A new set theory

1. Abstract sets

Naive set theory seems, to "most of us mathematicians", to be a natural, indeed indispensable,
basis of mathematics. It is another matter when we come to formalized forms of set theory.
The most common reaction of the practicing mathematician to formalized set theory is that it
can safely be left to the logicians to worry about. This indifference to (any) formalized set
theory is based, in the first place, on a firm trust in a common, unanalyzed, naive intuition of
what is all right to do with sets and what is, exceptionally, not all right to do with them [?0
exhibited, for example, by van den Dries, at the start of the FOM exchange]. In the second
place, however, there is here a further element of refusal; namely, the refusal to go along with
the restrictions implied by any given formalism for set theory. Naive set theory is an
unprincipled assemblage of intuitions some of which are seen quite irreconcilable with each
other, once we approach the matter with the "pedantry” of the logician. The mathematician, on
his part, will not give up any of these intuitions, and finds it unproblematic how to resolve the
apparent contradictions, namely, mainly by ignoring them: saying that they occur in only

outlandish extremes that are never to be faced in (real) mathematics.

On the one hand, we have the basic and very clear intuition of the Cantorian universe (perhaps
more appropriately called the von Neumann universe [1? look up Hallett?]), the hierarchy of
well-founded regular (pure) sets. A very nice exposition and defense of this intuition is given
by Adrian Mathias in [27], "defense" indeed against the category theorists' attack. [3? Did
Mathias emphasize the fact that all set-theoretical constructions of concrete mathematical
entities, such as real numbers, complex numbers, functions on the reals, etc., fall completely
naturally into the Cantorian universe, with the possible exception of ordered pairs?]. The
standard formal systems, the main one being ZFC, formalize the language to reason in about

the Cantorian universe.

On the other hand, consider the following fragment of an imaginary mathematical text:

"Let G and H be arbitrary groups. We are going to describe the construction of a
third group out of G and H; this group will be denoted by GoH . The underlying set of GoH
is the intersection |G| N |H| of the underlying sets of the groups if this set is non-empty, and
itis {1} otherwise. The group operation on GoOH is defined as follows: ..."



[ don't have to finish the example (of course, this can be done in more than one
formal-set-theoretically rigorous way) to make the point that this construction is felt by "many
of us" to be an improper definition in group theory. The most immediate explanation of this
feeling is that, in a proper construction starting with two arbitrary groups, we cannot rely on
the relationships such as the equality or the lack of it of the elements of one of the groups to
the elements of the other. The two "arbitrary" groups are given "abstractly"; we know nothing,
and should not assume anything, about their elements, and by implication, about what the

overlap of their underlying sets is.

A more mathematical explanation is that the construction as described is not (cannot be)
invariant under isomorphism, a requirement that seems natural. G= G’ and H= H’' should
imply GoH = G'oH' which requirement clearly fails (must fail) in the above example
(G= G’ denotes: G is isomorphic to G’ ; see more on this below).

The connection between the two explanations is at the heart of what I have to say today. To
anticipate the main point: it is possible to set up a formal system of a "set theory'ﬁ in which (1)
it is impossible to define an operation G, H—> GoH of groups which is not invariant under
isomorphisms in the sense above, and yet, (2) all the usual isomorphism-invariant such
operations are definable.

Underlying modern-day abstract mathematics, such as group theory, there is an intuition of
"abstract set" as opposed to the "concrete sets" of the Cantorian universe. The elements of an
abstract set are featureless points. The idea is familiar as "sets with urelements"”. An ambitious
modern-day treatment of set-theory that mixes urelements with the Cantorian hierarchy is [73
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My aim today is to describe a formal the_ory”-of abstract sets. I will again act as a pedantic
logician, demanding severe restrictions on mathematical practice, which is based on naive set
theory. These restrictions will be quite different compared to, and probably even more
distasteful to the mathematician than, those presented by formal ZFC, say. I have no apologies
to offer other than to say that I hope the system reflects a reasonable, even if one-sided, view,
of the stuff of mathematics. To put it more positively, I think that the system exhibits an

objectively present and significant structure in mathematical reasoning.

The ultimate goal of the system is provide a genuinely non-Cantorian way, that is, a way that

has nothing to do with the "doctrine of size" [?4 Hallett], out of the impasse reached by
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Gottlob Frege as pointed out by Bertrand Russell.

Imagine a "set theory" (it could also be called a "class theory", or a "theory of totalities"), the
set theory I am trying to explain here, in which all sets are abstract: only urelements appear as
elements of sets. On the other hand, there are things, in fact a whole hierarchy of things, other
than sets. You are apt to say: this is cheating; I just call those other things other names, but in
fact I will smuggle in non-abstract sets as well. The reply to this objection is this: in the theory
in question, all groups without exception, all topological spaces, and all other "such things"
(note: a category is not such a thing!; see later) will have abstract sets as underlying sets. To
put it in another way: the grammar of the system will prevent contemplating a group whose
underlying "set" is anything other than an "abstract set", the only kind of totality that is called
set in the system. On the other hand, other kinds of totalities, in fact many kinds of totalities

other than sets, make an appearance in the system.'

2. Equality and identity

I will use "equality” in the specific sense we are accustomed to in mathematics, when we say
things like "such and such natural number is equal to 2 ", "two such and such sets of reals are
equal to each other, that is, are the same", etc. On the other hand, I will have to talk about
identity as a relation, as in "categories X and A are identical", in a more general sense, the
clarification of which sense being one of the main tasks at hand. This way of talking has its
difficulties. The phrase "categories X and A are identical" will actually mean something
weaker than "categories X and A are equal”, a fact one has to get used to. In each of many
specific cases, (abstract) mathematical practice has its established way of saying what I want:
in the example given, this is " X and A are equivalent categories”. I need the single term
"identity" to encompass several different specific meanings (further example: "bicategories X
and A are biequivalent”, whatever that means). [?5 Am I now doing what Wittgenstein
advises against: violating the ordinary use of a word?]. The word "equivalent" feels too neutral

for the purpose at hand.

From now, by 'set' I mean "abstract set".

In the present conception to be explicated now (this qualification is to be understood
throughout: I do not want to exclude the possibility of someone else using abstract sets in a

different way), in the realm of (abstract) sets, equality is restricted to one set at a time. Each
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set A comes with its own equality predicate =502 binary relation defined for elements of A
only. It is meaningless, rather than false, to say that a= AP for instance, for an element b of
an unspecified set, say, and an element a of A . Itis also meaningless to ask, with a and b
as before, if a=b, with = appearing without a subscript, simply because there is no such
primitive = in the system. In short: a= aP is meaningful (and has a truth-value such as true
or false) if and only if a and b stand for elements of A.

For each set A, is assumed to be an equivalence relation, or, in an alternative

“A
formulation, a partial equivalence relation (PER) (familiar from Boolean valued sets [?6] and

"realizability universes" [?7]) (the latter misses the reflexive condition).

We reject (once again, within the present conception) the view that the totality of
mathematical objects has a meaningful global equality relation on it. Equality is "expensive";
we can afford it in small bites only, on each set separately.

In type theory, it is customary to restrict meaningfulness of relations to entities that are
assumed to be of definite types. For instance, in second order number theory, writing acA
assumes that a is of the type "integer", A is of the type "set of integers". Here, we treat

equality in a similar, strictly typed manner.

We enforce said restrictions through an imposed grammar. This has the general character of a
theory of types. In one version of the System (I will allow myself to write "the System" for the
thing I want to explain), there is a type called SET ; we have variables A, B, ... of type
SET ; intuitively, A, B, ... range over (abstract) sets. We write A€ SET to declare that the
variable A is of type SET . (Within the system, the symbol € will only be used for variable
declaration.) Then (and this is the essential "new" [?8 suitably understood: refer to Martin-Lof]
grammatical feature in the System), we have the dependent type E(A) of elements of A:
the variables of type E(A) are meant to range over the elements of A . Thus, acE(A) is
to mean that a belongs to the set ){ (There is no harm in abbreviating acE(A) to acA).

What is important here is that acE(A) is a variable declaration, rather than a proposition, in
the System. For instance, one cannot deny (grammatically, that is) that acE(A) ;

—(a€E(A)) isungrammatical. In contrast,



is a grammatical, in fact, a "true", proposition.

The last displayed formula revals much of the basic syntax of First Order Logic with
Dependent Sorts (FOLDS), the restricted version of first order logic underlying the System.
FOLDS is a general-purpose language, much like ordinary first order logic. Just as in the case
of the latter, we have a variable signature, which is, however, something slightly more
structured than an ordinary first-order signature: it is a speciél kind of category. The main
point of the semantics of FOLDS is the concept of identity associated with every signature;

more on this later.

I talked about FOLDS at the 1995 Haifa meeting of the ASL. The paper in the proceedings of
the meeting, published in 1998, gives a reasonably complete description of FOLDS. There is
also a manuscript of a monograph containing detailed work on FOLDS. It is available from my
website, which was accepted for publication at one point, but which then I withheld because I
thought I could make it better-looking.

There is precious little one can say about abstract sets without things connecting them. These
things will be the functions, a new primitive of the System. (Of course, we are now taking the
hint from Category Theory, in which sets form a category; but we do not have to formally
bring in categories at this point). Having in mind the word "arrow", abbreviated as A in the
notation, for "function", we display the start of the grammar of functions by the variable
declaration

A, BESET ; feA(A, B)

which declares £ to be a function from the set A to the set B. This features a dependent
type A (A, B) depending on two variables A and B.

One way of proceeding is to use the kind (type-heading) Apply , subject to the grammar
A, BESET ; feA(A, B) ; acE(A) ; beE(B) ; teApply(f, a, b)
which is to read as:

T is a witness to the fact that, applying the function £:A > B to the element a of

A , we obtain the element b of B".
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For A-=>B,thatis, for (A, BESET; feA(A, B)),weuse f’a=b as an abbreviation for

JdreApply (£, a, b) . T (T is "true", the nullary propositional connective).

(This example also shows how FOLDS handles relations and operations in the theory via

types. Strictly speaking, the relation R should be, and in fact is, treated similarly.)

Then, as an example, the fact of the existence of the composite A —£:££9 C of the functions

a-5B9¢ willbe expressed by the sentence

VA, B, CESET.VfeA(A, B) .VgeA (B, C) .dheA (A, C) .
VaeA) .VceB) . (h'a=c¢«—>3JbeE(B) (f'a=b & g’ b=c))

f
Since equality of parallel functions A__:B can be defined by

g

f=q %ﬁ-y VacA.VbeB(f'a=b¢«—g'a=b) ,
we can easily state (as an axiom) the fact that the composite is uniquely defined.

I do not need to go on like this. Although not formulated in the language used above, topos
theory, based on the notion of elementary topos [79], shows that a considerable amount of set
theory, including nth order number theory for any finite n, can be developed [?10] in the
above described context. In fact, a good intuitive basis for understanding what happens in
topos theory is to pose oneself the problem of developing the theory of abstract sets and

functions within the constraints outlined above. [?11: Lawvere's "abstract sets"]

For instance, consider the fact that the Cartesian product AXB of sets A and B cannot be
defined as the set of the ordered pairs (a, b) with a€A, be B simply because, whatever
they are, ordered pairs are not urelements. What one can do is say that, whatever C=AXB is,
it comes with two projections Ty C—A, Mg C—>B,the maps (a, b)a,

(a, b) b, which together are recognized to have something called a universal property in

Category Theory, a property that can be written down in our language.

We have arrived at an interesting point. Even without having fully written down the "category



theoretical” definition of (Cartesian) product, it seems clear that the product AXB can never
by such means be defined uniguely, since whichever set C, with appropriate 7, , Mg
qualifies, if another set D isomorphic to C,in notation D= C (meaning that there exist
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commute), then D will also qualify as the product (with Mye g £ as the new
projections). In general, a "category theoretical” definition of a set, in terms of some given
sets, and possibly also some given functions, will define its object at most up to isomorphism.

On the other hand, the product is, as a matter of fact, defined uniquely up to isomorphism.

Which brings us to the recognition that not only we did not need "the" usual equality of sets in
our theory, but in fact, we discovered another notion of identity, that of isomorphism, derived

from, in fact, defined in terms of, the primitives, which is the operative concept of identity for
sets.

It is instructive to go through the steps to recognizing that "the usual" definition of equality of
sets, the one which defines equality in terms of extensionality, cannot be grammatically stated
in the System.

3. Totalities of sets: categories.

We want to go beyond sets: I want to consider various totalities of sets. The question is: "what

kind of totality do (all) sets form?"

One important element in this quest is that structured sets are also to be included here as
"sets": we want to consider totalities of sets structured in any one of many specific ways: we

want to consider the totality of groups, that of topological spaces, etc. This requirement calls



for a suitably general concept of totality.

Secondly: the totality of sets is not a set. Not, in this way of thinking, for a reason like "there
are too many sets for them to form a set", but rather because there isn't, or does not seem to

be, a reasonable notion of equality of sets.

Finally: the kind of totality sets form is essentially revealed by the way we talk about sets,

samples of this talk having been shown above. It is now a matter of a good act of abstraction
to find the right concept.

The concept of category is the answer: sets form a category.

The concept of category was introduced by S. Mac Lane and S. Eilenberg in 1945 [?12], and
its use has become widespread in "abstract" mathematics.

(Some remarks on the notion of category compared to the language exhibited above for sets
and functions. Talking about a category, we do not use elements of an object (set in the
category of sets) as a primitive as we did above, and we do not use application of functions to
elements. Instead, we use composition of functions (arrows) as primitive. In the category of
sets, elements of as set A can be recovered as functions a:1 - A , where 1 is the "terminal"

object (one-element set), and application reduces to a special case of composition;

-8 oa T .5 fa =foa.)

As a first element of the "foundational reform"(ulation) I am carrying out, the definition of the
concept of "category" is rewritten, in the form of a structure for a particular FOLDS-signature
denoted ‘Ccat , with the intention that talk about a category should be framed within _FOLDS
over the signature Ecat . Section 8 of my above-mentioned paper gives Ecat (see top of page
172 ﬁcat is a very small, five-object category), along with examples of statements of the
language of FOLDS. All the axioms for "category" are (can be) stated in FOLDS over Ccal :
In particular, one never uses equality of objects, and one uses equality on arrows only if those

arrows are assumed parallel.

Let me mention that the notion of ECat-equivalence. the canonical concept of identity
associated with the signature ‘Ccat , coincides with the established notion of equivalence of



categories for the case when the ﬁca{~structurcs are in fact categories. This is a first instance

in a series of facts that show that FOLDS-equivalence works. This is a welcome circumdtance
h‘----.__‘___h'____..——

since
The notion of isomorphism of objects is defined in any category.

The foundational reform continues with increased radicalism in regard to the notion of functor,
the straighforward notion of structure-preserving map of categories. Because of the fact that
isomorphism is the now-accepted notion of identity for objects in a category, any operation
that results in an object should determine that object only up to isomorphism (as the operation
of (categorical) product does) (this is an instance of the Leibniz rule of the indiscernibility of
identicals). This makes it necessary to change the usual notion of functor, to something that
determines its value-object up to isomorphism only. It is not entirely obvious how to do this
(although it is not really difficult either) so that one retains all the essential features and uses
of functors. This is described in section 5 of loc.cit. The full theory, set in the context of set
theory without choice, is in the earlier paper [?M] whose title talks about avoiding the axiom
of choice. Indeed, the main point is that, using anafunctors (as the new concept is called), one
avoids the otherwise ubiquitous use of the Axiom of Choice in category theory, a use that may
be said to vitiate son'ié'ai?:tlaims as to the canonical nature of categorical constructions. It is to
be noted that the axiom of choice, in a form in which we are supposed to pick a single object
out of a totality of objects, simultaneously for all totalities from a given family, cannot even be
stated in the System; thus, we'd better be able to do what we do in [?] if we wish to entertain

any hope to do category theory in the new System.

Faithful to the spirit of formal uniformity, anafunctors too are (can be) presented as structures
for a suitable FOLDS signature: see section 10, p.183, of loc.cit.
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