
§§§7. Equivalence of bicategories

For 2-categories and bicategories, see [M L], [Be], [S].

In this section, I discuss invariance of properties of bicategories, and of diagrams in

bicategories, under biequivalence (however, I will call "biequivalence" "equivalence of

bicategories"). To mention just two examples, the property of a bicategory having finite

weighted (indexed) limits (see [S]) is a first-order property invariant under (bi)equivalence; but

the property of a 2-category having finite 2-limits is not so invariant. The main result of this

section (see the Corollary at the end) implies that the first-mentioned property can be

expressed in FOLDS, although not quite in the language of the bicategory itself, but in a

modification of it. In fact, the formulation of the said property in FOLDS can be done directly,

quite easily.

One possible choice of a similarity type for 2-categories is the following graph L :2-cat

h0�������������T H1 �������������h1t ��t �t h ��h �h10�� 11� 12 2�� 3� 4�� � �� ��� � �� � tc �� � c �� � 2010 20 ������������������������ ���������� ��������������C C C t T0 ���������� 1 ���������� 2 21 2c c ��������������11 � 21 � t�i �i 22� 1 � 2

I I1 2

The following explains the meaning of these symbols in the case of a 2-category:

C : (the set of all) objects (0-cells),0
C : arrows (1-cells),1
C : 2-cells;2
c , c : domain,10 20
c , c : codomain,11 21
T : commutative triangles1
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of 1-cells,

T : commutative (for vertical composition) triangles2
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of 2-cells,

H : commutative (for horizontal composition) triangles
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of 2-cells;

I : identity 1-cells,1
I : identity 2-cells.2

A 2-category is the same as a structure for L satisfying certain axioms Σ in2-cat 2-cat
multisorted first order logic with equality(ies) over L .2-cat

For the concept of bicategory we need, in addition, the sorts A , L and R , accommodating

associativity isomorphisms, and left and right identity isomorphisms, respectively. More

precisely, we introduce, besides these three new objects, the arrows
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a0�������������������� aa 4T 1 A ���������� C ,1 ���������� 2a2����������a3

C C2 2
� �� �� � �r� 2 � 2

� � � r � r0 1 0 1T ���������� L ���������� I , T ���������� R ���������� I ;1 1 1 1

with these additions to L , we obtain L .2-cat bicat

In a bicategory, the symbols of L are interpreted as expected (as in a 2-category). A2-cat
stands for the set of 5-tuples α = (a α, a α, a α, a α, a α) where the a α0 1 2 3 4 i
(i=0, 1, 2, 3) are commutative triangles of 1-cells (elements of T ), and a α is a 2-cell,1 4
fitting together as in

��� �g=01=20 a α = � � a α = � 	0 �
 1 ������������������ 
�� �� 
� � ���� ��
� 02=10 � a α = � � a α = � �f=00=30� 
��� �h=11=21 2 � 	 3 ��� 
� �22=31 �� 
� �� 	� 32��������������a α� 4�������������12

with ij standing for t (a α) , and a α is the associativity isomorphism1j i 4
≅α :h(gf)���(hg)f . L is the set of triples λ = ( � λ, � λ, � λ) as inf, g, h 0 1 2

c t � λ10 10 0 ��� ���� ���� ��� �� ��� t � λ �� � λ �� f=t � λf=t � λ� 12 0 ��2��� �� 10 010 0 � �� ��� �� ��	 �� �����B=c � λ ������������������� B=c � λ ,10 1 1 =i � λ=t � λ 10 1B 1 1 11 0

≅and � λ is the identity isomorphism λ :1 �f���f . R is similar, mutatis mutandis.2 f B
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Bicategories are L -structures satisfying a set Σ of axioms, in multisortedbicat bicat
first-order logic with equality over L . Of course, 2-categories are those bicategoriesbicat
for which each α , λ , ρ are identity 2-cells. We write T for the theoryf, g, h f f bicat
(L ,Σ ) .bicat bicat

Now, we introduce the DSV L . The underlying simple category is generated byanabicat
the graph L , subject to the following equalities:bicat

c c = c c , c c = c c ,10 20 10 21 11 20 11 21
c t = c t , c t = c t , c t = c t ,11 10 10 11 10 10 10 12 11 11 11 12
c i = c i ,10 1 11 1
c t = c t , c t = c t , c t = c t ,21 20 20 21 20 20 20 22 21 21 21 22
c i = c i ,20 2 21 2
t h = c h , t h = c h , t h = c h , t h = c h ,10 0 20 2 10 1 21 2 11 0 20 3 11 1 21 3
t h = c h , t h = c h .12 0 20 4 12 1 21 4

t a = t a , t a = t a , t a = t a , t a = t a ,10 0 10 3 11 0 10 2 12 2 11 3 12 0 10 1
t a = t a ,11 1 11 2
c a = t a , c a = t a ,20 4 12 1 21 4 12 3
i � = t � , c � = t � , c � = t � ,1 1 11 0 20 2 12 0 21 2 10 0
i r = t r , c r = t r , c r = t r .1 1 10 0 20 2 12 0 21 2 11 0

The relations of L are exactly its maximal objects, that is, its level-3 objects,anabicat
� � � � � �I , T , H , A , L and R .2 2

The equalities between composites arise naturally; they hold in a bicategory (as a

L -structure); also, the relations of L are interpreted in a bicategorybicat anabicat
"relationally"; in brief, every bicategory is an L -structure.anabicat

In [M2], the concepts of anabicategory, and saturated anabicategory were introduced.

Although these concepts implicitly underlie all that follows, they will not be relied on

explicitly.

An anabicategory is an L -structure satisfying certain axioms Σ inanabicat anabicat
FOLDS (with restricted equality) over L ; a saturated anabicategory is one thatanabicat
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satisfies a larger set Σ of axioms in FOLDS over L (these facts willsanabicat anabicat
be seen upon inspecting the definitions in [M2] ). An anabicategory is like a bicategory, with

the composition functors replaced by composition anafunctors.

For the reader who has a copy of [M2], I now point out some details, which, however, are not

needed later.

Let � be an anabicategory as in [M2]. In explaining in what way � is an

L -structure, we will write T for �T , etc. For a diagramanabicat 1 1

B�f �� �� g�� �� (1)�A	








�C ,h

T (f, g, h) (short for T (A, B, C, f, g, h) ) is the set �
 �((f, g), h) , the set1 1 A, B, C
of specifications s for h being the composite of f and g , h = g
 f (see 3.1.(iv) ins
[M2]). For f:A	�A ∈ C , I (A, f) is �1 �(*, f) , the set of specifications i for f1 1 A
being the identity 1-cell on A , f = 1 (see 3.1.(iii) in [M2]). ForA, i

gB	











�C� ���� ��� �� �� i �f� �� �h (2)� �� ��k �� �� �� �� ��
�A 	










�D�α	










�j

in � , and

a∈T (f, g, i) , b∈T (i, h, j) , c∈T (g, h, k) , d∈T (f, j, �) , (3)1 1 1 1

and α:j	� � ,we have

A(a, b, c, d; α) ��� α = αa, b, c, d

(see 3.1.(vi) in [M2]). (According to our conventions in logic with dependent sorts,

A(a, b, c, d; α) is short for A(A, B, C, D; f, g, h, i, j, k, � ; a, b, c, d; α) ) .
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Every bicategory (as an L -structure) is an anabicategory, although not necessarilyanabicat
saturated.

Whereas the interpretation of T in a bicategory, the notion of "commutative triangle of1
1-cells", is a relation on triangles of 1-cells (where a triangle of 1-cells is three objects and

three arrows (1-cells) appropriately related via the domain/codomain functions), in an

anabicategory, we have a sort of entity that may be called "specification for a commutative

triangle of 1-cells". Such a specification does specify a unique triangle (via the maps t );1i
however, the property "commutative" does not figure separately. You may say that a triangle is

commutative if there is a specification for it to be commutative, but in the concept of

anabicategory, we do not work with this notion, we only work with the specifications. In an

anabicategory, the expression "commutative triangle (of 1-cells)" should always be interpreted

as "specification for a commutative triangle".

Next, we define a translation of the language L into the theory T ; that is,anabicat bicat
a [T ]-bicat structure I:L ������[T ] . Via this translation, everybicat anabicat bicat

# #bicategory � gives rise to � = ��I , an L -structure. � is in fact a saturatedanabicat
anabicategory; however, for the main result, we will not need this fact; we will use the actual

# #construction of � as an L -structure only. (In [M2], � was defined for theanabicat
special case of a monoidal category (one-object bicategory) � only.) We define the passage

#
���� ; this will describe the said interpretation as well.

#In � , the interpretation of the part

tc c 2010 20 �������
������ ������ �������C C C t T0������ 1������ 2 21 2c c �������11 21 � t� 22�

I2

of L is the same as in � .anabicat

#Under (1) (0-cells and 1-cells in � as well as in � ),
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# �
� T (f, g, h) = Iso (gf, h)1 def

≅= the set of all isomorphism 2-cells gf���h .

���� �	�� B �	�� � �	f �� ��� �	 �	 h�� �� �	 �	�������� �
�����	�� β�� g �	δ �	�� �� i �	 ���� �� �	
 
 ��If k�����������������������������������εA � C����������������������������������j

# #and s∈� T (f, h, j) , t∈� T (g, i, k) , then1 1

shf�����j
#� � �

� H(s, t; β, δ, ε) ����� δ ⋅ β � � �ε .� �def � �
ig�����kt

#Under (2) and (3) in � ,

αf, g, hh(gf)����������(hg)f

� ��ha cf�� �
#�

� A(a, b, c, d; α) ����� hi � kf ; (4)
def � ��b d�� �

αj ����������� �

here a reference is made to the associativity isomorphism α given with � .f, g, h

#For a 1-cell f:A��A , � I (A; f) = Iso(1 , f) .1 A

For
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A���� �� h� ��f� ��� ��
B�����������B ,g

#a∈� T (A, B, B; f, g, h) , i∈I (B; g) , λ:C (h, f) ,1 1 2

if1 f������gfB#� �
� L(a, i, λ) 	


� λ � � �a ,def f � �� �

f�������
hλ

where a reference is made to the identity isomorphism λ given with � . The definition off
#�

� R is a straightforward variant.

In a bicategory � , a 1-cell f:B��A is an equivalence if there is f’:A��B such that

f�f’ ≅ 1 , f’�f ≅ 1 ; this is equivalent to saying that for any C∈� , the induced functorA B
*f :�(C, B)����(C, A) is an equivalence of categories.

We have the notion of functor of bicategories; this is just a different expression for

"homomorphism of bicategories" (see [Be], [S]). A functor F:����� of bicategories is an

�equivalence (of bicategories) [instead of "biequivalence"], in notation F:����� , if

�(i) for every A∈� , there is X∈� and an equivalence f:FX���A ;

and

(ii) for X, Y∈� , F induces an equivalence of categories �(X, Y)����(FX, FY) .

See [S].

We say that the bicategories � , � are equivalent [instead of "biequivalent"] if there is an

�equivalence ����� . Equivalence of bicategories is an equivalence relation (this requires the

Axiom of Choice; the fact is well-known, but it also follows from (5) below).
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Let L = L .anabicat

(5) For any bicategories � , � , � � � iff � ≈ � .L

# ≈ # �Proof. (A) ("if") Let (�, r , r ): � ���� . We construct F:����� .0 1 L

* # * #We write 〈 ε 〉 for r (ε) , and [ε] for r (ε) . We will write � for r � =r �0 1 0 1
too.

� � �Given any X∈�C , we pick (by Choice) X∈�C such that 〈X 〉=X . We put FX = [X] .0 0 def
� � � �For any f:X��Y in � , pick (by Choice) f∈�C (X, Y) such that 〈f 〉=f , and for1

f
����� � � � � � �X �β Y , β∈C (f, g) with 〈 β 〉=β ( β is uniquely determined); define Ff = [f] ,
����� 2g

�Fβ = [β] .

f g # � � � ��For X���Y���Z in � , a = 1 ∈� T (f, g, gf) ; let a∈�T (f, g, gf) such thatdef gf 1 1
� � � ≅〈a 〉=a ; then [a]∈�T (Ff, Fg, F(gf)) , that is, [a]:Fg�Ff�����F(gf) . Therefore,1

�we may define F = [a] .f, g def

The coherence condition that the F have to satisfy (the sense in which F preserves thef, g
associativity isomorphisms) reads as follows: given

f g hX�����Y�����Z�����W ,

we have
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αFf, Fg, FhFh(FgFf)�����������������(FhFg)Ff

� �FhF � �F Fff, g� � g, h� �
� �

FhF(gf) �? F(hg)Ff

� �F � �Fgf, h� � f, hg� �
� �

F(h(gf))�����������������F((hg)f) .F(α )f, g, h

Writing a=1 , b=1 , c=1 , d=1 , this amounts to the same asgf h(gf) hg (hg)f

α � � �� � � [f], [g], [h] � � �[h]([g][f])�����������������([h][g])[f]

� � � � � �[h][a]� �[c][f]� �
� �

� �� �� �[h][gf] �? [hg][f]

� � � �[b]� �[d]� �
� �

����� �� �[h(gf)] ����������������� [hg][f] .������[α ]f, g, h

But by (4), the last commutativity is equivalent to saying that

# � � � � �����
� A([a], [b], [c], [d]; [α ]) holds. The latter is a consequence off, g, h

� � � � ����� #
�A(a, b, c, d; α ) , which in turn follows from � A(a, b, c, d; α ) , which,f, g, h f, g, h
finally, holds by (4) since a, b, c and d are identities.

The preservation by F of identity isomorphisms, and that of horizontal composition (see

[MP], §4.1, (2)(v) and (2)(iv)) are similar, and use L , R and H , respectively.

The facts that F preserves identity 2-cells and vertical composition of 2-cells are immediate.

�We claim that for any A∈�C , there is X∈�C such that FX � A . Given A , pick X∈�C0 0 0
� �with [X]=A , and let X= 〈X 〉 . (Picture:
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4
�X
���� ��� �� �� X 2 �� � �� � � �� � ��� � �

X A FX .)
3 1 5

� � � �Consider 1 ∈�C (X, X) , and let i∈�C (X, X) , j∈�C (X, X) such thatX 1 1 1
〈i 〉= 〈j 〉=1 . We haveX

[i]:FX�	
A , [j]:A�	
FX

� � � � � �in � . Let f=1 �1 ∈�C (X, X) , and f∈�C (X, X) , f∈�C (X, X) such thatX X 1 1 1
� � #〈f 〉= 〈f 〉=f . Consider 1 ∈�C (1 �1 , f) ; then 1 ∈� T (X, X, X; 1 , 1 , f) . Letf 2 X X f 1 X X

� � � � � � � �ι∈T (X, X, X; i, j, f) , ι'∈T (X, X, X; j, i, f) such that 〈 ι 〉= 〈 ι’ 〉=1 . Then1 1 f
# �[ ι]∈� T (FX, A, FX; [i], [j], [f]) , and thus1

≅ �[ ι]:[j]�[i]�			
[f] ; (6)

similarly,

≅ �[ ι’]:[i]�[j]�			
[f] .

≅ # � � �But, ϕ = λ :f�	
1 , that is, ϕ∈� I (X, f) . Thus, there is ϕ∈�I (X, f) (suchdef 1 X 1 1X
� � # � � ≅ �that 〈ϕ 〉=ϕ ). Then, [ϕ]∈� I (FX, [f]) , i.e., [ϕ]:1 �	
[f] . Combined with (6),1 FX

we get [j]�[i] ≅ 1 . Similarly, [i]�[j] ≅ 1 . The data [i], [j] provide anFX A
equivalence of FX and A as claimed.

Let us see that F :�(X, Y)�	
�(FX, FY) is an equivalence of categories. That it is aX, Y
bijection on hom-sets is a consequence of the fact that (�, r , r ) respects the equalities0 1
on C -sorts. To see essential surjectivity on objects, let g:FX�
FY , that is,2

# � � � � � � �g∈� C ([X], [Y]) . There is f∈�C (X, Y) such that [f]=g ; let f= 〈f 〉 . We now1 1

120



� � � � � �have f, f both in �C (X, Y) , and both "over" f . There are i∈�C (f, f) ,1 2
� � � � � � � � � �j∈�C (f, f) , �∈�C (f, f) , �∈�C (f, f) such that 〈i 〉= 〈j 〉= 〈 � 〉= 〈 � 〉=1 . We2 2 2 f

# � � # � �have � I (f; 1 ) , hence, �I (f; �) and � I (Ff; [ �]) ; that is, [ �]=1 .2 f 2 2 Ff
� # � � � �Similarly, [ �]=1 . Since � T (f, f, f; 1 , 1 , 1 ) , we have �T (f, f, f; i, j, �)g 2 f f f 2

� � � � #and �T (f, f, f; j, i, �) , and as a consequence, � T (Ff, g, Ff; [i], [j], 1 )2 2 Ff
#and � T (g, Ff, g; [j], [i], 1 ) ; that is, [j][i]=1 , [i][j]=1 . This shows2 g Ff g

that g ≅ Ff as desired.

� # #(B) ("only if") Let F:����� , we construct (� , r , r ):� ������ . We will again0 1 L
write 〈 ε 〉 for r (ε) , [ε] for r (ε) .0 1

�We put �C = {(X, A, x): X∈�C , A∈�C , x is an equivalence x:FX���A} ;0 def 0 0
〈(X, A, x) 〉 = X , [(X, A, x)] = A .def def

Let us introduce a helpful notation. For any object D of L , any d ∈�D andanabicat 1
d ∈�D , �D[d , d ] stands for {d∈�D: 〈d 〉=d , [d]=d } , "the fiber of �D over2 1 2 1 2
(d , d ) ". We extend this definition to any sort �D(e, e’, ...) in � , in place of �D ;1 2

�D(e, e’, ...)[d , d ] = {d∈�D(e, e’, ...): 〈d 〉=d , [d]=d } ;1 2 1 2

# #here, it is assumed that d ∈� D( 〈e 〉 , 〈e’ 〉 , ...) , d ∈� D([e], [e’], ...) .1 2

The definition of �C together with effect of r , r on it, can be put, more succinctly,0 1 2
as

�
�C [X, A] = Equiv(FX, A) = {x: x:FX���A} .0

�Continuing, we define, for f:X��Y , f:A��B , x=(X, A, x), y=(Y, B, y)∈�C ,0

� �

�C (x, y)[f, f] = Iso(y�Ff, f�x) ,1

the set of all 2-cell-isomorphisms ϕ as in
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xFX�����A
� ≅ ��Ff� ����f .� � �ϕFY�����By

�C is relational, meaning that its fibers are either {*} , or ∅ . Instead of2
" * ∈ �C (x, y; ϕ, γ)[μ, ν] ", we just write " �C (x, y; ϕ, γ)[μ, ν] ".2 2

�f f������� �������For X �μ Y in � , A �ν B in � , x, y and ϕ as before, and������� �������g �g
�γ∈�C (x, y)[g, g] ,1

xFX �������������� A
� � ��ν��� � f���g� Fμ � "�" � �

�C (x, y; ϕ, γ)[μ, ν] 	


� Ff ���� Fg � �2 � � ϕ ������def � � �� ��� �� � �� ��γ � �� �FY ��������������� By
y�Fμy�Ff����������y�Fg

� �	


� ϕ� � �γ .� �def � �� �f�x���������� g�xν�x

Using that x , y are equivalences, and that F is an equivalence of bicategories, we see that,

for fixed x, y, ϕ, γ , the relation �C (x, y; ϕ, γ)[μ, ν] of the variables μ, ν is a2
bijection

≅ � �μ��ν : �C (f, g)������C (f, g) .2 2

�This implies that (� , r , r ) preserves the equality relation E . Also, with reference to0 1 C2
�ff ����������������� �� � �ν �g �μ � �g�������� �X�������ξ��Y , A �σ �ζ B , and η∈�C [h, h] , we easily see that�ρ � � � 1������� �� ����������h �h

�C (x, y; ϕ, γ)[μ, ν] , �C (y, z; γ , η)[ρ, σ] , ρμ = ξ , σν = ζ 


�2 2
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�C (x, z; γ , η)[ξ, ζ] ,2

from which it follows (by the above bijection μ��ν ) that

�C (x, y; ϕ, γ)[μ, ν] , �C (y, z; γ , η)[ρ, σ] , �C (x, z; γ , η)[ξ, ζ] ����2 2 2
ρμ = ξ ��� σν = ζ .

-1 # -1 #This means that r (� T )=r (� T ) ; that is, (� , r , r ) preserves T .0 2 1 2 0 1 2

Given

� � �(x:FX���A)∈�C [X, A] , f:X��X in � , f:A��A in � , ϕ∈�C (x, x)[f, f] ,0 1
that is,

xFX�����A
� ≅ ��Ff� ��	�f ,
 � 
ϕFX�����Ax

≅ � ≅ �and a:1 ���f , a:1 ���f , we haveX A

ϕ �xFf����������fx≅
� ��xFa�≅ ≅�ax� �

�
�I ( x , ϕ)[a, a] ����� xF(1 ) � 1 x .1 X Ac i def10 1 � �xF �≅ ≅�λX� � x
 
≅x1 ��������� xFX ρx

Given

� �(*) (x:FX���A)∈�C [X, A] , (y:FY���B)∈�C [Y, B] ,0 0
�(z:FZ���C)∈�C [Z, C] ,0
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Y� � B� �f��� ��g f��� ��g�� �� �� ��� �X	









�Z in � , A	









�C in � ,i �i
≅ # � �� ≅ � # � � �(a:gf	
�i)∈� T (f, g, i) , (a:gf	
�i)∈� T (f, g, i) ,1 1

� � �ϕ∈�C (x, y)[f, f] , γ∈�C (y, z)[g, g] , ι∈�C (x, z)[i, i] ,1 1 1

we have

�
�T (ϕ, γ , ι)[a, a] �


�1 def

(front)

zFaF≅ f, g(zFg)Ff�

�z(FgFf)	





















�zFiα
� �� �(right) γFf � � ι (bottom)� �� � �

� ≅ � �(gy)Ff�

�g(yFf) ixα � �� �� � ��(left) gϕ � � ax (back)� �� � ≅ ��g(fx)	
�(gf)xα

(we have referred to the following diagram of 1-cells, and its "faces":

B����� � �y���� � ��� � ��� f � � g�FY � �
� � � � �Fg i� � A	








�CFf ��� ��� � � ��� ��� x�� � ���� �� z� �� � ��� �FX	









�FZ ).Fi

� �The facts that E , E are preserved are shown through the facts that the definitions ofI T1 1
�

�I , �T give bijections a��a .1 1
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� �The proof that (� , r , r ) so defined preserves A and H is put into Appendix D .0 1

We have an "augmented" version of (5), similarly to §6. I will state this without proof; for the

proof the details of the notion of anafunctor would be needed, together with a concept of

cleavage; the proof is, in outline, quite similar to the proof of 5.(8).

Let K be the full subcategory of L=L consisting of the objects C , C and0 anabicat 0 1
#C . A restricted context is a context of K . For a bicategory � and its saturation � ,2 0

# #
��K =� �K ; �[�]=� [�] whenever � is restricted.0 0

�Let � be a restricted context. An augmented bicategory of type � is a pair (�, a) of a

� � �bicategory � and a tuple a∈�[�] ; symbols such as (�, a) , (�, x) stand for augmented

� � � � � �bicategories. The notation E:(�, x)���(�, a) signifies that E:����� and E(x)=a .

� �The relations ��� and ��� are now defined in the same way as for I-diagrams in §6. For

� �bicategories, that is type-∅ augmented bicategories, the relations ��� , ��� coincide with

equivalence � . Generalizing (5), we have

� � # � # �(7) For augmented bicategories (�, x) , (�, a) , (� , x)≈ (� , a) iffL
� � �(�, x)�����(�, a) .

*We can, analogously to §6, define a recursive translation θ��θ from FOLDS formulas θ
*over L to formulas θ in ordinary multisorted logic over L such that, ifbicat

*
�=Var(θ) is a restricted context, then Var(θ )=� , and for any bicategory � ,

� # � * �a∈�[�] , � �θ[a] iff ��θ [a] . We obtain the following analogs of 5.(20) and 5.(20').

(8)(a) Let T be a theory extending T . Let � be a finite restricted context overbicat
L , σ an L -formula such that Var(σ)⊂� . The following two conditions (i), (ii)anabicat T
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are equivalent.

� � �(i) For any M, N �T and tuples a∈�M�[�] , b∈�N�[�] , M�σ[a] and

� � � �(�M�, a)���(�N�, b) imply N�σ[b] .

(ii) There is θ in FOLDS over L with Var(θ)⊂� such that for allanabicat
� � * �M�T and tuples a∈�M�[�] , we have M�σ[a] iff M�θ [a] .

(b) In particular, if σ is a sentence over L , and for any M, N �T , M�σ andT
�M� � �N� imply N�σ , then there is a sentence θ of FOLDS over L such thatanabicat

*for any M�T , M�σ iff M�θ .

(9) Let T be a normal theory of bicategories. Let � be a finite restricted context over

L . Suppose that the first-order formula σ over L with free variables allanabicat bicat
in � is preserved and reflected along equivalences of models of T . Then there is a formula

*ϕ in FOLDS over L such that σ is equivalent to ϕ in models of T .anabicat

(8)(b) follows from (5) (proved in detail above) and §5. As was mentioned, the proofs of

(8)(a) and (9) require a more detailed look at anabicategories, similarly to what we did in §5

on anadiagrams in the proof of (20)(a); this work is omitted here.

A paraphrase of (8) can be stated as follows. A first-order property of a bicategory, or of a

diagram of 0-cells, 1-cells and 2-cells in a bicategory, is invariant under (bi)equivalence of

bicategories if and only if it can be expressed in FOLDS as a statement about the saturation of

the bicategory.
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