)|||3, (5.76)

where the total energy E(t), the total dissipation rate F(t) and the quadratic remaining term 
R(t) are defined by

E(t) :=
2∑

j=0

Ej(t) +
∑

(l,m)=(1,0),
(2,0),(1,1)

2∑
i=1

∫
�

1

2

∣∣∣∇ lcurl∂m
t ui

∣∣∣2 dx,

F (t) :=
2∑

j=0

Fj (t) +
∑

(l,m)=(1,0),
(2,0),(1,1)

2∑
i=1

∥∥∥∇ lcurl∂m
t ui

∥∥∥2

L2(�)
,

R(t) :=
2∑

j=0

2∑
i=1

∥∥∥(∂j
t ψit , ∂

j
t uit , ∂

j
t χit

)∥∥∥2

L2(�)
+

∑
(l,m)=(1,0),
(2,0),(1,1)

2∑
i=1

∥∥∇∂m
t χi

∥∥2
Hl(�)

.

Moreover, there exist positive constants C4, C5, C6 and C7 such that E(t), F(t) and R(t) satisfy 
the following estimates,

R(t) ≤ C4F(t), (5.77a)

C5|||w(t)|||2 ≤ E(t) ≤ C6|||w(t)|||2, (5.77b)

|||w(t)|||2 ≤ C7F(t). (5.77c)

Proof. Formally, the a priori estimate (5.76) can be easily built by implementing the following 
operation

2∑
j=0

(5.71) +
∑

(l,m)=(1,0),
(2,0),(1,1)

(5.74). (5.78)

Nevertheless, how the estimate (5.76) makes the continuation principle work significantly de-
pends on the verification of the quantitative relation (5.77). To this end, we first define for 
simplicity
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A(t) :=
2∑

j=0

2∑
i=1

∥∥∥(∂j
t ψi, ∂

j
t ui , ∂

j
t χi

)∥∥∥2

H 1(�)
+

∑
(l,m)=(1,0),
(2,0),(1,1)

2∑
i=1

∥∥∥∇ lcurl∂m
t ui

∥∥∥2

L2(�)

=F(t) −
2∑

j=0

2∑
i=1

∥∥∥�∂
j
t χi

∥∥∥2

L2(�)

≤F(t). (5.79)

Under the smallness assumption |||w(t)||| � 1, we are also able to build some auxiliary estimates:

1. A careful comparison between the expressions of E(t) and A(t) enables us to easily draw 
the equivalent relation

E(t) ∼ A(t), (5.80)

that is, there exist two positive constants c and C such that cA(t) ≤ E(t) ≤ CA(t).
2. A thorough examination of the expressions for R(t) and F(t) makes us aware that the fol-

lowing terms in the expression of R(t) are not formally included in F(t): for i = 1, 2,

∥∥∥∂3
t ψi

∥∥∥2

L2(�)
,

∥∥∥∂3
t ui

∥∥∥2

L2(�)
,

∥∥∥∂3
t χi

∥∥∥2

L2(�)
,

∥∥∥∇2χi

∥∥∥2

L2(�)
,

∥∥∥∇3χi

∥∥∥2

L2(�)
and

∥∥∥∇2χit

∥∥∥2

L2(�)
. (5.81)

In what follows, we list the estimates for those terms in (5.81).
2a). From ∂2

t (4.2a), ∂2
t (4.2b) and 1

ñi
∂2
t (4.2c), we have

2∑
i=1

∥∥∥(∂3
t ψi, ∂

3
t ui

)∥∥∥2

L2(�)
≤ CA(t) and

2∑
i=1

∥∥∥∂3
t χi

∥∥∥2

L2(�)
≤ C

(
A(t) +

∥∥∥�∂2
t χi

∥∥∥2

L2(�)

)
≤ CF(t). (5.82)

2b). From ∂k
t (4.2c) for k = 0, 1, we derive

⎧⎨
⎩−2

3
�∂k

t χi + ñi∂
k
t χi = −ñi∂

k
t χit − 2

3
ñidiv∂k

t ui + ∂k
t hi(w), in �, (a)

∇∂k
t χi · ν = 0, on ∂�, for i = 1,2, (b)

(5.83)

which by the elliptic estimate implies

1∑
k=0

2∑
i=1

∥∥∥∂k
t χi

∥∥∥2

H 4−k(�)
≤ C

(
A(t) +

2∑
i=1

∥∥∥(∇divui ,∇divuit ,∇2divui

)∥∥∥2

L2(�)

)
.

(5.84)
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2c). From ∇s∂k
t (4.2a) for (s, k) = (1, 0), (1, 1), (2, 0), we can solve out the exact expression 

of ∇sdiv∂k
t ui , and then we obtain

2∑
i=1

∥∥∥(∇divui ,∇divuit ,∇2divui

)∥∥∥2

L2(�)
≤ C

(
A(t) +

2∑
i=1

∥∥∥(∇2ψi,∇2ψit ,∇3ψi

)∥∥∥2

L2(�)

)
.

(5.85)

2d). From ∇s∂k
t (4.2b) for (s, k) = (1, 0), (1, 1), (2, 0), we can solve out the exact expression 

of ∇s+1∂k
t ψi , and then we have

2∑
i=1

∥∥∥(∇2ψi,∇2ψit ,∇3ψi

)∥∥∥2

L2(�)
≤ CA(t). (5.86)

3. By using (5.84)∼(5.86), we can further confirm that the following equivalent relation,

A(t) ∼ |||w(t)|||2, (5.87)

is true.

Finally, according to (5.79)∼(5.82) and (5.84)∼(5.87), we know that the quantitative relations in 
(5.77) hold. �
Remark 5.4. It is supposed to be declared that some calculations in obtaining (5.76) are actually 
formal because of the inadequate regularity of the local-in-time solutions. However, the rigorous 
verification of (5.76) can be carried out with ease by employing the standard mollifier technique. 
Avoiding the tautological statement, we will not go into details here.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. From the estimates (5.76) and (5.77), it is not hard to deduce that there 
exists a positive constant γ > 0 such that for the local-in-time solutions

d

dt
E(t) + γE(t) ≤ 0, (5.88)

provided there exists a sufficiently small positive constant δ3 > 0 such that ε ≤ δ3 and |||w(t)||| ≤
δ3. Then applying Gronwall’s inequality to (5.88), we have

E(t) ≤ E(0)e−γ t , (5.89)

thereby showing that there is a positive constant C8 > 1 such that

|||w(t)|||2 ≤ C8|||w(0)|||2e−γ t , (5.90)

where we have used the estimate (5.77b) again.
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Based on the a priori estimate (5.90), we now set about completing the standard continuation 
argument. First of all, we define a time T ∗ below

T ∗ := sup
{
T ∈ [0, Tmax) | |||w(t)|||2 ≤ δ2

3, ∀t ∈ [0, T ]
}

. (5.91)

From here, we intend to show that T ∗ = ∞ under the assumption that the initial perturbation is 
small, namely |||w(0)||| � 1. According to the definition of T ∗, it is apparent that either T ∗ <

Tmax or T ∗ = Tmax. If the former case holds, then we take

δ1 := 1√
2C8

δ3 < δ3 (5.92)

which is independent of ε and |||w(0)|||. Assume that ε ≤ δ1 and |||w(0)||| ≤ δ1, then it follows 
from the a priori estimate (5.90) that

|||w(t)|||2 ≤ 1

2
δ2

3e−γ t , t ∈ [0, T ∗]. (5.93)

This contradicts the maximality of the time T ∗. If the latter case holds, then the amplitude of the 
solution |||w(t)||| is bounded above by δ3 for all t ∈ [0, Tmax). Since δ3 can be chosen as small as 
we want, then it follows from Sobolev’s Embedding Theorem and Lemma 4.1 that Tmax = ∞, 
thereby obtaining the inequality (5.90) for all t ≥ 0. Meanwhile, by the elliptic estimate, we also 
have

3∑
j=0

‖∂j
t σ (t)‖2

H 5−j (�)
≤ C

3∑
j=0

‖(∂j
t ψ1, ∂

j
t ψ2)(t)‖2

H 3−j (�)
≤ C|||w(t)|||2, ∀t ∈ [0,∞). (5.94)

In a nutshell, if we take the small positive constant δ1 defined in (5.92), and let ε ≤ δ1 and 
|||w(0)||| ≤ δ1, then adding the estimates (5.90) and (5.94) for all t ≥ 0, we show that the local-
in-time solution can be uniquely extended to the global-in-time one and the exponential decay 
estimate (1.20) of the global-in-time solution holds for all t ≥ 0. This completes the proof of 
Theorem 1.2. �
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