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Abstract. In this paper we generalize the results obtained in [F. Di Michele, M. Mei, B. Rubino,
and R. Sampalmieri, Int. J. Numer. Anal. Model., 13:898–925, 2016], where a hybrid model for
semiconductor devices has been presented. In particular we consider a more general pressure function,
which allows us to account also for the isotropic case. General Dirichlet boundary conditions are also
included. In this case we need a different and more restrictive subsonic condition which directly involves
the first derivative of the quantum function Q(x). The existence of solutions is obtained by regularizing
the problem and performing a suitable vanishing viscosity limit. Also the zero-charge-space limit is
discussed and our results are tested on a simple toy model.
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1. Introduction

In this paper the authors continue their research on hybrid quantum models for
semiconductor devices as introduced in [6, 11, 12], and [13]. When one talks of hybrid
approach we think of models having a part of the device described by using quantum
equations (such as Schrödinger, quantum drift-diffusion (QDD) or quantum hydrody-
namic (QHD)), and the other parts by classical models, for example hydrodynamical
(HD) or drift diffusion (DD) equations. The main problem of this approach is to intro-
duce proper transmission conditions that must be prescribed at the interface between
classical and quantum zones of the device. This choice is somehow arbitrary since it
cannot be based on experimental data.

The main advantage of our hybrid approach is that the solution of the hybrid
problem is obtained as limit solution of a regularized sequence of problems. In this
way we avoid the introduction of artificial interface conditions between classical and
quantum regions.

Hybrid models for semiconductors have been of interest in the recent years since it
is well known that the nano size of the latest semiconductor devices requires to take
into account the quantum effect, and that this effect is localized in a small region of the
device. Moreover, this approach allows the reduction of the computational costs simpli-
fying the numerical simulation, without the massive use of parallel algorithms. One of
the seminal papers in which the hybrid coupling between quantum and classical systems
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was studied is the paper of Ben Abdallah [2], where a suitable set of transmission con-
ditions, linking classical Boltzmann equation and stationary Schrödinger equations, is
discussed. Subsequently, in [5], a one-dimensional stationary Schrödinger drift-diffusion
model, including collisions is analyzed. To link quantum zone and classical region, the
authors prescribe the continuity of current density at the interface. In [3] Ben Abdallah,
Méhats and Vauchelet introduced a hybrid drift-diffusion-Schrödinger-Poisson (DDSP)
model, while the optimal parallelization strategy of numerical solutions of this model is
performed in [22].

In [1, 16] and [17] the DDSP model is applied to study the electron transport in
strongly confined structures, such as nanotubes; the continuity of the total current is
assumed at the interface between classical and quantum domains. In [8], the hydrody-
namic hybrid model is studied by prescribing the continuity of the charge density, while
a small jump of the current density is accepted and justified from the physical point
of view, by using scaling arguments. In [12] the authors define a generalized enthalpy
function, which also contains a quantum term. This new quantity is assumed to be
constant through the interfaces, allowing the information exchange between classical
and quantum problems.

This short survey shows that many different strategies can be adopted to establish a
physically reasonable set of interface conditions; usually the continuity of certain phys-
ical quantities is preserved at the expenses of others: the same concept of hybrid model
introduces an error at the interface, due to the arbitrariness of this choice. Our approach
proposes a hybrid model matching classical and quantum hydrodynamical equations,
derived in [11], by introducing a modified form of the Bohm potential (more precisely, in
comparison with the QHD equation, we introduce a new term in the quantum potential,
namely Q′√nx/

√
n. This make our model basically different from the standard QHD

model). From the mathematical point of view, we notice that the performed localization
of the quantum effects introduces a degeneracy in the working equations that makes the
mathematical dealing more complex.

In the present paper the steady-state, one-dimensional, hybrid model, as derived
in the above cited papers, is considered while introducing a general pressure function
that allows to deal with the isotropic cases, while the isothermal case has been already
discussed in [11]. The working system reads as2nε2

(
Q(x)

(
√
n)xx√
n

+Q′(x)
(
√
n)x√
n

)
x

−
(
p(n) +

J2

n

)
x

+ nVx =
J

τ
,

λ2Vxx = n− C(x),

(1.1)

here x ∈ Ω = [0, 1].
As usual, the current density J is assumed to be a constant and the second equation

in (1.1) is the Poisson equation, describing the evolution of the self-consistent electrical
potential V . Moreover n is the charge density, τ and λ are strictly positive parameters
for the scaled relaxation time and the scaled Debye length, respectively. Finally ε is the
scaled Planck constant and will be considered sufficiently small in the sequel (ε ≪ 1).
We introduce Q ∈ C1(Ω), with 0 ≤ Q(x) ≤ 1 which is the so-called quantum effect
function.

The quantum function Q(x) satisfying Q(x) = 0 in some parts of [0, 1] and Q(x) > 0
in the other parts can be designed in many ways. One of the typical examples for Q(x)
is a regularized step function such that Q(x) > 0 around the endpoints x = 0 and x = 1
(but it can also be equal to zero in the middle part of (0, 1)). Namely, we take Q(x) as:
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Q(x) = 0 for x ∈ [x1, x2], and Q(x) > 0 for x ∈ [0, x1) ∪ (x2, 1], (1.2)

with 0 < x1 < x2 < 1 (a typical example is the one in the Figure 1.1).

Fig. 1.1. Function Q(x).

This problem has been studied in [18] in the non-hybrid case, namely for the stan-
dard QHD model (quantum hydrodynamic model), corresponding to Q(x) ≡ 1.

The doping profile is modelled by C(x) ∈ L2(Ω), where C(x) ≥ C0 > 0 for all
x ∈ Ω.

The pressure function is assumed to be

p(n) =
Tnγ

γ
, γ > 1, (1.3)

where T is the scaled electron temperature. The value γ = 1 corresponds to the isother-
mal case already discussed in [11], whereas for γ > 1 we are in the isotropic case and
this is the case that will be considered in the present paper.

The stationary problem (1.1) is supplemented by the following boundary conditions

n(0) = n0, n(1) = n1, (1.4)

nx(0) = nx(1) = 0, (1.5)

with n0 and n1 strictly positive. Concerning the potential V, we set

V (0) = V0, V (1) = V1, (1.6)

where

V0 = V (0) = −2ε2Q(0)
(
√
n)xx(0)√
n0

+
T

γ − 1
nγ−1
0 +

J2

2n2
0

. (1.7)

Let us briefly discuss the boundary conditions (1.5) in the following:

Remark 1.1. The boundary conditions (1.5) are the natural conditions for the
standard QHD as in [15]. This allows the problem to be well posed. To solve the hybrid
problem (1.1) we define a sequence of approximating problems obtained by regularizing
Q(x) as in (2.9). For each of these approximating problems we assume Qq(x) > 0, then
the same boundary conditions (1.5) are still necessary. When passing to the limit (see
Theorem 2.3), assuming (1.2), the limit hybrid solution inherits them (see the proof
on page 19). In the case of classic boundary (Q(x) > 0 for x ∈ [x1, x2] and Q(x) =
0 for x ∈ [0, x1) ∪ (x2, 1]), we are not able to prove the convergence (wq)x → wx in
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x = 0 and x = 1 (see Remark 2.5). Anyway, in Section 5, assuming (1.5), we perform
numerical simulations also in this last case, observing that, since Q is strictly positive
in a sub-interval of [0, 1], there the problem is of the fourth order and then the single
condition (1.4) is not enough to determine it.

Finally we remark that similar conditions have been used both for the classic HD
model [7, 14, 20] and for the QHD model [15, 18, 19]. Basically these conditions are
necessary to obtain a well-posed steady-state system (1.1).

Let us divide (1.1)1 by n and integrate with respect to x. Then, in view of (1.6),
we have

V (x) = −2ε2Q(x)
(
√
n)xx√
n

− 2ε2Q′(x)
(
√
n)x√
n

+
J2

2n2
+

T

γ − 1
nγ−1 +

J

τ

∫ x

0

1

n
ds, (1.8)

and we further obtain, by using the boundary conditions (1.4) and (1.6), that

V1 = V (1) = −2ε2Q(1)
(
√
n)xx(1)√
n1

+
T

γ − 1
nγ−1
1 +

J2

2n1
2
+

J

τ

∫ 1

0

1

n
dx. (1.9)

In this paper, we propose the constant J as a parameter and leave V (1) to be a
number automatically determined by (1.9).

Throughout the paper we consider the following boundary problem for the steady-
state H-QHD model (1.1)

2ε2
(
Q(x)

(
√
n)xx√
n

+Q′(x)
(
√
n)x√
n

)
x

−
(

T

γ − 1
nγ−1 +

J2

2n2

)
x

= −Vx +
J

τn
,

λ2Vxx = n− C(x),

n(0) = n0, n(1) = n1,

nx(0) = nx(1) = 0, V (0) = V0, J = J0.

(1.10)

We just remark that in [11] a less general set of boundary conditions and pressure
functional have been used, namely γ = 1 and n0 = n1 = 1. The problem considered
in this paper is therefore more general, although the assumptions we need in order to
prove the existence of a regular solution are more strict. Many other papers, related to
hybrid model for semiconductor devices, are available in the literature. In particular,
see [1, 2, 5, 8–10,16,21,22] and references therein.

In the last section, for the sake of completeness, we present some numerical simula-
tions obtained by means of the Fortran routine COLNEW, from the package SCILAB.
[4].

2. Main results
Starting from (1.10)1 differentiated with respect to x, in view of the Poisson equation

and observing that p′(n) = Tnγ−1, we obtain the following fourth-order differential
equation for the electron density n

2ε2
(
Q(x)

(
√
n)xx√
n

+Q′(x)
(
√
n)x√
n

)
xx

−
((

Tnγ−1 − J2

n2

)nx

n

)
x

+
1

λ2
(n− C(x)) = − J

τn2
nx,

λ2Vxx = n− C(x),

n(0) = n0, n(1) = n1, nx(0) = nx(1) = 0,

V (0) = V0, J = J0.

(2.1)
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It is well known that the flow is subsonic when

velocity of the flow :=
|J |
n

<
√

p′(n). (2.2)

Dividing by n the square of (2.2), we get

p′(n)

n
− J2

n3
> 0, i.e. T >

J2

nγ+1
, for the n under consideration, (2.3)

which ensures the uniform ellipticity of the term

((
p′(n)

n
− J2

n3

)
nx

)
x

.

By using (2.2) or equivalently (2.3), we could obtain a lower bound for the charge
density

classical subsonic condition: n >

(
J2

T

) 1
γ+1

=: n⋆⋆. (2.4)

As it will be shown in the proofs in the sequel, in our case more strict subsonic-type
conditions are required, such as

Tn(γ−1) − J2

n2
> 2ε2(Q′(x))2. (2.5)

We have to verify that there exists a n⋆ > 0 such that, for all n > n⋆, the inequality
(2.5) holds for all γ > 1. Obviously the boundary terms need to satisfy (2.5) and

n0, n1 > n⋆. (2.6)

For the doping profile C(x), we require:

C0 := min
x∈[0,1]

C(x) > n⋆. (2.7)

Remark 2.1. We observe that when Q = 1 and Q′ = 0, that is in the pure quantum
case, we recover (2.4), as expected.

As extensively discussed in [11] the fourth-order elliptic Equation (2.1) is locally
degenerate because Q(x) = 0 in the classical part of the domain. This increases the
difficulties in solving problem (2.1). Therefore we introduce a sequence of strictly pos-
itive functions Qq(x) ≥ q > 0, constructed such that Qq(x) → Q(x) when q → 0, and
we prove that (nq, Vq)(x) is the unique solution of the relative approximating problem.
The solution (n, V )(x) of the really hybrid problem is then obtained taking the hybrid
limit q → 0 of (nq, Vq)(x).

Setting w =
√
n, (2.1) reduces to

2ε2
(
Q(x)

wxx

w
+Q′(x)

wx

w

)
xx

− 2

((
Tw2(γ−1) − J2

w4

)wx

w

)
x

+
1

λ2
(w2 − C(x)) = − 2J

τw3
wx,

λ2Vxx = w2 − C(x),

w(0) = w0 w(1) = w1, wx(0) = wx(1) = 0,

V (0) = V0, J = J0,

(2.8)
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where w0 =
√
n0 and w1 =

√
n1.

We now introduce the modified QHD equations (H-QqHD), obtained by replacing
Q(x) with Qq(x):

2ε2
(
Qq

(wq)xx
wq

+Q′
q

(wq)x
wq

)
xx

− 2

((
Tw2(γ−1)

q − J2

w4
q

) (wq)x
wq

)
x

+
1

λ2
(w2

q − C(x)) = − 2J

τw3
q

(wq)x,

λ2(Vq)xx = w2
q − C(x),

wq(0) = w0, wq(1) = w1, (wq)x(0) = (wq)x(1) = 0,

Vq(0) = V0, J = J0.

(2.9)

Here we assume Q′
q(0) = Q′

q(1) = 0.
The subsonic-type condition (2.5) becomes

Tw2(γ−1)
q − J2

w4
q

> 2ε2(Q′
q(x))

2. (2.10)

Now we look for a unique solution to (2.9).

Theorem 2.1 (Existence of solutions for the modified H-QqHD problem). Assume
(2.6), (2.7) and (2.10), and that Qq(x) is a positive, smooth and bounded function,
defined on Ω such that

0 < q ≤ Qq(x) ≤ 1, α = max(|Q′
q|∞, |Q′′

q |∞) < ∞ for all x ∈ Ω, (2.11)

and

ε2 max
x∈Ω

|Q′
q(x)|2

Qq(x)
<

1

6

(
Tw2(γ−1) − J2

w4

)
, (2.12)

where

w =
√
n and n := min{n0, n1, C0}. (2.13)

Then the solution to (2.9) exists and (nq, Vq) ∈ H4(Ω)×H2(Ω).

Remark 2.2. The term on the right-hand side in (2.12) must be positive, namely

w2 >

(
J2

T

) 1
γ+1

. Such a condition is verified as a consequence of (2.10). Moreover we

observe that (2.12) implies (2.10), but we prefer to state both for clarity.

Remark 2.3. Conditions (2.10) and (2.12) essentially mean that the quantity
(Q′

q(x))
2

Qq(x)
is bounded and this prevents that real step functions can be assumed as quan-

tum functions, although a Heaviside function could be a reasonable choice to model,
from a mathematical point of view, the interfaces between the classical and the quantum
regions. Anyway we observe that, from a physical point of view, the doping process in
heterojunctions does not allow a sharp jump (in the mathematical meaning of the term)
and a transient region certainly exists even if it is not easy to evaluate its scale.

We assume that (2.12) holds also when q → 0.
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Theorem 2.2 (Uniqueness for the modified H-QqHD problem). Assume (2.10),
(2.11) and (2.12). Then there exists J and ε sufficiently small and γ sufficiently close
to 1, such that the boundary value problem (2.9) admits a unique solution.

We introduce now the space:

W (Ω)={w ∈ H1(Ω) :
√

Qwxx ∈ L2(Ω), w(0) = w0, w(1) = w1, wx(0) = wx(1) = 0}.

As we mentioned before, when Q(x) = 0 in some part of the domain Ω, the H-QHD
system (2.8) becomes regionally degenerate in the fourth-order ellipticity, then it cannot
possess smooth solutions. Therefore, we introduce the definition of its weak solution as
follows.

Definition 2.1. (w, V )(x) ∈ W (Ω)× L2(Ω) is said to be a weak solution of (2.8), if
it holds that

2ε2
∫ 1

0

(
Q(x)

wxx

w
+Q′(x)

wx

w

)
ϕxxdx+ 2

∫ 1

0

((
Tw2(γ−1) − J2

w4

)wx

w

)
ϕxdx

+

∫ 1

0

1

λ2
(w2 − C(x))ϕdx+

∫ 1

0

J

τw2
ϕxdx = 0, (2.14)

and ∫ 1

0

V ϕ dx =− 2ε2
∫ 1

0

Q(x)
wxx

w
ϕdx− 2ε2

∫ 1

0

Q′(x)
wx

w
ϕdx

+

∫ 1

0

J2

2w4
ϕdx+

T

γ − 1

∫ 1

0

w2(γ−1)ϕdx

+
J

τ

∫ 1

0

(∫ x

0

1

w2(s)
ds
)
ϕdx, (2.15)

for any ϕ ∈ C∞
0 (Ω).

Remark 2.4. To our purpose it is enough to ask w ∈ H1(Ω)∩ {
√
Qwxx ∈ L2(Ω)}, in

order to obtain Theorem 2.3, as proved in Section 4.

We recall the approximation assumptions concerning the hybrid quantum effect
function 0 ≤ Q(x) ≤ 1: Let {Qq(x)} be a q-dependent sequence satisfying, for all
q ∈ R+, 

Qq → Q, Q′
q → Q′ uniformly in Ω, for q → 0,

∥Q′
q∥L2 ≤ K̄, uniformly in q,

ε2 max
x∈Ω

|Q′
q(x)|2

Qq(x)
<

1

6

(
Tn(γ−1) − J2

n2

)
,

(2.16)

for all x ∈ Ω, where n > n⋆.

Now we present the existence result for the solutions to the weak hybrid quantum
hydrodynamic Equation (2.14).

Theorem 2.3 (Hybrid limits and existence of H-QHD solution). Let {Qq(x)} be
an approximation satisfying (2.16), and (wq, Vq)(x) be the solution to the system (2.9).
Let Q ∈ C1(Ω) be the quantum effect function limit of the sequence {Qq(x)}. Assume
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the subsonic conditions (2.6) and (2.7). Then there exists a pair of functions (w, V )(x)
such that the following convergence results can be established

wq ⇀ w in H1(Ω),

wq → w in C0(Ω),√
Qqwq,xx ⇀

√
Qwxx in L2(Ω),

Vq ⇀ V in L2(Ω),

as q → 0. (2.17)

Moreover, when Q(x) satisfies (1.2), then the pair (w, V )(x) is the weak solution to the
H-QHD system (2.8).

Remark 2.5. In the case of classic boundary, opposite to (1.2), when Q(x) satisfies:

Q(x) = 0 for x ∈ [0, x1] ∪ [x2, 1], and Q(x) > 0 for [x1, x2],

we cannot establish the results stated by Theorem 2.3, since the weak limit of wq as
q → 0 cannot be proved as the weak solution to the H-QHD system (2.8) due to some
technical difficulty in verifying the boundary conditions wx(0) = wx(1) = 0. This
problem is also highlighted by the oscillations that appear at the extrema of Ω, in the
case of classic boundary, as can be seen in the simulations (see Figures 6.2 and 6.1).
The origin of these oscillations is not clear and it should be further investigated in the
future, although they could also arise from the intrinsic instability of the problem under
consideration.

In Section 5 we discuss the zero-space-charge for both the regularized and fully
hybrid equations. Here we just mention, as the main result of the section, the result
concerning the zero-space-charge limits for the hybrid case, that is

Theorem 2.4. Assume (2.12) and let Q(x) ∈ C2(Ω) such that 0 ≤ Q(x) ≤ 1. Let
C(x) ≥ n be a given function which verifies

C(0) = n0, C(1) = n1, Cx(0) = Cx(1) = 0. (2.18)

If (wλ, Vλ) is the solution to the problem (2.8) then, for λ → 0, one has

wλ(x) ⇀ w :=
√

C(x) in H1(Ω)

wλ(x) → w :=
√

C(x) in C0(Ω̄) (2.19)

Vλ(x) ⇀ Ṽ (x) in L2(Ω),

where

Ṽ (x) =− 2ε2

(
Q(x)

√
Cxx√
C

+Q′(x)

√
Cx√
C

)

+
J2

2C2
+

T

γ − 1
Cγ−1 +

J

τ

∫ x

0

ds

C(s)
. (2.20)

3. Existence and uniqueness of H-QqHD solution with a general pressure
functional

Following the same approach proposed in [11], we first construct an approximating
sequence of solutions (wq, Vq) to the quantum hydrodynamic model HqQHD (2.9).
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Now the working space is:

W̃ = {w ∈ H2 : w(0) = w0, w(1) = w1, wx(0) = wx(1) = 0},

since Qq > q > 0.

One of the main problems usually related to the solution of the quantum systems
is to prove that the charge density n is strictly positive. In order to overcome this
difficulty in [15] and in [18] the authors introduce a truncated problem in terms of a
new variable u = lnn. Here we adopt a different approach, namely, we first prove that
the solution is strictly positive then we get the a priori estimates.

Lemma 3.1 (Strict positivity of the solution to (2.9)). Assume that Qq(x) satisfies
(2.11) and (2.12) and that the subsonic conditions (2.10), (2.6), (2.7) hold. If wq ∈
H2(Ω) is the solution to the problem (2.9), then

wq ≥ √
n = ω for all x ∈ Ω (3.1)

where n = min{n0, n1, C0}.

Proof. Let (wq − √
n)− := min(0, wq − √

n). Since wq(0) =
√
n0 >

√
n and

wq(1) =
√
n1 >

√
n, then one has (wq−

√
n)−|∂Ω = 0, and (wq−

√
n)− ∈ H1

0 (Ω)∩H2(Ω).
Now, let us consider the weak formulation of the problem (2.9)1 by using the test
function (wq −

√
n)−, obtaining

2ε2
∫ 1

0

Qq

((wq −
√
n)−)2xx

wq
dx+ 2

∫ 1

0

(
Tw2(γ−1)

q − J2

w4
q

)
((wq −

√
n)−)2x

wq
dx

+ 2ε2
∫ 1

0

Q′
q

((wq −
√
n)−)x((wq −

√
n)−)xx

wq
dx

=− 1

λ2

∫ 1

0

(w2
q − (

√
n)2)(wq −

√
n)− dx

+
1

λ2

∫ 1

0

(C(x)− n)(wq −
√
n)− dx−

∫ 1

0

J

τw2
q

((wq −
√
n)−)x dx

=:L1 + L2 + L3. (3.2)

One has

L1 + L2 ≤− 1

λ2

∫ 1

0

((wq −
√
n)−)2(wq +

√
n) dx+

1

λ2

∫ 1

0

(C(x)− n)(wq −
√
n)− dx.

(3.3)

Notice that Ω can be written as a disjoint union of Ω± and isolated points, where
Ω+ = ∪iΩi

+, Ω− = ∪iΩi
− and

Ωi
+ = {x ∈ Ω such that wq ≥ √

n}, Ωj
− = {x ∈ Ω such that wq <

√
n},

then we can write

L3 =−
∫ 1

0

J

τw2
q

((wq −
√
n)−)x dx

=−
∑
i

∫
Ωi

+

J

τw2
q

((wq −
√
n)−)x dx−

∑
j

∫
Ωj

−

J

τw2
q

((wq −
√
n)−)x dx.
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Clearly the first sum above is zero, therefore

L3 =−
∑
j

∫
Ωj

−

J

τw2
q

((wq −
√
n)−)x dx.

Consequently, we compute L3 on each interval Ωj
−. Without loss of generality we just

consider a single interval Ωj
− = (aj , bj), which is properly contained in the open interval

(0, 1). Since we assume wq ∈ H2(0, 1), then wq is a continuous function in [aj , bj ]. This
implies that wq(aj) = wq(bj) =

√
n, and thus

L3 = −
∫ bj

aj

J

τw2
q

(wq)x dx =
J

τwq(bj)
− J

τwq(aj)
= 0. (3.4)

Now, in view of (2.10) and (2.11), we show that the first three terms of the left-hand side
of (3.2) can be seen as a strictly positive quadratic form which satisfies the following
inequality ∫ 1

0

(A0

((wq −
√
n)−)2xx

wq
+ B0

((wq −
√
n)−)x((wq −

√
n)−)xx

wq

+ C0
((wq −

√
n)−)2x

wq
)dx

≥c1

∫ 1

0

((wq −
√
n)−)2xx

wq
dx+ c2

∫ 1

0

((wq −
√
n)−)2x

wq
dx (3.5)

provided B2
0 − 4A0C0 < 0, where

A0 = 2ε2Qq(x), B0 = 2ε2Q′
q(x), C0 = 2

(
Tw

2(γ−1)
q − J2

w4
q

)
and c1 and c2 are positive constants (C0 > 0 by (2.10)).

Therefore the quadratic form above is strictly positive if

B2
0 − 4A0C0 = 4ε2

[
ε2(Q′

q(x))
2 − 4Qq(x)

(
Tw2(γ−1) − J2

w4
q

)]
< 0,

that is given by (2.12). Then, considering (3.3), in view of (3.4), we get

c1

∫ 1

0

((wq −
√
n)−)2xx

wq
dx+ c2

∫ 1

0

((wq −
√
n)−)2x

wq
dx

+ c3

∫ 1

0

((wq −
√
n)−)2(wq +

√
n) dx

≤ 1

λ2

∫ 1

0

(C(x)− n)(wq −
√
n)− dx, (3.6)

which implies (wq −
√
n)− = 0 for all x in [0, 1], namely, wq ≥ √

n > 0 for all x ∈ [0, 1],
that is (3.1).

Remark 3.1. Now we can say that (2.12) holds for any wq > w.

Lemma 3.2 (A priori estimates). Let wq ∈ H2(Ω) be the solution to the problem (2.9).
Assume the subsonic conditions (2.10), (2.6) and (2.7), and that Qq(x) satisfies (2.11)
and (2.12). Then

∥wq∥L∞(Ω) ≤ wM , (3.7)
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and

c1

∫ 1

0

(wq)
2
xx dx+ c2

∫ 1

0

(wq)
2
x dx ≤ K, (3.8)

where wM ≥ √
n, c1 depends on q, and c2, K > 0 are q−independent constants.

Proof. Let wD ∈ C∞ be a strictly positive function such that wD >
√
n, which

verifies the boundary conditions of (2.9), and multiply (2.9)1 by (wq − wD) ∈ (H2 ∩
H1

0 )(Ω). After integration on the whole domain, we have

2ε2
∫ 1

0

Qq
(wq)

2
xx

wq
dx+ 2

∫ 1

0

(
Tw2(γ−1)

q − J2

w4
q

)
(wq)

2
x

wq
dx

+ 2ε2
∫ 1

0

Q′
q

(wq)x(wq)xx
wq

dx

=2ε2
∫ 1

0

Qq
(wD)xx(wq)xx

wq
dx+ 2

∫ 1

0

(
Tw2(γ−1)

q − J2

w4
q

)
(wq)x(wD)x

wq
dx

+ 2ε2
∫ 1

0

Q′
q

(wq)x(wD)xx
wq

dx

− 1

λ2

∫ 1

0

(w2
q − w2

D)(wq − wD) dx

+
1

λ2

∫ 1

0

(C(x)− w2
D)(wq − wD) dx+

∫ 1

0

(
J

τw2
q

)
x

(wq − wD) dx

=:I1 + I2 + I3 + I4 + I5 + I6. (3.9)

We start estimating the first three terms on the right-hand side, using the Young’s
inequality and recalling that 0 < Qq ≤ 1 and 0 < ε ≪ 1

I1 + I2 + I3 ≤ε2
∫ 1

0

Q2
q

(wq)
2
xx

wq
dx+ ε2

∫ 1

0

(wD)2xx
wq

dx

+

∫ 1

0

(
Tw2(γ−1)

q − J2

w4
q

)
(wq)

2
x

wq
dx

+

∫ 1

0

(
Tw2(γ−1)

q − J2

w4
q

)
(wD)2x
wq

dx

+ ε2
∫ 1

0

(Q′
q)

2 (wqx)
2

wq
dx+ ε2

∫ 1

0

(wDxx)
2

wq
dx

≤ε2
∫ 1

0

Qq
(wq)

2
xx

wq
dx+

∫ 1

0

(
Tw2(γ−1)

q − J2

w4
q

)
(wq)

2
x

wq
dx

+ ε2
∫ 1

0

(Q′
q)

2wq
2
x

wq
dx

+

∫ 1

0

(
Tw2(γ−1)

q − J2

w4
q

)
(wD)2x
wq

dx+

∫ 1

0

(wD)2xx
wq

dx,

≤ε2
∫ 1

0

Qq
(wq)

2
xx

wq
dx+

∫ 1

0

(
Tw2(γ−1)

q − J2

w4
q

+ ε2(Q′
q)

2

)
(wq)

2
x

wq
dx

+
∥wDx∥

2
∞√

n

∫ 1

0

Tw2|γ−1|
q dx+

∥wDxx∥
2
∞√

n
. (3.10)
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Simple calculations, in view of the Cauchy inequality, give the following estimate for I4
and I5

I4 + I5 ≤− 1

λ2

∫ 1

0

(wq − wD)2(wq + wD) dx+
1

2λ2√n

∫ 1

0

(C(x)− w2
D)2 dx

+
1

2λ2

√
n

∫ 1

0

(wq − wD)2 dx

≤− 1

λ2

∫ 1

0

(wq − wD)2
(
wq + wD −

√
n

2

)
dx

+
1

2λ2√n

∫ 1

0

(C(x)− w2
D)2 dx. (3.11)

Concerning the term I6, we have

I6 = −
∫ 1

0

J

τw2
q

(wq − wD)x dx

= −
∫ 1

0

J

τw2
q

(wq)x dx+

∫ 1

0

J

τw2
q

wDx dx

≤ J

τ
| 1
w1

− 1

w0
|+ J

∥wDx∥∞
τn

. (3.12)

From (3.9) and the previous estimates, we finally obtain

ε2
∫ 1

0

Qq
(wq)

2
xx

wq
dx+ 2ε2

∫ 1

0

Q′
q

(wq)x(wq)xx
wq

dx

+

∫ 1

0

(
Tw2(γ−1)

q − J2

w4
q

− ε2(Q′
q)

2
)

(wq)
2
x

wq
dx

+
1

λ2

∫ 1

0

(wq − wD)2
(
wq + wD −

√
n

2

)
dx

≤ 1

2λ2√n

∫ 1

0

(C(x)− w2
D)2 dx

+
∥wDx∥

2
∞√

n
Tw

2|γ−1|
M +

∥wDxx∥
2
∞√

n
+

J

τ
| 1
w1

− 1

w0
|+ J

∥wDx∥∞
τn

, (3.13)

where the fourth term on the left-hand side is strictly positive since wD, wq >
√
n.

We close the proof showing that the first three terms of the left-hand side in (3.13)
form a strictly positive quadratic form. This will imply that∫ 1

0

(
A1

(wq)
2
xx

wq
+ B1

(wq)x(wq)xx
wq

+ C1
(wq)

2
x

wq

)
dx ≥ c1

∫ 1

0

(wq)
2
xx

wq
dx+ c2

∫ 1

0

(wq)
2
x

wq
dx

(3.14)

where

A1 = ε2Qq, B1 = 2ε2Q′
q, C1 =

(
Tw2(γ−1)

q − J2

w4
q

− ε2(Q′
q)

2
)
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and c1 and c2 are positive constants. The quadratic form above is strictly positive when
B2
1 − 4A1C1 < 0, that is

4ε2
[
ε2(Q′

q(x))
2 −Qq(x)

(
Tw2(γ−1)

q − J2

w4
q

− ε2(Q′
q(x))

2

)]
= 4ε2Qq

[
ε2

(Q′
q(x))

2

Qq
(1 +Qq)−

(
Tw2(γ−1)

q − J2

w4
q

)]
< 0 (3.15)

that follows from (2.10) and (2.12). Now, to establish the uniform upper bound wM for
wq, we apply the Implicit Function Theorem. Combining (3.14) with (3.13), we get

c1

∫ 1

0

(wq)
2
xx

wq
dx+ c2

∫ 1

0

(wq)
2
x

wq
dx

≤ 1

2λ2√n

∫ 1

0

(C(x)− w2
D)2dx+

T
√
n
w

2|γ−1|
M ∥wDx∥2∞

+
1
√
n
∥wDxx∥2∞ +

J

τ
| 1
w1

− 1

w0
|+ J

∥wDx∥∞
τn

=:K̄0(γ,wD, wM , n, w0, w1, C, τ) =: K0. (3.16)

From (3.16), since
(wq)

2
x

wq
= 4[(

√
wq)x]

2, we get

c2

∫ 1

0

[(
√
wq)x]

2 dx ≤ K0 (3.17)

and (3.17) easily implies ∥√wq∥∞ ≤ K1 +
√
w0, where K1 =

√
K0

c2
.

As in [18], we can prove that the following equation in (γ,
√
wM )

√
wM

=

√√√√ 1
2λ2√n

∫ 1

0
[C(x)−w2

D]2dx+T
w

√
wM

4|γ−1|∥wDx∥2∞+ 1
w
∥wDxx∥2∞ + J

τ
| 1
w1

− 1
w0

|+J ∥wDx∥∞
τw2

c2

+
√
w0 ≥ √

w (3.18)

has a solution

(γ,
√
wM )

=

1,
√√√√ 1

2λ2

∫ 1

0
[C(x)− w2

D]2dx+ T
w
∥wDx∥2∞+1

w
∥wDxx∥2∞ + J

τ
| 1
w1

− 1
w0

|+J ∥wDx∥∞
τw2

c2
+
√
w0

.

(3.19)

Therefore, by the Implicit Function Theorem, there exists a γ0 > 0 such that for
|γ − 1| < γ0, the Equation (3.18) admits a solution (γ,

√
wM ). This defines the bound

wM . Then (3.8) follows from (3.16), where c1 and c2 are positive constants, in view of
(3.14).

Lemma 3.3. Under the assumption of Lemma 3.2, the variable uq, defined as uq =
2 lnwq, verifies the following estimate

c3∥(uq)xx∥L2(Ω) + c4∥(uq)x∥L2(Ω) ≤ K0, (3.20)
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where c3 and c4 are strictly positive constants.

Proof. First of all we observe that uq is bounded from below and from above:

2 ln
√
n = um ≤ uq ≤ uM = 2 lnwM .

Moreover, from the results listed in the previous lemma, it follows that

∥uqx∥
2 = 4

∥∥∥wqx

wq

∥∥∥2 ≤ K (3.21)

∥uqxx∥
2 ≤ 8

(∥∥∥wqxx

wq

∥∥∥2 + ∥∥∥wq
2
x

w2
q

∥∥∥2) ≤ K (3.22)

where K is a positive constant which does not depend on q.

In order to apply the standard theory, we write (2.9)1 in the new variable uq =
2 lnwq

ε2
(
Qq

(
(uq)xx +

(uq)
2
x

2

)
+Q′

q(uq)x

)
xx

+ (J2e−2uq (uq)x)x

− T

γ − 1
(euq(γ−1))xx +

euq − C(x)

λ2
−
(
J

τ
e−uq

)
x

= 0. (3.23)

Equation (3.23) is coupled with the following conditions

uq(0) = lnn0 = u0, uq(1) = lnn1 = u1, (uq)x(0) = (uq)x(1) = 0. (3.24)

Then the existence results for the H-QqHD system read as follows:

Theorem 3.1 (Existence of H-QqHD solutions). Assume inequality (2.10), then there
exists at least one weak solution uq ∈ H2(Ω) to the boundary value problem (3.23)-(3.24).

Proof. Here we just summarize the results of [15] and [18] and adapt them to our
problem. In fact, since Qq(x) ≥ q > 0, Equation (3.23) is basically a QHD model and
standard methods can be applied also in our case. We linearize Equation (3.23)

ε2
(
Qq

(
(uq)xx +

σ

2
ν2x

)
+Q′

q(uq)x

)
xx

+ σJ2
(
e−2ννx

)
x

− T (e(γ−1)νuqx)x +
σ

λ2

(
eν − 1

ν
uq + 1− C

)
− σ

J

τ
(e−ν)x = 0, (3.25)

where ν ∈ X = C0,1(Ω). The relative boundary conditions are

uq(0) = σ lnn0 = σu0, uq(1) = σ lnn1 = σu1, (uq)x(0) = (uq)x(1) = 0. (3.26)

Obviously the solution of Equation (3.25) satisfies (3.26) for a given σ ∈ [0, 1]. Let

a(uq, ϕ) =

∫ 1

0

(
ε2
(
Qq(uq)xx +Q′

q(uq)x
)
ϕxx + T (e(γ−1)νuqx)ϕx

)
dx

+

∫ 1

0

σ

λ2

eν − 1

ν
uqϕdx.
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It is easy to check that a(uq, ϕ) is a continuous and coercive bilinear form in H2(Ω), for
ϕ ∈ H2(Ω) and for each uq. Moreover, the functional F, defined as

F (ϕ) =

∫ 1

0

(
−Qq

ε2σ

2
ν2xϕxx + σJ2e−2νkνxϕx − σ

λ2
(1− C)ϕ

)
dx

−
∫ 1

0

(
σ
J

τ
e−νϕx

)
dx

is linear and continuous in H2(Ω) for ϕ ∈ H2(Ω). Therefore, for Lax Milgram Lemma
the boundary value problem (3.25)-(3.26) admits a unique solution u ∈ H2(Ω). In this
way we define a continuous and compact fixed-point operator on X ≡ H2 such that

S : X × [0, 1] → X, (ν, σ) → uq (3.27)

with S(ν, 0) = 0 for all ν ∈ X. Moreover, we can show that there is a constant c > 0
that verifies

∥u∥X ≤ c, (3.28)

for all (uq, σ) ∈ X × [0, 1] satisfying S(uq, σ) = uq.
Indeed, for σ = 1 the inequality (3.28) is a direct consequence of the a priori

estimates discussed in the previous lemma and in a similar way we obtain (3.28) for
0 < σ < 1.

Therefore we can apply the Leray-Schauder fixed-point theorem to get the existence
of a fixed point uq.

In the following theorem, using a standard approach, we prove the uniqueness of
subsonic solution to (2.9), assuming J and ε small enough and γ close to 1.

Theorem 3.2 (Uniqueness of H-QqHD solutions). Under the assumptions (2.10),
(2.11) and (2.12) there exist J > 0 and ε > 0 sufficiently small and γ sufficiently close
to 1, such that the boundary value problem (3.23)-(3.24) admits unique solution.

Proof. As usual, we will prove the theorem by contradiction, following basically the
approach proposed in [15] and [18]. Let uq, vq ∈ H2(Ω) be two solutions to (3.23)-(3.24).
Now we consider the difference of the equations satisfied by uq and vq respectively

ε2 (Qq(uq − vq)xx)xx + ε2
(
Qq

(
(uq)

2
x

2
− (vq)

2
x

2

))
xx

+ ε2(Q′
q(uq − vq)x)xx

− J2

2
(e−2uq − e−2vq )xx − T

(γ − 1)
(euq(γ−1) − evq(γ−1))xx

+
euq − evq

λ2
− J

τ

(
e−uq − e−vq

)
x
= 0 (3.29)

coupled with the following boundary conditions

(uq − vq)(0) = (uq − vq)(1) = 0, (uq − vq)x(0) = (uq − vq)x(1) = 0. (3.30)

We multiply (3.29) by (uq − vq) ∈ H1
0 (Ω) ∩H2(Ω) and integrate it by parts on the

whole domain

ε2
∫ 1

0

Qq(x)(uq − vq)
2
xx dx+

ε2

2

∫ 1

0

Qq(x)(uq + vq)x(uq − vq)x(uq − vq)xx dx
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− ε2

2

∫ 1

0

Q′′
q (x)(uq − vq)

2
x dx+ T

∫ 1

0

euq(γ−1)(uq − vq)
2
x dx

+
1

λ2

∫ 1

0

(euq − evq )(uq − vq) dx

= −T

∫ 1

0

(euq(γ−1) − evq(γ−1))vqx(uq − vq)x dx

+ J2

∫ 1

0

e−2uq (uq − vq)
2
x dx+ J2

∫ 1

0

(e−2uq − e−2vq )vqx(uq − vq)x dx

− J

τ

∫ 1

0

(e−uq − e−vq )(uq − vq)x dx. (3.31)

We observe that the term 1
λ2

∫ 1

0
(euq−evq )(uq−vq) dx is positive and, concerning the sec-

ond term on the left-hand side, thanks to the apriori estimates (3.21), and recalling that
(uq)x(0) = (vq)x(0) = 0, we can find a constantK2 such that ∥(vq)x∥∞, ∥(uq)x∥∞ ≤ K2,
then we can write

(uq + vq)
2
x ≤ 2(∥(uq)x∥2∞ + ∥(vq)x∥2∞) ≤ 4K2

2 ,

obtaining

ε2

2

∫ 1

0

Qq(x)(uq + vq)x(uq − vq)x(uq − vq)xx dx

≤ε2

4

∫ 1

0

Qq(x)(uq − vq)
2
xx dx+K2

2ε
2

∫ 1

0

(uq − vq)
2
x dx.

Meanwhile, we estimate from below some terms on the left-hand side, and use Poincaré
inequality on the right-hand side

3ε2

4

∫ 1

0

Qq(x)(uq − vq)
2
xx dx− ε2K2

2

∫ 1

0

(uq − vq)
2
x dx

− αε2

2

∫ 1

0

(uq − vq)
2
x dx+ Te−K1(γ−1)

∫ 1

0

(uq − vq)
2
x dx

≤T (γ − 1)eK1(γ−1)∥(vq)x∥2
∫ 1

0

(uq − vq)
2
x dx+ J2e2K1

∫ 1

0

(uq − vq)
2
x dx

+ 2J2e2K1∥(vq)x∥2
∫ 1

0

(uq − vq)
2
x dx+

J

τ
eK1cp

∫ 1

0

(uq − vq)
2
x dx. (3.32)

Here cp is the Poincaré constant, α has been defined in (2.11) and K1 is the bound such
that ∥vq∥∞, ∥uq∥∞ ≤ K1. From the apriori estimates we can find a constant K3 such
that ∥(vq)x∥2, ∥(uq)x∥2 ≤ K3. Then we get

3ε2

4
q

∫ 1

0

(uq − vq)
2
xx dx+

(
Te−(γ−1)K1 − αε2

2
− ε2K2

2 −K3T (γ − 1)eK1(γ−1) − J2e2K1

− 2J2e2K1K3 −
J

τ
eK1cp

)∫ 1

0

(uq − vq)
2
x dx ≤ 0. (3.33)

This guarantees the uniqueness under the hypotheses of smallness of J, ε and (γ−1)
and concludes the proof.
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Proof. (Proof of Theorem 2.1.) Following [15] and using the regularity of the
function Qq(x), it is not difficult to show that there exists a solution uq ∈ H4(Ω) to
(3.23)-(3.24). Consequently, observing that w2

m ≤ nq = euq ≤ w2
M , the boundary value

problem (2.9) admits a unique solution wq ∈ H4(Ω).
Finally, Vq(x) ∈ H2(Ω), thanks to the Poisson equation. This concludes the proof.

Proof of Theorem 2.2. Theorem 3.2 immediately implies Theorem 2.2.

4. Hybrid limit
Finally, we consider the hybrid case represented by the system (2.8), corresponding

to 0 ≤ Q(x) ≤ 1. It means that the quantum effect function Q(x) is equal to zero in
the classical region and Q(x) > 0 in the quantum region.

Proof. (Proof of Theorem 2.3.) Let Q(x) ∈ C1[0, 1] and {Qq(x)} be a suitable
approximating sequence satisfying (2.16) and (wq, Vq) be the solution to the approximat-
ing problem (2.9). Within this section, all the q−independent constants are indicated
by K̄ or c̄i. First of all we need to prove the following q−independent a priori estimates:

∥wq∥H1(Ω) ≤ K̄, ∥
√
Qq(wq)xx∥L2(Ω) ≤ K̄. (4.1)

Proceding as in the proof of Lemma 3.2, we obtain the following inequality

ε2
∫ 1

0

Qq
(wq)

2
xx

wq
dx+ 2ε2

∫ 1

0

Q′
q

(wq)x(wq)xx
wq

dx

+

∫ 1

0

(
Tw2(γ−1)

q − J2

w4
q

− ε2(Q′
q)

2
)

(wq)
2
x

wq
dx

+
1

λ2

∫ 1

0

(wq − wD)2
(
wq + wD −

√
n

2

)
dx ≤ K̄. (4.2)

Then, following [11], we rearrange the first three terms of the left-hand side in (4.2),
obtaining ∫ 1

0

1

2
ε2Qq

wq
2
xx

wq
dx+

∫ 1

0

2ε2Q′
q

wq
wqxwqxx dx

+

∫ 1

0

[1
2

(
Tw2(γ−1)

q − J2

w4
q

− 2ε2(Q′
q)

2
)

wq
2
x

wq

]
dx

+

∫ 1

0

[1
2
ε2Qq

wq
2
xx

wq
+

1

2

(
Tw2γ−3

q − J2

w5
q

)
wq

2
x

]
dx

=:

∫ 1

0

(A2wq
2
xx + B2wqxwqxx + C2wq

2
x)dx

+

∫ 1

0

[1
2
ε2Qq

wq
2
xx

wq
+

1

2

(
Tw2γ−3

q − J2

w5
q

)
wq

2
x

]
dx < K̄. (4.3)

The first integral on the right-hand side is positive since B2
2 − 4A2C2 < 0. Indeed, if

A2 = 1
2ε

2Qq, B2 = 2ε2Q′
q, C2 = 1

2

(
Tw

2(γ−1)
q − J2

w4
q
− 2ε2(Q′)

2
q

)
, one has

B2
2 − 4A2C2 =4ε2

[
ε2(Q′

q(x))
2 − 1

4
Qq(x)

(
Tw2(γ−1)

q − J2

w4
q

− 2ε2(Q′
q(x))

2

)]
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=4ε2
[
ε2(Q′

q(x))
2(1 +

Qq(x)

2
)− 1

4
Qq(x)

(
Tw2(γ−1)

q − J2

w4
q

)]
< 0 (4.4)

by (2.12).
Also, the second term on the right-hand side of (4.3) is positive by (2.10), then we

have ∫ 1

0

[1
2
ε2Qq

wq
2
xx

wq
+

1

2

(
Tw2γ−3

q − J2

w5
q

)
wq

2
x

]
dx ≤ K̄, (4.5)

and from (2.10) we can find a positive constant c̄1 q−independent, such that(
Tw2(γ−1)

q − J2

w4
q

)
> c̄1.

Then we obtain

c̄1

∫ 1

0

[(
√
wq −

√
w0)x]

2 ≤ K̄, (4.6)

and thus

∥wq∥L∞(Ω) ≤ K̄. (4.7)

Using the uniform bounds for wq and the assumption 0 < Qq(x) ≤ 1, we can rewrite
(4.5) as

c̄2
ε2

2

∫ 1

0

Qq(x)wq
2
xx(x)dx+ c̄3

∫ 1

0

wq
2
x(x) dx ≤ K̄, (4.8)

which obviously implies (4.1), namely, wq is uniformly bounded in H1(Ω) and
√
Qqwqxx

is uniformly bounded in L2(Ω). Therefore, there exists a w(x) as the hybrid limit of
the sequence wq:

wq ⇀ w in H1(Ω),

and by (2.16), (4.9)√
Qqwqxx ⇀

√
Qwxx in L2(Ω),

for q → 0.

Since H1(Ω) ↪→ C0(Ω), we further have

wq → w in C0(Ω), for q → 0. (4.10)

Particularly, when Q(x) satisfies (1.2), namely, Q(x) > 0 for x ∈ [0, x1) ∪ (x2, 1],
and Q(x) = 0 for x ∈ [x1, x2], then there exists a small number 0 < δ∗ ≪ 1,

0 < δ∗ < min{x1, 1− x2},

such that

Qq(x), Q(x) ≥ 1

2
Q(0), for x ∈ [0, δ∗],
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and

Qq(x), Q(x) ≥ 1

2
Q(1), for x ∈ [1− δ∗, 1].

Thus, (4.9) implies that

wq ⇀ w in H2([0, δ∗]) and in H2([1− δ∗, 1]).

This, along with the Sobolev embeddings
H2([0, δ∗]) ↪→ C1([0, δ∗]) and H2([1− δ∗, 1]) ↪→ C1([1− δ∗, 1]), guarantees

wq → w in C1([0, δ∗] ∪ [1− δ∗, 1]), for q → 0.

Namely, we prove that the limit function w(x) satisfies the following boundary conditions

w(0) = w0, w(1) = w1, wx(0) = wx(1) = 0.

Now we prove that w, with Q(x) satisfying (1.2), is the weak solution of (2.8), that
is w satisfies (2.14). Let us consider Equation (2.9). Multiplying (2.9) by ϕ, where
ϕ ∈ C∞

0 (Ω) is any given test function, and integrating by parts, we have

2ε2
∫ 1

0

(
Qq(x)

wqxx

wq
+Q′

q(x)
wqx

wq

)
ϕxxdx+ 2

∫ 1

0

(Tw2(γ−1)wqx

wq
ϕxdx

− 2

∫ 1

0

(
J2

wq
4

)
wqx

wq
ϕxdx+

∫ 1

0

wq
2 − C

λ2
ϕdx+

∫ 1

0

(
J

τwq
2

)
ϕxdx = 0. (4.11)

Recalling (4.1) and that wq >
√
n > 0 (the subsonic condition), in view of (2.16), the

weak form (4.11) converges in L2, for q → 0, to the weak form of the limit problem.
Namely,

2ε2
∫ 1

0

(
Q(x)

wxx

w
+Q′(x)

wx

w

)
ϕxxdx+ 2

∫ 1

0

Tw2(γ−1)wx

w
ϕxdx

− 2

∫ 1

0

(
J2

w4

)
wx

w
ϕxdx+

∫ 1

0

w2 − C

λ2
ϕdx+

∫ 1

0

(
J

τw2

)
ϕxdx = 0. (4.12)

Thus, we have proved that w is the weak solution of (2.8).
Now we consider the expression for the electric potential Vq(x), obtained by inte-

grating (1.1) with respect to x and using (1.4):

Vq(x) =− 2ε2Qq(x)
wqxx

wq
− 2ε2Q′

q(x)
wqx

wq
+

J2

2wq
4
+

T

γ − 1
wq

2(γ−1)

+
J

τ

∫ x

0

1

wq
2
dx. (4.13)

By (2.16) and the uniform estimates (4.1) and (3.1), one has that ∥Vq∥L2 ≤ K̄. There-
fore, there exists V such that

Vq ⇀ V in L2(Ω). (4.14)
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Now, we have to prove that the limit V is the weak solution of the hybrid problem. To
this end, we multiply (4.13) by ϕ ∈ C∞

0 (Ω) and integrate it in Ω:∫ 1

0

Vqϕdx =− 2ε2
∫ 1

0

Qq(x)
wqxx

wq
ϕdx− 2ε2

∫ 1

0

Q′
q(x)

wqx

wq
ϕdx

+

∫ 1

0

J2

2wq
4
ϕdx+

∫ 1

0

T

γ − 1
wq

2(γ−1)ϕdx

+
J

τ

∫ 1

0

(∫ x

0

1

wq
2(s)

ds
)
ϕdx. (4.15)

Due to the uniform estimate in (4.1) and to the properties of {Qq}, for q → 0, we have∫ 1

0

V ϕ dx =− 2ε2
∫ 1

0

Q(x)
wxx

w
ϕdx− 2ε2

∫ 1

0

Q′(x)
wx

w
ϕdx

+

∫ 1

0

J2

2w4
ϕdx+

∫ 1

0

T

γ − 1
w2(γ−1)ϕdx

+
J

τ

∫ 1

0

(∫ x

0

1

w2(s)
ds
)
ϕdx. (4.16)

Thus, we prove Vq ⇀ V in L2 and the limit potential V verifies the Poisson equation in
the weak sense. From (4.14) and nq = w2

q , we obtain (2.17). The proof of Theorem 2.3
is complete.

5. Zero-space-charge limit for the hybrid model

Before proving Theorem 2.4, for the sake of completeness, we briefly discuss, in the
spirit of [15], the limit (λ → 0) for the QqHD model (2.9).

Theorem 5.1 (Zero-space-charge limits for the H-QqHD problem). Let C(x) ∈ C2(Ω)
as in Theorem 2.4, and Q(x) ∈ C2(Ω) with 0 < q ≤ Qq(x) ≤ 1, verifying (2.12). If
(wq,λ, Vq,λ) is the solution to (2.9) then, for λ → 0, one has

wq,λ(x) ⇀ wq :=
√

C(x) in H1(Ω)

wq,λ(x) → wq :=
√
C(x) in C0(Ω̄) (5.1)

Vq,λ(x) ⇀ Vq(x) in L2(Ω),

where

Vq(x) =− 2ε2

(
Qq(x)

√
Cxx√
C

+Q′
q(x)

√
Cx√
C

)

+
J2

2C2
+

T

γ − 1
Cγ−1 +

J

τ

∫ x

0

ds

C(s)
. (5.2)

Proof. Before proving the theorem above we just remark that, in order to obtain
a set of λ−independent estimates, we need to consider a special doping profile function.
As an example we can consider a straight line connecting the boundary values of the
charge density n0 and n1. Under this assumption, proceeding as in Lemma 3.2, it
is not difficult to show that there exists a constant K̃, independent of λ, such that
∥(wq,λ)∥∞ ≤ K̃, ∥(wq,λ)∥H1 ≤ K̃ and ∥Vq,λ∥L2 ≤ K̃. The last inequality directly
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implies the last limit in (5.1). Moreover, multiplying equation (2.9)1, by the test function
(wq,λ −

√
C) ∈ H2(Ω) ∩H1

0 (Ω), after integration by part, we obtain

2ε2
∫ 1

0

Qq
(wq,λ)

2
xx

wq,λ
dx+ 2

∫ 1

0

(
Tw

2(γ−1)
q,λ − J2

(wq,λ)4

)
(wq,λ)

2
x

wq,λ
dx

+ 2ε2
∫ 1

0

Q′
q

(wq,λ)x(wq,λ)xx
wq,λ

dx+
1

λ2

∫ 1

0

(wq,λ −
√
C)2(wq,λ +

√
C) dx

=2ε2
∫ 1

0

Qq
(wq,λ)xx
wq,λ

√
Cxx dx+ 2ε2

∫ 1

0

Q′
q

(wq,λ)x
wq,λ

√
Cxx dx

+ 2

∫ 1

0

(
Twq,λ

2(γ−1) − J2

(wq,λ)4

)
(wq,λ)x
wq,λ

√
Cx dx

−
∫ 1

0

J

τ(wq,λ)2
(wq,λ)x dx+

∫ 1

0

J

τ(wq,λ)2

√
Cx dx

=:Y1 + Y2 + Y3 + Y4 + Y5. (5.3)

By Young’s inequality we get

Y1 ≤ ε2
∫ 1

0

Qq(x)
(wq,λ)

2
xx

wq,λ
dx+ ε2

∫ 1

0

Qq(x)

√
C

2

xx

wq,λ
dx

≤ ε2
∫ 1

0

Qq(x)
(wq,λ)

2
xx

wq,λ
dx+

∫ 1

0

√
C

2

xx

w
dx,

where w = min{wq,λ}. Using the subsonic condition (2.12) one has

0 < M1 ≤
(
Twq,λ

2(γ−1) − J2

(wq,λ)4

)
≤ M2

for some positive constants M1 and M2 and then

Y3 ≤
∫ 1

0

(
Twq,λ

2(γ−1) − J2

(wq,λ)4

)
(wq,λ)

2
x

wq,λ
dx+M2

∫ 1

0

√
C

2

x

w
dx.

Similarly, we can estimate

Y2 ≤ ε2
∫ 1

0

[Q′
q(x)]

2 (wq,λ)
2
x

wq,λ
dx+ ε2

∫ 1

0

[
√
Cxx]

2

wq,λ
dx,

Y4 =
J

τ
| 1
w1

− 1

w0
|,

Y5 ≤
∫ 1

0

J2

2τ2(wq,λ)4
dx+

∫ 1

0

[
√
Cx]

2

2
dx ≤ J2

2τ2w4
+

∫ 1

0

[
√
Cx]

2

2
dx.

Substituting the above estimates on Yi (i = 1, · · · , 5) into (5.3), we have

ε2
∫ 1

0

Qq
(wq,λ)

2
xx

wq,λ
dx+

∫ 1

0

[
T (wq,λ)

2(γ−1) − J2

(wq,λ)4
− ε2(Q′

q)
2

]
(wq,λ)

2
x

wq,λ
dx

+ 2ε2
∫ 1

0

Q′
q

(wq,λ)x(wq,λ)xx
wq,λ

dx+
1

λ2

∫ 1

0

((wq,λ)−
√
C)2((wq,λ) +

√
C) dx ≤ K̃. (5.4)
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Introducing, as usual, a strictly positive quadratic form, we obtain∫ 1

0

A3
(wq,λ)

2
xx

wq,λ
dx+

∫ 1

0

B3
(wq,λ)x(wq,λ)xx

wq,λ
dx+

∫ 1

0

C3
(wq,λ)

2
x

wq,λ
dx ≤ K̃, (5.5)

where, in order to guarantee its strict positivity, we require

B2
3 − 4A3C3 < 0, (5.6)

with

A3 = ε2Qq(x),

B3 = 2ε2Q′
q(x),

C3 =

[
T (wq,λ)

2(γ−1) − J2

(wq,λ)4
− ε2(Q′

q)
2

]
.

The inequality (5.6) can be easily verified from (2.10) and (2.12). Indeed we have

B2
3 − 4A3C3 = 4ε4Q′

q(x)
2 − 4ε2Qq(x)

(
T (wq,λ)

2(γ−1) − J2

(wq,λ)4
− ε2(Q′

q)(x)
2

)
= 4ε2

[
ε2(Q′

q(x))
2(1 +Qq(x))−Qq(x)

(
T (wq,λ)

2(γ−1) − J2

(wq,λ)4

)]
< 0. (5.7)

Equation (5.4) clearly implies∫ 1

0

((wq,λ)−
√
C)2((wq,λ) +

√
C) ≤ λ2K̃.

This guarantees the existence of subsequence (wq,λ) (not relabeled) which converges to√
C(x) as in (5.1)1 and (5.1)2. To complete the proof, we multiply (4.13) by ϕ ∈ C∞

0 (Ω)
used as a test function∫ 1

0

Vqλϕdx =− 2ε2
∫ 1

0

Qq

(wq,λ)xx
wq,λ

ϕdx− 2ε2
∫ 1

0

Q′
q

(wq,λ)x
wq,λ

ϕdx

+
1

2

∫ 1

0

J2

(wq,λ)4
ϕdx+

T

γ − 1

∫ 1

0

wq,λ
2(γ−1)ϕdx

+
J

τ

∫ 1

0

(∫ x

0

1

(wq,λ)2
ds
)
ϕdx, (5.8)

which implies, for λ → 0,∫ 1

0

Vqϕdx =− 2ε2
∫ 1

0

Qq

√
Cxx√
C

ϕdx− 2ε2
∫ 1

0

Q′
q

√
Cx√
C

ϕdx

+

∫ 1

0

J2

2C2
ϕdx+

T

γ − 1

∫ 1

0

C(γ−1)ϕdx

+
J

τ

∫ 1

0

(∫ x

0

1

C
ds
)
ϕdx (5.9)

then also (5.2) is verified. This concludes the proof.
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Now we proceed with the proof of Theorem 2.4.

Proof. (Proof of Theorem 2.4.) We consider the smooth solution (wq,λ, Vq,λ)(x)
to (2.9) that verifies the following estimates

∥wq,λ∥H1 ≤ K̃, ∥
√

Qq(wq,λ)xx∥L2 ≤ K̃, ∥Vq,λ∥L2 ≤ K̃,

independently of q and λ. Moreover, as in (5.3), from the proof of Theorem 5.1, we
have

ε2
∫ 1

0

Qq
(wq,λ)

2
xx

wq,λ
dx

+

∫ 1

0

[
T (wq,λ)

2(γ−1) − J2

(wq,λ)4
− ε2(Q′

q)
2

]
(wq,λ)

2
x

wq,λ
dx

+ 2ε2
∫ 1

0

Q′
q

(wq,λ)x(wq,λ)xx
wq,λ

dx+
1

λ2

∫ 1

0

((wq,λ)−
√
C)2((wq,λ) +

√
C) dx ≤ K̃,

(5.10)

that, in particular, implies∫ 1

0

(wq,λ −
√
C)2(wq,λ +

√
C) dx ≤ λ2K̃.

Taking q → 0, in (5.10), we get

ε2
∫ 1

0

Q
(wλ)

2
xx

wλ
dx

+

∫ 1

0

[
T (wλ)

2(γ−1) − J2

(wλ)4
− ε2(Q′)2

]
(wλ)

2
x

wλ
dx

+ 2ε2
∫ 1

0

Q′ (wλ)x(wλ)xx
wλ

dx+
1

λ2

∫ 1

0

((wλ)−
√
C)2((wλ) +

√
C) dx ≤ K̃. (5.11)

The inequality (5.11) can be rewritten as

ε2

2

∫ 1

0

Q
(wλ)

2
xx

wλ
dx

+
1

2

∫ 1

0

[
T (wλ)

2(γ−1) − J2

(wλ)4
− ε2(Q′)2

]
(wλ)

2
x

wλ
dx

+

∫ 1

0

[
A4

[(wλ)xx]
2

wλ
+ B4

(wλ)x(wλ)xx
wλ

+ C4
[(wλ)x]

2

wλ

]
dx

+
1

λ2

∫ 1

0

((wλ)−
√
C)2((wλ) +

√
C) dx ≤ K̃, (5.12)

where

A4 :=
ε2

2
Q,

B4 := 2ε2Q′,

C4 :=
1

2

(
T (wλ)

2(γ−1) − J2

(wλ)4
− ε2(Q′)2

)
.
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One has

B2
4 − 4A4C4 < 0,

by (2.12), which is assumed to hold also in the limit q → 0 (see Remark 3.1), indeed

B2
4 − 4A4C4 = 4ε2

(
ε2(Q′)2(1 +

Q

4
)− Q

4
(T (wλ)

2(γ−1) − J2

(wλ)4
)

)
.

So that ∫ 1

0

[
A4

[(wλ)xx]
2

wλ
+ B4

(wλ)x(wλ)xx
wλ

+ C4
[(wλ)x]

2

wλ

]
dx > 0.

Finally from (5.12), we further have

ε2

2

∫ 1

0

Q
(wλ)

2
xx

wλ
dx+

1

2

∫ 1

0

[
T (wλ)

2(γ−1) − J2

(wλ)4
− ε2(Q′)2

]
(wλ)

2
x

wλ
dx

+
1

λ2

∫ 1

0

((wλ)−
√
C)2((wλ) +

√
C) dx ≤ K̃, (5.13)

which implies, together with (3.1), that

∥wλ∥H1 ≤ K̃ and

∫ 1

0

(wλ −
√
C)2(wλ +

√
C) dx ≤ λ2K̃.

Then we obtain

wλ ⇀
√
C in H1 as λ → 0,

and

wλ →
√
C in C0 as λ → 0.

In the same way, from (4.15) and (4.16), we can prove

Vλ ⇀ Ṽ in L2(Ω) as λ → 0.

This completes the proof.

Remark 5.1. We observe that (2.10) assures the necessary positiveness of the terms
Ci, i = 0, ..., 4 in the previous proofs.

6. Numerical simulations
In this section we test numerically the model introduced in the first part of the

paper, in order to evaluate the effects of the nonlinear pressure function. We just recall
that, compared to quantum hydrodynamic model, the quantum hybrid model (1.1) is
characterized by a more general Bohm potential, which allows the localization of the
quantum effects in a given region of the device. As observed in the theoretical part, the
hybrid problem is degenerate because of the hybrid term Q(x). Through this section,
q is strictly positive, but we consider different values of q to simulate the limit q → 0.
The problem, although not degenerate, is stiff, and this requires an accurate numerical
treatment, especially close to the boundary.
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(a) Case 1, q = 0.001 (b) Case 2, q = 0.001

(c) Case 1, q = 0.0001 (d) Case 2, q = 0.0001

(e) Case 1, q = 0.00001 (f) Case 2, q = 0.00001

Fig. 6.1. Behaviour of the charge density for a hybrid model having quantum region in the middle
part of the domain (Case 1) and in the external part (Case 2) assuming y1 = 2/5 and y2 = 3/5. Three
different values of the parameters γ and q are considered.

Here we just perform some simple numerical tests using COLNEW (see [4]), a
SCILAB function for boundary value problems. This tool was not specifically developed
to solve the hybrid problem, but it has been widely used to simulate a simple device
using the QHD equation and the hybrid QHD equation (see for example [11,15]) and it
provides reasonably enough results.

Although in the theoretical part of paper we have proved the existence of a weak
solution to the hybrid problem, assuming the boundaries are quantum, in this numerical



2074 EXISTENCE AND UNIQUENESS FOR STATIONARY HYBRID QUANTUM MODEL

(a) Case 1, q = 0.001 (b) Case 2, q = 0.001

(c) Case 1, q = 0.0001 (d) Case 2, q = 0.0001

(e) Case 1, q = 0.00001 (f) Case 2, q = 0.00001

Fig. 6.2. Behaviour of the charge density for a hybrid model having quantum region in the middle
part of the domain (Case 1) and in the external part (Case 2) assuming y1 = 1/3 and y2 = 2/3. Three
different values of the parameters γ and q are considered.

section we also consider the classic boundary case.

We can observe that, assuming a smaller value of q, the oscillations detectable near
the extrema (see Figures 6.1, 6.2, Case 1), in the classic boundary case, seem to reflect
the technical difficulty in verifying the boundary conditions wx(0) = wx(1) = 0 for the
limit hybrid solution, (see Remark 2.5).

Currently, we can not say if the oscillations depend on the inadequacy of the code
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or on the lack of convergence of (wq)x → wx in x = 0, 1, when q → 0.
We use, as a test device, a n+|n|n+ transistor on the domain [0, 1]. The doping

profile C̄(x) modelling our device is such that: C̄(x) = Cm, 0 < Cm < 1 if x ∈ [x1, x2]
and C̄(x) = 1 if x ∈ [0, x1) ∪ (x2, 1] , with 0 < x1 < x2 < 1. In order to simplify the
numerical approach, we need to regularize C̄(x). We choose x1 = 1/3 and x2 = 2/3,
setting

C̄(x) ≈ C(x) = 1− (0.5− Cm/2)(tanh(100(x− 1/3)) + tanh(100(x− 2/3)))

where Cm = 0.02.
Without loss of generality, we divide the device into a classical and a quantum part,

and we consider two cases as follows

Case 1

{
Quantum Region ∀x ∈ [y1, y2]
Classical Region ∀x ∈ [0, y1) andx ∈ (y2, 1] ,

(6.1)

Case 2

{
Quantum Region ∀x ∈ [0, y1) andx ∈ (y2, 1] ,
Classical Region ∀x ∈ [y1, y2] ,

(6.2)

where x1 ≤ y1 < y2 ≤ x2. We only observe that we have not run simulations on Case 1
in previous papers, dealing with this line of research.

The approximating quantum functions {Qq(x)} are respectively

Case 1 Qq(x) =

(
q − 1

2

)
(tanh(h(x− y2))− tanh(h(x− y1))) + q (6.3)

and

Case 2 Qq(x) =

(
1− q

2

)
(tanh(h(x− y2))− tanh(h(x− y1))) + 1, (6.4)

where we fix h = 40, x ∈ [0, 1] and q = min{Qq} = 0.001, 0.0001, 0.00001, to simulate
the limit q → 0.

τ scaled relaxation time 0.125
λ scaled Debye length 0.1
ε scaled Plank constant 0.01
J scaled current density 0.1
T scaled temperature 1

Table 6.1. Values of the scaled parameters used in the simulations.

The boundary value problem we solve numerically is the following

ε2
(
Qq

(
uxx +

u2
x

2

)
+Q′

qux

)
xx

+ (J2e−2uux)x

− T

γ − 1
(e(γ−1)u)xx +

eu − C(x)

λ2
−
(
J

τ
e−u

)
x

= 0,

u(0) = u(1) = 0 ux(0) = ux(1) = 0

where, as usual, u = lnn. The value of the physical parameters used in our tests are
shown in Table 6.1.
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Case 1 γ nmin s

q = 0.001
1 0.32067 0.056134

y1 = 1/3, y2 = 2/3 1.1 0.30963 0.036519
1.2 0.29814 0.017763
1 0.32047 0.056234

y1 = 2/5, y2 = 3/5 1.1 0.30976 0.036551
1.2 0.29849 0.017848

q = 0.0001
1 0.32059 0.055704

y1 = 1/3, y2 = 2/3 1.1 0.30967 0.036105
1.2 0.29843 0.017403
1 0.32078 0.055725

y1 = 2/5, y2 = 3/5 1.1 0.31000 0.036159
1.2 0.29875 0.017473

q = 0.00001
1 0.32058 0.055662

y1 = 1/3, y2 = 2/3 1.1 0.30965 0.036059
1.2 0.29844 0.017363
1 0.32076 0.055680

y1 = 2/5, y2 = 3/5 1.1 0.30993 0.036105
1.2 0.29876 0.017432

Table 6.2. Case 1. Table of the minimum values of the charge density and of the parameter s
obtained for three different values of γ and q. Please notice that nmin decreases as γ increases.

Fig. 6.3. Quantum function (6.3) for different values of (y1, y2).

In the figures below we show the behaviour of the charge density for the approx-
imated quantum functions (6.3) and (6.4) at different values of the parameter γ, that
is γ = 1, 1.1, 1.2 (which allow to verify condition (2.12)) and for different values of q.
We just remark that (2.12) is not a numerical constraint, but comes out from the the-
oretical analysis of the problem. We have checked that, also for large values of γ, the
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Case 2 γ nmin s

q = 0.001
1 0.31947 0.055900

y1 = 1/3, y2 = 2/3 1.1 0.308415 0.036213
1.2 0.29676 0.017353
1 0.31917 0.055898

y1 = 2/5, y2 = 3/5 1.1 0.30792 0.036160
1.2 0.29597 0.017216

q = 0.0001
1 0.31947 0.055559

y1 = 1/3, y2 = 2/3 1.1 0.30841 0.035872
1.2 0.296752 0.017013
1 0.31917 0.055552

y1 = 2/5, y2 = 3/5 1.1 0.30791 0.058143
1.2 0.29598 0.016870

q = 0.00001
1 0.31947 0.055525

y1 = 1/3, y2 = 2/3 1.1 0.30841 0.035838
1.2 0.29675 0.016978
1 0.31917 0.055495

y1 = 2/5, y2 = 3/5 1.1 0.30791 0.035757
1.2 0.29598 0.016813

Table 6.3. Case 2. Table of the minimum values of the charge density and of the parameter s
obtained for three different values of γ and q. Please notice that nmin decreases as γ increases.

numerical results are still reasonable. Moreover, two different values of y1 and y2 have
been considered, namely (1/3, 2/3) and (2/5, 3/5).

A not negligible difference in the behaviour of the charge density between case (6.3)
and case (6.4) can be observed close to the boundaries. In particular large oscillations
of the solution at the boundaries can be observed in the Case 1. The amplitude of the
oscillations increases as q decreases and as γ increases. The origin of this phenomena
is not clear, it may be due to the intrinsic structure of the problem as well as due
to the incapability of the numerical code to carefully describe the stiff problem on
the boundaries. The problem of existence of solutions for the hybrid problem when
the boundaries behave classically remains, therefore, an open problem. No significant
differences in the behaviour of n throughout the domain can be observed. The position
of the interval (y1, y2) does not play any relevant role. Probably the two couple (y1, y2)
considered in this section are too close to each other to see remarkable differences. On
the other hand, for |y2 − y1| small enough and for the value of h we have fixed, the
quantum function is not able to reach the value 1 (see Figure 6.3) and then the hybrid
nature of our equation is lost. We observe that, for values of h big enough, the quantum
function reaches the value 1 also for smaller intervals |y2 − y1|, but condition (2.12) is
not necessarily verified.

In order to check that condition (2.12) can be verified, we introduce the parameter
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s as follows

s =
1

6

(
Tn(γ−1) − J2

n2

)
− ε2 max

x∈Ω

(Q′
q(x))

2

Qq(x)
.

Clearly, we expect s > 0.

The minimum values reached by n are shown in Tables 6.2 (Case 1)-6.3 (Case
2) together with the corresponding values of s assuming q = 0.001, q = 0.0001 and
q = 0.00001. We remark that the constraint n > n = Cm = 0.02 is verified in all cases
and the value of n decreases as γ increases, in both cases.
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