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Abstract. This paper is concerned with the relaxation-time limits to a multidimensional radial
steady hydrodynamic model of semiconductors in the form of Euler--Poisson equations with sonic or
nonsonic boundary as the relaxation time \tau \rightarrow \infty and \tau \rightarrow 0+, respectively, where the sonic boundary
is the critical and difficult case, because of the degeneracy at the boundary and the formation of
boundary layers. For the case of \tau \rightarrow \infty , after showing the boundedness of the density by using the
divergence form, we prove the convergence of the solutions to their nontrivial asymptotic states with

the convergence order O(\tau  - 
1
2 ) in the L\infty -sense. In order to overcome the degeneracy caused by the

critical sonic boundary, we introduce an inverse transform as a technical tool to remove the second-
order degeneracy, and observe the advantage of a first-order degeneracy due to the monotonicity of
this transformation. Moreover, when \tau \rightarrow 0+ with different boundary values, where the boundary
layers appear, we show the strong convergence order O(\tau ) or O(\tau 1 - \varepsilon ) for different boundary cases.
In order to overcome the difficulty caused by the boundary layer, we propose a new technique in
asymptotic limit analysis and identify the width of the boundary layers as O(\tau ). These new proposed
methods develop and improve upon the existing studies. Finally, a series of numerical simulations
are conducted, which corroborate our theoretical analysis, particularly regarding the formation of
boundary layers.
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6934 FENG, HU, MEI, TSOGTGEREL, AND ZHANG

1. Introduction and the main results. Modeling equations. The hydrody-
namic model was first derived by Bl{\e}tekj{\ae}r [3] for electrons in a semiconductor. After
appropriate simplifications, the multidimensional time-dependent system in the isen-
tropic case reads \left\{       

\~\rho t + div(\~\rho \~u) = 0,

(\~\rho \~u)t + div (\~\rho \~u\otimes \~u) +\nabla P = \~\rho \~E  - \~\rho \~u

\tau 
,

\lambda 2 div \~E = \~\rho  - \~d(x), (x, t)\in \BbbR n \times \BbbR +, n= 2,3,

(1.1)

where \~\rho (x, t)\in \BbbR , \~u(x, t)\in \BbbR n, and \~E(x, t)\in \BbbR n denote the electron density, velocity,
and electric field, respectively. The function P = P (\~\rho ) = T \~\rho \gamma is the pressure, where
T > 0 is Boltzmann's constant and \gamma \geq 1 is the adiabatic exponent. The constant
parameter \tau > 0 is the momentum relaxation time. The physical parameter \lambda > 0
represents the scaled Debye length. The given background density \~d(x)> 0 is called
the doping profile standing for a background fixed charge of ions in the semiconductor
crystal. The hydrodynamic model (1.1) is also called Euler--Poisson equation with
semiconductor effect. For more details, we refer to treatises [39, 53] and references
therein.

In the present paper, we consider the isothermal case, and set T = 1 and \lambda = 1
without loss of generality, i.e., P (\~\rho ) = \~\rho . Throughout this paper, we consider the
steady-state solutions of (1.1) in an annulus domain

\scrA := \{ x\in \BbbR n| r0 < | x| < r1\} , 0< r0 < r1,

with the inner boundary

\Gamma 0 := \{ x\in \BbbR n : | x| = r0\} ,

and the outer boundary

\Gamma 1 := \{ x\in \BbbR n : | x| = r1\} .

Its closure is denoted by
\=\scrA := \Gamma 0 \cup \scrA \cup \Gamma 1.

By noting that div (\~\rho \~u\otimes \~u) = \~\rho (\~u\cdot \nabla )\~u+ div(\~\rho \~u)\~u, then the corresponding stationary
equations of (1.1) can be written as\left\{         

div(\~\rho \~u) = 0,

(\~u \cdot \nabla )\~u+
\nabla \~\rho 

\~\rho 
= \~E  - \~u

\tau 
,

div \~E = \~\rho  - \~d(x), x\in \scrA .

(1.2)

The aim of our work is to investigate the zero-/infinite relaxation time limits
of (1.2) in two- and three-dimensional annulus domains with degenerate boundary,
sonic or nonsonic boundaries, and to study various analytical features including the
requirement of the doping profile and the adopted methods in the proofs by comparing
with the one-dimensional case [16].

Moreover, we call M := | \~u| 
c(\~\rho ) the Mach number for c(\~\rho ) :=

\sqrt{} 
P \prime (\~\rho ) = 1. Here, c(\~\rho )

is called the local sound speed. Depending on the size of M , the analytic features
of (1.2) vary: if M > 1, the stationary flow is called supersonic; if M < 1, the
corresponding flow is called subsonic; otherwise, M = 1 is the sonic state.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RELAXATION TIME LIMITS 6935

In the following, we suppose that d is in L\infty (r0, r1) such that \~d(x) := d(r) in \=\scrA ,
and we denote

(\~\rho , \~u, \~E)(x) :=
\Bigl( 
\rho (r), u(r)

x

r
,E(r)

x

r

\Bigr) 
,(1.3)

where r= | x| , and the boundary conditions are stated as follows:

(\~\rho | \Gamma 0 , \~\rho | \Gamma 1 , \~\rho \~u| \Gamma 0) =
\Bigl( 
\rho (r0), \rho (r1), \rho (r0)u(r0)

x

r

\Bigr) 
=
\Bigl( 
a, b, c

x

r

\Bigr) 
(1.4)

for positive constants (a, b, c). Therefore, (1.2) and (1.4) are reduced to\left\{             

(rn - 1\rho u)r = 0,\bigl( 
rn - 1\rho u2

\bigr) 
r
+ rn - 1\rho r = rn - 1\rho 

\Bigl( 
E  - u

\tau 

\Bigr) 
,

(rn - 1E)r = rn - 1(\rho  - d(r)),

(\rho (r0), \rho (r1), u(r0)) =
\Bigl( 
a, b,

c

a

\Bigr) 
,

(1.5)

so that the sonic state is redefined by | u| =M = 1. Clearly, each pair of the solution
(\rho ,u,E) to system (1.5) always corresponds to a solution (\~\rho , \~u, \~E) to (1.2) and (1.4).

Definition 1.1 (radial subsonic/supersonic solution). We call (\~\rho , \~u, \~E) with
M < 1(M > 1) in \=\scrA radial subsonic (correspondingly, supersonic) to systems (1.2)
and (1.4) if the corresponding solution (\rho ,u,E) of (1.5) satisfies | u| < 1(| u| > 1) over
(r0, r1).

We now focus on (1.5). Let J := rn - 1\rho u. Without loss of generality, let us also
take J > 0. From the first equation of (1.5) we have

J = constant = rn - 1
0 c, r \in [r0, r1],(1.6)

which implies

rn - 1\rho u2 =
J2

rn - 1\rho 
.(1.7)

By substituting (1.7) into the second equation of (1.5) and dividing the resulting
equation by \rho , we obtain\biggl( 

rn - 1

\rho 
 - J2

rn - 1\rho 3

\biggr) 
\rho r = rn - 1E + (n - 1)J2 1

rn\rho 2
 - J

\tau \rho 
.(1.8)

By differentiating (1.8) with respect to r and substituting the third equation of (1.5)
into the resulting equation, problem (1.5) becomes for r \in (r0, r1),\left\{   

\biggl( \biggl( 
rn - 1

\rho 
 - J2

rn - 1\rho 3

\biggr) 
\rho r

\biggr) 
r

=rn - 1(\rho  - d) - n(n - 1)J2

rn+1\rho 2
+

\biggl( 
J

\tau \rho 2
 - 2

(n - 1)J2

rn\rho 3

\biggr) 
\rho r,

\rho (r0) = a, \rho (r1) = b,

(1.9)

where rn - 1
0 a, rn - 1

1 b\geq J . Moreover, by noting (1.6), it follows that

a\geq c and b\geq 
\biggl( 
r0
r1

\biggr) n - 1

c.(1.10)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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6936 FENG, HU, MEI, TSOGTGEREL, AND ZHANG

Moreover, from (1.5), we also get\left\{     rn - 1E =
rn - 1

\rho 

\Biggl( 
1 - 

\biggl( 
J

rn - 1\rho 

\biggr) 2
\Biggr) 
\rho r +

J

\tau \rho 
 - (n - 1)

J2

rn\rho 2
,

(rn - 1E)r = rn - 1(\rho  - d(r)).

(1.11)

It follows from definition of J and Definition 1.1 that (\rho ,u) is a pair of subsonic
solutions to (1.9) provided that

rn - 1\rho =
J

u
> J.(1.12)

We assume that the doping profile d(r) is of class L\infty (0,1). For simplicity of
notation, its infimum and supremum over [r0, r1] is denoted by

d := inf
r\in [r0,r1]

d(r) and \=d := sup
r\in [r0,r1]

d(r),

respectively.
The existence and uniqueness of the subsonic solution to the sonic boundary value

problem of system (1.9) was obtained by Chen et al. in [5].
Regarding the relaxation time limit \tau \rightarrow \infty or \tau \rightarrow 0+, let us denote the solutions

of (1.9) and (1.11) by (\rho \tau ,E\tau )(r) with respect to \tau . In what follows, we consider limit
problems about relaxation time \tau in (1.9). On the one hand, when \tau \rightarrow \infty , let us set
\=\rho (r) = lim\tau \rightarrow \infty \rho \tau (r) and \=E(r) = lim\tau \rightarrow \infty E\tau (r), which formally satisfy

\left\{   
\biggl( \biggl( 

rn - 1

\=\rho 
 - J2

rn - 1\=\rho 3

\biggr) 
\=\rho r

\biggr) 
r

=rn - 1(\=\rho  - d) - n(n - 1)J2

rn+1\=\rho 2
 - 2

(n - 1)J2

rn\=\rho 3
\=\rho r, r\in (r0, r1),

\=\rho (r0) = a, \=\rho (r1) = b,

(1.13)

and \left\{     rn - 1 \=E =
rn - 1

\=\rho 

\Biggl( 
1 - 

\biggl( 
J

rn - 1\=\rho 

\biggr) 2
\Biggr) 

\=\rho r  - (n - 1)
J2

rn\=\rho 2
,

(rn - 1 \=E)r = rn - 1(\=\rho  - d).

(1.14)

We point out that there is no boundary layer in this case.
On the other hand, when \tau \rightarrow 0+, we let \rho (r) = lim\tau \rightarrow 0+ \rho \tau (r), which formally

satisfies that

\rho = constant, r \in (r0, r1),(1.15)

which deduces that the boundary layers will appear in this case.
Background of studies. We now draw a picture of the progress on the studies of

well-posedness for hydrodynamic model of semiconductors. There are major advances
in the mathematical theory of steady-state Euler--Poisson equations with/without the
semiconductor effect. For the subsonic steady-state flows, Degond and Markowich
[8] first proved the existence of the subsonic solution to the one-dimensional steady-
state Euler--Poisson with the semiconductor effect when its boundary states belong
to the subsonic region. Subsequently, Degond and Markowich [9] further showed the
existence and local uniqueness of irrotational subsonic flows to the three-dimensional
steady-state semiconductor hydrodynamic model. After that, the steady-state sub-
sonic flows were investigated in various physical boundary conditions and different

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RELAXATION TIME LIMITS 6937

dimensions [2, 14, 24, 42]. As for the supersonic steady-state flows, Peng and Vio-
let [45] established the existence and uniqueness of the supersonic solutions with the
semiconductor effect. Lately, Donatelli and Juh\'asz [10] and Donatelli and Marcati
[11] investigated the oscillations and defect measures for the quasi-neutral limit and
the primitive equations. Regarding transonic steady states, Ascher et al. [1] first
examined the existence of the transonic solution to the one-dimensional isentropic
Euler--Poisson equations, and then Rosini [49] extended this work to the nonisen-
tropic case. When the doping profile is nonconstant, Gamba [19, 20] studied the
one-dimensional and two-dimensional transonic solutions with shocks, respectively.
Luo et al. [35] and Luo and Xin [36] further considered the one-dimensional Euler--
Poisson equations without the semiconductor effect, a comprehensive analysis on the
structure and classification of steady states was carried out in [36]. Meanwhile, both
structural and dynamical stability of steady transonic shock solutions was obtained
in [35]. And then, He and Huang [26] and Huang et al. [28] studied the nonlinear
stability of large amplitude viscous shock wave and the stability of transonic contact
discontinuity for two-dimensional steady compressible Euler flows in a finitely long
nozzle. Recently, Li et al. [33, 34] explored the one-dimensional semiconductor Euler--
Poisson equations with the sonic boundary condition. Motivated by their pioneering
works [33, 34], there is a series of interesting generalizations into the transonic doping
profile case in [4], the case of transonic C\infty -smooth steady states in [51], the multidi-
mensional cases in [5, 6], and even the bipolar case [41]. Lately, Feng, Mei, and Zhang
[18] demonstrated the structural stability of these smooth transonic steady-states by
the local singularity analysis. See also [15, 27, 52, 54] for the structural stability in
the sonic boundary case.

Moreover, in addition to these results on the well-posedness, a series of stud-
ies were concerned with the asymptotic limits in the hydrodynamic model, such as
the Newtonian limits in the speed of light for the relativistic Euler--Poisson equa-
tions [37, 38, 40], the quasi-neutral limits [7, 12, 13, 29, 43, 44, 47, 50], the zero-
electron-mass limits [22, 23, 32], and the zero-relaxation-time limits [17, 25, 30, 31,
46, 48], for instance. These investigations are important and amazing, but do not
involve the degeneracy, to the best of our knowledge. Recently, the quasi-neutral
limit for subsonic-sonic solution of system (1.5) with the degenerate sonic boundary
was investigated by Chen et al. [6]. Very recently, Feng et al. [16] consider the relax-
ation time limits problem to the one-dimensional Euler--Poisson equations, and get
the strong convergence of the approximate solutions to their asymptotic profiles in
L\infty norm.

However, by noting the difficulties caused by the degeneracy and boundary layers,
the relaxation-time limits for subsonic steady-state solution of system (1.5) with sonic
or nonsonic boundary values are still open and challenging. Hence, the goal of this
paper is to answer this question in two directions.

Main results. The main results of the paper are stated as follows.

Theorem 1.2 (infinite-relaxation-time limits). Assume that the doping profile
d \in L\infty [r0, r1] is subsonic such that infr\in [r0,r1]

\bigl\{ 
rn - 1d(r)

\bigr\} 
 - (n  - 2)(n  - 1) > J .

Let (\rho \tau ,E\tau )(r) be the interior subsonic solution of system (1.5) corresponding to the
doping profile d(x). Then problem (1.5) converges to (1.13) with (1.14) as \tau \rightarrow \infty 
uniformly in the sense that

\| \rho \tau  - \=\rho \| L\infty (r0,r1) \leq C\tau  - 
1
2 and \| E\tau  - \=E\| L\infty (r0,r1) \leq C\tau  - 

1
2 ,(1.16)

where C > 0 is a constant independent of \tau > 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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6938 FENG, HU, MEI, TSOGTGEREL, AND ZHANG

Theorem 1.3 (zero-relaxation-time limits). Assume that the doping profile d \in 
L\infty [r0, r1] is subsonic such that infr\in [r0,r1]

\bigl\{ 
rn - 1d(r)

\bigr\} 
 - (n  - 2)(n  - 1) > J . Let

(\rho \tau ,E\tau )(r) be the interior subsonic solution of system (1.5) corresponding to the dop-
ing profile d(r). Then the following two results hold:

(I) If \rho \tau (r0) = \rho \tau (r1) = a \geq J
rn - 1
0

, then (\rho \tau ,E\tau )(r) converges to its asymptotic

state

(\rho ,E) =

\biggl( 
a,

a

n
r - 1

rn - 1

\biggl( 
a

n
rn0 +

\int r

r0

sn - 1d(s)ds+ (n - 1)
J2

rn0 a
2

\biggr) \biggr) 
(1.17)

as \tau \rightarrow 0+, without boundary layer for the density \rho \tau (r), but with a huge gap J
\tau rn - 1a

between the electric field E\tau and its asymptotic state E over the entire interval [r0, r1].
Namely, there exist two constants C > 0 and 0< \tau 0 \ll 1 such that for all 0< \tau \leq \tau 0,
the following error estimates hold:

\| \rho \tau (r) - a\| L\infty [r0,r1]
\leq C\tau ,(1.18)

\bigm\| \bigm\| \bigm\| \bigm\| E\tau  - E  - J

\tau rn - 1a

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty [r0,r1]

\leq C\tau ,(1.19)

and \bigm\| \bigm\| \bigm\| \bigm\| dE\tau 

dr
 - 
\biggl( 
a - d - (n - 1)J

\tau rna
 - n - 1

r
E

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty [r0,r1]

\leq C\tau .(1.20)

(II) If \rho \tau (r0) = a, \rho \tau (r1) = b with b > a\geq J
rn - 1
0

, then the density \rho \tau (r) converges

to its asymptotic state \rho (r)\equiv a outside the boundary layer, and the width of boundary
layer becomes thinner as \tau \rightarrow 0+; the electric field E\tau (r) converges to its asymptotic
state

E(x) =
a

n
r - 1

rn - 1

\biggl( 
a

n
rn0 +

\int r

r0

sn - 1d(s)ds+ (n - 1)
J2

rn0 a
2

\biggr) 
with a huge correction J

\tau rn - 1a over the whole interval [r0, r1] as \tau \rightarrow 0+. Namely,
there exist two constants C > 0 and 0 < \tau 1 \ll 1 such that for all 0 < \tau \leq \tau 1 and
0< \varepsilon < 1/2, the following error estimates outside the boundary layer hold:

| \rho \tau (r) - a| \leq C\tau \forall r \in [r0, r1  - \alpha \tau 1 - \varepsilon ],(1.21)

\bigm\| \bigm\| \bigm\| \bigm\| E\tau  - E  - J

\tau rn - 1a

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty [r0,r1]

\leq C\tau 1 - \varepsilon ,(1.22)

and \bigm\| \bigm\| \bigm\| \bigm\| dE\tau 

dr
 - 
\biggl( 
a - d - (n - 1)J

\tau rna
 - n - 1

r
E

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty [r0,r1]

\leq C\tau 1 - \varepsilon .(1.23)

Remark 1.4. If we choose n= 1 and r0 = 0 in the asymptotic state (1.17), we get

(\rho ,E) =

\biggl( 
a,ar - 

\int r

0

d(s)ds

\biggr) 
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RELAXATION TIME LIMITS 6939

which is exactly the asymptotic state of one-dimensional Euler--Poisson equations
(see [16]). That is to say that our multidimensional results here contain the one-
dimensional case.

Remark 1.5. It should be pointed out that the different forms of (1.5) are very
important in the investigations of different problems. At first, we use the equivalent
form (1.9), which is a divergence form, to establish the boundedness of density \rho \tau (see
Proposition 2.4). After that, we introduce a new unknown m\tau (r) = rn - 1\rho \tau (r) and
use another equivalent form (3.2) to study the limit problem as \tau \rightarrow \infty (see section 3).
And then, the third equivalent form (4.1) is used for investigating the limit problem
as \tau \rightarrow 0+ (see section 4).

Difficulties and strategies. Now, let us give a brief sketch of the proof of our main
results and show the main difference in techniques between the one-dimensional and
multidimensional Euler--Poisson equations. In the first part, we study the relaxation
time limits problem as \tau \rightarrow \infty . Due to the boundary degeneracy, the study of the
infinite-relaxation time limit problems of interior subsonic solutions over [r0, r1] ap-
pears challenging. If we use the usual method as that in [52], then we cannot remove
the difficulty caused by boundary degeneracy, and therefore, the uniform estimates
about the error function \rho \tau  - \=\rho on \tau cannot be established. In order to overcome this
difficulty, we use an inverse transform (see (3.4)) to turn the second-order degeneracy
into first-order degeneracy. Fortunately, this remaining first-order degeneracy is a
good term since the transform used here is monotonically increasing (see (3.9)). Then
we efficiently overcome the degenerate effect.

In the second part, we continue to study the relaxation time limit problem when
\tau \rightarrow 0+. In detail, we study the limit problems with equivalent form (4.1) in two
cases according to different boundary values. To this end, we first establish two
comparison principles and show the estimates on d\rho \tau 

dr in Lemma 4.2. It should be

pointed out (4.8) containing the second-order term (d\rho \tau 

dr )
2 which is very different from

the corresponding equation for the one-dimensional Euler--Poisson system (see [16]).
Therefore, the techniques used there does not work. We introduce new methods to
remove this difficulty (see the proof of Lemma 4.2).

Case 1. \rho \tau (r0) = \rho \tau (r1) = a \geq J
rn - 1
0

. There is no boundary layer effect for this

case. First, by using comparison principles on d\rho \tau 

dr and the proof by contradiction,
we establish the upper and lower bounds of \rho \tau (r)  - \rho \tau (r0) (see (4.47) and (4.51),
respectively). After that, we study the zero-relaxation time limit for E\tau . Based on
(1.11), we introduce a new unknown \Xi = rn - 1E\tau . Then, we consider the initial value
problem (4.54) for the ordinary differential equation of \Xi . After careful estimating, we
get

\bigm\| \bigm\| \Xi (r) - \bigl( M \bigl( 
1
\tau , a, r0

\bigr) 
+L(a, r) - D(r)

\bigr) \bigm\| \bigm\| 
L\infty [r0,r1]

\leq C\tau (see (4.60)). Furthermore,

in view of the boundedness of r, we obtain the estimate for E\tau (see (4.64)). That

is to say E\tau \rightarrow 1
rn - 1(

J
\tau a  - (n - 1) J2

rn0 a2 )+
a
n (r  - 

rn0
rn - 1 ) - 1

rn - 1

\int r

r0
sn - 1d(s)ds =: E (r) in

L\infty [r0, r1] with the converging rate \tau . Finally, from the second equation of (1.11) and
the estimate for E\tau , we get the converging property for dE\tau 

dr (see (4.68)).
Case 2. \rho \tau (r0) = a, \rho \tau (r1) = b, and a \not = b with b > a \geq J

rn - 1
0

. In this case, the

boundary layer must appear since a \not = b. Here, we use a new method to look at the
width of the boundary layer. For r \in [r0, r1], we first establish the lower bound as
\rho \tau (r)  - a \geq  - (3\rho +

\~B
+ 1)\tau (see (4.69)). Meanwhile, we prove the upper bound like

\rho \tau (r) - b\leq (3
\=d+H
\~B

+1)\tau (see (4.73)). Furthermore, we investigate the boundary layer

near the right endpoint r= r1. For any r \in [r0, r1 - \alpha \tau 1 - \varepsilon ], we obtain the estimate as
\rho \tau (r) - a \leq (3

\=d+H
\~B

+ 1)\tau (see (4.77)). Moreover, we prove the estimates for E\tau and
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6940 FENG, HU, MEI, TSOGTGEREL, AND ZHANG

dE\tau 

dr like (4.86) and (4.87), respectively. In fact, we find that E\tau \rightarrow E (r) in L\infty [r0, r1]
with the different converging rate \tau 1 - \varepsilon .

We conclude this section by stating the arrangement of the rest of this paper.
In section 2, we give the important preliminaries such as boundedness and regularity
of subsonic solutions. In section 3, we analyze the infinite-relaxation-time limits
of subsonic steady states and prove Theorem 1.2. In section 4, we investigate zero-
relaxation-time limits of subsonic steady states and finish the proof of Theorem 1.3. In
section 5, we carry out some numerical simulations in different cases, which perfectly
validate our theoretical studies in Theorems 1.2 and 1.3.

2. Preliminaries. In this section we give the important preliminaries for later
use. First, we recall the definition of the interior subsonic solution.

Definition 2.1. We say \rho \tau is an interior subsonic solution of the boundary
value problem (1.9) if rn - 1

0 a = rn - 1
0 b = J and rn - 1\rho \tau > J for r \in (r0, r1), and

(rn - 1\rho \tau  - J)2 \in H1
0 (r0, r1), and it holds that\int r1

r0

\biggl( \biggl( 
rn - 1

\rho 
 - J2

rn - 1\rho 3

\biggr) 
\rho r + 2

(n - 1)J2

rn\rho 3
 - J

\tau \rho 2

\biggr) 
\varphi rdr

+

\int r1

r0

\biggl( 
rn - 1(\rho  - d) - n(n - 1)J2

rn+1\rho 2

\biggr) 
\varphi dr= 0,

(2.1)

for any \varphi \in H1
0 (r0, r1).

In addition, we continue to recall the existence and uniqueness of interior subsonic
solutions, which is excerpted from Theorem 1.4 in [5].

Proposition 2.2 (existence [5]). Suppose that the doping profile d is subsonic
such that rn - 1d(r)\in L\infty (r0, r1). Then the following two results hold:

1. For n= 2, if

\=\frakB := sup
r\in [r0,r1]

\bigl\{ 
rn - 1d(r)

\bigr\} 
+

1

\tau 
> J,

and

inf
r\in [r0,r1]

\bigl\{ 
rn - 1d(r)

\bigr\} 
+

J

\tau \=\frakB 
>J,

then for all \tau \in (0,\infty ] the boundary value problem (1.9) admits a unique interior
subsonic solution \rho \tau over [r0, r1].

2. For n= 3, if

\=B := sup
r\in [r0,r1]

\biggl\{ 
rn - 1d(r) +

2r

\tau 
 - 2

\biggr\} 
>J,

and

min
r\in [r0,r1]

\biggl\{ 
rn - 1d(r) +

2rJ

\tau \=B
 - 2

\biggr\} 
>J,

then for all \tau \in (0,\infty ] the boundary value problem (1.9) admits a unique interior
subsonic solution \rho \tau over [r0, r1].

Thus, the subsonic condition infr\in [r0,r1]

\bigl\{ 
rn - 1d(r)

\bigr\} 
 - (n - 2)(n - 1)>J for doping

profile in Theorems 1.2 and 1.3, can ensure the existence and uniqueness of subsonic
or sonic-subsonic solution to the boundary value problem (1.9) for any \tau > 0.

Furthermore, from [5], the regularity of \rho \tau is stated as follows.
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RELAXATION TIME LIMITS 6941

Proposition 2.3 (regularity). For 1 \leq p < 2, the subsonic solution \rho \tau satisfies
the following properties:

\rho \tau \in C
1
2 (r0, r1) and \rho \tau \in W 1,p(r0, r1).(2.2)

Next, let us show the boundedness of \rho \tau .

Proposition 2.4 (boundedness of \rho \tau ). If \rho \tau is an interior subsonic solution to
problem (1.9), then there exist constants \rho  - , \rho + > 0 independent of \tau , such that

\rho  - \leq \rho \tau \leq \rho + over r \in [r0, r1].(2.3)

Proof. It follows from (1.12) that

\rho \tau \geq 
J

rn - 1
\geq J

rn - 1
1

:= \rho \ell > 0.(2.4)

Next, let us introduce

\rho + =max

\biggl\{ 
a, b, \=d+

n(n - 1)J2

r2n0 \rho 2\ell 

\biggr\} 
+ 1.(2.5)

Then it is not difficult to observe that the zero-order terms rn - 1(\rho \tau  - d) - n(n - 1)J2

rn+1\rho 2
\tau 

in (1.9) are positive over \Omega + := \{ r \in [r0, r1]| \rho \tau (r)>\rho +\} . In fact,

rn - 1(\rho \tau  - d) - n(n - 1)J2

rn+1\rho 2\tau 
\geq rn - 1(\rho \tau  - \=d) - n(n - 1)J2

rn+1
0 \rho 2\ell 

> rn - 1n(n - 1)J2

r2n0 \rho 2\ell 
 - n(n - 1)J2

rn+1
0 \rho 2\ell 

\geq rn - 1
0

n(n - 1)J2

r2n0 \rho 2\ell 
 - n(n - 1)J2

rn+1
0 \rho 2\ell 

= 0.

(2.6)

After that, for the coefficient of the first-order term in (1.9), we get\bigm| \bigm| \bigm| \bigm| J

\tau \rho 2\tau 
 - 2

(n - 1)J2

rn\rho 3\tau 

\bigm| \bigm| \bigm| \bigm| \leq J

\tau \rho 2\tau 
+ 2

(n - 1)J2

rn0 \rho 
3
\tau 

\leq J

\tau \rho 2\ell 
+ 2

(n - 1)J2

rn0 \rho 
3
\ell 

<C,(2.7)

namely, \bigm\| \bigm\| \bigm\| \bigm\| J

\tau \rho 2\tau 
 - 2

(n - 1)J2

rn\rho 3\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (r0,r1)

<C.(2.8)

Later, for the coefficient of the second-order term of (1.9) in the divergence form, by
(1.6), (1.10), and (2.5), we obtain

rn - 1

\rho \tau 
 - J2

rn - 1\rho 3\tau 
=

rn - 1

\rho \tau 

\biggl( 
1 - J2

(rn - 1\rho \tau )2

\biggr) 
\geq rn - 1

\rho \tau 

\biggl( 
1 - J2

(rn - 1
0 \rho \tau )2

\biggr) 
\geq rn - 1

\rho \tau 

\biggl( 
1 - J2

(rn - 1
0 (a+ 1))2

\biggr) 
\geq rn - 1

\rho \tau 

\biggl( 
1 - J2

(rn - 1
0 (c+ 1))2

\biggr) 
=

rn - 1

\rho \tau 

\Biggl( 
1 - J2

J2 + 2r
2(n - 1)
0 c+ r

2(n - 1)
0

\Biggr) 
\geq C > 0, as r \in \Omega +.

(2.9)
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6942 FENG, HU, MEI, TSOGTGEREL, AND ZHANG

Eventually, by combining (2.6), (2.8)--(2.9), and the weak maximum principle (see
Theorem 8.1 in [21]), we have

\rho \tau \leq \rho +,(2.10)

which implies that the right-hand side of (2.3) holds.
Of course, \rho \ell is a lower bound of \rho \tau . We give another lower bound of it below.

Let us set

\rho  - =min\{ a, b, d\} .(2.11)

Then the zero-order terms in (1.9) are negative on \Omega  - := \{ r \in [r0, r1]| \rho \tau (r) < \rho  - \} .
Namely,

rn - 1(\rho \tau  - d) - n(n - 1)J2

rn+1\rho 2\tau 
< 0 as r \in \Omega  - .

Therefore, by the weak maximum principle again, it holds that

\rho \tau \geq \rho  - .(2.12)

This is the left-hand side of (2.3). The proof of Proposition 2.4 is completed.

Moreover, we can establish the boundedness for \=\rho as follows.

Proposition 2.5. If \=\rho is an interior subsonic solution to problem (1.13), then

\rho  - \leq \=\rho \leq \rho + over r \in [r0, r1],(2.13)

where \rho  - , \rho + > 0 are the same constants in Proposition 2.5 independent of \tau .

Proof. The proof is very similar to that in the proof of Proposition 2.4. We omit
it here for simplicity.

3. Relaxation limits as \bfittau \rightarrow \infty . This section is devoted to proving our main
result when \tau \rightarrow \infty . For any constants a > J

rn - 1
0

and b > J
rn - 1
1

, by using the following

method, we can get the similar results as (1.16) in Theorem 1.2. Here, we only
consider the case in which a= J

rn - 1
0

and b= J
rn - 1
1

for the sake of simplicity.

For the convenience of study in this section, we make a transformation for (1.9).
In detail, let us set

m\tau (r) = rn - 1\rho \tau (r),(3.1)

then

rn - 1\rho \tau u
2 =

J2

rn - 1\rho \tau 
=

J2

m\tau 
.

Substituting this into the second equation of (1.5), we have\biggl( 
1 - J2

m2
\tau 

\biggr) 
dm\tau 

dr
=m\tau 

\biggl( 
E\tau +

n - 1

r

\biggr) 
 - J

\tau 
.

Then problem (1.5) becomes\left\{         
\biggl( 
1 - J2

m2
\tau 

\biggr) 
dm\tau 

dr
=m\tau 

\biggl( 
E\tau +

n - 1

r

\biggr) 
 - J

\tau 
, r \in (r0, r1),

(rn - 1E\tau )r =m\tau  - rn - 1d(r),

(m\tau (r0),m\tau (r1)) = (rn - 1
0 a, rn - 1

1 b).

(3.2)
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RELAXATION TIME LIMITS 6943

Dividing the first equation of (3.2) by m\tau , then multiplying the resulting equation by
rn - 1, and then differentiating the resulting equation with respect to r, and substitut-
ing the second equation of (3.2) into the resulting equation, we obtain

\left\{     
\bigl( 
rn - 1(\omega \tau )r

\bigr) 
r
=m\tau  - rn - 1d(r) + (n - 1)(n - 2)rn - 3  - 

\biggl( 
rn - 1J

m\tau \tau 

\biggr) 
r

, r \in (r0, r1),

(m\tau (r0),m\tau (r1)) = (rn - 1
0 a, rn - 1

1 b),

(3.3)

where

\omega \tau = \omega (m\tau (r)) := lnm\tau +
J2

2m2
\tau 

.(3.4)

When \tau \rightarrow \infty , it follows that

\=m := lim
\tau \rightarrow \infty 

m\tau = lim
\tau \rightarrow \infty 

rn - 1\rho \tau = rn - 1\=\rho ,

which satisfies\Biggl\{ \bigl( 
rn - 1\=\omega r

\bigr) 
r
= \=m - rn - 1d(r) + (n - 1)(n - 2)rn - 3, r \in (r0, r1),

( \=m(r0), \=m(r1)) = (rn - 1
0 a, rn - 1

1 b).
(3.5)

Here,

\=\omega = \omega ( \=m(r)) := ln \=m+
J2

2 \=m2
.

Proof of Theorem 1.2. Let us set V = \=\omega  - \omega \tau . By taking the difference between
(3.3) and (3.5), we obtain\left\{   

\bigl( 
rn - 1 (\=\omega  - \omega \tau )r

\bigr) 
r
= \=m - m\tau +

\biggl( 
rn - 1J

m\tau \tau 

\biggr) 
r

, r \in (r0, r1),

V | r=r0 = V | r=r1 = 0.

(3.6)

In view of Propositions 2.4 and 2.5, we get

J \leq \=m, m\tau \leq rn - 1
1 \rho +, r \in (r0, r1).(3.7)

Multiplying the first equation of (3.6) by V and integrating the resulting equation
over [r0, r1], and then by integration by parts, we get\int r1

r0

rn - 1| Vr| 2dr+
\int r1

r0

( \=m - m\tau )V dx=
1

\tau 

\int r1

r0

rn - 1J

m\tau 
Vrdr.(3.8)

Noting the monotonicity of the function \omega \tau = \omega (m\tau ), we obtain\int r1

r0

( \=m - m\tau )V dr=

\int r1

r0

( \=m - m\tau )(\=\omega  - \omega \tau )dr\geq 0.(3.9)
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6944 FENG, HU, MEI, TSOGTGEREL, AND ZHANG

Then it follows from (3.7)--(3.9) and the H\"older inequality that

rn - 1
0

\int r1

r0

| Vr| 2dr\leq 
\int r1

r0

rn - 1| Vr| 2dr

\leq 1

\tau 

\int r1

r0

\bigm| \bigm| \bigm| \bigm| rn - 1J

m\tau 

\bigm| \bigm| \bigm| \bigm| | Vr| dr

\leq rn - 1
1

\tau 

\int r1

r0

| Vr| dr

\leq rn - 1
1

\tau 
(r1  - r0)

1
2

\biggl( \int r1

r0

| Vr| 2 dr
\biggr) 1

2

.

(3.10)

Hence, we have

\| Vr\| L2[r0,r1] \leq (r1  - r0)
1
2

\biggl( 
r1
r0

\biggr) n - 1

\tau  - 1.(3.11)

The Poincar\'e inequality implies that

\| V \| L2[r0,r1] \leq C\| Vr\| L2[r0,r1] \leq C\tau  - 1.(3.12)

Then it follows from the Sobolev imbedding theorems that

\| V \| L\infty [r0,r1] \leq C\| V \| H1[r0,r1] \leq C\tau  - 1.(3.13)

By (3.2) and the Taylor series of \omega \tau and \=\omega at m\tau = J and \=m = J , respectively, we
have

V = \=\omega  - \omega \tau =

\biggl( 
ln \=m+

J2

2 \=m2

\biggr) 
 - 
\biggl( 
lnm\tau +

J2

2m2
\tau 

\biggr) 
=

( \=m - m\tau ) ( \=m+m\tau  - 2J)

J2
+ \cdot \cdot \cdot .

(3.14)

Then in view of (3.7), we obtain

| V | = | \=\omega  - \omega \tau | \geq 

\Biggl\{ 
| m\tau  - \=m| 2 as m\tau \rightarrow J, \=m\rightarrow J,

| m\tau  - \=m| otherwise.
(3.15)

Hence, by combining (3.13) and (3.15), we get

\| m\tau  - \=m\| L\infty (r0,r1) \leq C\tau  - 
1
2 ,(3.16)

which implies

\| \rho \tau  - \=\rho \| L\infty (r0,r1) =

\bigm\| \bigm\| \bigm\| \bigm\| 1

rn - 1
(m\tau  - \=m)

\bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (r0,r1)

\leq C\tau  - 
1
2 .(3.17)

This is the first part of (1.16).
Next, we study the infinity-relaxation time limit for E. Dividing the first equation

of (3.2) by m\tau , then multiplying the resulting equation by rn - 1, and noting the
definitions of \omega \tau and \=\omega , we obtain\left\{   

rn - 1\=\omega r = rn - 1 \=E + (n - 1)rn - 2,

rn - 1(\omega \tau )r = rn - 1E\tau + (n - 1)rn - 2  - Jrn - 1

\tau m\tau 
.

(3.18)
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RELAXATION TIME LIMITS 6945

Then, by noting (3.7) and (3.11), we get

\bigm\| \bigm\| rn - 1 \=E  - rn - 1E\tau 

\bigm\| \bigm\| 
L2[r0,r1]

\leq 
\bigm\| \bigm\| rn - 1(\=\omega  - \omega \tau )r

\bigm\| \bigm\| 
L2[r0,r1]

+
J

\tau 

\bigm\| \bigm\| \bigm\| \bigm\| rn - 1

m\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 
L2[r0,r1]

\leq C\tau  - 1.

(3.19)

Moreover, by the second equation of (3.2), we have

(rn - 1 \=E)r = \=m - rn - 1d(r) and (rn - 1E\tau )r =m\tau  - rn - 1d(r).(3.20)

Then, by the first part of (1.16) and (3.20), we get

\| (rn - 1(E\tau  - \=E))r\| L\infty (r0,r1) = \| m\tau  - \=m\| L\infty (r0,r1) \leq C\tau  - 
1
2 .(3.21)

This, together with (3.19), implies

\| rn - 1(E\tau  - \=E)\| H1(r0,r1) \leq C\tau  - 
1
2 .(3.22)

Then, from the Sobolev imbedding theorems, we obtain

\| E\tau  - \=E\| L\infty (r0,r1) =

\bigm\| \bigm\| \bigm\| \bigm\| 1

rn - 1

\bigl( 
rn - 1(E\tau  - \=E)

\bigr) \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty (r0,r1)

\leq C\tau  - 
1
2 ,(3.23)

which is the second part of (1.16). The proof of Theorem 1.2 is completed.

4. Relaxation limits as \bfittau \rightarrow 0+. The main task of this section is to prove our
main result when \tau \rightarrow 0+. From (1.15), we obtain that \rho = lim\tau \rightarrow 0+ \rho \tau is a constant
over the interval [r0, r1]. This, together with the second equation of (1.9), implies
\rho (r) = a or b \forall r \in [r0, r1]. Hence, the boundary layers must appear when a \not = b. Here,
we use a new method to look at the width of the boundary layer.

For the convenience of investigations in the following, we shall take another trans-
formation of (1.9). In detail, we divide the first equation of (1.9) by rn - 1 and then

the resulting equation by 1
\rho \tau 

 - J2

r2n - 2\rho 3
\tau 
, problem (1.9) is equivalent to, for r \in (r0, r1),\left\{   \rho rr =

1

\delta (\rho , r)

\biggl( 
\rho  - d - h(\rho , r)+

\biggl( 
J

\tau rn - 1\rho 2
 - f(\rho , r)

\biggr) 
\rho r + g(\rho , r) (\rho r)

2

\biggr) 
,

\rho (r0) = a, \rho (r1) = b,

(4.1)

where \rho = \rho \tau for simplicity, and

\delta (\rho , r) =
1

\rho \tau 
 - J2

r2n - 2\rho 3\tau 
, h(\rho , r) =

n(n - 1)J2

r2n\rho 2\tau 
,

f(\rho , r) = 3
(n - 1)J2

r2n - 1\rho 3\tau 
+

n - 1

r\rho \tau 
, g(\rho , r) =

1

\rho 2\tau 
 - 3J2

r2n - 1\rho 4\tau 
.

(4.2)

It follows from (1.12) and (2.3) in Proposition 2.4 that

J < rn - 1\rho \tau \leq rn - 1
1 \rho + over r \in (r0, r1).

Then there exist positive constants

1

M
=

rn - 1
1

J3

\bigl( 
(rn - 1

1 \rho +)
2  - J2

\bigr) 
, H =

n(n - 1)

r20
, \~B =

J

rn - 1
1 \rho 2+

,
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and

B =
1

\rho  - 
, F = 4(n - 1)

rn - 2
1

J
, A=

1

\rho 2 - 

\biggl( 
1 +

3

r0

\biggr) 
,

independent of \tau such that

0< \delta (\rho , r) =
1

\rho \tau 

\biggl( 
1 - J2

(rn - 1\rho \tau )2

\biggr) 
=

rn - 1

(rn - 1\rho \tau )3
\bigl( 
(rn - 1\rho \tau )

2  - J2
\bigr) 
\leq 1

M
,(4.3)

0<h(\rho , r) =
n(n - 1)J2

r2n\rho 2\tau 
=

n(n - 1)J2

r2(rn - 1\rho \tau )2
\leq n(n - 1)

r2
\leq H,(4.4)

0<
\~B

\tau 
\leq J

\tau rn - 1\rho 2\tau 
=

1

\tau 

J

rn - 1\rho \tau 

1

\rho \tau 
\leq B

\tau 
,(4.5)

0< f(\rho , r) = 3
(n - 1)J2

r2n - 1\rho 3\tau 
+

n - 1

r\rho \tau 
= 3

(n - 1)J2rn - 2

(rn - 1\rho \tau )3
+

(n - 1)rn - 2

rn - 1\rho \tau 
\leq F,(4.6)

and

| g(\rho , r)| =
\bigm| \bigm| \bigm| \bigm| 1\rho 2\tau  - 3J2

r2n - 1\rho 4\tau 

\bigm| \bigm| \bigm| \bigm| = 1

\rho 2\tau 

\bigm| \bigm| \bigm| \bigm| 1 - 3J2

r(rn - 1\rho \tau )2

\bigm| \bigm| \bigm| \bigm| \leq 1

\rho 2\tau 

\biggl( 
1 +

3J2

r(rn - 1\rho \tau )2

\biggr) 
\leq A.

(4.7)

Remark 4.1. It should be pointed out that (4.1) is not degenerate on any subset
[\alpha ,\beta ] \subset [r0, r1] since J < rn - 1\rho \tau over r \in [\alpha ,\beta ]. This implies that \rho \tau \in W 2,\infty ([\alpha ,\beta ])
and then \rho \tau \in C1,1([\alpha ,\beta ]). Hence, the regularity of \rho \tau is very good over any subset
[\alpha ,\beta ]\subset [r0, r1].

Let us consider the following initial value problem, for r \in (r0, r1),\left\{         
d2\rho \tau 
dr2

=
1

\delta (\rho \tau ,r)

\Biggl( 
\rho \tau  - d - h(\rho \tau ,r)+

\biggl( 
J

\tau rn - 1\rho 2\tau 
 - f(\rho \tau ,r)

\biggr) 
d\rho \tau 
dr

+g(\rho \tau ,r)

\biggl( 
d\rho \tau 
dr

\biggr) 2
\Biggr) 
,

d\rho \tau 
dr

\bigm| \bigm| \bigm| \bigm| 
r=r\ast 

= \rho \ast ,

(4.8)

where the initial point r\ast \in (r0, r1) and the initial value \rho \ast is given.
First, the properties of d\rho \tau 

dr are shown as follows.

Lemma 4.2 (estimate on d\rho \tau (r)
dr ). Assume that the doping profile d \in L\infty [r0, r1]

is subsonic. Let d\rho \tau 

dr be the solution to the initial problem (4.8). Then, for r \in [r\ast , r1),
the following properties hold:

d\rho \tau (r)

dr
\geq min

\Biggl\{ \biggl( 
e

\~BM
3\tau (r - r\ast ) + 3

\=d+H
\~B

\biggr) 
\tau ,

\~D

\tau 

\Biggr\} 
as \rho \ast >

\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau ,(4.9)

and

d\rho \tau (r)

dr
\leq max

\Biggl\{ 
 - 
\biggl( 
e - 

\~BM
3\tau (r - r\ast )+

3\rho +
\~B

\biggr) 
\tau , - 

\~D

\tau 

\Biggr\} 
as \rho \ast < - 

\biggl( 
3\rho +
\~B

+1

\biggr) 
\tau ,(4.10)

where \~D=
\~B

3A is a positive constant independent of \tau .
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RELAXATION TIME LIMITS 6947

Proof. By noting d\rho \tau (r\ast )
dr > 0 (or < 0) and the continuity of d\rho \tau (r)

dr , there exists a

neighborhood of r= r\ast , such that d\rho \tau (r)
dr > 0 (or < 0) for any r in this neighborhood.

First, for d\rho \tau (r\ast )
dr > 0, we want to prove (4.9). By (4.4)--(4.7) and the fact that

d\rho \tau (r)
dr > 0 on a neighborhood of r= r\ast , we have

\rho \tau  - d - h(\rho \tau , r)+

\biggl( 
J

\tau rn - 1\rho 2\tau 
 - f(\rho \tau , r)

\biggr) 
d\rho \tau 
dr

+g(\rho \tau , r)

\biggl( 
d\rho \tau 
dr

\biggr) 2

\geq  - ( \=d+H) - A

\biggl( 
d\rho \tau 
dr

\biggr) 2

+

\Biggl( 
\~B

\tau 
 - F

\Biggr) 
d\rho \tau 
dr

=
\~B

3\tau 

d\rho \tau 
dr

 - ( \=d+H) +

\Biggl( 
\~B

3\tau 

d\rho \tau 
dr

 - A

\biggl( 
d\rho \tau 
dr

\biggr) 2
\Biggr) 
+

\Biggl( 
\~B

3\tau 
 - F

\Biggr) 
d\rho \tau 
dr

.

(4.11)

Furthermore, we suppose that

0<
d\rho \tau 
dr

\leq 
\~B

3A\tau 
=

\~D

\tau 
,(4.12)

where

\~D=
\~B

3A
.

Then, it holds that

\~B

3\tau 
 - A

d\rho \tau 
dr

\geq 0,(4.13)

and for 0< \tau \ll 1,

\~B

3\tau 
 - F \geq 0.(4.14)

This, together with (4.11) and the fact that d\rho \tau 

dr > 0, gives

\rho \tau  - d - h(\rho \tau , r)+

\biggl( 
J

\tau rn - 1\rho 2\tau 
 - f(\rho \tau , r)

\biggr) 
d\rho \tau 
dr

+g(\rho \tau , r)

\biggl( 
d\rho \tau 
dr

\biggr) 2

\geq 
\~B

3\tau 

d\rho \tau 
dr

 - ( \=d+H).

(4.15)

Then it follows from (4.3) and the first equation of (4.8) and (4.15) that

d2\rho \tau 
dr2

\geq 1

\delta (\rho \tau , r)

\Biggl( 
\~B

3\tau 

d\rho \tau 
dr

 - ( \=d+H)

\Biggr) 
.(4.16)

Moreover, for 0< \tau \ll 1, we further assume that

3
\=d+H
\~B

\tau \leq d\rho \tau 
dr

\leq 
\~D

\tau 
,(4.17)

which implies

\~B

3\tau 

d\rho \tau 
dr

 - ( \=d+H)\geq 0.(4.18)
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6948 FENG, HU, MEI, TSOGTGEREL, AND ZHANG

Therefore, by combining (4.3), (4.18), and (4.16), we obtain

d2\rho \tau 
dr2

\geq 
\~BM

3\tau 

d\rho \tau 
dr

 - M( \=d+H).(4.19)

Now, based on the process above, we choose the initial value d\rho \tau 

dr

\bigm| \bigm| \bigm| 
r=r\ast 

= \rho \ast which

satisfies

3
\=d+H
\~B

\tau < \rho \ast <
\~D

\tau 
.(4.20)

Then, by the continuity of d\rho \tau (r)
dr , there exists constant \eta > 0, such that

3
\=d+H
\~B

\tau \leq d\rho \tau (r)

dr
\leq 

\~D

\tau 
for any r \in (r\ast , r\ast + \eta ).

Furthermore, it follows from (4.19) that\left\{         
d2\rho \tau 
dr2

\geq 
\~BM

3\tau 

d\rho \tau 
dr

 - M( \=d+H), r \in (r\ast , r\ast + \eta ),

d\rho \tau 
dr

\bigm| \bigm| \bigm| \bigm| 
r=r\ast 

= \rho \ast \in 

\Biggl( 
3
\=d+H
\~B

\tau ,
\~D

\tau 

\Biggr) 
.

(4.21)

For proving (4.9), let us consider the following problem:\left\{   ur =
\~BM

3\tau 
u - M( \=d+H), r \in (r\ast , r\ast + \eta ),

u| r=r\ast = \rho \ast .

(4.22)

By taking the difference between (4.21) and (4.22), we have\left\{           
d
\Bigl( 

d\rho \tau 

dr  - u
\Bigr) 

dr
\geq 

\~BM

3\tau 

\biggl( 
d\rho \tau 
dr

 - u

\biggr) 
, r \in (r\ast , r\ast + \eta ),\biggl( 

d\rho \tau 
dr

 - u

\biggr) 
r=r\ast 

= 0.

(4.23)

We introduce

V =
d\rho \tau 
dr

 - u, r \in (r\ast , r\ast + \eta ).(4.24)

Then (4.23) turns into \left\{   Vr \geq 
\~BM

3\tau 
V, r \in (r\ast , r\ast + \eta ),

V (r\ast ) = 0.

(4.25)

Multiplying (4.25) by e - 
\~BM
3\tau (r - r\ast ), we get\left\{   
\Bigl( 
e - 

\~BM
3\tau (r - r\ast )V

\Bigr) 
r
\geq 0, r \in (r\ast , r\ast + \eta ),\Bigl( 

e - 
\~BM
3\tau (r - r\ast )V

\Bigr) 
(r\ast ) = 0,

(4.26)
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RELAXATION TIME LIMITS 6949

which shows that

V \geq 0, r \in (r\ast , r\ast + \eta ).(4.27)

This is equivalent to

d\rho \tau 
dr

\geq u, r \in (r\ast , r\ast + \eta ).(4.28)

On the other hand, from (4.22), we get

u(r) = e
\~BM
3\tau (r - r\ast )\rho \ast  - 

\int r

r\ast 

e
\~BM
3\tau (r - s)M( \=d+H)ds

= e
\~BM
3\tau (r - r\ast )\rho \ast  - 3

( \=d+H)\tau 
\~B

e
\~BM
3\tau (r - r\ast ) + 3

\=d+H
\~B

\tau .

(4.29)

This, together with (4.28), gives

d\rho \tau 
dr

\geq e
\~BM
3\tau (r - r\ast )

\biggl( 
\rho \ast  - 3

\=d+H
\~B

\tau 

\biggr) 
+ 3

\=d+H
\~B

\tau , r \in (r\ast , r\ast + \eta ).(4.30)

For \rho \ast satisfying (4.20), we further assume that\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau < \rho \ast <

\~D

\tau 
.(4.31)

Then, from (4.30), we get

d\rho \tau (r)

dr
\geq e

\~BM
3\tau (r - r\ast )\tau + 3

\=d+H
\~B

\tau , r \in (r\ast , r\ast + \eta ).(4.32)

By (4.11), we know d2\rho \tau 

dr2 (s) > 0 for d\rho \tau (s)
dr around the value

\~D
\tau , and thus when

d\rho \tau (s)
dr =

\~D
\tau , it holds that d\rho \tau (r)

dr \geq \~D
\tau for all r \in [s, r1). Thus (4.9) holds on [r\ast , r1)

for \rho \ast satisfying (4.31). And for \rho \ast \geq \~D
\tau , it naturally holds that d\rho \tau (r)

dr \geq \~D
\tau for all

r \in [r\ast , r1), and thus (4.9) also holds on [r\ast , r1).
Next, for d\rho \tau 

dr < 0, we take the similar analysis. In detail, by Proposition 2.4, we
have

\rho \tau  - d - h(\rho \tau , r) +

\biggl( 
J

\tau rn - 1\rho 2\tau 
 - f(\rho \tau , r)

\biggr) 
d\rho \tau 
dr

+ g(\rho \tau , r)

\biggl( 
d\rho \tau 
dr

\biggr) 2

\leq \rho + +A

\biggl( 
d\rho \tau 
dr

\biggr) 2

+

\Biggl( 
\~B

\tau 
 - F

\Biggr) 
d\rho \tau 
dr

=
\~B

3\tau 

d\rho \tau 
dr

+ \rho + +

\Biggl( 
A

\biggl( 
d\rho \tau 
dr

\biggr) 2

+
\~B

3\tau 

d\rho \tau 
dr

\Biggr) 
+

\Biggl( 
\~B

3\tau 
 - F

\Biggr) 
d\rho \tau 
dr

.

(4.33)

Furthermore, we suppose that

 - 
\~D

\tau 
= - 

\~B

3A\tau 
\leq d\rho \tau 

dr
< 0.(4.34)

Then, for 0< \tau \ll 1, it holds that

A
d\rho \tau 
dr

+
\~B

3\tau 
\geq 0 and

\~B

3\tau 
 - F \geq 0.(4.35)
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6950 FENG, HU, MEI, TSOGTGEREL, AND ZHANG

This, together with (4.33) and the fact that d\rho \tau 

dr < 0, gives

\rho \tau  - d - h(\rho \tau , r) +

\biggl( 
J

\tau rn - 1\rho 2\tau 
 - f(\rho \tau , r)

\biggr) 
d\rho \tau 
dr

+ g(\rho \tau , r)

\biggl( 
d\rho \tau 
dr

\biggr) 2

\leq 
\~B

3\tau 

d\rho \tau 
dr

+ \rho +.

(4.36)

Then it follows from (4.3) and the first equation of (4.8) and (4.36) that

d2\rho \tau 
dr2

\leq 1

\delta (\rho \tau , r)

\Biggl( 
\~B

3\tau 

d\rho \tau 
dr

+ \rho +

\Biggr) 
.(4.37)

Moreover, for 0< \tau \ll 1, we further assume that

 - 
\~D

\tau 
\leq d\rho \tau 

dr
\leq  - 3

\rho +
\~B
\tau ,(4.38)

which implies

\~B

3\tau 

d\rho \tau 
dr

+ \rho + \leq 0.(4.39)

Therefore, by combining (4.3), (4.37), and (4.39), we obtain

d2\rho \tau 
dr2

\leq 
\~BM

3\tau 

d\rho \tau 
dr

+M\rho +.(4.40)

Now, based on the process above, we assume the initial value d\rho \tau 

dr | r=r\ast = \rho \ast 
satisfies

 - 
\~D

\tau 
< \rho \ast < - 3

\rho +
\~B
\tau .(4.41)

Then, by the continuity of d\rho \tau (r)
dr , there exists constant \eta > 0, such that

 - 
\~D

\tau 
\leq d\rho \tau (r)

dr
\leq  - 3

\rho +
\~B
\tau for any r \in (r\ast , r\ast + \eta ).

It follows from (4.40) and (4.41) that\left\{         
d2\rho \tau 
dr2

\leq 
\~BM

3\tau 

d\rho \tau 
dr

+M\rho +, r \in (r\ast , r\ast + \eta ),

d\rho \tau 
dr

\bigm| \bigm| \bigm| \bigm| 
r=r\ast 

= \rho \ast \in 

\Biggl( 
 - 

\~D

\tau 
, - 3

\rho +
\~B
\tau 

\Biggr) 
.

(4.42)

In order to prove (4.10), we consider the following problem:\left\{   vr =
\~BM

3\tau 
v+M\rho +, r \in (r\ast , r\ast + \eta ),

v(r\ast ) = \rho \ast .

(4.43)

From (4.42), (4.43) and the comparison principle of the ordinary differential equations,
we get

d\rho \tau (r)

dr
\leq v(r) = e

\~BM
3\tau (r - r\ast )

\biggl( 
\rho \ast + 3

\rho +
\~B
\tau 

\biggr) 
 - 3

\rho +
\~B
\tau , r \in (r\ast , r\ast + \eta ).(4.44)
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For \rho \ast satisfying (4.41), we further assume that

 - 
\~D

\tau 
< \rho \ast < - 

\biggl( 
3
\rho +
\~B

+ 1

\biggr) 
\tau .(4.45)

Then, from (4.44), we get

d\rho \tau (r)

dr
\leq  - e

\~BM
3\tau (r - r\ast )\tau  - 3

\rho +
\~B
\tau , r \in (r\ast , r\ast + \eta ).(4.46)

Hence, when r \in (r\ast , r\ast + \eta ), (4.10) follows by combining (4.45) and (4.46) for \rho \ast 
satisfying (4.45). Noticing that d2\rho \tau 

dr2 (s) < 0 for d\rho \tau (s)
dr around the value  - \~D

\tau , which
can be seen from (4.33), we can deduce that (4.10) holds on [r\ast , r1) for \rho \ast satisfying

(4.45). And for \rho \ast \leq  - \~D
\tau , we can directly have d\rho \tau (s)

dr \leq  - \~D
\tau on [r\ast , r1). The proof of

Lemma 4.2 is finished.

Next, based on Lemma 4.2, we begin to study the relaxation time limit of (4.1).

Proof of Theorem 1.3. Now, we study the zero relaxation limit problems in two
cases. We assume r1 \leq 1 without loss of generality.

Case 1. \rho \tau (r0) = \rho \tau (r1) = a\geq J
rn - 1
0

.

We claim that

\rho \tau (r) - \rho \tau (r0)\leq 
\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau .(4.47)

In fact, if (4.47) is false, then there exists r \in (r0, r1) such that

\rho \tau (r) - \rho \tau (r0)>

\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau .(4.48)

It follows from the Mean Value Theorem that there exists r\ast \in (r0, r) such that

d\rho \tau 
dr

\bigm| \bigm| \bigm| \bigm| 
r=r\ast 

=
\rho \tau (r) - \rho \tau (r0)

r - r0
>

\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau .(4.49)

In view of (4.9), for any r \in [r\ast , r1), we obtain

d\rho \tau (r)

dr
\geq min

\Biggl\{ \biggl( 
e

\~BM
3\tau (r - r\ast ) + 3

\=d+H
\~B

\biggr) 
\tau ,

\~D

\tau 

\Biggr\} 
> 0,(4.50)

which contradicts the fact that \rho \tau (r0) = \rho \tau (r1) = a. Hence, the claim (4.47) is correct.
Moreover, by (4.10), in a similar way to the proof for (4.47), it follows that

\rho \tau (r) - \rho \tau (r0)\geq  - 
\biggl( 
3
\rho +
\~B

+ 1

\biggr) 
\tau .(4.51)

This, together with (4.47), gives

| \rho \tau (r) - \rho \tau (r0)| \leq C\tau ,(4.52)

which implies (1.18).
Next, we consider the zero-relaxation limit for E\tau =E\tau (r). Let us introduce

\Xi = rn - 1E\tau .(4.53)
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6952 FENG, HU, MEI, TSOGTGEREL, AND ZHANG

Then from (1.11), we have\left\{   
\Xi r = rn - 1(\rho \tau  - d),

\Xi (r)| r=r0 = \beta \tau (r0) +M

\biggl( 
1

\tau 
, a, r0

\biggr) 
,

(4.54)

where

\beta \tau (r0) =
rn - 1
0

a

\Biggl( 
1 - 

\biggl( 
J

rn - 1
0 a

\biggr) 2
\Biggr) 

d\rho \tau 
dr

\bigm| \bigm| \bigm| \bigm| 
r=r0

, M

\biggl( 
1

\tau 
, a, r0

\biggr) 
=

J

\tau a
 - (n - 1)

J2

rn0 a
2
.

(4.55)

From (4.52), it is easy to get

| \beta \tau (r0)| \leq C\tau .(4.56)

It follows from (4.54) that

\Xi (r) = \Xi (r0) +

\int r

r0

\Xi r(s)ds

=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+ \beta \tau (r0) +

\int r

r0

sn - 1(a+ \rho \tau  - a - d)ds

=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+L(a, r) - D(r) +

\int r

r0

sn - 1(\rho \tau  - a)ds+ \beta \tau (r0),

(4.57)

where

L(a, r) =

\int r

r0

sn - 1ads=
a

n
(rn  - rn0 ), D(r) =

\int r

r0

sn - 1d(s)ds.(4.58)

For the term
\int r

r0
sn - 1(\rho \tau  - a)ds in (4.57), by (4.52), we have\bigm| \bigm| \bigm| \bigm| \int r

r0

sn - 1(\rho \tau  - a)ds

\bigm| \bigm| \bigm| \bigm| \leq C\tau for 0< \tau \ll 1.(4.59)

By combining (4.56), (4.57), and (4.59), we obtain\bigm\| \bigm\| \bigm\| \bigm\| \Xi (r) - \biggl( M \biggl( 
1

\tau 
, a, r0

\biggr) 
+L(a, r) - D(r)

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty [r0,r1]

\leq C\tau for 0< \tau \ll 1.(4.60)

After setting

R=\Xi (r) - 
\biggl( 
M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+L(a, r) - D(r)

\biggr) 
,(4.61)

we get from (4.53) that

E\tau =
\Xi 

rn - 1
= \=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+ \=L(a, r) - \=D(r) + \=R,(4.62)

where

\=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
=

1

rn - 1
M

\biggl( 
1

\tau 
, a, r0

\biggr) 
, \=D(r) =

1

rn - 1
D(r),

\=L(a, r) =
1

rn - 1
L(a, r) =

a

n

\biggl( 
r - rn0

rn - 1

\biggr) 
, \=R=

1

rn - 1
R.

(4.63)
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RELAXATION TIME LIMITS 6953

Then it follow from (4.60) and (4.62) that\bigm\| \bigm\| \bigm\| \bigm\| E\tau  - 
\biggl( 

\=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+\=L(a, r) - \=D(r)

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty [r0,r1]

=
\bigm\| \bigm\| \=R\bigm\| \bigm\| 

L\infty [r0,r1]
\leq C\tau ,(4.64)

for 0< \tau \ll 1. Hence, (1.19) follows.
Next, it follows from the second equation of (1.11) that

rn - 1 dE\tau 

dr
= rn - 1(\rho \tau  - d) - (n - 1)rn - 2E\tau ,(4.65)

which implies

dE\tau 

dr
= (\rho \tau  - d) - n - 1

r
E\tau 

= (\rho \tau  - a) + (a - d) - n - 1

r

\biggl( 
E\tau  - 

\biggl( 
\=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+\=L(a, r) - \=D(r)

\biggr) \biggr) 
 - n - 1

r

\biggl( 
\=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+\=L(a, r) - \=D(r)

\biggr) 
.

(4.66)

Furthermore, we have

dE\tau 

dr
 - 
\biggl( 
(a - d) - n - 1

r

\biggl( 
\=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+\=L(a, r) - \=D(r)

\biggr) \biggr) 
= (\rho \tau  - a) - n - 1

r

\biggl( 
E\tau  - 

\biggl( 
\=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+\=L(a, r) - \=D(r)

\biggr) \biggr) 
.

(4.67)

This, together with (4.64) and (4.52), gives

\bigm\| \bigm\| \bigm\| \bigm\| dE\tau 

dr
 - 
\biggl( 
(a - d) - n - 1

r

\biggl( 
\=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+\=L(a, r) - \=D(r)

\biggr) \biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty [r0,r1]

\leq \| (\rho \tau  - a)\| L\infty [r0,r1]
+

\bigm\| \bigm\| \bigm\| \bigm\| n - 1

r

\biggl( 
E\tau  - 

\biggl( 
\=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+\=L(a, r) - \=D(r)

\biggr) \biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty [r0,r1]

\leq C\tau for 0< \tau \ll 1,

(4.68)

which implies (1.20).
Case 2. \rho \tau (r0) = a, \rho \tau (r1) = b, and a \not = b. Here, a\geq J

rn - 1
0

, b\geq J
rn - 1
1

.

In what follows, we assume that a < b without loss of generality. We begin to
establish the estimate for \rho \tau (r) - \rho \tau (r0). First, we claim that

\rho \tau (r) - \rho \tau (r0)\geq  - 
\biggl( 
3
\rho +
\~B

+ 1

\biggr) 
\tau \forall r \in [r0, r1].(4.69)

Indeed, if (4.69) is not correct, then there is r2 \in (r0, r1) such that

\rho \tau (r2) - \rho \tau (r0)< - 
\biggl( 
3
\rho +
\~B

+ 1

\biggr) 
\tau .(4.70)

It follows from the Mean Value Theorem that there exists \xi 2 \in (r0, r2) such that

d\rho \tau 
dr

\bigm| \bigm| \bigm| \bigm| 
r=\xi 2

=
\rho \tau (r2) - \rho \tau (r0)

r2  - r0
< - 1

r2

\biggl( 
3
\rho +
\~B

+ 1

\biggr) 
\tau < - 

\biggl( 
3
\rho +
\~B

+ 1

\biggr) 
\tau .(4.71)
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6954 FENG, HU, MEI, TSOGTGEREL, AND ZHANG

In view of (4.10) and (4.71), for any r \in [\xi 2, r1), we obtain

d\rho \tau 
dr

\leq max

\Biggl\{ 
 - 
\biggl( 
e - 

\~BM
3\tau (r - r\ast )+

3\rho +
\~B

\biggr) 
\tau , - 

\~D

\tau 

\Biggr\} 
< 0,(4.72)

which contradicts the fact that \rho \tau (r1) = b > a = \rho \tau (r0). Then, the lower bound
estimate (4.69) holds.

Next, we continue to claim that

\rho \tau (r) - \rho \tau (r1)\leq 
\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau \forall r \in [r0, r1].(4.73)

In fact, if (4.73) does not hold, then there exists r3 \in (r0, r1) such that

\rho \tau (r3) - \rho \tau (r1)>

\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau .(4.74)

Then it follows from the Mean Value Theorem that there is \xi 3 \in (0, r3) such that

d\rho \tau 
dr

\bigm| \bigm| \bigm| \bigm| 
r=\xi 3

=
\rho \tau (r3) - \rho \tau (r1)

r3  - y0
>

1

r3  - y0

\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau >

\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau ,(4.75)

where y0 \in (r0, r1) is the last point before r = r3 such that \rho \tau (y0) = b = \rho \tau (r1). By
noting (4.9), for any r \in [\xi 3, r1), it follows that

d\rho \tau 
dr

\geq min

\Biggl\{ \biggl( 
e

\~BM
3\tau (r - r\ast ) + 3

\=d+H
\~B

\biggr) 
\tau ,

\~D

\tau 

\Biggr\} 
> 0.(4.76)

This is impossible because \rho \tau (r1) = b. Hence, we get the upper bound estimate (4.73).
Furthermore, we investigate the boundary layer near the right endpoint r = r1.

We assume that the width of the boundary layer is \alpha \tau 1 - \varepsilon , where \alpha > 0 and 0< \varepsilon < 1
2

are positive constants. We claim that

\rho \tau (r) - \rho \tau (r0)\leq 
\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau \forall r \in [r0, r1  - \alpha \tau 1 - \varepsilon ].(4.77)

Indeed, if (4.77) is not correct, then there is r4 \in [r0, r1  - \alpha \tau 1 - \varepsilon ] such that

\rho \tau (r4) - \rho \tau (r0)>

\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau .(4.78)

It follows from the Mean Value Theorem that there exists \xi 4 \in (0, r4) such that

d\rho \tau 
dr

\bigm| \bigm| \bigm| \bigm| 
r=\xi 4

=
\rho \tau (r4) - \rho \tau (r0)

r4  - r0
>

1

r4  - r0

\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau >

\biggl( 
3
\=d+H
\~B

+ 1

\biggr) 
\tau .(4.79)

Then in view of (4.9), for any r \in [\xi 4, r1), we obtain

d\rho \tau 
dr

\geq min

\Biggl\{ \biggl( 
e

\~BM
3\tau (r - \xi 4) + 3

\=d+H
\~B

\biggr) 
\tau ,

\~D

\tau 

\Biggr\} 
.(4.80)

And for r \in [r1  - \alpha 
2 \tau 

1 - \varepsilon , r1), it holds that

e
\~BM
3\tau (r - \xi 4)\tau > e

\~BM
3\tau \cdot \alpha 2 \tau 1 - \varepsilon 

\tau = e
\~BM\alpha 
6\tau \varepsilon \tau >

\~D

\tau 
,(4.81)
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RELAXATION TIME LIMITS 6955

for \tau \ll 1. That means d\rho \tau 

dr \geq \~D
\tau for r \in [r1  - \alpha 

2 \tau 
1 - \varepsilon , r1). Therefore,

\rho \tau (r1) - \rho \tau (\xi 4)\geq 
\int r1

r1 - \alpha 
2 \tau 1 - \varepsilon 

d\rho \tau 
dr

dr\geq 
\~D

\tau 
\cdot \alpha 
2
\tau 1 - \varepsilon =

\~D\alpha 

2\tau \varepsilon 
\rightarrow \infty as \tau \rightarrow 0.(4.82)

This is impossible and then (4.77) follows. Then, by combining (4.77) and (4.69), we
have

| \rho \tau (r) - \rho \tau (r0)| \leq C\tau \forall r \in [r0, r1  - \alpha \tau 1 - \varepsilon ] if 0< \tau \ll 1,(4.83)

which implies (1.21).
Next, we consider the zero-relaxation limit for E\tau =E\tau (r).
For the term

\int r1
r0

sn - 1(\rho \tau  - a)ds in (4.57), different from (4.59), by (4.83), we have

\bigm| \bigm| \bigm| \bigm| \int r

r0

sn - 1(\rho \tau  - a)ds

\bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| 
\Biggl( \int r - \tau 1 - \varepsilon 

r0

+

\int r

r - \tau 1 - \varepsilon 

\Biggr) 
sn - 1(\rho \tau  - a)ds

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\int r - \tau 1 - \varepsilon 

r0

\bigm| \bigm| sn - 1(\rho \tau  - a)
\bigm| \bigm| ds+ \int r

r - \tau 1 - \varepsilon 

\bigm| \bigm| sn - 1(\rho \tau  - a)
\bigm| \bigm| ds

\leq C\tau +C\tau 1 - \varepsilon 

\leq C\tau 1 - \varepsilon for 0< \tau \ll 1.

(4.84)

By combining (4.56), (4.57), and (4.84), we obtain

\bigm\| \bigm\| \bigm\| \bigm\| \Xi (r) - \biggl( M \biggl( 
1

\tau 
, a, r0

\biggr) 
+L(a, r) - D(r)

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty [r0,r1]

\leq C\tau 1 - \varepsilon for 0< \tau \ll 1.

(4.85)

Then it follow from (4.85) and (4.62) that\bigm\| \bigm\| \bigm\| \bigm\| E\tau  - 
\biggl( 

\=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+\=L(a, r) - \=D(r)

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty [r0,r1]

\leq C\tau 1 - \varepsilon for 0< \tau \ll 1.(4.86)

Hence, (1.22) follows. Next, by combining (4.67), (4.83), and (4.86), we have

\bigm\| \bigm\| \bigm\| \bigm\| dE\tau 

dr
 - 
\biggl( 
(a - d) - n - 1

r

\biggl( 
\=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+\=L(a, r) - \=D(r)

\biggr) \biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty [r0,r1]

\leq \| (\rho \tau  - a)\| L\infty [r0,r1]
+

\bigm\| \bigm\| \bigm\| \bigm\| n - 1

r

\biggl( 
E\tau  - 

\biggl( 
\=M

\biggl( 
1

\tau 
, a, r0

\biggr) 
+\=L(a, r) - \=D(r)

\biggr) \biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
L\infty [r0,r1]

\leq C\tau 1 - \varepsilon for 0< \tau \ll 1,

(4.87)

which gives (1.23). The proof of Theorem 1.3 is finished.

5. Numerical simulations. In this section, we engage in the numerical verifi-
cation of our theoretical results. Because there is no essential difference between the
two and three dimensions, we will exclusively simulate the situation of n = 3. For
both Theorems 1.2 and 1.3, we make the unified numerical settings as follows.
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6956 FENG, HU, MEI, TSOGTGEREL, AND ZHANG

\bullet Take values r0 = 1, r1 = 2, and J = 1, for simplicity.
\bullet Doping profile is set as

d(r) := 4+ sin(\pi (r - 1)) \forall r \in [1,2],

which manifestly satisfies the subsonic condition

inf
r\in [r0,r1]

\bigl( 
rn - 1d(r)

\bigr) 
 - (n - 2)(n - 1)>J.

Based on these simplified settings, the sonic boundary data a= J
rn - 1
0

and b= J
rn - 1
1

reduce to

a= 1, b=
1

4
(sonic),

and the subsonic boundary data become accordingly

a> 1, b >
1

4
(subsonic).

First, Theorem 1.2 indicates that the interior subsonic solution to the problem
(1.9) with (1.11) uniformly converges toward the one to problems (1.13) with (1.14)
as the relaxation time \tau tends to +\infty . As mentioned before, Theorem 1.2 holds
regardless of whether the boundary data are sonic or subsonic. To highlight the
nature of Theorem 1.2, we only numerically verify the critical case here, in which we
take the sonic boundary values at both two endpoints r = r0 = 1 and r = r1 = 2.
Namely, we set

\bullet a= 1 and b= 0.25 in simulations for Theorem 1.2; see Figure 1.
We also set up the finite approximation sequence of relaxation times as \tau 1 = 0.5,
\tau 2 = 1, and \tau 3 = 10; and the limiting relaxation time \tau is +\infty . Numerically, the
radial density \rho \tau (r) is in close proximity to the limiting density \=\rho (r) whenever the
relaxation time \tau \geq 10, which is prominently displayed in Figure 1(a), and so is the
radial electric field E\tau (r); see Figure 1(b).

We now proceed to numerically check Theorem 1.3 which demonstrates that
whether the boundary data a and b take the same value will make the zero-relaxation-
time limit results very different. More precisely, if J

rn - 1
0

\leq a = b, then the boundary

layer does not occur between \rho \tau (r) and its asymptotic profile \rho (r) as \tau \rightarrow 0+; if
J

rn - 1
0

\leq a< b, then the boundary layer (r1  - \tau 1 - \varepsilon , r1] appears near the right endpoint

r= r1 with a rough width \tau 1 - \varepsilon . For numerical purpose, we set
\bullet a= b= 1 in simulations for part (I) of Theorem 1.3; refer to Figure 2.
\bullet a= 1 and b= 1.5 in simulations for part (II) of Theorem 1.3; see Figure 3.

In both cases above, we opt for the finite approximation sequence of relaxation times
as \tau 1 = 0.1, \tau 2 = 0.01, and \tau 3 = 0.001; and the limiting relaxation time \tau at the
moment is 0. Compared with Figure 2(a), we can easily observe in Figure 3(a) that
the boundary layer of densities occurs near the right endpoint r = 2 provided the
relaxation time \tau is small enough, and the width of boundary layer gets thinner and
thinner as the relaxation time \tau goes to 0. However, in either case (see Figures 2(b)
and 3(b)), the electric field E\tau (r) always keeps a huge gap 1

r2\tau from its asymptotic
profile E(r) over the entire interval [1,2].

In summary, all these numerical simulations conducted in this section perfectly
support our theoretical results obtained in Theorems 1.2 and 1.3.
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1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.2

0.4

0.6

0.8

1

1.2

1.4

(a) ‖ρτ − ρ̄‖L∞(1,2) ≤ Cτ−
1
2 , as τ → +∞.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) ‖Eτ − Ē‖L∞(1,2) ≤ Cτ−
1
2 , as τ → +∞.

Fig. 1. Theorem 1.2: a= 1 and b= 0.25, both of which are sonic boundary data.
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1.7

(a) ‖ρτ − ρ‖L∞(1,2) ≤ Cτ , as τ → 0+.
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(b) ‖Eτ − E − J
τrn−1a

‖L∞(1,2) ≤ Cτ , as τ → 0+.

Fig. 2. Part (I) of Theorem 1.3: a= b= 1, there is no boundary layer of densities.
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1.9

2

(a) |ρτ (r)− a| ≤ Cτ , 1 ≤ r ≤ 2− τ1−ε, as τ → 0+.
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(b) ‖Eτ − E − J
τrn−1a

‖L∞(1,2) ≤ Cτ1−ε, as τ → 0+.

Fig. 3. Part (II) of Theorem 1.3: a= 1 and b= 1.5, the boundary layer of densities occurs.
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