LL‘V%}M&% )Ls_c) ' C (;‘\\ml C\U\f\(.e\{\- L&
E Ss‘cx\j{- .i\'\ h C A O v’j t-/l J -\',1“,\ H(;\( '\\(.,\h«g.\('(,\
Chapter 3 MIT Press 1949 [pepectnd - 2002

On Structuralism in Michael Makkai \ _
Mathematics Eo\ £ox B solase il

Pca\L\ K‘Oow\
R e
k"dkr*\r\ \r'\u ww

For some years, I have been pursuing a program I call the structuralist
foundation of mathematics (SFM) (Makkai 1996, 1997, 1998, to appear).

- SFM is based on category theory, a branch of mathematics founded by
Samuel Eilenberg and Saunders Mac Lane about fifty years ago (Eilen-
berg and Mac Lane 1945). William Lawvere’s work (e.g., Lawvere 1969)
has made category theory the basis of a new foundational approach to
mathematics and logic. Lawvere’s categorical logic (e.g., Lawvere 1970)
and Lawvere’s and Myles Tierney’s topos theory (Lawvere 1971), subjects
that have been extensively developed, are integral parts of SFM.

In relation to other approaches to foundations within category theory,
the distinguishing features of SFM are, first, that its aims are global, en-
compassing the totality of mathematics, and, second, that it is committed
to a total linguistic articulation in the spirit of Gottlob Frege. Today, we
express the latter commitment by saying that a foundational proposal
has to be presented in the form of a formal theory. At the same time,
SFM intends to articulate, intuitively and philosophically, a universe of
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discourse behind the formal theory. It turns out that the latter articulation
involves a fairly novel mathematical metatheory. .

There is a structuralist philosophy of mathematics behind the program
of SFM. In this chapter, my aim is to make an initial contribution to the
statement of this philosophy. This structuralism, it seems to me, is quite
different from the structuralism found in the literature of the philosophy
of mathematics. The basis of this difference is, of course, the almost total
lack of attention paid by the philosophical literature to category theory.
Charles Parsons has argued, somewhat tentatively, that structuralism may
be used as a philosophical justification of the classical Cantorian iterative
set theory (Parsons 1990). The structuralism I have in mind involves a
radically different “‘set theory,” a new conception of mathematical total-
ities, the formal explication of which involves concepts of category theory,
(some of which—higher dimensional categories—are being developed at
present). I see mathematical structuralism as identical to a specific con-
ception concerning mathematical totalities—not something that can exist
independently of any such conception and can then be applied to deal
with already given such conceptions. According to a pervasive complaint
(see Parsons 1990) about structuralism, it cannot be an independent
foundation, since it relies on the concept of structure, which, in the final
analysis, is a set-theoretical concept. This complaint also assumes that the
nature of set theory is given before we can discuss what structuralism is.

In this chapter, I will argue for the desirability of a comprehensive
language of mathematics in which only structural properties of mathe-
matical objects can be expressed. The discussion intends to lead to the
conclusion that “structural properties” are identical to “mathematically
meaningful properties.” Paul Benaceraff’s classic paper, “What Numbers
Could Not Be” (Benaceraff 1965), is in fact a sustained argument to the
same end: it is a plea for a language in which one talks about numbers
only as numbers. Section 3.1 of the present chapter is a commentary on
the first two sections of Benaceraff’s paper. What separates my views
from Benaceraff’s is that I believe that the articulation of the desired
structural language is possible. As a matter of fact, what Benaceraff says
in his third section entitled “Way Out,” especially the subsection “Iden-
tity,” points importantly to what I consider to be the solution (compare
the references to my work). However, in his subsequent paper “Mathe-
matical Truth” (Benaceraff 1973), Benaceraff seems to have lost faith in a
structuralist program, at least in the radical form I am advocating. In
section 3.3 of the present chapter, I will try to show that the “standard
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semantical picture of the world,” to which Benaceraff is (essentially)
committed in his 1973 paper, is in fact fictitious. This conclusion will
involve the thesis that the nature of mathematical objects is not funda-
mentally different from the nature of myriad nonmathematical everyday
abstract objects. The reality of abstract objects is grounded in a structural
language that, although referring ostensibly to concrete, representing
carriers of the abstractions, manages to unambiguously refer to the
abstract objects, by the discipline of staying within the framework of
concepts that are meaningful for the abstract objects as abstract objects.
In this case, reality is grounded in language.

Makkai 1998 is a semitechnical introduction to the mathematical work;
it also contributes to explaining the philosophy of structuralism as I
understand this term. However, there is much more to be said about this
subject, to which I hope to return another time.

3.1 Reality through Language

In his famous 1965 paper, “What Numbers Could Not Be,” Paul
Benaceraff describes two children, Ernie and Johnny, “sons of militant
logicists,” who, before learning about numbers, how to count, and so
on, had been instructed in set theory in the standard Zermelo-Fraenkel
formulation. After that instruction, the parents “needed only to point out
what aspect or part of what the children already knew, under other
names, was what ordinary people called numbers” (p. 48). Benaceraff
goes on to describe sow this pointing out took place in the case of Ernie;
but he temporarily and cleverly conceals what actually took place in the
process. The story looks like the familiar one, the one of defining the
natural numbers as the finite von Neumann ordinals, and defining zero
and the successor operation in the familiar ways—the one we teach now-
adays in set theory courses. As Benaceraff puts it:

To recapitulate: It was necessary [for a proper education in arithmetic] (1) to give
definitions of 17, “number”, and “successor”, and “+", “x", and so forth, on
the basis of which the laws of arithmetic could be derived; (2) explain the “extra-
mathematical™ uses of numbers, the principal one being counting—thereby in-
troducing the concept of cardinality and cardinal number. I trust that both were
done satisfactorily, that the preceding [description of Ernie’s education] contains
all the elements of a correct account, albeit somewhat incompletely. (p. 54)

Then we learn that Johnny underwent a similar education.
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Delighted with what they had learned, they started proving theorems about num-
bers. Comparing notes, they soon became aware that something was wrong, for a
dispute immediately ensued about whether or not 3 belonged to 17. Ernie said that
it did, Johnny that it did not. Attempts to settle this by asking ordinary folk (who
had been dealing with numbers as numbers for a long time) understandably
brought only blank stares. (p. 54)

At this point in the story, we learn what exactly happened in the respective
educations. Indeed, as we thought, Ernie was taught that the natural
numbers are (Johnny) von Neumann ordinals. Johnny, on the other hand,
was told that they are the (Ernie) Zermelo numerals; that is, zero is the
empty set, and the successor of n is {n}, the singleton whose unique ele-
ment is 7.

After reflecting on the dilemma, Benaceraff arrives at the conclusion
that

3 and its fellow numbers could not be sets at all. (p. 62)
Along the way, he says:

But if, as I think we agreed, the account of the previous section [in which the set-
theoretic reconstruction of the concept of number was related, albeit with what the
numbers and their operations actually were left unspecified] was correct—not only
as far as it went but correct in that it contained conditions which were both nec-
essary and sufficient for any correct account of the phenomena under discussion,
then the fact that they disagree which particular sets the numbers are is fatal to the
view that each number is some particular set. (pp. 55, 56)

Later:

Furthermore, in Fregean terminology, each [of the two] account([s] fixes the sense
of the words whose analysis it provides. Each account must also, therefore, fix the
reference of these expressions. Yet, as we have seen, one way in which these
accounts differ is in the referents assigned to the terms under analysis. (p. 56)

And:

Therefore, exactly one is correct, or none is. But then the correct one must be the
one that picks out which set of sets is in fact the numbers. We are faced with a
crucial problem: if there exists such a “correct” account, do there also exist argu-
ments which will show it to be the correct one? (p. 57)

Casting his net wider, he then probes the Fregean account according to
which numbers are predicates or classes, and finds it wanting, for expected
reasons related to the paradoxes, but also because there is no grammatical
evidence that seventeen is a predicate of classes (‘has seventeen members”
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is obviously such a predicate, but that is something else than to say that
seventeen is such a predicate). He then summarizes:

If numbers are sets, then they must be particular sets, for each set is some partic-
ular set. But if the number 3 is really one set rather than another, it must be pos-
sible to give some cogent reason for thinking so; for the position that this is an
unknowable truth is hardly tenable. ... There is no way connected with the refer-
ence of number words which will allow us to choose among them, for the accounts
differ at places where there is no connection whatever between features of the
accounts and our uses of the words in question. . .. [A Jny feature of an account that
identifies 3 with a set is a superfluous one, and therefore, 3 and its fellow numbers
could not be sets at all. (p. 62)

Benaceraff emphasizes that for the purposes of explication, one may very
well wish to temporarily identify numbers with particular sets and show
that we can do with the sets what we now do with numbers. However, as
he says:

It is ... obvious that to discover that a system of objects will do cannot be to dis-
cover which objects the numbers are. (p. 68)

Benaceraff mentions a result due to G. Takeuti according to which set
theory is in a strong sense reducible to the theory of ordinal numbers.

No wonder numbers are sets; sets are really (ordinal) numbers, after all. But now,
which is really which? (p. 68)

What are we to make of Benaceraff’s argument?

The first reaction may be to say that the argument invalidates the usual
set-theoretic treatment of numbers. I want to argue that this is not so—
that in fact, the set-theoretic Platonist engaged in the foundations of
mathematics and Benaceraff can agree without compromising their posi-
tions in any essential way. A perfectly satisfactory position the standard
Platonist may adopt seems to be that, indeed, set theory is incapable of
telling us what the numbers are; but in fact, it does not aim at doing that
in the first place. What set theory wants to do, and does, is explain what
we mean when we talk about numbers. It gives us a systematic way of
translating “ordinary”” mathematical statements involving numbers into
set-theoretic statements, and it provides reliable methods for proving and
refuting such statements. Indeed, and this is an important additional fact
contributing to the explanatory power of set theory, it does its work in a
remarkably simple particular manner, by identifying numbers and other
mathematical objects as certain sets, such that the original statement—
say, about numbers—is translated into its set-theoretical version by sim-
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ply replacing reference to the mathematician’s numbers by reference to
their set-theoretical surrogates. But note, set theory does this without
creating any prejudice concerning the issue of what the numbers really are,
or, for that matter, whether they exist at all! Further, standard set theory
can do more than that: it can give a theory of what constitutes a satisfac-
tory surrogate for the notion of number. This exemplifies a very impor-
tant point about a good foundation: namely, the requirement that it should
have the tools to reflect about itself to the largest extent possible. How set
theory does this in relation to the concept of natural number will be dis-
cussed below, although the facts are familiar; I have in mind the (second-
order) Peano axioms for the natural numbers, and their categoricity.

I conclude that from the set-theoretic point of view, Benaceraff’s argu-
ment is not a problem. In fact, it may be interpreted as a support of the
standard foundations, arguing that set theory is needed precisely to pro-
vide the right (because true) paraphrase of the pretheoretical language
concerning numbers, and other dubious entities like them, a paraphrase
that ensures the correctness of the language globally, without committing
its user to any ontology—in fact, freeing the user from all commitment to
any ontology!-—concerning the “ordinary mathematical objects’ such as
numbers. Of course, it does this at the obvious price of exacting the
ontological commitment to sets themselves; but who is unwilling to submit
to such a discipline when the resulting advantages are as great as they in
fact are? The set theorist treats numbers as second-class existents, the first-
class existents being the sets; numbers are the results of conventions,
which, by their being conventions, are arbitrary.

Incidentally, I find that the response to ‘““Benaceraff’s challenge” in
Penelope Maddy’s book Realism in Mathematics (Maddy 1992), pressing
as it does the interpretation that numbers are properties (see p. 86), is on
the wrong track. If set theory does anything well, then that is the job of
interpreting mathematical entities as objects of the theory, that is, sefs.
Interpreting entities as metatheoretical ones such as properties is in-
herently inferior to interpretation-as-objects. Also, I do not think that
Maddy is answering Benaceraff’s arguments against precisely this move.

What, then, is the force of Benaceraff’s argument?

As I said, the set theorist and Benaceraff may agree on the status of
numbers to the effect that numbers as first-class objects either do not
exist at all, or they do, and they are not sets; in short, they may agree on
Benaceraff’s main conclusion that numbers are not sets. But it is equally
clear that they do not agree with respect to their overall positions. The
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difference is Benaceraff’s implicit commitment to the thesis that rhere
must be an account of numbers that treats them as first-class entities, that
treats numbers as numbers.

Admittedly, this thesis is to a large extent normative; it may be ignored
by those who do not care for the underlying imperative. The set theorist
may just say, “Go ahead, try to find your precious account of numbers,
but I think you are wasting your time; I personally do not care a bit for it,
even 1f it can be found, because my account of number-talk is perfectly
sufficient.” Is there anything more compelling here than a possibly inter-
esting, but ultimately unnecessary, philosophical suggestion? I believe the
answer is yes; 1t is the reality of the language of mathematics as we find it
in practice.

There 1s a conflict between the language of mathematical practice (the
coarse talk) and the language of set theory as it applies to numbers (the
refined talk). Interestingly enough, this conflict is not that set theory is
unable to express things that the practitioners want to, and can, express,
which would be the natural thing to expect in a relationship between
an existing practice and an a posteriori foundational reconstruction of
that practice. The conflict is of an opposite nature: the practitioners, after
acknowledging that the refined talk handles nicely what the coarse talk
did maybe not so nicely, complain that the refined talk also introduces
nonsense, phrases like *“3 belongs to 17,” **3 equals the set whose elements
are the empty set, the singleton of the empty set, and the set whose ele-
ments are the latter two sets,” and the like, which clutters up the lan-
guage. The practitioner immediately recognizes what is and what is not
meaningful talk about numbers; there cannot be any doubt about the
objective reality of the distinction. And the practitioner demands, or at
least desires, that a foundation be provided that observes this distinction.

Benaceraff does not say what I just said; maybe he finds it unnecessary
and/or unjustifiable to say it. But I find places in his narrative where he
touches the ground of mathematical practice. In one of the quotations
above, the ordinary folk are said to be dealing with numbers as numbers.
This place in Benaceraff’s text indicates the acceptance of the practice of
mathematics, the locus of numbers as such, to be the final arbiter con-
cerning the i1ssue when a proposed language of mathematics is right. The
little word “*as™ is the Archimedean fixed point on which the argument
pivots. Another of the quotations contains the reference to “our uses of
the [number] words™; these are clearly the established uses in the practice
that excludes the “nonsense”” I mentioned above. I feel that these in-
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stances of reliance on mathematical practice are the source of the strength
of Benaceraff’s argument.

It should be clear by now that I want to turn the issue at hand into one
concerning language, from the ostensible one that is about ontology. True;
I think the issue is not what numbers are, but what the nature of numbers
is, nature that can only be revealed in the language of the practice dealing
with numbers. The question “What are numbers?” is inherently defective.
It accepts only a certain kind of answer, one that may be impossible to
provide; it presumes that we can point out a domain of things that are
already familiar and can proceed to narrow down that domain to arrive at
the precise domain of the numbers. The question “What are numbers?”
has a reductionist bias. We will not likely get to know the numbers by
coming to see that they are just like some other things that we already
know; it is quite possible that they are unique in their essential nature.
What that nature is, is the good question. And, we then must realize, that
nature is to be found in the only tangible reality that contains the num-
bers, the language of the practice dealing with numbers.

There is natural language as it is found in practice; and then there is
formal language that is the result of philosophical reflection on natural
language and of a subsequent deliberate act of articulation.

Our problem, then, is this: is it possible to articulate a language of
mathematics in which we talk about numbers as numbers?

3.2 Structures

Let us get closer to the way mathematicians talk about, and use, numbers;
in this instance, by “number” I mean “natural number” (any of 0, 1, 2, 3,
etc.). I will invoke the “Ideal Mathematician™ (I. M.), a creation of Philip
J. Davis and Reuben Hersh (1980) (a delightful concept indeed!); I will
construct the “ideal belief” (not necessarily the best belief; see Davis and
Hersh 1980), I. M.’s belief, concerning numbers. I. M. says:

I M. AllT need is a system (set) N of entities called henceforth the
(natural) numbers, with a distinguished element called zero (0), a dis-
tinguished unary operation giving the successor S(n) of any number n,
such that 0 is not the successor of anything, S is a one-to-one function,
and the Principle of Mathematical Induction is valid: given any property
P( ) of numbers (equivalently, any subset P of N), if P(0) holds (0 € P),
and Vne N. (P(n) — P(S(n))), then all numbers have the property P
(Vne N. P(n)).
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[. M. is familiar with logical notation. Our undergraduate students make
mistakes with the quantifiers, but they know them! Frege’s reform of the
language of mathematics has percolated thoroughly through everyday
usage in mathematics. To continue the imagined quotation from I. M.:

[. M. There is an axiom of set theory asserting that such a system exists.
Given such a system, [ can do everything you have ever thought of or will
ever think of doing with numbers. One such thing is defining by recursion
a function one (or more) of whose variables is ranging over numbers. |
mentally fix such a system, and will always refer to this one when I think
of numbers. That’s all there is to natural numbers.

Above, 1. M. described a more or less typical kind of structure; in this
case, an entity of the kind, a structure of the given kind, is a set with a
distinguished element and a distinguished unary operation, satisfying
certain definite conditions. I. M. claims that all he needs is a Peano sys-
tem, as the structures of the described kind are called (although it was
Richard Dedekind who invented them).

Let me say something that may be partly new for I. M. The definition
of “"Peano system”™ may be given equivalently in the following way.
(N.0,S), where Nisaset,0e Nand S: N — N (f : A — B means that
/ is a function with domain equal to the set 4, and range contained in the
set B; I. M. is familiar with this notation), is a Peano system if and only if
a certain condition holds. Before I give it, for the uniformity of notation,
instead of 0 e N, I will write 0 : r — N. Here ¢ is any fixed one-element
set, (say, 1 = {J}, but it does not have to be that); note that a mapping
from ¢ to any set A is really the same as an element of that set, the element
which is the value at the unique element of ¢. The condition for (N, 0, S)
to be a Peano system is this: given any (4,a:t — A, f : A — A) (thus, so
far, we have something that is “like”” our system (N, 0, S)),

there is a unique function g : N — A such that the diagram

0 S

t N s N

| -

[ - A A
a i

commutes.

For example, when we first apply S, and then g (on the right), the effect is
the same as when we first apply g. and then /' (this is the commutativity of
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the right-hand square); also, the left vertical i denotes the one possible
function from ¢ to 7, the identity function. When we rewrite this in “alge-
braic notation,” we get this:

g(O)=a(here,IreverttoOeN,aeAfromO:t—>N,a: t— A)
g(S(n)) = f(g(n)) (neN).

We realize that, in case (N, 0, S) is the Peano system that I. M. fixed in his
mind, g(n) is equal to

fUUC. fla)..) = f"(a),

T

T
n
nil l

the result of applying f to a n-times. Really, g is defined by a very special
recursion, iteration. The fact that we thus have an equivalent definition is
to say that the Principle of Iteration is equivalent to the Principle of
Induction when the latter is bolstered by the first two Peano axioms.

This alternative definition of “Peano system” is due to F. W. Lawvere.
I. M. should now sit down and prove to his satisfaction that indeed, we
have an equivalent definition. Of course, he is allowed to use set theory; it
is unlikely that he is unfamiliar with the needed tools.

This definition is nice for instance because it is more compact than the
traditional one. There is no talk about S being one-to-one and missing 0
in its range; also, it is uniform in the sense of being ‘“diagrammatic,”
using sets and functions, but not properties (subsets). But really, the nicest
thing about it is that it has a pattern. It looks like we can talk about a
morphism between any two “such things,” (B,b:t— B,h: B — B) and
(Aya:t— A, f: A— A) (let us call “such things” pre-Peano systems), as
being a map g : B — 4 making the diagram

l‘th>B
| 5=
t s A A

commute; and then we can say that a Peano system is distinguished
among pre-Peano systems by the fact that it has exactly one morphism to.
any pre-Peano system. (An “impredicative” definition if there ever was
one!)
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Let us probe 1. M.’s convictions about the notion of number.

0. You said that you fixed any Peano system for the purposes of
“number.” Does it not matter which one you have chosen? To put it dif-
ferently, suppose you are probing some property P(n) of the natural
numbers, and you are not sure whether the property is universally true or
not of numbers. You discover that it is indeed true in your chosen system.
How do you know that it would have turned out to be true if you had
picked another Peano system as your numbers?

[ M. Aha! Good question. Well, the answer is simple. If I have dis-
covered that the natural numbers have that property you have in mind,
then I must have inferred this on the basis of the general principles of

mathematics (set theory if you wish), and on the basis of the definition of

“Peano system’’; as | say, [ make a point when I reason about numbers of
not using anything else than the defining properties of ““Peano system.”
O. But wait; does everybody make such a commitment? Maybe I ex-
plicitly refuse to make such a commitment; I simply take my system of
natural numbers, a Peano system, and by direct examination, mixed with
ingenuity, I see that in my system P(n) in fact holds for all n. I tell you
about this; I describe to you how I directly examined my Peano system.
You said that you can do anything that I can do with numbers. Are you
sure that you can now also show that all n satisfy P(n), given that in effect
you have committed yourself to using only methods of proof that apply to
all Peano systems?

I M. How clever—that is a good question indeed. But there is an
important fact here: actually, any property that is verified in one Peano
system 1s going to be true in any other. More than that: any property
of any Peano system as a whole will also be shared by any other Peano
system. Take the example that the underlying set of a Peano system
(the set of natural numbers, in any one interpretation) can be mapped in
one-to-one fashion into any infinite set. This is a fact; but even if I did not
know that, but knew that it was true for one Peano system, I would know
that it was true for any other. The reason is that any two Peano systems
are isomorphic; there is a one-to-one and onto mapping from one to the
other taking the zero of one to the zero of the other, and taking a pair that
is in the relation of one term'’s being a successor of the other term into a
pair in the same relation in the other. Isomorphic structures share all
conceivable properties.

Q. That is indeed interesting. I can actually see why any two Peano
systems are isomorphic;: this is quite easy using Lawvere’s definition. We
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have a morphism from one to the other, and from the other to the one;
moreover, their composites are self-morphisms of the systems, and thus
they must be identities; I really have an isomorphism, because I have an
invertible morphism; great! But how do you know that isomorphic struc-
tures share all properties? I can see this holds for the one you just quoted;
this is quite obvious. But why so in case of any conceivable property?
Anyway, you cannot be quite right. Look: suppose you take the property
that the empty set ¢ is an element of the Peano system. This is clearly not
going to be shared by all Peano systems; I can willfully make this both
true and false by simply exchanging elements, clearly not disturbing the
fact that I have a Peano system! Something is wrong.

I. M. No, no! Of course, when I said “all conceivable properties,” I
meant ““all meaningful properties,” “‘all properties of Peano systems as
Peano systems.” ¢, being an element of the Peano system, is not a
meaningful property of Peano systems at all; no sane person would con-
template such a property.

It is clear that communication is breaking down at this stage. . M.
cannot really say what he means by a meaningful property of Peano
systems, although he can unerringly say of any particular proposed
property whether it is meaningful or not. Of course, he could say that
a meaningful property is, by definition, one that is invariant under iso-
morphism: if it holds of one structure, it holds of any other that is iso-
morphic to the first. But that begs the question; how is he so sure, and so
quickly, when he is presented with a particular property? It is important
to see that he can make the judgment in the cases when he has no idea
whether the property in question does in fact hold in Peano systems.
There is, in fact, a more basic problem. Defining ‘“meaningful”’ by refer-
ring to the condition of invariance under isomorphism, one would be
making an inadmissible move. The meaningfulness of a phrase should be
a matter of grammar, not of a question of a possibly difficult-to-verify
mathematical fact. In fact, it is demonstrably undecidable whether a
property formulated in set theory of Peano systems is invariant under
isomorphism. : -

I. M.’s colleague, 1. L., a student of Alfred Tarski, overhears the dis-

- cussion and joins in.

I L. This is a question of logic. The meaningful properties of structures
are the logical properties. You have in fact several precisely and explicitly
defined logical languages in which you can formulate properties of struc-
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tures, and you can rigorously show that these properties are invariant
under isomorphism. The most basic of these languages is first-order logic.
As Tarski has shown, we have a precise notion of truth for sentences of
first-order logic in structures of the right kind (interpreting all the symbols
in the sentence in question), defined globally for the whole language of
first-order logic at once. When for instance we were asking whether P(n)
held for all n, we were asking whether the Peano system (N, 0, S) satisfied
a sentence VnP(n), where P(n) is a first-order formula expressing the
property P(__), of course provided that such a formula is available. As a
matter of fact, in most cases of interesting Ps it is not available; in most
cases, it would become available if we added new operations such as
addition and multiplication to the primitives of the structure (N, 0, .S).
Now, the important point is that, with the help of the Tarski truth-
definition, there is a rigorous proof of the fact that properties given by
first-order sentences are invariant under isomorphism; it is a proof by
induction on the complexity of the sentence in question. Thus, there is a
partial answer to the question “What are I. M.’s meaningful properties?”;
they include the first-order properties. It is true, however, that most
mathematically interesting properties of structures—and now I am talk-
ing about not just Peano systems but all the various structures mathema-
ticians use: groups, rings, topological spaces, and so on—are in fact not
expressible in first-order logic. The way out is that there are other, more
expressive languages for which the Tarskian way of defining truth is also
available; now the truth-definition may be more conspicuously dependent
on set theory, but in fact, it was so dependent already in the case of first-
order logic. These languages include second-order logic, higher-order
logic, infinitary logics, logics with generalized quantifiers. It turns out that
the proof that a property expressible in any of these languages is iso-
morphism invariant is a very straightforward structural induction on the
complexity of the expression involved.
Q. May we then say that the idea of a ““meaningful property of a struc-
ture” is ultimately an open-ended one; there is no uniform syntactical
criterion that describes all the meaningful properties that mathematicians
contemplate?
I L. Yes, this is correct; there are large classes of explicitly described
properties that are meaningful, for which we indeed have a proof in
advance that they are isomorphism invariant, but it seems rather impos-
sible to give such a class that would be all-encompassing.
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I M. Mind you, this is not a problem in practice. I am working in group
theory, and I have never yet asked myself whether something somebody
proposed or asked about groups made sense; it simply always did when
the person was mathematically competent, even on a minimal level. And
when somebody proposes something like “Is the monster-group equal to
the first prime number greater than 10'°°?’, then I know that this is
meaningless, you are comparing apples and oranges. Mind you, when you
ask “Is the monster-group the same as the largest sporadic simple group?”,
you are not asking about a literal equality of two objects; you are asking

whether those two things are isomorphic. You see, provided you have

identified the monster-group as a specific set, the set-theoretic statement
“The monster-group is equal to the first prime number greater than
1019 js meaningful as a set-theoretic statement, but not as a mathemat-
ical statement.

I will summarize by saying that we have a tantalizing two-faced situa-
tion within the set-theoretical foundation. On the one hand, through the
process of self-reflection it provides glimpses, collectively called “logic,”
of large connected parts of a language of mathematics that treats numbers
as numbers, and in general, structures as structures inasmuch as it allows
only meaningful propositions about those things. On the other hand, it
does not give an articulated and complete statement of what such a lan-
guage, Logic, is; rather, it makes it look likely that such Logic does not
exist. I would like to obtain a foundational language in which all well-
formed propositions are meaningful.

3.3 The Nature of Things

I. M. was urging the view that one does not have to assume that terms
like 3, 17, 10'° have absolutely fixed denotations; the latter can be made
dependent on a free choice of a structure of natural numbers, a Peano
system, in which the denotations then become determined. It also seems
that this attitude toward denotation is the prevailing one in mathematics,
dealing as it does with definite descriptions of various entities—‘‘the

monster-group,” “the field of the real numbers,” and so on—in a sys-

tematically ambiguous manner. This may be so in mathematical practice,
but it is entirely possible that this way of behaving is necessarily a meta-
phorical one, and when it comes to the crunch of articulating a founda-
tion for mathematics, this ambiguity has to be given up. This would not
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necessarily mean that one would have to adopt the precise foundations of
Zermelo-Fraenkel set theory, but it would show that something like that
system, with a single domain of well-individuated objects at its base, is
necessary, after all; and in particular, it seems to me, it would answer our
question “Is it possible to articulate a language of mathematics in which
we talk about numbers as numbers?”” in the negative.

And indeed, there are many signs in mathematical practice suggesting
that ultimately it may be necessary to fix reference of terms unambiguously.

In “Complete Functors in Homology I'"" Max Kelly writes:

(The objects of a category have but a tenuous individuality; ‘the group Z of
integers’ 18 not the same set of elements to different writers, or even to the same
writer in different contexts. In a sense it is only the isomorphism class that counts;
and yet we must at any instant be considering a definite set of elements, in order
that we may sensibly talk of homomorphisms: a group is not the same thing as a
group type. because there are non-identical automorphisms. . ..) (1964, 722)

This partially quoted parenthetical remark is in a section called “Gen-
eralities on Functors.” It confirms the view that the systematic ambiguity
of mathematical objects discussed above reigns within a category. How-
ever, when it comes to a functor F: X — A, that is, a mapping con-
necting two categories, it seems that the very notion denies systematic
ambiguity; it assigns a definite object F(X) as value to any argument
object X in the domain category X. In other words, when we step out of
the context of a single category, where the precise identity of objects
did not matter (see Kelly’s “tenuous individuality™), and want to bridge
the worlds of two categories in a global context, we seem to be forced to
use tools (the functor, for instance) that do refer definitely (to the object
F(X) in this case), and not systematically ambiguously.

And indeed, there is an entrenched view in philosophy that truth in
mathematics must be explained by a standardly referential semantical
theory. Benaceraff (1973) argues to this effect, and further that this cir-
cumstance leads to an inevitable conflict between the demands of ontol-
ogy and epistemology of mathematics. Without committing myself on
Benaceraft’s conclusions, I want to call into question the part of his basic
position that concerns the necessity of a standardly referential semantical
theory of mathematical truth. Along the way, I want to open up the pos-
sibility of a nonstandardly referential theory of truth, in which a system-
atic ambiguity of terms reigns, and thus to make it plausible that it is
possible to deal with numbers as numbers in an articulate manner. Inci-
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dentally, there is a specific parallel technical issue, in the context of func-
tors; one needs to show that “functors are not necessary,” and I have
made an effort to this effect in Makkai 1996. It is interesting to point out
that two parenthetical paragraphs in Kelly 1964 contain a partial formu-
lation of the notion that should replace that of functor (the concept of
“anafunctor,” as I call it; Kelly’s description is partial since the necessary
condition of “saturation” is not mentioned), though without a firm sug-
gestion that this notion could be used to systematically reintroduce
ambiguity of objects in categories.
I want to challenge Benaceraff’s (1973) basic commitment to

(1) the concern for having a homogeneous semantical theory in which semantics
for the propositions of mathematics parallel the semantics for the rest of the
language ... (p. 661)

The quotation is footnoted as follows:

I am indulging here in the fiction that we have a semantics for “the rest of
the language”, or more precisely, that the proponents of the views that take their
impetus from this concern often think of themselves as having such semantics, at
least for philosophically important segments of the language. (p. 661)

The footnote shows that Benaceraff is trying to leave the door open for
himself to abandon the commitment to the above concern. Even if he did
not himself have this concern, his overall argument to the effect that

almost all accounts of the concept of mathematical truth can be identified with
serving one or another of these masters [the other master is ““(2) the concern that
the concept of mathematical truth mesh with a reasonable epistemology™] at the
expense of the other (p. 661)

would stand up. On the other hand, the rest of the paper shows that he is,
after all, committed to the stated concern. For instance, he writes:

Some (including one of my past and present selves [and here he refers to Bena-
ceraff 1965]), reluctant to face the consequences of combining what I shall dub
such a “standard” semantical account with a platonistic view of the nature of
numbers, have shied away from supposing that numerals are names. . . (p. 664)

Thus, to repeat, I am not really arguing with Benaceraff’s main thesis.
What I am arguing is on a more basic level. I am going to deny that
one can maintain (1); I will assert that one cannot have a homogeneous
semantical theory of the world as we know it, even if we disregard mathe-
matics proper; I will assert that the ““fiction” Benaceraff refers to is a
fiction properly, and it is to be discarded.
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To fix ideas, let us look further at Benaceraft 1973:

Consider the following two sentences:
(1) There are at least three large cities older than New York.
(2) There are at least three perfect numbers greater than 17.

Do they have the same logicogrammatical form? More specifically, are they both
of the form

(3) There are at least three FG's that bear R to a.

... 7 What are the truth-conditions for (1) and (2)? Are they relevantly parallel?. ..
[I]t seems clear that (3) accurately reflects the form of (1) and thus that (1) will be
true if and only if the thing named by the expression replacing ‘a’ (‘New York’)
bears the relation designated by the expression replacing “R’ ((1) is older than (2))
to at least three elements (of the domain of discourse of the quantifiers), which
satisfy the predicates replacing “F’ and *G’ (‘large’ and ‘city’, respectively). ... But
what of (2)? May we use (3) in the same way as a matrix in spelling out the con-
ditions of its truth? That sounds like a silly question to which the obvious answer
is ““Of course™. (p. 663)

Thus, for Benaceraff the homogeneity of our semantical theory means
that it 1s like the account of (1) given above via (3). I claim that we do not
have this kind of account of our reference, and truth-determination, even
in discourse about certain entities that we habitually encounter in real life.

To clarify the respective positions further, before I get to the claim
itself, let me point out that we see here the causal theory of reference
at work. ‘I believe in addition in a causal theory of reference...,” writes
Benaceraff (1973, 671). The causal theory of reference is described, for
example, by Maddy (1992, 38-41), who attributes it mainly to Saul
Kripke in Naming and Necessity (Kripke 1972). According to this, the
naming that Benaceraff refers to when he talks about the “thing named by
the expression ‘New York™” involves a causal chain of events that starts
with an act of “initial baptism,” the dubbing of the thing New York with
the name ‘New York,” an event in which New York and the dubber had
to be both physically present.

[ believe in a fundamental inhomogeneity in the kinds of things that
make up the world. On the one hand, we have the “medium-sized physical
objects™ to which the causal theory of reference and of knowledge applies;
but we also have, in a way parasitically living on those objects, things that
[ call representational objects: things that exist only in ambiguous repre-
sentation by physical objects, but nevertheless have an irreducible pres-
ence in our world. We do not refer to representational objects directly; we
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refer to them through representations of them. Before I say what these
representational objects are, I want to emphasize that I do not claim to
have classified all things into the two groups [ mentioned; in fact, I think,
there are further kinds of things that are neither “medium-sized physical
objects’ nor representational objects. However, I also believe that mathe-
matical objects have much to do with representational objects, even if I am
not prepared to fully identify the former with some of the latter. Thus, my
case for representational objects is but a preparation of a case for mathe-
matical objects as such.

Representational objects are the ones that are symbolically represented;
they are invariably artificial, human artifacts. Take William Blake’s poem
“The Chimney Sweeper.”” You probably know this poem; if you don’t, I
will tell you how you may find it, although this will not be the only pos-
sible way. The reference is Blake’s Poems and Prophecies, edited by Max
Plowman, in Everyman’s Library (London: Dent, New York: Dutton),
1972 reprint. The poem is found on page 11. Actually, I did not in this
way give you a unique way of finding the poem. In referring to Blake’s
Poems and Prophecies, 1 gave you only a type, not a token; here, in my
hand, I have a particular copy of the book, and I can show you the poem
on the 11th page. Thus, the book I described is another example of a
representational object! This immediately tells you something about the
hierarchical interrelatedness of representational objects. '

Can I doubt the existence of Blake’s poem “The Chimney Sweeper’?
Does Blake’s poem “The Chimney Sweeper” exist? Is this question a
meaningful one? It seems that the question may have two different mean-
ings. The “nonphilosophical” meaning is the question asked by someone
having a possibly superficial but referentially still firm idea about Blake to
the effect of whether Blake has indeed written such a poem (we hope he
did not write two with this same title...). This is an unproblematic ques-
tion from the point of view of the theory of truth and reference; the ways
of answering it are, in principle, satisfactorily circumscribed by the
“causal theory of reference and knowledge.” But there is also the “philo-
sophical” meaning of the same question; it is in force when we ask, “Does
Blake’s “The Chimney Sweeper’ exist as a poem?”’

You may maintain, “No, there are no poems as such; what there are,
are the ordered sets of inscriptions that run as follows:

“The Chimney Sweeper"”
When my mother died I was very young,
(etc.)
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Well, what about an electronically stored copy of Blake’s poem? You say,
“Of course, I meant that also in an.extended sense of ‘ordered set of
mscriptions.”” Can you be more explicit? You may resort to the formula
on the inside covers of books (**No part of this book shall be reproduced,
stored 1n a retrieval system. or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise...”), in order to exhaust
all the possible representations of the poem. But note the indefiniteness in
the italicized phrase “or otherwise™. the practical people know that it is
impossible to foresee all possible ways one may represent the poem, and
they want to forestall «// (lucrative) representations. Trying to say that the
poem’s essence is somehow synonymous with the totality of its repre-
sentations 1s wrong-headed, for two reasons, at least. One is that we know
perfectly now what the poem is, but we cannot know now all its repre-
sentations, not even the possible types of its representations. The other is
that one representation is perfectly enough for knowing what the poem is!

Then again, you will now say that referring to Blake's poem is just a
fug¢on de parler; you can eliminate it from any context, in exchange for
references to first-class objects. 1 doubt that; how do you do that when
I say, I like Blake’s poem ‘The Chimney Sweeper’ "7 Here we enter an
infinite, and familiar, controversy, involving behaviorism and the like.
Suffice it to say that the corresponding question that we really care about,
the one concerning objects in mathematics, 1s answered definitively: we
know that, for instance, the presence or absence of the notion of natural
number does make a difference in our ability to prove theorems (a form of
Gaodel’s incompleteness). In other words, we cannot eliminate the notion
of natural number from contexts.

In the last two paragraphs I tried to show a bit what it would be like to
deny the existence of “The Chimney Sweeper’ as a poem. 1 think, how-
ever, the best reaction to the ““philosophical question™ of the existence of
“The Chimney Sweeper™ as a poem is that it is meaningless. There is no
mystery, we have everything in front of us; the question cannot seriously
imply a search for something temporarily unknown answering a descrip-
tion, and it seems that how we answer the question is largely arbitrary.

Before we probe matters along these lines a bit more, | want to suggest
that the question of the existence of the system of the natural numbers
may be to a large extent similar and, as a consequence, meaningless.
Here you will quickly object, **No: whereas in the case of “The Chimney
Sweeper' the question of the existence of a representation is not in ques-
tion, now, with the system of the natural numbers. this is precisely the
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important question.” To which I will reply, “Certainly, if by a represen-
tation of the system of the natural numbers we mean something involving
an actual aggregate (set) of elements; but I do not think we have to, or
even should, do so.” Note also that the existence of a' Peano system within
a formal system of set theory, say, is of course meaningful; in fact, it is
expressed by a proposition of the theory, which may or may not be
provable in the theory. :

The being of the poem “The Chimney Sweeper’ as a poem is exhausted
by our ability to talk about it as a poem. Talking about it as a poem is to
be referring to its representations, possibly simultaneously more than one
(for instance, the ones that you and I have in our minds), and to make
sense while doing so. For instance, “in the second line of the poem”
makes sense as talk about the poem, even though, strictly speaking, it is
each of the representations that has a second line. On the other hand, “the
typeface of the poem” does not make sense as talk about the poem as
such; rather, with that talk we immediately know that we are talking, not
about the poem as such, but about one of its representations. In natural
language, we do not want to rigidly separate the higher-level talk about
the poem as such and the lower-level talk about its representations; it is
the very spirit of natural language that we want to be able to jump from
one context to the other instantaneously. On the other hand, the legend-
ary purity of mathematics is rooted in an opposite kind of requirement; in
mathematics, we want to be able to talk about structures as structures,
and more generally about mathematical objects as such, in a permanent
manner. It is this requirement that compels us to articulate formal lan-
guages for mathematics.

We should add that talk about the poem as such grows out of talk
about its representations. Continuing the work of the poet, we bring the
poem into existence as a poem by articulating our talk about it as such.
This is another reason why the two types of talk are not, and cannot be,
rigidly separated. In fact, the process of creating the poem is an ongoing
one; it has not been quite completed. In mathematics, we have completed
our talk about our abstract objects to a greater extent, although the dif-
ference is only a matter of degree.

One might think that talking about poems is inappropriate in connec-
tion with mathematics. Of course, there are many other types of repre-
sentational objects, and none is more important than the ones that arise in
the world of computers: computer programs, pieces of software. It is in
the domain of computer software that we see the characteristics of repre-
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sentational objects most clearly. The talk about the software becomes
sharply separated from the representation, which is a particular imple-
mentation of the software. The existence of the software as such becomes
more pronounced; we are now more ready to accept the existence of
the software as something separate and independent from any imple-
mentation, more ready than in the case of the poem (perhaps). Another
element in favor of the existence of the software as such is its potency.
One may doubt whether poems do anything; but we do not doubt that
pieces of software do things. They have very specific and occasionally
large effects—of course, never in themselves, always in an implementa-
tion. Discussing, describing, planning around the effect of the software
takes place mostly in talk that is independent of any particular imple-
mentation. [ am inclined to the view that mathematical objects are like
software, more specifically, like the datatypes of software.

But let us return to poetry once again. Maybe our brave talk about
poems as genuine representational objects can be shown up as hot air,
after all. It is very well to talk about the many representations of “The
Chimney Sweeper” in books, in people’s minds, and so on; but there is a
distinguished, an authentic, an original representation: the one that Blake
himself put to paper. When we talk about the poem “The Chimney
Sweeper,” we talk about this original copy; we talk about a first-class
object pure and simple. When we use ostension and point to the copy on
page 11 of my book, what we do is deferred ostension, to use Quine’s
expression. We mean referring to the Original; we refer to the Original.
This i1s what Benaceraff meant by the “homogeneous semantical theory of
the rest of the language,” that is, the language that refers to reality as
opposed to mathematics. :

Before we try to answer this devastating argument, we have to ac-
knowledge its force. In this we can see why we want the Platonistic,
uniquely referring, standard semantical theory: we want authenticity, an
objective point of reference, to which we can return when in doubt. There
may always be a question whether a particular printing of the poem is
correct; ultimately, the only way to answer this question is to go to the
original and verify whether the copy in question and the original can be
mapped to each other perfectly.

The attempt to answer the argument is this. Assume you discover that in
fact, there is no original ““The Chimney Sweeper.” In fact, worse than that,
you discover that there is something entitled “The Chimney Sweeper” in
a manuscript of Blake’s, but it differs substantially from the “standard
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version,” the version that has been most frequently reprinted, moreover,
no trace of a version of the poem as we know it can be found in Blake’s
manuscripts. You counter: This does not matter; the poem as we know it
was composed by someone at some definite time and place, and when we
talk about the “The Chimney Sweeper’” as we know it, we talk about that
original, even though it may differ from anything attributable to Blake
himself. To which I say that now the original of “The Chimney Sweeper”’
as we know it is a purely fictive entity; it has lost its role as the grounding
of authenticity. However, in fact still there is no problem about what
“The Chimney Sweeper’’ as we know it is; it simply is what it is, and no
one will try to authenticate it, especially now (we are still within the
assumption that we have lost the good connection to Blake) that we
know that it cannot be authenticated. To which you say: There is no way
of stopping people from fixing the first, or most visible, or whatever, but
in some definite way unique source where the “The Chimney Sweeper”
can be found, a source which becomes the standard reference to “The
Chimney Sweeper” as we know it. And then I reply: Oh, but now you
cannot say that “The Chimney Sweeper” as we know it is, by definition,
that given by the standard reference, since in fact there was something
entirely clearly defined before we had located that standard reference;
the location of the standard reference was an a posteriori act of mock
authentication, an act entirely dependent on the clear and prior idea of
“The Chimney Sweeper’ as we know it."
Maintaining “the fiction of the homogeneous semantical theory for the
language of the nonmathematical world” (Benaceraff’s words, essen-
tially) is hard work. I am suggesting that it is too hard, what with all those
gadgets that come flooding into our lives, each having little or large pieces
of structure, defined in terms of some abstract functionality or what have
you. To make sense of all this, we resort to representational objects,
rather than trying to find unique authentic originals to which we would
have to run in case of doubt. Certainly, these representational objects are
“abstractions (I do not mean to imply that the term I just used explains
them; rather, its use puts them in their place as inferior in some sense
to concrete things) and thus decidedly second-class objects that cannot
live without being rooted in medium-sized physical objects. But still, we
cannot do without them.
Is this a pragmatic argument? Yes, it is; but remember, the argument is

not about the existence or nonexistence of representational objects, but
about the fact or nonfact of the homogeneity of the semantics for the
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language of the nonmathematical world. The conclusion may be that
the idea of the homogeneous, uniquely referential semantics vis-a-vis
the world 1s in fact incoherent; if so, it is even worse for the fiction that
Benaceraff admits to be indulging in. It now seems to me that we do
mathematics precisely to get away from all this compulsion of authenti-
cation, and deal with what we call mathematical objects as we know them.

At this point, I feel optimistic that a foundational stance in mathe-
matics that lacks the standard feature of unique reference to objects may
be viable. However, the real test of it still remains a Fregean full articula-
tion. Before we have built the whole language, we cannot be sure whether
we do not, ultimately, smuggle in the “originally baptized,” authentic
entities that the Platonists want.

Note

1. Ray Jackendoff has suggested to me a real example paralleling the hypothetical
case described above of being unable to find an authentic original. I describe it
essentially in his words.

There is a piece of music that has been in the repertoire at least since the early
nineteenth century, which is called **Sinfonia Concertante for oboe, clarinet, horn,
bassoon, and orchestra by Mozart.” Only there is no known manuscript for this
piece. In a letter, Mozart himself referred to having written a sinfonia concertante
for flute, oboe, horn, and bassoon—which is totally unknown—and people gen-
erally assume that the piece we know is a later reorchestration of that. The trouble
is that all attempts to “reconstruct” the original have been awkward at best;
basically, the clarinet part in the piece we know cannot easily be transferred to
idiomatic writing for any of the instruments mentioned in Mozart’s letter. More-
over, the last movement of the piece we know has some parts that Mozart never
would have written. So no one knows where this piece came from, prior to its first
publication some years after Mozart’s death.

Jackendoff also pointed out to me that he has had to deal with representational
objects in his work on music, which involves an additional layer of performance,
making the semantics of, say, “Beethoven’s Fifth Symphony™ even stranger.
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