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Introduction

1. This work introduces First-Order Logic with Dependent Sorts (FOLDS). FOLDS is inspired
by Martin-Lo6f's Theory of Dependent Types (TDT) [M-L]; in fact, FOLDS may be regarded a
proper part of TDT, similarly to ordinary first-order logic being a proper part of higher-order
logic. At the same time, FOLDS is of a much simpler nature than the theory of dependent
types. First of all, the expressive power of FOLDS is no more than that of ordinary first-order
logic; in fact, FOLDS may be regarded as a constrained form of Multi-Sorted First-Order
Logic (MSFOL). Secondly, the syntax of FOLDS is quite simple, only slightly more
complicated than that of MSFOL.

In general terms, the significance of FOLDS is analogous to that of ordinary first-order logic
(FOL). On the one hand, FOL has a simple and powerful semantic metatheory; on the other
hand, FOL is the basis of a multitude of specific foundational theories. Correspondingly,
FOLDS has a simple semantic metatheory, not essentially more complicated than that for FOL.
It is one of the aims of this work to develop the basic semantic theory of FOLDS. On the other
hand, I make a start on showing that FOLDS is good, and better than FOL, for the purposes of

formal systems dealing with sets, categories, and more general categorical concepts.

FOLDS is very simple; for the understanding of the motivation for, and the basic mechanics
of, FOLDS there is no need for any prior knowledge of the, by now, extensive literature of
dependent types. I find the idea of FOLDS so simple and natural (we will also see that FOLDS
is useful, which is another issue) that I am thoroughly surprised by the apparent fact that, in
the literature, it has not so far been singled out for study. (Nevertheless, there are important
pointers to FOLDS in the literature that I will point out below.) Incidentally, I decided to use
the word "sort", instead of "type", in "first-order logic with dependent sorts", to emphasize the
closeness of FOLDS to MSFOL, and because of the strongly-felt connotation, in phrases like
"type-theory", of the word "type", that implies the presence of a higher-order structure; you

would not say "multi-typed first-order logic", would you?

J. Cartmell [C] introduced a syntax of variable types for the purposes of a novel presentation
of generalized algebraic theories; Cartmell's syntax was also "abstracted from ... Martin-Lof
type theory". FOLDS differs in two ways from Cartmell's syntax. Firstly, in Cartmell's syntax,
there are no logical operators in the usual sense; there are no propositional connectives, or

quantifiers; FOLDS has them, with quantification constrained in the natural way already given



in TDT. Secondly, the type-structure of FOLDS is much simpler than that of Cartmell's syntax.

Cartmell's syntax may be characterized as the result of abstracting the structure of contexts,
types, terms and equality out of TDT. FOLDS has the first two of these, contexts and types
(although the latter are called "sorts"), but it does not have the third, terms (except in the

rudimentary form of mere variables), and it has equality in a greatly restricted form only.

The restriction on the use of equality in FOLDS is a fundamental feature. FOLDS is to be used
in formulating categorical situations in which, for example, equality of objects of a category is
not an admissible primitive. The absence of term-forming operators, to be interpreted as
functions, is a consequence of the absence of equality; it seems to me that the notion of

"function" is incoherent without equality.

It is convenient to regard FOLDS a logic without equality entirely, and deal with equality, as

much as is needed of it , as extralogical primitives.

It is worth-while for the reader at this point to make a quick comparison of the way [C]
formulates the theory of categories (pp. 212, 213 in [C]), and the way FOLDS formulates the
same (see §1, p.11). Let me emphasize that essentially this particular instance of FOLDS have
been introduced early on by G. Blanc [B], in his characterization (mathematically equivalent to
P. Freyd's earlier characterization) of first-order properties of categories invariant under
equivalence of categories. A. Preller [P] makes the specification of the specific instance of
FOLDS clearer. The theme of invariance under equivalence is in fact the main theme for this

work; see below.

The FOLDS formulation of the theory of categories is, admittedly, longer than the Cartmell
formulation. It consists in writing out the axioms of "category" in essentially the usual
first-order terms, with a special regard for the typing of variables. The main points to observe
are that (1) no equality on objects is used; (2) equality of arrows is used only when the arrows
already are assumed to be parallel; and (3) quantification on arrows is restricted to one

hom-set at a time.

The formulation in [C] is more "mathematical"; in particular, the essential algebraic nature of
the concept of category is clear on it, whereas, because of the presence of the usual first-order
operators that in general do not yield essentially algebraic concepts, in the FOLDS formulation

the essential algebraic quality of the concept of category is obscured.



In the case of the theory of categories, the notions of context in the two formulations coincide;
in fact, now a context is a finite diagram of objects and arrows represented by variables.
Below, we will take a look at the formulations of the concept of a category with finite limits in

the two frameworks, when the differences become greater.

The most obvious difference of the two formulations is that the one in FOLDS is purely
relational, in Cartmell's syntax, purely operational. In FOLDS, the concepts of identity and
composition are represented by relations, rather than operations as in [C]. The arity of a
relation is the type of a particular context; the places of a relation are to be filled by variables
forming a context of a given type. To give an example, in case of composition as a relation,
the variables filling the places of the relation T (for (commutative) triangle) form a system
consisting of variables U, V, W, u, v, w (not necessarily all distinct), related to each other by

sorting data

U V, W:0;, u:A(U, V), veA(V, W), weA(U, W)

(O for "object", A for "arrow"),

or more pictorially,

T then says of this diagram that it is commutative.

A general context in the FOLDS language for categories is a finite graph of object and arrow
variables, with sorting data specifying which object variable is the domain of each arrow
variable, and the same for codomain (when we say "graph", we mean to imply that there is no

arrow-variable without a corresponding object-variable designated as its domain, or codomain).

An immediate consequence of the absence of operations in FOLDS is the simplification of the
notions of context and type (sort) in FOLDS with respect to the Cartmell syntax. To see the

effect of this, we take the example of the theory of categories with finite limits. Although this
example is not discussed in [C], it is highly relevant to the subject of [C] as acknowledged by

the title of section 6: "Essentially algebraic theories and categories with finite limits".



In the Cartmell syntax, pullbacks would be introduced by the following introductory rules:

U, V, eOb, veHom(V, U) , weHom (W, U) : pbO(U, V, W, v, w) EQb
(here, the "informal syntax" allows writing pb 0 (v, w) 1n place of the longer term) ;
U, V, eOb, veHom(V, U) , weHom (W, U) :
pbl (v, W)EHom(pbO (v, w), V), pb2 (v, W)EHom(pbO (v, w), W) .

(Of course, one has in mind the pullback diagram

v \4
pbl (v, W)T TW
pbO (v, w) pbz v, w) )

There are further terms and rules expressing the universal property of the pullback.

Now, in FOLDS, we have two possibilities. One is simply adopting the same language of
categories as before; after all, pullbacks are first-order definable in the language of categories;
in fact, pullbacks are definable in FOLDS over the language of categories. Another possibility

would be adopting an additional primitive relation of arity the diagram

we would do this if we wanted (as we may) to keep down the quantifier complexity of the
axioms of the resulting theory. In either case, appropriate first-order axioms, formulated in
FOLDS, are adopted.

Now, compare the notions of context and type (sort) in the Cartmell formulation, to those in
the FOLDS formulations, in this example. In either of the FOLDS formulations, the notions of
context and type remain the same as in the previous example of the theory of categories; in
particular, contexts are finite graphs of variables. However, in the Cartmell formulation,

because of the presence of terms of arbitrarily high complexity, both of the type of an object



and of an arrow, contexts and types of arbitrarily high complexity will come up. In particular,

the second rule above features a type with a place filled by a term which is not a variable.

This example explains the reason for the complexity of the definition the general concept of
theory in Cartmell's syntax; see section 6, loc.cit. In particular, the definition of "type" cannot
be made independent of the axioms of the theory in question; what counts as a well-formed
type depends on what axioms are present. This is not at all unexpected; M. Coste's earlier
syntax for essentially algebraic theories [Co] (not referred to in [C]) also had this feature. In

contrast, in FOLDS, there is no such complication in the definition of "type" ("sort").

Let me point out another aspect in which FOLDS is simpler than Cartmell's syntax. In FOLDS,
one never substitutes in a sort expression; in the formal system, there is a substitution rule, but
it does not effect sorts. Related to this is the circumstance that the sorting of variables can be
given rigidly; that is, when we say that the variable x is sort X, where the sort X may
contain further variables, we mean a formal, once-for-all specification concerning x . In
FOLDS, in contrast to Cartmell's syntax, it is impossible to have the same variable x to be

declared of types X and Y unless X and Y are literally the same.

I consider the just-described feature of FOLDS to be of foundational importance. The view
underlying FOLDS is that sort-declarations are not subject to logical manipulation; they are
not propositions; one cannot negate a sort-declaration. One cannot ask whether x is of sort X
within logic; the variable x being of sort X is purely notational, or conventional, matter.
More pointedly, membership in a set is not a matter for logic; what is the matter for logic is
whether certain elements, declared to belong to various sets, do or do not satisfy certain
predicates. One should compare simple type theory (higher-order logic), in which typing of
variables is also absolute. The difference in FOLDS is only that the type of a variable may
also contain variables; however, the latter variables are uniquely determined from the variable

being typed.

There is an important difference between the FOLDS-formulation and the Cartmell
formulation, indicated above, of the notion of category with finite limits; in fact, the very
notions formulated, not just their formulation, differ. Cartmell's syntax formalizes the notion of
category with specified finite limits; FOLDS (in our application) formalizes the notion of
category with finite limits, with the latter defined only up to isomorphism. Moreover,
Cartmell's syntax cannot formalize the latter notion, for the simple reason that that notion is

not an essentially algebraic one. Conversely, FOLDS, with the restriction that no equality on



objects is allowed, cannot formalize the notion of category with specified finite limits.

It is possible to recapture the full expressive power, and more, of Cartmell's syntax within the
framework of FOLDS. This will essentially be shown in Appendix C, when discussing "global
equality". However, FOLDS with global equality captures more than Cartmell's syntax;
because of this, it fails to represent that syntax faithfully. Thus, Cartmell's syntax is not
rendered superfluous, or redundant, in any sense by what we do here. There is a similar
situation with Coste's syntax for essentially algebraic theories mentioned above. Coste's syntax
is one using the unique existential quantifier; it can be easily subsumed under the simpler
regular logic which uses the ordinary existential quantifier. The point of Coste's syntax, and of
Cartmell's, is that they capture exactly the essentially algebraic doctrine. In addition, I want to
stress the great practical value of Cartmell's syntax. It is, in my opinion, the most practical
specification language for structures such as (possibly) higher dimensional categories, with

(possible) additional structure.

In this work, I present two ways of introducing FOLDS, which, however, are ultimately
equivalent; one in §1, the other in Appendix A. The one in Appendix A is the more direct one.
It starts with a simultaneous inductive definition of the concepts of kind, context, sort and
variable, together with some other auxiliary concepts. Kinds are the heads (names) of sorts;
each sort is obtained by appropriately filling out the places of a kind by variables. After
defining the syntax in a global manner, one isolates specific vocabularies, or similarity types,

for the purposes of formulating specific theories in FOLDS.

On the other hand, the treatment in §1 starts with the idea of a vocabulary for FOLDS (DSV).
It is interesting that the data for a DSV can be naturally and succinctly captured by a, usually
finite, one-way category. One-way categories were isolated by F. W. Lawvere in [L]; a
category is one-way if its endomorphism monoids are trivial; in the skeletal case, this means
that there are no non-trivial circuits of arrows. Subsequently, Lawvere observed that one-way
categories are intimately related to the sketch-based syntax of [M1]. Their appearance in this
paper is related to their role in [M1], although this fact is not worked out here. The DSV as a
one-way category has objects the kinds and the relation-symbols; the latter are "top"-level
objects in the category; the arrows between kinds represent the dependencies built into the

syntax.

The formulation of FOLDS based on one-way categories is simpler than the "direct" approach.

In fact, it can be put into a succinct algebraic form, in the form of certain hyperdoctrine-type



structures. We will exploit this possibility for the presentation of the Godel and the Kripke

completeness theorems for FOLDS.

2. Let me indicate the foundational motivation behind this work.

P. Benaceraff, in a well-known paper [Ben] entitled "What numbers could not be", expressed a
criticism of the set-theoretical reconstruction of mathematical concepts such as that of "natural
number". Benaceraff's point is that any one set-theoretical definition of "natural number" gives
rise to truths, such as "17 has exactly seventeen members", that become false under an
alternative, but equally legitimate set-theoretical definition of "natural number" (his illustration
compares the von Neumann definition ( 0=0 , n+1=nu{n} ) and the Zermelo definition (
0=0, n+1={n} ). Thus, the set-theoretical reconstruction of mathematics is inevitably

cluttered with irrelevant and arbitrary truths.

The way out of this requires a language of mathematics in which one talks about the system
(N, 0, S) of the natural numbers in such a way that any property of (N,0,S) that can be
expressed in the language is necessarily invariant under isomorphism of structures of the form
(A; acA, f:A—A) . We quickly realize, as did Benaceraff, that in such a language, we
cannot allow an equality predicate relating things belonging to various sets; we may

contemplate equality a=,a’ of elements a, a’ of a fixed, but arbitrary, set A only. As a

A
consequence, we cannot allow an equality predicate whose arguments are sets; for if A and B
are sets, A=B should imply that Vac€A.3dbe B. a=b, but the last use of the equality

predicate is not restricted to elements of a fixed set!

Doing mathematics under such restrictions is not as absurd as it may sound first. In fact,
considering sets to be objects of a category, with functions as arrows, and using the FOLDS
language of category theory mentioned above, one may do, specifically in the
Lawvere-Tierney theory of elementary toposes with a natural numbers object, a significantly
large part of mathematics, without violating the said exclusions, and in fact, fully observing

the above-italicized requirement.

One may contemplate a comprehensive language of abstract mathematics, with the property
that in it, only "relevant", that is, suitably invariant, predicates can be expressed. In the case of
properties of sets, "suitably invariant" means "invariant under isomorphism (bijection)". In the

contemplated foundational framework, sets are singled out among arbitrary totalities by the



quality of a set that an equality predicate on its elements as arguments is present as part of the
"structure” of the set. The totality of all sets is not a set, since there is no equality predicate on

sets as arguments.

But then, what kind of structure does the totality of all sets form? Answer: a category. The
isomorphisms will be particular arrows. We quickly realize that, to do set-theory, we need
more general arrows than isomorphisms. In category theory, equality of parallel arrows is
fundamental; we stipulate that the arrows from a fixed object to another fixed object form a
set. We find that there are other categories, such as that of groups and homomorphisms, which
in many ways are similar to that of sets and functions. For instance, we do not want to have
equality of groups as a primitive. Categories appear as generalizations of sets; every set is a
category, a discrete category. There is, in general, no such thing as the "underlying set of the
objects of a category", not because of size considerations, but rather because, in general, there

is no equality predicate whose arguments are the objects of the category.

We find that the idea of an isomorphism of categories, let alone equality of categories, is
incoherent; it is obvious that the notion of an isomorphism of two categories must involve
reference to equality of objects in each of the categories. This entails that a totality of
categories cannot be, in general, a category; in any category, the notion of isomorphism is
well-defined. For totalities of categories, we must have a new type of structure, some kind of

2-dimensional category.

However, in our quest for the "perfectly invariant" language we quickly get into conflict with
standard category theory. The trouble is that we must conclude that the notion of functor,
surely a mainstay of the subject, is not acceptable. The problem with it is that it implicitly
refers to equality of objects in the codomain category, in the requirement that its value at any

given object in the domain category be uniquely determined. Is there a way out of this?

In an old paper ([Kel]), G. M. Kelly described a common situation one finds oneself when one
wants to define a functor. It appears that all data are there to define the functor, still, it is not
possible to canonically single out the value of the functor at an argument-object; one needs to
make an arbitrary choice of a value, while it is also clear that it is immaterial what choice one
makes. Frequently, the choice cannot be made without the Axiom of Choice. Kelly described
in precise terms what the data are like before one makes the arbitrary choices. Relatively
recently, without knowing about Kelly's paper, I also went through a similar consideration, and

made a formal definition of the notion of anafunctor (a term suggested by D. Pavlovic),



anticipated by Kelly some thirty years ago (he did not give a name to the concept). (Related
ideas occurred to R. Paré some time ago.) I have found that one can live, quite well actually,
with anafunctors, without converting them into functors by making non-canonical choices.
There is a basic category theory that, in its main outline, does not deviate too much from the
standard one, and which uses anafunctors in place of functors; this theory gets by to a large

extent without the Axiom of Choice. The beginnings of anafunctor theory is presented in [M2].

Let me emphasize that the work in [M2] is done in a traditional set-theoretic framework. The
"perfectly invariant" foundation is not yet available for use; the mathematical work in [M2] is

intended to help formulate such a foundation.

I envisage a foundational set-up, a universe of abstract concepts, in which we have sets,
functions, categories and anafunctors as specific distinct kinds of entities. It is clear that we
cannot stop here. We will have natural transformations of anafunctors. But the totality of all
categories, anafunctors and natural transformations of the latter will form a new kind of entity,
an anabicategory. This differs from a bicategory in that each composition operation of 1-cells,
one for each triple of objects (0-cells), instead of being a functor, is an anafunctor. [M2] treats

the afore-mentioned concepts.

The concepts of anafunctor and anabicategory mentioned above are "non-radical" revisions of
established notions of category theory. As Kelly explained in [Kel], using a global version of
the Axiom of Choice, anafunctors can be "converted" into functors. Technically, this amounts
to saying that, under an appropriate Axiom of Choice, every anafunctor is isomorphic to a
functor (this makes sense since a functor is canonically an anafunctor; "anafunctor" is a
generalization of "functor"). Thus, under the full force of the usual set-theoretic foundations,
anafunctors are of no importance. (Let me mention in this context that the global Axiom of
Choice we have in mind is in fact meaningless in the Invariant Foundation, since it talks about
a function with values which are sets, the very idea of which is inexpressible because of the
lack of equality on sets. In fact, Kelly already in loc.cit. considered the global type of choice

involved here more suspect than ordinary choice.)

The universe of the Invariant Foundation is not clearly defined as yet. It should contain
ana-n-categories for all natural n’s; the totality of ana-n-categories, with their morphisms,
etc., will form an ana-n+1-category. The task of formulating these concepts is closely related

with the task of defining the general notion of "weak n-category", mentioned in [BD].



3. In the previous subsection, I gave an incomplete outline of the universe of the Invariant
Foundation. The contribution of the present work is to the language of that foundation. The

proposal is to use FOLDS as the basic language.

For any vocabulary L for FOLDS, taken (for convenience) completely without equality, I
introduce the notion of L-equivalence of L-structures; this is the replacement for the notion
of isomorphism for ordinary kinds of structure. An L-structure M is at the same time an
ordinary structure for an ordinary language |L| ; the properties of M expressible in FOLDS
are particular ordinary first-order properties of M as an |L| -structure, but not vice versa. It
turns out (General Invariance Theorem, GIT) that the first-order properties that are invariant
under L-equivalence are precisely the ones that are expressible in FOLDS over L. This

indicates that L-equivalence is the right notion of "isomorphism" for structures for FOLDS.

As was mentioned above, anafunctors are a generalization of functors. But, upon closer look,
we see that the requirements of the "logic of (generalized) equality" impose an additional
condition on anafunctors. Whereas an anafunctor determines its value at a given argument up
to isomorphism, meaning that any two possible values are isomorphic, in the case of a
saturated anafunctor, the value is determined also no more than up to isomorphism, meaning
that any object isomorphic to a possible value is also one. (The precise definition also relates
to the given isomorphism between a possible value and a new object.) The requirement of
saturation is an extension of the principle of substitutability of equal for equal, transferred to
isomorphism from equality. Now, it turns out that every anafunctor, in particular every functor,
has a canonically defined saturation, a parallel saturated anafunctor, to which it is isomorphic.

The right notion of "functor" is "saturated anafunctor".

On the one hand, we have traditional types of categorical structures, examples which are (1)
categories, (2) diagrams of categories, functors and natural transformations, and (3)
bicategories, efc.. We have notions of equivalence for each of these kinds; e.g., the one for

bicategories is usually called "biequivalence".

On the other hand, we have anaversions of each of the above kinds of structure. In particular,
we have a canonical saturation of any structure of each of the above kinds; in case of the first
(category), the saturation is identical to the original. Each kind of anastructure has a
vocabulary L for FOLDS as its similarity type; as a result, we have the notion of
L-equivalence for these anastructures. The chief point of the work here is that the concept of

equivalence for traditional structures of a given kind, and the concept of L-equivalence for

10



their saturations correspond to each other. E.g., two bicategories are biequivalent iff their

saturations are L-equivalent, where L is the FOLDS vocabulary for anabicategories.

The saturation A# of a categorical structure (e.g., bicategory) A is quite simply defined in

terms of 4 ; in particular, the definition is a first-order interpretation. As a result, any

first-order property, and in particular, any FOLDS property, of A# is also, by a direct

translation, a first-order property of 4. Hence, it is meaningful to ask of a first-order property

P of A whether it is expressible as a FOLDS property of A# . We have the conclusion that
this holds iff P is invariant under equivalence of the appropriate kind. E.g., a first-order
property of a variable bicategory A is invariant under biequivalence iff it is expressible in
FOLDS as a property of the saturation of A . This theorem is a result of a combination of the
relation of the two kinds of equivalence mentioned above, and an appropriate generalization of
the GIT.

The last result for categories is due to P. Freyd [F], and G. Blanc [B]; Blanc's formulation is
closer to the spirit of this work. A detailed proof is available in [FS]. The methods of the
present work are entirely different from Freyd's. Restricted to the case of categories, the former
give stronger results, although the additional strength that I cannot reproduce by Freyd's
methods seems of minor importance. More important is the fact that Freyd's methods employ
the axiom of choice, through the use of the skeleton of a category, and thus do not generalize
to "constructive category theory". In Appendix E, I give a proof of the GIT for intuitionistic
FOLDS. This gives rise to an intuitionistic version of the Freyd-Blanc characterization theorem
for properties of categories invariant under equivalence. This does not seem to be accessible
by the methods of [FS].

The main mathematical results of the present work are thus syntactic characterizations of
formulas that are invariant under equivalence, in various senses of "equivalence". For the
statement of these results, there is no need to understand the anaconcepts. In fact, for the case
of bicategories, I organized the presentation in a way that does not refer to anabicategories
explicitly, although, in this way, I missed the proof of the full strength of the main result. By
contrast, in the case of diagrams of categories, functors and natural transformations, the
anaconcepts are displayed.

From the foundational point of view, the results give confirmation to the idea that FOLDS

employed in the context of anastructures is a suitable foundational language. I expect that the

11



analysis started here will extend with similar results to higher dimensions. This is a concrete
matter in the case of tricategories [GPS]; but I believe the case of general n-dimensional
structures will soon be accessible too. I find it an interesting proposition, verified up to
dimension 2 here, and conjectured to hold in all dimensions, that the appropriate notion of
equivalence, "weak n-equivalence" in the terminology of [BD], has a form, namely
L-equivalence for the saturations of the structures involved, which is of a general "logical
nature"; the original notion of "weak n-equivalence" looks a priori to be a rather involved

idea.

4. Let me give an overview of the contents. I have organized the material into seven sections
and five appendices, with the obvious implication as to what parts I felt to be the more
important ones. §1 is the basic introduction to the syntax and semantics of FOLDS. The reader
may immediately look at Appendix A, which contains the alternative, "more logical",
introduction of FOLDS. §2 contains the formal systems for the classical, intuitionistic and
coherent versions of FOLDS. §3 is a purely algebraic (categorical) study of "fibrations with
quantification". I deal with hyperdoctrine-like structures; specifically, fibrations in which the
base category has finite limits, but there is a distinguished class of arrows along which
quantification is allowed. The applications to FOLDS is given in §4. I was surprised at the
appropriateness of this simple idea for the purposes of FOLDS. The (Godel, Kripke)
completeness of the systems of §2 are thus seen to be a special case of something much more

general.

§5 introduces the concept of L-equivalence, the main new concept of the work, and proves, in
a suitably general form, the General Invariance Theorem (GIT). Appendices B and C are
elaborations on the theme of L-equivalence. In Appendix C, I give, among others, proofs that
follow the spirit of the treatment in [FS]. § §6 and 7 work out the conclusions concerning the
three kinds of categorical structure we discussed above. In §6, the example of a single functor
between two categories as a categorical structure is considered in some detail. In particular,

fibrations are such structures. Appendix D contains some of calculations for §7.
Finally, Appendix E does two main things. One is the extension of the theory of
L-equivalence to intuitionistic logic and Kripke models. The other is ordinary Craig
interpolation and Beth definability for FOLDS.

I would like to thank George Janelidze and Dusko Pavlovic for valuable conversations on the
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subject of this work.
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§1. Logic with dependent sorts

First, we describe the kinds of structure which the assertions of logic with dependent sorts are

about.

It is well-known from categorical logic that the similarity types that are graphs (having sorts
the objects, and unary sorted operation symbols only) are sufficient for all purposes. The

simplest consideration here replaces a relation-symbol sorted as RC A, X. .. XA_ by a new

1

D
sort R, and operations R#Ai , 1=1, ..., n.Our first move is to restrict attention to

one-way graphs; in fact, more conveniently, to one-way categories.

The concept of one-way category is due to F. W. Lawvere [L]. In [M1], I reproduce Lawvere's

observation to the effect that categories of finite sketches obtained by the repeated use of the

second construction of [M1] starting from Set are exactly the ones of the form Setc, with

C a finite one-way category.

A one-way category is one in which all endomorphisms are trivial (identities). In a skeletal
one-way category, for any objects A and B, it is not possible that there are proper
(non-identity) arrows in both direction A— B and B— A . As a consequence, there are no

cycles (positive-length paths A, —>A., —> ... —A_ of proper arrows with Ag=A_ ).

0 1
We are mainly interested in finite, skeletal, one-way categories. However, for certain purposes,

we need to relax the finiteness condition.

A category C has finite fan-out (I owe this concept to Jim Otto) if for every object A, there
are altogether finitely many arrows with domain A ; the set | [{C (A, C) : CeOb(C)} is

finite. A simple category is one which is one-way, skeletal, and has finite fan-out.

A simple category is reverse-well-founded; in other words, it satisfies the ascending chain

condition: there are no infinite paths A, —>A. — . .. —A —A — ... (n<w) consisting

0 1 n+l °°
of proper arrows. (Namely, any such would have to have the objects A pairwise distinct, by

the above, and that would mean, a fortiori, infinitely many arrows out of A 2
If L is a simple category, the set Ob (L) of objects is partitioned as in

14



Ob(L) = \J L.
i<l T

into non-empty levels Li ,for i<{, [ the height of L, {<w, such that LO consist of the

objects A for which there is no proper arrow with domain A, and such that, for i>0 , Li

consists of those objects A for which all proper arrows A-—>B have Be L_,= \J Lj , and
Jj<1

there is at least one arrow A-—>B with Be L. - (If AeOb (L) , and for all proper

f:A>B, Be \J L., then Ac ) L. ;infact AeL, for some i not greater than the

i<w i<
maximum of the levels of the codomains of the finitely many proper arrows with domain A
plus one. Therefore, if AcOb (L) - |/ L., then there is a proper A—> B with
i<
BeOb (L) - |/ L., and thus there is an infinite proper path out of A .) All proper arrows go
i<
from a level to a lower level. Of course, the height of a finite simple category is finite.

A maximal object in a simple category is one which is not the codomain of a proper arrow.

Every object of the maximal level (if any) is maximal, but not necessarily conversely.

By a vocabulary for logic with dependent sorts, or DS vocabulary, or even DSV,

we mean a simple category given with a distinguished, but otherwise arbitrary (possibly
empty) set of maximal objects. The distinguished maximal objects of the DSV are its relation
symbols (or relations); the rest of its objects are its kinds. We write Rel (L) and Kind (L)

for the sets of relations and of kinds of L, respectively.

DS vocabularies are our similarity types for structures for logic with dependent sorts;
concomitantly, they figure as vocabularies for the syntax of logic with dependent sorts. Unlike
in multisorted logic, the arrows of a DSV do not enter the syntax of FOLDS as
operation-symbols; the role of the arrows in a DSV and their composition will serve to

determine the "dependence structure" of the variables.

Here are some examples for DSV's .

d c
Lgraph ’ l l

0
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T _ _
tol ltlltz dtl_CtO , dtZ_Ctl ,
dt2=dt0 , di =ci

cat 2 1 T
l l relations: I , T
d c
(0]
Aq
dll lcl
L2—graph : A ddlzdcl, cdlzccl
dl lc
(@)

Only non-identity arrows are shown. The proper arrows are those shown and their composites,

among which we have the equalities shown, and no more. E.g., there are three distinct arrows

T—0. L and L
graph

and T are relations.

have no relations. The dots in L, signify that T

2-graph at

For a DSV L, and an object A in it, we write A \ L for the set of proper arrows with
domain A (the notation resembles the notation A|L for the comma category). For an arrow

jo Kp denotes its codomain.

Given a DSV L, the intended structures for L, the L-structures, are the functors

M:L— Set in which for each relation ReRel (L) the following holds: the family
(M(p) :M(R) >M(K,)) e o,
domain R, is jointly monomorphic: for a, be M(R) ,if M(p) (a)=M(p) (b) for all

of functions, indexed by the proper arrows in L with

PER| L, then a=b . The condition means that M(R) is essentially a subset of the set

[] M(K_) ,actually a subset of M[R] ; here, for any A€Ob (L) ,
per|L P

MIA] 4 {(ap)pepDALM(Kp) : M(q) (ap)zap, whenever gp=p’} (1)

(M[A] is the limit (joint pullback) of the diagram A] (L-{ 1,1 gL% Set (with @

the forgetful functor) mapping (A—>K) to M(K) ). We will usually (and without loss of

generality) assume that in case ReRel (L) , the canonical monomorphism

16



mg:M(R) »M[R] taking a to ( (Mp) (a)) is an inclusion of sets.

RIK
pE\p

-structures are the graphs, the L -structures are the
2-graph

-structures. If M is a category, for M as an

We recognize that the L
graph

2-graphs. Categories are particular Leat

Lcat—structure, M(O) , M(A) are the sets of objects and of arrows, M(d) and M(c) are

the domain and codomain functions; as a consequence, M[T] is the set of triangles

\%4
u \4
//ﬂ \g

ug —> W
w
in M ; by definition, M(T) is the set of commutative triangles, a subset of M[T] ; M(I) is

the set of identity arrows. In fact, we realize that the L, -Structures are exactly the

at
category-sketches of [M1] .

For & a DSV, |L| denotes its underlying graph. Any (small) graph L can be used as a
similarity type for multisorted logic; the L-structures are the graph-maps (diagrams)

L—>Set ; C-valued L-structures are the diagrams L — € . Multisorted first-order logic with
L as vocabulary uses the objects of L as sorts and the arrows of L as sorted unary operation
symbols; we always allow equality (to be interpreted in the standard way) when we refer to
multisorted logic. For these matters, see [MR1]. First-order logic with dependent sorts over L

will be a proper part of multisorted first order logic over |L | .
To be sure, the |L| -structures are not exactly the L-structures; the latter are those among the

former that satisfy a certain set X[L] of axioms over |L| ,to be described next. X[ L]

consists of the following sentences:
VxeA. ( /\ {g(p(x))=p’' (x) : p, p’€A|L, geArr (L) ,qgp=p’},
one for each AeOb (L) ( = Kind (L) URel (L) ) ; and

VxeR.VyeR.[( /\ p(x)=ply)) — x=y],
PER|L

one for each ReRel (L) .

17



One feature of logic with dependent sorts is that there will not be any operation symbols
(explicitly) used in it; thus, the just-listed sentences are definitely not in logic with dependent

sorts over L.

Let us explain the intuition behind logic with dependent sorts for the case when the vocabulary
is L.t First of all, logic with dependent sorts is a (proper) part of what we know as

ordinary multisorted logic over Logt! the (a) language of categories. In logic with

at

dependent sorts over L we have variables ranging over O ; we can quantify these

variables. However, ins&:ictiz of variables ranging over A , we will have ones that range over
A(U, V) ,where U and V are variables of sort O. A (U, V) is a "dependent sort", one
depending on the variables U and V. A variable u ranging over A (U, V) is of sort
A(U, V) ,and we write u:A (U, V) . Of course, we should think of A (U, V) as

hom (U, V) ,and of u:A (U, V) as u:U—>V. In terms of the semantics of
Lcat—structures, the interpretation of A (U, V) in M is {aeMA: (Md) (a)=(Mc) (a)} .
Thus, we have no variables ranging over all arrows at once; only ones ranging over arrows

with a fixed domain and codomain.

An immediate consequence of this is that if a formula has the free variables U and V', and
also u:U—V (thatis, u:A (U, V) ), then forming VU@ should and will be illegal; the free
variable u in VU@ has lost its fixed reference to a domain.

In FOLDS in general, and in particular over L we will have a restricted use of equality

only. The reason for this is our main aim, Whic(lzlail: to formulate languages for categorical
structures in which all statements are invariant under the equivalence appropriate for the kind
of categorical structure at hand. Typically, equivalences does not respect equality of certain
kinds of entities; in the case of categories, equality of objects, in the case of bicategories,
equality of objects (0-cells) and equality of 1-cells. In FOLDS with restricted equality, we will
allow "fiberwise equality" over maximal kinds; in the case of Lot this means fiberwise
equality over A . The restrictions on equality in FOLDS over Lot

intuition that in category theory, one should not refer to equality of objects, and equality on

will correspond to the

arrows should be mentioned only with reference to arrows which have the same domain and
the same codomain.

The above remarks, made for the case L =L on how logic with dependent sorts over L

cat”’
is constrained with respect to ordinary first-order multi-sorted logic over |L| have natural

extensions to the case of a general vocabulary L . The constraints will be built into the general
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definition of the syntax.

Before giving the general definitions, to illustrate FOLDS (first-order logic with dependent

sorts), we write down the axioms for category in this logic.

VU:0.3i:U>U.I(1) ;

VU:0.Vi:U>U.VJ:U>U. (I(1)AI(F)—>1i=7) ;

YU:0.YV:0.YW:0.Vu:U>V.Vv:VoW.Aw:U—>W. T (u, v, w) ;

VU:0.VV:0.VW:0.Vu: U= V.Vv: V>W.Vw: U->W.Vw’ :U—>W
(T(u, v, w) AT (u, v, w') — w=w') ;

VU:0.Vi:U—>U.YVu:U—>V.T(1, u, u) ;

VU:0.Vi:U—>U.Vu:v—>U.T(u, 1, u) ;

YU:0.YV:0.VIW:0.VX:0.
Yu:U->VvV.Vv: VoW VYw: U W.Vx: WX Vy: V>X.Vz: U>X
((T(u, v, w) AT (v, X, ¥) AT (W, X, 2) ) —T(u, vy, 2))

We have applied certain abbreviations in writing these formulas. The atomic formula T (1)
should be really I (U, i) ; U is also a variable in it; in fact, i:U— U cannot appear
anywhere without U. Similarly, T (u, v, w) isreally T (U, V, W, u, v, w) . However, the
abbreviations used are systematic, and can be made into a formal feature. Also, w=w’ is an

atomic formula depending on all of the variables U, W, w, w’ ; it is written, more fully, as

W:A(U, W)W .

Many of the usual properties of categories, and of diagrams of objects and arrows in

categories, can be expressed in FOLDS over L.t For instance, the definition of elementary

at
topos (with operations defined by universal properties up to isomorphism, not specified as

univalued operations) can be given as a finite set of sentences in FOLDS over L the

cat ;
reader will find it easy to write down the axioms for elementary topos in the style of the above
axioms for category. As Freyd [F] and Blanc [B] have shown, and as we will see below, this is
closely related to the fact that the usual properties of categories, and of diagrams in categories,

are invariant under equivalence of categories.

Let us turn to the formal specification of the syntax of logic with dependent sorts. We fix a
DSV L. For a while, only the kinds in L will be used; let K be the full subcategory of L
on the objects the kinds; K is a simple category, the category of kinds of L ; it may regarded

as a DSV without relations.
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Note that kinds have been assigned a level in K ; levels range over the natural numbers less
than k, where k is the height of K. Recall that for any Ke K, we use the notation K|K
for the set of all proper arrows p:K— Kp with domain K. The set K|K will figure as the

arity of the symbol K . In particular, the ones with empty arity are exactly the level-0 kinds.

We are going to define what sorts are, and what variables of a given sort are. These notions
are relative to a given L (actually, to the category K of kinds of L ), which is considered

fixed now.

When X is anything, we write x:X to mean that x = (2, X, a) for some (any) a. When

we have defined sorts, and X is a sort, x:X 1is to be read as " x is a variable of sort X ".

By definition, a sort is an entity of the form

<1’ K, <Xp>pEK‘K>

such that X is a kind, and for each pe K| K, and for

we have x_:X
D D

We will also write K ( (xp) for (1, K, <Xp> ; thus, a sort is obtained by

PEK| K ) PEK | K>
filling in the " pth " place of a kind K, for any p in the arity K|K of K, by a suitable

variable X, - The sort K ( (xp) is said to be of the kind K.

PEK| K
When X isasort, and x:X,thatis, x=(2, X, a) for some a, x is called a variable of
sort X ; a is called the parameter of the variable x . Usually, the notation x:X will imply
that X is a sort.

Note that every variable "carries" its own sort with it. This is in contrast with the practice of
most of the relevant literature (see e.g. [C]), where variables are "locally" declared to be of
certain definite sorts, but by themselves, they do not carry sort-information. For a sort

X = K(<xp> , Var (X) =f {xp:peK\K} ;and if x:X , Dep (x) Var (X) ;

pek| K d def

x depends on the variables in Dep (x) .
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Note also that any parameter gives rise to a variable of a given sort; for any sort X, and for
any a whatever, (2, X, a) is a variable of sort X . In the "purely syntactic" contexts, it
suffices to restrict the parameters to be natural numbers (thereby ensuring a countable infinite
recursive set of variables of each sort). However, for the purposes of model-theory, it is
convenient to have a proper class of variables of each sort (as a consequence, we have a proper
class of sorts). Let us call a variable natural when its parameter, as well as that of each

variable it depends on, efc., is a natural number.

For a variable y, let's write Xy for the sort of vy (y: Xy ), and let's use the notation

y:X =Ky(<x ) (1"

>
s e K L
Y Y, D' P _Y‘

displaying the ingredients of the sort Xy in dependence on y . Also, let's write a (y) for
the parameter of y .

The first question arising concerning the definition of "sort" is whether the constituent entities
X _ are also sorts; the answer is "yes". Assume X = (1, K, (x is a sort. Applyin
5 y ( (%) ek | &) pplying

the definition of "sort" to Xp , for qEKp | K, we want that for

h : . But si K =K = h X =
we have qu (X ) ut since and (rqg)p = r(qgp) , we have ( p)q

X

P a g Tap
X ;and x _:X __,by X being a sort.
ap ao  ap

Although the definition unambiguously defines what sorts and variables are, it is not (quite)
clear, for instance, that for every KeK, there are sorts of the kind K. We show that the sorts

of the kind K are in a bijective correspondence with families (ap) of arbitrary

PEK|K

entities ay’ the correspondence ma‘1ps X= (1, K, <Xp>pe K K> ‘to
a(X) d§f<a (Xp) >peK\ g for which Xp=<2, X ap) for a suitable X,

We want to prove that for any (ap)
a(Xx)

pER| K’ there is a unique sort X of the kind K with

:<ap>pEK\K'

Let KeK and (ap) be given. By recursion on the level of Kp , for each pek|K,

PEK|K

we define Xp (a sort, as it turns out), and the variable Xp:Xp .Let peK| K. We put
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Since for each qup \ K, qu is of lower level than Kp , the entity qu has been defined;
thus, Xp and Xp are defined for p as well. This defines Xp and Xp for all p.

Put X 3¢ (1, K, <Xp>peK\K
the same as the Xp we just defined. Since Xp:Xp , X is a sort. Clearly,

a(x) = (ap)

) . Then Xp formed for X as in the definition of "sort" is

PEK|K’

The uniqueness of X with this property is (also) easily seen.

Let us remark that for kinds K of level 0, there is exactly one sort of the kind K, namely
K (@) ; this can safely be identified with K itself.

Let us consider the case K = Lgraph . We have the level-0 sort O ; let us use the letters

U, vV, w, .. for denoting variables of sort O ; U:0, efc. The level-1 sorts are of the
form A ( (xp) )pe d e} with Xq XCIO , for which we write A (x. , XC) . Thus, we
have sorts A (U, V) ,A(V, U) ,A(U, U) ,..Letususe u, v, for variables of level 1 ; we

may have u:A (U, V) , which we paraphrase as u:U—V.

In the case of L , the ones listed are all the sorts and variables.
graph

For K=1L , we have the additional sorts of the kind A. . Let us write d for the
2-graph 1 10

arrow dd,=dc , and g for cd;=cc, . Ag K= {dlo,clo,dl,cl} . Writing

x ) for A({(x_)

) , we see that the sorts
€1

A (x , X , X4,
1741977 c19"

of level-2 are those
A(U, V, u, v)

for which U:0, V:0, u:U—>V and v:U—>V.Here, U and V,aswellas u and v,

may coincide. We would like to paraphrase A (U, V, u, v) as
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Before we complete the definition of the syntax of logic with dependent sorts, let us discuss

the semantics of sorts. To begin with an example, let us take K =1L Now, we

know that the intended K-structures are the functors K— Set . ButzwgI ]Ifn?})/k;ake a different
view. We may say that a K-structure M consists of

aset MO,

for each A, BeM(0O) ,aset MA(A, B) ,
and

for each A, BeM(0O) and f, ge MA(A, B) ,aset MA, (A, B; £, g) .

(
This way of thinking of a K-structure emphasizes that an "arrolw" f cannot be conceived of
before its "domain and codomain" A, B, which have to be elements of MO , have been given;
there is a similar consideration for "2-cells". Also note that this kind of K-structure is not
literally the same as a functor K— Set . The main difference is that, in the new version of the
concept, we are not saying anything about the sets MA (A, B) being disjoint from each other
for distinct pairs (A, B) . Recall the two different styles of definition of "category" (or
"2-category"). The one in which arrows determine their domain and codomain is in the spirit
of our notion of structure in the original sense; the other in which we talk about a function

A, B—~hom (A, B) assigning a hom-set to pairs of objects is related to the new concept.

The second version of the concept of K-structure has the following general form. A

K-structure M is given by specifying when, for Ke K, the entities MK ( (ap)p e K| g ae
defined, and when they are, what sets they are; such data are subject to the following
condition:

(2) MK( <ap>peK\K) is defined iff for each pek|K, MKp( (aqp)qup | g IS
defined and a€ MKp( <aqp>q€Kp | %

This formulation hides the recursive character of the concept. Once it is clarified, for all K of

level less than 1, when MK ( (ap) is defined, and if so, what set it is, then for any

peK\K)

K of level i, MK( <ap>peK\ g s defined iff for all peK|K, MKp( (aqp)qup | g IS
defined, and a,€ MKp( (aqp) qup | g (note that each Kp is of level <1 ), and in that

case, MK ( (ap) is any set.

peK\K)

Any functor M:K-—>Set givesrise to a K-structure in the new sense. For any Ke K, define

M[K] asin (1); declare that MK ( (ap) is defined iff (ap)p € M[K] , and

peK\K) €K|K
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in that case, put

MK((ap) aEMK: /\ (Mp)(a)=ap}. 3)

) 4= {
PEK|K’ def PeK | K

It is clear (using that M is a functor) that now, (2) is satisfied.

But conversely, "essentially all" K-structures in the second sense are obtained as functors
K> Set . The passage from a structure in the new sense to one in the old sense is as follows.
Given a K-structure M in the new sense, for any KeK, M(K) is defined as the disjoint
union of all defined sets MK ( (ap)pe K| K
p:K%Kp , M(p) is given by M(p) (((ap)
K— Set .

) , indexed by the tuples (ap)p and, for

€K|K’

PEK| K ay) =, this defines a functor

Making the statement that the two notions of K-structure are "essentially equivalent" precise
would require defining what we mean by an isomorphism of two K-structures M and N in
the new sense, and showing that the above two passages represent an equivalence of the
category of functors K— Set with natural isomorphisms as arrows on the one hand, and the
category of K-structures in the new sense, with isomorphisms in the new sense between them
as arrows on the other. We will not go through this exercise, and return to our original concept
of " K-structure" (" L-structure"). However, the concept of an M-sort as a set of the form (3)

will be used.

Let us now return to the full DS vocabulary L, and define what L-formulas in logic with
dependent sorts are. We will have two versions: logic with dependent sorts with (restricted)
equality, and logic with dependent sorts without equality. FOLDS with unrestricted equality
also makes sense; however, it turns out to be essentially the same as full multisorted logic with
equality over |L| (see Appendix C), hence, it is of no real interest.

Letus fix L.

Atomic formulas are defined very similarly to sorts. An atomic formula in logic with

dependent sorts without equality is an entity of the form

<3’ R, <Xp>pER‘L>
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such that R is a relation in L, and for each peR|L, and

we have xp:Xp . Under these conditions, the Xp are sorts (just as with the definition of

"sort"). We write R ( (xp) for (3, R, (Xp)

peR\L) peR\L>'

In logic with (restricted) equality, we also have additional atomic formulas as follows. For any

maximal kind K (maximal object of K), sort X=K( (xp) , and variables x, y,

PEK| K
both of sort X, we have that (4, X, x, y) , written as

X=xY >
is an atomic (equality) formula.

We define formulas ¢ and the set Var (¢) of the free variables of ¢ by a simultaneous

induction. Any atomic formula is a formula; if ¢ = R( (xp) , Var (@) =

peR\L)
{xp:pER\L} ;if @:=: X=, Y, Var (@) =Var (X)U{x, vy} .

The sentential connectives t, £, A,v, — , = ,¢<— can be applied in an unlimited manner;
Var ( ) for the compound formulas formed using connectives is defined in the expected way;
e.g., var (pay) =Var (@) UWar (V) .

Suppose ¢ is a formula, x is a variable such that there is no yeVar (@) with
xeDep (y) . Then Vx¢@, dx¢ are (well-formed) formulas;

Var (Vx@) 45f Var (3x@) 4af (Var (@) -{x}) U Dep(x) .

All formulas are obtained as described. (Of course, we have some determinations such as
Vx@ 45f (V, x, @) , where V =7 (?), etc.)

Let us make some remark on logic with (restricted) equality. Just as in ordinary first-order
logic, the syntax of logic with equality is the same as that of logic with equality, with the
equality-symbol understood as another relation symbol; it is only the semantics that makes the

difference.
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Formally, for each maximal kind K, add to L an additional relation E_, with morphisms

K b
®K0 g
EK . K subject to Pey=PCr > for all peK|L; let us denote by L the
K1
extension of L by these additions. The equality formula x = xY corresponds to
E_({z_) ) where z_ =x, z_ =y, z =z =x_ . Upto the
K r/ reEp|L €ko °k1 Pegy Peg1 P

exchange of these two formulas, for each maximal K, the syntax of FOLDS with (restricted)

equality over L, and the syntax of FOLDS without equality over 59 coincide.

A context is a finite set )V of variables such that if ye ), then Dep (y)cC). It is easy to see

that for any formula ¢, Var (¢) is a context.

We explain the semantics of logic with dependent sorts. Let M be any L-structure. Let ) be

a context. We define

M) g€ {(ay)yey: ayeMK((aXy p>pEKy\L) for all ye)} (4)

(recall the notations (1') and (3)).

By recursion on the complexity of the formula ¢ , we define M[): @] , the interpretation of
¢ in M in the context ), whenever ) is a context such that Var (¢)c) ; we will have

that M[)Y:¢@] c M[ )] . For an atomic formula R ( (Xp) , we stipulate, for any

peR\K)

(@) e yF MY,
(ay)yeye M[)’:R((Xp)peR‘K)] ? <aXp>pER‘Ke M(R)
(recall that M(R) C M[R] ; clearly, <axp>p€R\Ke M[R] automatically).

In case of logic with equality,

(a.) € M[J:u=_,v] & a =a
v’ yveJ X dof u v

For the propositional connectives, the clauses are the expected ones; e.g.,
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€ M[J:ynl] —
yeJ def

<ay>ye)ie M[Y:y] and <ay>ye)ie M[):0]

(a,)

Let us consider Vxy , and a context Y such that Var (Vxy)c). Let x:K( <Xp>pEK| ) -

First, assume that x¢ ) ; this is the case in particular when

Y=Var (Vxy) = (Var (@) -{x})UDep (x) .

Let Y'=YU{x}; )’ isa context. When <ay>ye)7

let (ay)yey(a/x) denote <a3’/>ye)" for which a}’/zay for ye Y, and a;=a . We see

eM[)] and aEMK(<axp>pEK|L) ,

that <ay>y€)7(a/x) € M[)'] as follows. Note that for y€), we have xgDep (y)

(since xeDep (y) would imply that xe ) ); as a consequence, al'/e MKy( (a}’(

Y, P
1 for ye); while for y=x, the same holds by

)

cK | L
. . l p y‘
1S equivalent to € MK a

a 3 MK, ((ay  Jpex |

‘ Vv, P vy
the assumption on a . We define

<ay>yEyEM[y:VXl//] Fer

for all acMK((a , we have (ay)yey(a/x)eM[)":l//] ;

> K L)
X, PEK|
and

eM[Y:IAxy] ==

<ay> def

vey

there is a€ MK ({a such that (ay)yey(a/x)eM[)”:u/]

) )
K|L
X, PEK|

In the general case for YD Var (Vxy) , define

(ay>yEyEM[)’:Vxl//] — (ay)yeﬁ,EM[)’:VXl//] ,

<ay>yeyEM[)’:Elxu/] = (ay)yeﬁiEM[)’:Elxl//] ,

N

where Y= Var (Vxy) = Var (Ixy) . It is clear that when xg ), the second definition gives

the same answer as the first one.
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As usual, we also write MF@[{(a_)

yye)’] for (ay)yeyeM[)’:(p].

This completes the definition of the standard, Set-valued semantics of FOLDS.

Let us note that when ¢ is a formula in logic with equality over L, and (?) is the
corresponding formula in logic without equality over L9 | obtained by exchanging the
equality subformulas for E K—formulas, and M is an L-structure, then M[JY:¢@] = M[): (;)] ;

in the latter instance, M denotes the standard LS%-structure in which each E_, is interpreted

K
as true equality. In short, the semantics of logic with equality over L coincides with the
semantics of logic without equality over L9 when the latter is restricted to standard

structures.

Let us formulate a simple translation of logic with dependent sorts into ordinary multisorted

logic. This amounts to a mapping ¢ qo* of L-formulas ¢ of FOLDS to |L| -formulas of
multisorted logic. Let us agree that every variable x:X, with X a sort of kind K, will be

regarded, in multisorted logic over L, a variable of sort K.

The mapping @ (p* will be so defined that the free variables of (p* are exactly the same
as those of @ . Moreover, the essential property of the translation is that, for any L-structure
M,

Ml=<o[<ay> — ME¢@ [<ay>

ve ) veyl

here, in the second instance, we referred to the usual notion of truth for multisorted logic. The

definition is this:

for an atomic formula ¢ :=: R(<Xp>peR\K) ,
% .
® .=.R({x.) ) ;= 3yeR. /\ py)=, x_; (%)
def p’peER|K’ def PR L Kp o
for an equality formula ¢ :=: x= XY

*
? qef *gY
(here, X is a sort of the kind K) ;
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*
() commutes with propositional connectives;

(Vx)  g5¢ Vx( /\ p(x)= x, — qo) ;

PEK|L p
* *
(Ix@) 43¢ Ix( /\ p(x)= AQ)
PEK|L p

(in the last two clauses, x:K( <Xp>peK\ 7))

We have a straightforward extension of the semantics of logic with dependent sorts to
interpretations in categories so that the standard semantics will appear as the special when the
target category is Set . First of all notice that the notion of C-valued L-structure makes
sense for any category C; it is that of a functor M:L— C such that for any ReRel (L) , the

family (M(p) of morphisms in € is jointly monomorphic. The use of the notation

) PER|L
M:L—C will imply that M is a C-valued L-structure. From now on, let us assume, at least,

that € has finite limits.

Let M:L— C . For any object A of L (kind or relation), we define M[A] as the limit (joint

pullback) of the diagram A| (L-{1 ) gL% Cc, with @ the forgetful functor; Mo®

maps p:A%Kp to M (K ) . Let us write np or ﬂg , for the limit projection
M[A] %M(Kp) , and let Ta n‘M M(A) —>M[A] be the canonical arrow for which

ﬂ:po T A:M (p) . When A is arelation R, then T is a monomorphism; we also write mlg
for n]g. When A isakind K,then U[K] and ng: U(K) - U[K] are defined for any

U:K— C (formally, by using the above definition for K in place of L ); of course, when

U=MI'K,then U[K]=M[K] , nU nM

Continuing, let ) be a context; we will define M[ )] . We construct a graph () and a
diagram ¢ ¥ (YY) —> L as follows. The objects of () are the elements of Y,

Ob{(JY) = Y. The arrows of ()) are (y, z; p):y— z, one for each peK | L such that
Z=X, 4 (D)/ maps y to Ky, (v, zyp):y—z to p: Ky%K (=K ) M[)’] is defined
as the limit of the composite MP ¥ (JY) —> € let us denote the projections for this limit by

ny:ngznp){’ ST DMK ) (ved) .
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We define M[):¢@] as a certain subobject of M[ )] , by recursion on the complexity of ¢ .

Let ¢ be the atomic formula R ( (xp) ,and let Y be a context such that

)
PER|L
var (@) :{Xp:pER | L} ¢ V. Let £:M[)] >M[R] be the arrow, given by the universal

property of the limit defining M[R] , for which ﬂ:po f= T (PER|L). M[): @] is defined

b
by the pullback

M[Y:0] —— > M(R)
o = I o
) l R

M) ﬁM[R]

(that is, M[Y:¢@] as a subobject of M[)] is represented by the monomorphism m}; 0 ).
For formulas built by a propositional connective from simpler formulas, the definition is the
expected one. E.g.,

M Y:p—>w] =M[Y:0l —M[):y] ,

where on the right-hand-side, reference is made to the Heyting implication — in the
subobject lattice S (M[)]) ; of course, M[Y:p— y] is defined if and only if the

corresponding instance of Heyting implication is defined in S (M[)]) .

Let x¢),and Var (Vx@)c).We have f:M[JU{x}] >M[)Y] for which nyo f:nl'/

(ye): ny:ﬂlyW - nr=mtL. ).Let 3.V :S(M[D0{x}]1) o> S(MIY]) be the

: y TM{x}, y £
* .
partial left and right adjoints to £ :M[)J] >M[JU{x}] , the latter defined by pulling back
along f . We define

M[Y:3x@] Elf(M[)’U{X} :01) ,

M[):Vx@] Vf(M[)’U{X}:qo])

For M[)Y:3dxp] or M[):Vx@p] to be defined, it is necessary and sufficient that the

corresponding instance of 3 ., respectively V . be defined.
£ £
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For the coherent part of the language (atomic formulas, £ , £, A, v, 3 ) to be interpretable in
the category, it suffices that C is a coherent category (see e.g. [MR1]). For the interpretation

of the full language, it is suffices to have that € is a Heyting category (see e.g. [MR2]).
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§2. Formal systems

In this section, a vocabulary L for logic with dependent sorts is assumed fixed. Relations,

formulas, etc., are all from/over L.

For a formula ¢, var (@) is "the set of all variables in ¢, free or bound". More

precisely, Var* (@) = Var (@) for atomic ¢ ; Var* (pAy) = Var* (@) UVar* (y) , and
similarly for the other connectives;

Var* (Vx@p) = Var* (dx@) = {x}UDep (x) UVar* () .

Let 2, ) be contexts. A map s:4¥— ) is called a specialization if whenever xed’,

X‘K(<Xp>peK\L) pek|L)
The identity map X' — & is a specialization, the composite of specializations is a

, we have XzK((s(xp)) is a sort, and s(x) : X.
specialization. Moreover, if a specialization is a bijection, then its inverse is also a
specialization, and the restriction of a specialization to a subset of its domain which is a

context is also a specialization. A notation such as s:4— ) will refer to a specialization.

For a sort X, resp. a formula ¢, and a specialization s:4— ) such that Var (X)cd’, resp.
Var (@) ct, we define X|s, resp. @/ s, "the result of substituting s (x) for all free

occurrences of x in X, resp.in ¢, simultaneously for all xed ".

If X is the sort K(<Xp>peK\L) , and if ¢ is the atomic formula R(<Xp>peR\L) , We
put

X|s def K(<S(Xp) >pEK\L) . 9|s def R(<S(Xp) >pER\L) :
For the equality formula ¢:=: X= LV, Qs :=: s(x) =x Ss(y) . The property of s

being a specialization ensures that X|s is a sort, and ¢|s 1is a(n atomic) formula in both

cases.

(ry) [s 43¢ (@lS)n(y]s),
and similarly for the other connectives.
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Suppose ¢ = Vxy . Let us first assume that A=Var (Vx¢) . Consider the sort X of x,

x:X;let y be a variable of sort X|s which is new in the sense that yEVar* (y)yudu)y.
Define t to be the function t:XUu{x} —>JU{y} for which e'¥=5s,and t(x) =y
(note that xz &' ). Notice that Var (X)cd, Var (X|s)c), thus FU{x} and Ju{y} are
contexts, and t is a specialization. We put (Vxy) | s 43f Vy(w|t) . For a general
s:X—>), (VYxy) |s isdefined as (Vxy) | s’ ,with s’ = slvar (Vxy) . We make a

similar definition for 3 in place of V .

Since in the above description, 3 was not uniquely determined by the conditions given,
substitution is not quite well-defined. We may correct this by making a particular, but
artificial, choice of y . A better procedure is to identify the formulas obtained by different
choices of y ; this we do by defining the equivalence relation on formulas of one being an
alphabetic variant of the other. However, for defining "alphabetic variant" it is convenient to
use substitution. As long as substitution is not "well-defined", what we have is a relation

"@|s=0" of three variables ¢, s, O rather than an operation (¢, s) ——>¢|s.

Let ¢ be a formula, x and u variables of the same sort (for which we write x~u ), and
assume that for all vevar (¢) , x¢Dep (v) (thatis, either x¢Var (¢) oritisa "top"
element in Var (¢) ). Then the mapping

s:Var (@)u{x} >Var (@)u{u},

defined by s(v)=v for vevar (¢)-{x} and s(x)=u, is a specialization. Under these
conditions, we put ¢ | (x> u) aif @| s [more precisely, " ¢| (xt>u) = 0 " iff
n q)‘ S = 6 n ]'

The relation ¢~y , " ¢ is an alphabetic variant of y ", is defined as follows.

If ¢ is atomic, then @~y iff ¢ = y.
P11py Y iff y= YA, for some v, with oY (i=1, 2) ; and similarly for
the other connectives.

Vxp ~ y iff yw=Vx'@’ forsome x’'~x and ¢’ such that, for some u for which

usxex’ and ugvar ((p)UVar* (') , we have that @ | (xt>u) ~ @' | (x'>u) .
Similarly for 3 in place of V . [More precisely, we should say, in place of
¢| (xt>u) ~ @' | (x't>u) ,that for some o and 7 suchthat " ¢| (x(~>u) = o " and
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"@|(x'+>u) =1", wehave 0~ T.]

One shows in a routine manner that ~ is an equivalence relation, ¢~y implies that

Var (@) =Var (y) ,and ~ is compatible with substitution: if ¢ ~ w, " ¢|s=¢’ ", and
"yl|s =y’ "imply that ¢’ ~ y’ . In particular, substitution ( ) | s is an operation on
equivalence classes of ~ . Note that the logical operations are compatible with ~ ; @~y
implies that Vx¢ ~ Vxy , etc. Also, the semantics of alphabetic variants are identical.
Henceforth, we identify alphabetic variants. In other words, a formula is, strictly speaking, an

equivalence class of the "alphabetic variant" relation ~ .

When s:¥—> ), Var (¢)cl, we have Var (¢|s)c).If, in addition, t:)—>Z, then
(p|s)|t=0|(ts) Also, 9|1,=09.

An entailment is an entity of the form ¢ —> y, where ¢, y are formulas, 4 is a context,

and Var (@) , Var (y) c &. We formulate rules of inference involving entailments. Each

0 e Eqlp n) between entailments Egr v € 15 €5

are the premises, € is the conclusion of the respective instance of 7. We

rule is a relation Z (€ € €

Eny -y €
0 n-1
display instances of 7 in the form

n may be 0, in which case we have a rule with no premises, an axiom schema.

1. Structural rules:

(Taut)
o = 0
V4
Qo =y Yy = O
(Cut) 24 24
p =— o
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o = v

(Subst) 4 (s:4d—))
¢ls — yls
J

II. Rules for the connectives

(t)
v =— t
e
(£)
f— v
e
6 — o 0 =— vy
e e
()
0 — ony
e
o — 0 v =— 0
X X
(v)
ovy — 0
e
orp — vy
(=) 24
0 — o>y
e
(=) (-0 abbreviates 6— £ )
t — 0O6v-0
e
(AV)

(@ovy) AO :/l’> (n0) v (wAB)

III. Quantifier rules

O {x}
0 ——— Vxop

(V) (xed)
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Ax@ —— 0
X
(AT) (x¢Var(0) )

Ondxp = Tx(O0AQ)
X

IV. Equality axioms

(E{)
t — x=
7 X
(E,)
e
(E3)

x=gy A9 = 9| (x>y)
4

In the rules, ¢, v, 6 and o ranges over formulas, x over variables, £ and ) over finite
contexts. An implicit condition is that each entailment shown has to be well-formed. E.g., in
(t) and (f) ,Var(o)ct.In (V) and (3), Var(0) c 4 ;since xgd is explicitly
assumed, it follows that xg¢Var (0) . Note that, in the same rules, the condition for the

well-formedness of Vx¢ , 3x¢ is satisfied as a consequence of the other provisos. More
precisely, if X is a context, Var (¢)cAU{x} (in particular xgZ ), then Vx¢@, Ix¢@ are
well-formed. Namely, for yeVar (@) ,if y#x,then yed, hence Dep (y)cCd’, and thus
x¢Dep (y) ; and if y=x,then x¢Dep (x) anyway.

For (E,) , note that since X is a sort of a maximal kind, ¢| (x> y) is well-defined.

3)

The double-lined "rules" contain more than one rule. The double line indicates that inference
can proceed in both directions. E.g., in (v) , three rules are contained: the one that infers the
entailment below = from the two above =, and the ones allowing to infer either of the

two entailments above = from the one below —.

We have coherent, classical and intuitionistic logic with dependent sorts, each with or without
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equality. Coherent logic involves the (coherent) operators t , £, A, v, 3 ; classical and
intuitionistic logics involve the remaining two, — and V . Coherent logic without equality
has the rules all those not mentioning — and V in their names; intuitionistic logic also has
the additional rules (— ) and (V) (and then (Av) , (A3) become superfluous);
classical logic has also the remaining rule (=) . The versions with equality also have the
rules (E;) , (E)) and (E3) .

A coherent formula is one built up by the coherent operators starting with the atomic formulas;

an entailment ¢ == Wy is coherent if both ¢, v are coherent formulas. A coherent theory in

logic with dependent logic is a pair T= (L, 2) of a DS vocabulary L and a set X of
coherent entailments over L. ConsCoh (T) is the least set of coherent L-entailments that
contains X as a subset, and is closed under the rules for coherent logic; we write T+ €, or

T I—C €, and say that € is deducible from T in coherent logic with dependent sorts, for

oh
geCons 4 (T) . Again, we have the versions with or without equality.

A theory in intuitionistic logic , or in classical logic (with dependent sorts) is defined similarly,
mutatis mutandis. Again, we have logic with or without equality. Aside the exclusion of
equality in the logics without equality, all formulas are used, in contrast to coherent logic. We
have the concept T+ € of deducibility for each of these logics with dependent sorts.

We have completeness theorems for the various logics (coherent, intuitionistic, classical) with
dependent sorts. What these completeness theorems show is that logic with dependent sorts is
"self-contained". The initial view of logic with dependent sorts is that it is a fragment of
ordinary multi-sorted logic. The fact that truths in the fragment can be deduced by deductions
using only formulas also in the fragment is a sign, indeed, a necessary sign, that the fragment
deserves the designation "logic".

To formulate completeness, let us fix a semantic category € (in the first instance,
C=Set ). Let M bea cC-valued L-structure. Let us write M= ¢ —y for
y 4

M[X: @] SM[I]

theory T=(L, 2) isa C-valued L-structure that satisfies all entailments in X . For a theory

M[X:y] , and say that M satisfies the entailment ¢ —y . A model of a
y 4

T, and an entailment &€ , let us write Tk cé- and say that the entailment € isa
C-consequence of T, to mean that all C-valued models M of T satisfy € . Foraclass C

of categories, T F ¢ € means that TFE ct for all ceC.
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Mod L (T) is the category of all C-valued models of T; it is a full subcategory of
Fun (L, C) . We write Mod (T) when C= Set.

The completeness theorem for coherent logic, as well as for classical logic, with dependent

sorts, with or without equality, is expressed by the equivalence
THe < T |=Se . £

(of course, the symbol F is to be taken in any one of the four distinct senses corresponding to
the four logics listed; € accordingly ranges over the entailments of the corresponding logic).
The completeness theorem for intuitionistic logic with dependent sorts, with or without

equality, is

THe & TE € ,
Kr

where Kr (for Kripke) denotes the class of categories of the form set? , with P any poset.

As usual (see e.g. [MR2]), the completeness theorem for intuitionistic logic with dependent

sorts may be formulated in the style of Kripke's semantics.

We will prove of the completeness theorems in §4.
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§3. Quantificational fibrations

The notation and terminology of [M3] is used. The particular kinds of fibrations introduced

here do not appear in loc.cit., but most of the needed ingredients do.

E
E C
Let C| =CJ| be a fibration; let @ be a class of arrows in B . Assume:
B B
C

B has a terminal object, and pullbacks ( B is left exact) .

@ is closed under pullbacks: when

T ] T (1)

is a pullback, then ge@ implies g’€g .

Each fiber C’A ( AeB) is a poset; in fact, it is a lattice (with top and bottom elements,

denoted t A £ the meet and join operations are written as A or more simply as

A b
A, v if no confusion may arise).

A’ Va>
* B A .. A B .

For each (g:A—>B)e@, g :C~——>C" has a left adjoint EIq:C’ ——C~ , which
satisfies the Beck-Chevalley condition with respect to all pullback squares (1), and which

satisfies Frobenius reciprocity (see pp. 342 and 343 in [M3]).

(Note that a fibration with posetal fibers (the only ones we are interested in here) is the same

as a functor

*
B°® S poset : ALB > C'BLC‘A

to the category Poset of posets and order-preserving maps. )

The data C, @ as described make the pair (C, &) a av3-fibration. We may denote

(C, @) by C; we may write QC’ for @ . Dropping the references to £ 2 and v 2 results in

39



the notion of Ad-fibration.

A morphism M:C-—>D of av3-fibrations is a morphism of fibrations (among others,
M= (M, M), My :Bp—>By, M,:Ex—>Ep, L o | ;in practice, we omit the
B,——B
C C

subscripts 1 and 2 , and write M(A) for M1 (A) , etc.) that takes QC—arrows to
QD—arrows, induces lattice homomorphisms on the fibers, and preserves all instances of each
Elq( qEQC ). M is conservative with respect to a pair (X, Y) of predicates over the same
base-object A if MX< MY implies X<,Y; M is conservative if it is conservative for all

A
such (X, v) .

The Av3-fibrations and their morphisms form a category Av3 . In fact, we can make Av3
into a 2-category, by making Av3 (C,7D) into a category; the latter is a full subcategory of
[C, D1 (see p. 348 in [M3]). An arrow

M
c Jn.?D

N

is a natural transformation h:M; — Ny satisfying MP < n NP for all Ae Bo, peC? ( for
A

*
the notation X < Y& X<f Y).

<f Y, see p. 349 in [M3]; X<

£

For a category € with pullbacks, P(C) , the fibration of predicates of C, is the fibration C
with base-category € for which C=s (A) , the A-semi-lattice of subobjects of A, and for

f:A>B, £ :s (B) =S (A) is the usual pullback-mapping. To say that P(C) isa
av3-fibration, with @ the class of all arrows in C, is the same as to say that C is a

coherent category (see, e.g., [MR2]).

Consider P(Set) asa av3-fibration, with @ the class of all arrows in Set . A model of
C is a morphism C—>P(Set) . Mod (C) is the category of models of C ;Mod (C) =
Ava (C,P(Set)) . More generally, let us write ModD(C') for Ava(C,D) .

E
Until further notice, fix C = (Cl, @) , asmall av3-fibration. Proposition (5) below is the
B

40



completeness theorem for Av3-fibrations, the fact that there are enough models of C to
distinguish between any pair of different predicates in a fiber. The ones preceding (5) are used
for the proof of (5).

Let us write 1 for 1 B’ the terminal object of B; and t for t 1

disjunction property if for any X, Y e C’l, if Xv¥y =t ,theneither X=t,or Y=t .C has

£ for fl.C' has the

the existence property if whenever (! ,:A—1)ed and Xe C? , we have that 3 , (X)) =t

A A

*
implies the existence of some c:1-—>A suchthat ¢ (X) =t.

(1) Suppose C has the disjunction and the existence properties, and that t # £

(consistency). Then Mod (C) has an initial object ; in fact, M= (Ml’ M2) given by

M, =homg(1,-) andfor xeC®, M, (X) = {c:1 54 : ¢ (X)=t) is an initial object.

( M may be called the global-sections model C-—>P(Set) ; wesay c:1->A belongsto X

over A if c*(X) =t .)

The proof is identical to that of 2.2, p. 351 in [M3], although the statement of the latter does

not include that of the present proposition.

For a fibration C, XeB and Xe C’A , the "slice" fibration C/ (A, X) was described in [M3].
The base-category of C/ (A, X) is B/A; the fiber over (BLA) €B/A is

{ve cB. v< £ ordered as CZ is. We have a canonical morphism

6=6A’ :C—C/ (A, X) thattakes BEB to (BxAa-"'52) ,and veCP to vax af
nYAm X ( Sn’ X; m:BXA——> B is the other projection).

For a av3-fibration C, we define the Av3-fibration D = C/ (A, X) by also putting

£
(B\z/c) € Qﬂﬁ feg.
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2) C/ (A, X) isa av3-fibration, and SA X:C’%C’/ (A, X) is a map of

9

Av3-fibrations.

The proof is essentially contained in Section 2 of [M3]. It is helpful to add to 2.4(i) and (ii) of
[M3] that the forgetful functor B/A— B creates pullbacks; with this, the required instances of

the Beck-Chevalley and Frobenius reciprocity conditions become clear.

@) If (1, ,:A>1)eQ and XeC® suchthat 3, (X) =t ,then &, . is
A ' a A X
) B B ) ) )
conservative. If X vXy= b, and Y, ZzeC~ , then either 6t, X, or 5t, X, is conservative

with respect to (Y, Z) .

See 2.7 in [M3].

By a straightforward transfinite iteration of the construction of C/ (4, X) (compare 2.8 in
[M3]), we conclude from (2) and (3) that

(4) For any given AeB, X, Ye C’A , there are a Av3-fibration C* having the

*
disjunction and existence properties, and a map C-—>C of av3-fibrations which is

conservative with respect to (X, Y) .

(5) For any given AeB, X, YEC'A,there is M:C-—>P(Set) , amap of

anv3-fibrations, which is conservative with respect to (X, Y) .

Proof. In C/ (A4, X) , with 1=1 and 6=6 we have the global element

C/ (A, X) A X’

dA:1%5(A) : A—— S AXA

1A\Aﬁ’
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that belongs to 0 (X) ; moreover, d ) belongs to d(Y) over A iff X<Y. Now, start with
X, Y over A in C suchthat X{Y;passto C'=C/ (A, X) ;in C’ ,

tzd;lé (X) £ d:;B (Y)=Y’ . By (4), there is ®:C’ %C* which is conservative with respect
to (t, Y’) suchthat C " has the disjunction and existence properties. By (1), we have the

*
global-sections model N:C —>7P(Set) . The global-sections model is automatically
conservative with respect to any pair (t, Z) over 1 in its domain. We conclude that, for
P=No® : C’ —>P(Set) , P is conservative with respect to (t, Y’ ) , that is,

P(dAS(X)) iP(dA5(Y)) .
It follows that
P(O(X)) £ P(O(Y)) .

For M= Po§ : C—>P(Set) , this means that M(X) £ M(Y) .

A Av— 3V-fibration is a av3-fibration C such that

every fiber C? isa Heyting algebra, and for all f:A-—>B, £:CB5c? isa

homomorphism of Heyting algebra; and

for each qEQC, , q* (also) has a right adjoint which satisfies the Beck-Chevalley

condition with respect to all (relevant) pullback squares.

For a category € with pullbacks, to say that P(C) isa Av— JV-fibration, with @ the
class of all arrows in C, is the same as what we usually express by saying that C is a

Heyting category (see [MR2]). Of course, Set is a Heyting category; more, for any (not
necessarily small) category A , set? isa Heyting category. See e.g. [MR2]. The coherent
structure in Set® (the Av3-fibration structure in P( SetA) ), although not the full

Heyting-structure, is "computed pointwise"; that is, the projections 7 a° P SetA) —P(Set)

( AeA) are morphisms of Av3-fibrations.
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E
Given any small av3-fibration C| , we may form P(Set
B

Mod (C) ) , and we have the

evaluation morphism

ep: C P(seted(C)
}f F— [M—M(X) ]
Al— > [M—M(A) ]

of Av3-fibrations.

Mod (C)

(6) For a small Av— 3V-fibration C, ecs C—7P(set ) 1is a morphism of

Av — 3V-fibrations.

Proof. The proof is a variant of that of 5.1 in [M3]. The fact that e is conservative follows
from (5). We need to show that e ¢ preserves Heyting implications in the fibers, and V f's;

we limit ourselves to the second task. By using the way the V f's are computed in any

P SetA) , our task is as follows.

Assume M:C->Set , a morphism of Av3-fibrations; (f:A->B)egd, XeC‘A, VerC'B
and beM(B) —M(VfX) . We want the existence of NeMod (C) , a homomorphism h:M—>N
and aeN(A)-N(X) such that h,(b) = (Nf) (&) .

Let us use ordinary multisorted first-order logic to talk about models of C and
homomorphisms between them. Consider the language L=L (C) whose sorts are the objects

of B, operation-symbols are the arrows of B, and relation-symbols are all unary, and they

correspond to the predicates peC? ; P is sorted PCA . Itis clear that every MeMod (C)
may be regarded an L-structure; morphisms in Mod (C) are exactly the morphisms of
L-structures. Moreover, there is a (coherent) theory T=T (C) over L such that

Mod (C) = Mod(T) .

For a given L-structure M, homomorphisms h:M-—>N with varying N are in a 1-1
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correspondence with models of Diag’ (M) , the positive diagram of M, which is a set of

atomic sentences in the diagram language L ( |M| ) in which an individual constant a of
sort A has been added to L for each sort and a€M(A) ; the elements Di ag+ (M) are

those atomic sentences that are true in (M, a) . We may also define DiagJr (M) as

ae | M|
Db(M) UDp(M) , Where Db(M) contains all f(g):Bl_J for which f:A—B in B,

aeM(A) , beM(B) and (Mf) (a)=(b) ;and Dp(M) contains all P(a) where A€B,

PEC'A and aeM(P)CM(A) .

Returning to our task, let a be a new individual constant of sort A ; under the assumptions,
we need the satisfiability of the set

TV Dy (1) qu(M) U {=X(a)} v i{b=gf(a)} .

Assume this fails. By compactness, there are finite subsets DCD, (M) , D’ CDp (M) such that

b

TUDUD' F b=pf(a) — X(a)

Let ( c ) i<n be distinct elements of 1M, c,EM(C.) , each distinct from b, such that
every c that occursin DUD’ is one of the c;.or is b.Let z, be distinct variables, z,

of sort C,; va variable of sort B, x one of sort A, all distinct. Let us replace c; by

Z: s b by y; we obtain D from D, D’ from D’, and we get that

TE V(Zi>i<nVyVX( /\ DA /\ D’/\yzBf(X) — X(x)) . (7

Working inside the category B with finite limits, we can construct as an appropriate finite

limit an object C together with morphisms n.,:C>C,, m:C—>B such that for any
L-structure N, NE( /\ D) [ <ci ) i<n?’/ ( z, ) ;<pY] iff thereis ceN(C) with

N(7.) (c) = éi , N(m) (c) = b (actually, ¢ is then uniquely given). In particular, there

is an element ceM(C) such that M(7.) (¢) = c., M(n) (c) = b. For any aeD’ , let

1
Ot* be the element of the fiber over C given as follows: if o :=: P(Zi) , a*défnZ(P) ;
if o:=: P(y), Oé*dgfn'*(P) .Let 0= /\ {OC*: QeD’'} € ¢ . Notice that ceEM(Q) .

Consider the pullback-square
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We claim that

g (o) <a (x). ®)

By (5), it suffices to check that this holds in each model NeMod (C) . Assume
NeMod (C) =Mod (T) , deN(g (0)) , ¢=(Ng)d, a=(Np)d, c,=(Nm,)c,
b= (Nm) ¢ ; we have b= (Nf)a, N=( /\D)[{c;). b/{z;). vl by the defining

property of (C, (ni)i, n) and NE( /\ D) [(éi>i<nb/(zi>i<ny] by the definition
*

of Q. Since N satisfies the sentence in (7), it follows that aeNx, and thus deN (a (X)),
which shows the claim.

Since fe@, also ged . By (8), stgp*(x) = n*vf(x) . However, in M, ceM(Q) ,

*
but cgm V f(X ) , since bgV f(X ) ; this 1s a contradiction.

A Av—3-fibration is a av3-fibration in which every fiber is a Boolean algebra. Every
nv—3-fibration is a Av— 3V-fibration.

Without essentially changing the concepts, in each of the various kinds of fibrations introduced
above, the class @ of "quantifiable" arrows may be required, in addition, to be closed under

composition. If (C, @) is a "quantificational” fibration (of one of the four kinds introduced

above), then, with @° the closure of @ under composition, (C, Q%) is again one of the
same kind as the reader will readily see. Also, any morphism f£: (C, &) —> (C’, @’) of one

of the four kinds is a morphism f£: (C, 9°) > (C’, @' °) of the same kind.
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§4. The syntax of first-order logic with dependent sorts as a fibration

Let L be a DSV;let K be the full subcategory of the kinds. Consider the category B=B,

which is the free finite-limit completion of K: i:K-—> B, and for any category S with finite

*
limits, i :Lex(B,S) —Fun (K, S) is an equivalence of categories ( Lex (B, S) is the

category of left exact functors B—>S , Fun(K, S) = s¥ the category of all functors K—> S,

*
1 1s defined as composition with 1 ).

It is well-known that for any (small) category XK, B can be given as (Fp (SetK) ) OF

( Fp (M) 1s the full subcategory of finitely presentable objects of M), with i:KCB the
functor i:K—> (Fp (SetK) ) °® induced by Yoneda. (The small-colimit completion of A is

(a°P) (a°P)

Y:A—> Set ; the finite-colimit completion of A is Y:A—>Fp (Set ) ;

©)

D
therefore, the finite limit completion of a%® is v:a°% - (Fp(Set (a7") )) P ).

Now, for any simple category K , Fp (SetK) is the category of finite functors K—> Set ; a
functor F:K-—> Set is finite if E1 (F)={ (K, a) : KeOb (K), ac FK} is a finite set.

Namely, each finite functor is finitely presentable, the finite functors are closed under finite

colimits in SetK , and every functor is the filtered colimit of the collection of its finite

subfunctors (the latter uses that K has finite fan-out); this suffices.

Thus, B can be taken to be the opposite of the category Fin (SetK) of finite functors
K— Set ; the canonical functor i:K— B is (induced by) Yoneda.

Let Con[K] be the category whose objects are the contexts (of variables over K ), and

whose arrows are the specializations. I claim that

Con[K] ~ Fin(SetK)

Let F:K—— Set be a finite functor. I define a mapping
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(K, a) — yf; _ ¢ EL(F) — >VAR

into the class VAR of variables as follows:

F B F
yK, a def <2’YK, a’ a)
where

F

_ F
Yk a = K% () (@) ) pex|®)

This is a legitimate definition by recursion on the level of K. vE  isa type; this requires

K, a
that
F F
K_((y ) ) = Y ,
K F K |K K F
P qp’( (gp)) (a) q€p| p,(p)(a)
which is true since (F(qgp)) (a) = (Fq) ( (Fp) (a)) . Hence, yf; 3 is a variable.
We let )’F 43f {yf; 5 (K, a)eEL (F) } . Itis immediate that )’F is a context. We have a
bijection

(K, a) Hyg _: EL(F) S0,

If h: F—— G is a natural transformation, we let s=s % )’F% J o be defined by

F . G . o : F e
s(yK, 2 =Yg hy(a) - s 1s a specialization: this requires that YK, 3 |s = YK, h(a)
which is the same as hK ((Fp) (a)) = (Gp) (hKa) (p:K%Kp) , which holds by the

naturality of h . It is immediate that we have a bijection
h+— Sy ¢ Nat (F, G) %Spec(‘)’p )’G)

. h k _ _
Also, if F——>G-—>H, then skh—skosh,and Sq =1
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Thus far, we have seen that we have the full and faithful functor

F ‘yF K
lh — Sy Fin(Set™) ——>Con[K] (D

G )’G

Now, given a context Z , define F:FZ:K% Set by FK= {zeZ: KZ:K} , and
Fp:FK— F_Kp by (Fp) (z) =X o ; F 1is a finite functor. Moreover, we have the map

b

F
Sz vy Z:Z%)’ ;
Z’

s is a specialization since

F F
Z: KZ(<XZ,p>pEK|K) ’ yKZ, z Kz{<pr, (Fp) (z) >peKZ|K ’
_ __F
and s(xz’p) _sz’ X p— pr’ (Fp) (z) , by the definition of F.

It is clear that s is a bijection, i.e., an isomorphism in Con[K] .
We have verified that (1) is an equivalence of categories, thus our claim.

It is easy to see that the image of (1) consists of those contexts Z for which
zeZ (KZ, a(z)) isa 1-1 function.

It is clear that although the categories Fin ( SetK) , Con[K] are large, they are essentially

small.

Thus, B, the free finite-limit completion of K, can be taken to be the opposite of the
category Con[K] of contexts with specializations as arrows. To describe the canonical
embedding i:K—> B under the latest construal of the completion B, let us define, for any
Ke K, the context

y 4

K
x asf (XpiPEK|K) )
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K({xX)

for which X = XK 43f o pEK|K)

is a sort, and a (X) :<p>peK|K‘ In the

definition of 4 e the only essential points are that K ( (xf;) is a sort, and that the

p€K|K)

mapping p}—%Xﬁ is 1-1. X_, is "the most general sort" of the kind K ; every other such sort

K
is of the form X K‘ s for some specialization s with domain 4 X" Further, let

* .
Yy aze TV x5t

I X K and, for the sake of definiteness, x K

which a(x g = 1lg Note that under the equivalence Fi—> )’F between finite functors and

where x is taken to be the specific variable for

*
contexts, X

x is the context that corresponds to the representable functor K(K, -) : K—Set .

When a context 4 is considered an object of B = (Con[K]) ©P it is written as [4] .
Arrows s:4&— ) of Con[K] correspond to arrows [s]:[J)] — [4] .

The canonical embedding i:XK > B (having the universal property of the finite limit

completion) has 1 (K) = [/l’;] .

The morphism p:K—> Kp is taken by i to the arrow

[sp] : [J’K] —> [/l’K ]

b
for the specialization
s > %/l’* : XKp}iXK (g:K_—K ) X }ixK 3)
p kK, K g @ e g K b’

Note that in the category B, the object [ %] is the same as 1 [K] for the " B-valued

K-structure 1:K—>B", that is, the limit of the composite K| (K- {K}) gK#B .

We single out four classes of arrows in Con [K] QOCQlcQZ CQ3 . QO consists of the
*
inclusion-arrows incl:4 P y 4 e where K ranges over the kinds. Ql consists of the

inclusion-arrows of the form incl:X—>AU{x} , where X is any (finite) context, and

50



XU{x} is also a context (for this, it is necessary and sufficient that x¢¥ and Dep (x)cd ).
Q2 is the class of all 1-1 arrows 1:4— ) where card())=card(d)+1 . Finally, Q3 is
the class of all 1-1 arrows £— ).

Every time s:)—>X is a specialization, and t: JU{y} >AXU{x} extends s, with

t (y) =x, we have the pushout diagram

)

sl |t @)

O

Y— S ¥{x}
incl

in Con[K] . All arrows in Ql are pushouts of ones in QO . To see this, for a given

I%Iﬁ){x} , apply (4) to A’K%zl’; as )’%)’D{y} , and s:zl’K - X
X X X

iven b S(XKX) =X

g Y p XD’

It is clear that Q2 is the closure of Ql under isomorphisms (meaning that g:A— Be Q2 iff

thereis g’ :A’ —> B’ te with some commutative

A'— 5B ).
q

(4) shows that any arrow g:A—>B in Ql has a pushout along any a:A-—>A’ thatis again

in Ql . Thus, Q2 is closed under pushout, and in fact it is the closure of QO under pushout.

Q3 is the closure of Q2 under composition. Indeed, given any inclusion i:Z->), there is a
finite sequence A=A OCI 1C- .- Cﬂ’n_lcﬂ’n:)’ of contexts

such that card (/l’l.+l) =card (/l’l.) +1 ; enumerate -4 as (yi>rll such that the level of

Ky is non-increasing, and put & i:/l’u {0 ox1. This shows that every inclusion
1
i:4— ) is the composite of arrows in Ql ; since every 1-1 arrow is isomorphic to an

inclusion, the assertion follows.

51



Without talking about syntax, [QO] ={I[gl: qEQO} may be described as the class of
arrows of the form g:iK— [K] , where KeK, 1:K—B=(Fin (SetK) )op is induced by

Yoneda, and [K] is the limit of the composite K| (K- { 1K} ) gK%B . [QZ] is the

closure of [QO] under pullback. [Q3 ] is the class of all epimorphisms; also, it is the

closure of [Q2] under composition.

For the purposes for logic without equality, we let the class Qi of arrows in B be either
[Qz] (={[ql: qEQ2 } or [Q3] ;. both [Q2 ] and [Q3] are closed under pullback, and
the second class is the closure of the first under composition. (According the remarks at the

end of the last section, the two possible choices are essentially equivalent).

Corresponding to logic with equality, we have g~ , which is obtained by adding to Q¢ all

isomorphic copies of arrows of the form [p] for p of the form p:XU{x, y} »>A0U{x}
such that x and y are distinct variables of the same type, their kind is a maximal one, and

p is defined so that pl4 is the identity and p (x)=p(y)=x . Categorically, if we put

A=[X], B=[AV{x}] ,and g:B—>A, g=[incl] , we have [p]=5=B%B><AB,the

diagonal.

If s:X0{x, y}—>Y,thenfor x'=s(x), y'=s(y) and X' =)-{x',y'}, X’ isa

context, since no variable z can have x’e€Dep(z) or y’eDep(z) , by the maximality

assumption on the kind of x and y; Y= 4"U{x’, v’} . We have a pushout

Yoix, vt — P 5 x0(x)

sl lt

I'Q{x',y'}TI'Q{X'}

with the evident p’ and ¢t . It follows that all pullbacks of the additional arrows in @~ are
again of the same form, thus g~ is closed under pullback. Also, all the additional arrows in
Q™ are pullbacks of the specific ones [ Pyl where K is a maximal kind,

pK:/l’KQ{XK, v} %IKC){XK} : here, A’KQ{XK} =/l’;{ defined above, efc.
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Suppose T= (L, X) is a theory; there are six possibilities for the logic: coherent,
intuitionistic, or classical, each with or without equality. We define a fibration

E
C=1[T] =C| , with a set Q:QC, of distinguished (quantifiable) arrows in B. B has been
B

given in the foregoing; we use g when we exclude equality, g~ otherwise, as .

A formula-in-a-context is an ordered pair (&, ¢) , written as [4: @] , such that 4 isa
context, and ¢ is a formula with Var (¢)cd . With a given 4, [4:¢] iscalled a

formula-over X .

E

To define C| , for [X]eB, the fiber C (4] is given as the set of equivalence classes
B

(A1 /~ P of formulas-over 4 under the equivalence relation

[4:0] My (Y:y] — quo:fu/ and Tky/:f(p

(the range of the formulas ¢, y, and the deducibility relation F is understood according to

the logic in question). In what follows, we will write [X:¢] for [4:¢]/ vy C[I] is

partially ordered by
[4: ] S/l’ A:y] & TFe=vy,;
y 4

by the rules (Taut) and (Cut) this is well-defined and it is a partial order. Finally, for
*

s:A—) in Con[K] ,thatis, [s]:[J]—I[4], [s] ([L:¢]) dsf [J:¢|s] .By

the rule (Subst) , [s] . :C’IH C’y is a map of posets.

Since (¢@|s) |t = ¢@|ts,and @|id = ¢, we have a (pseudo)functor IHC’X,

([ & [()]) b [s] ¥ ; thus, we have a fibration. The rules for connectives (not
counting the last two) make sure that each fiber has the necessary (propositional) structure,
where each operation is given by the corresponding syntactic operation on formulas; e.g.,
[4: 0] AL (A:y] = [X:orp] .

For [1]:[X{x}] ——>[X] (1i:X——H{x} the inclusion) in (9,1 and
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[4]

[/l’(){x}:qo]eC[IU{X}] , wehave 3, .. ([H{x}:0]) = [X:Txp] €C and

[1]
similarly for V in place of 3 . This follows from the rules (3) and (V). As we pointed out
in Section 2 , if Var (@)ctU{x} ,then Vx¢@, Ix¢@ are well-formed. Since every arrow g
in [Q3] is an isomorphic copy of a composite of arrows in [Ql] , the operation Elq , Or

Vq, will be well-defined, and can be expressed in terms of EIr , Or Vr , for re [Ql] .

In the case of logic with equality, we have, for
§: [A0(x)] Pl (a0, 11,

an additional arrow in @~ , . (t ) = [XU{x, v} :x=,y] , and more generally,
S Y g y

[H0{x}]
3 (51 ([H{x}:0]) = [X{x, v}: x=py A @1 . This is F. W. Lawvere's observation on
the definition of equality in hyperdoctrines [L2]. The claimed equality can be deduced by

using the rules of equality. We also have that

v[é] ([Ho{x}:0]) = [X{x, v}: x=y—¢] .

The fact that substitution is compatible with the logical operations gives that for any

specialization s: Y—>4, [s] i :C’IH C’y preserves the (propositional) structure, and that
the Beck-Chevalley conditions are fulfilled. We obtain a Av3-fibration, a Av— 3V-fibration
and a Av—3-fibration in the respective cases of coherent logic, intuitionistic logic and
classical logic; the presence of the rules (Av) , (A3) ensures this in the coherent case, and

that of (=) in the classical case.

The construction [T] has the universal property of the fibration of the appropriate kind that
is freely generated by T . In what follows, we describe this universal property in a somewhat
incomplete way, namely, for "target" fibrations of the form P(C) , rather than arbitrary

(suitably structured) fibrations.

For a relation ReRel (L) , we make a definition of the context & R analogously to & % in

@) 4p 43

formula, and o (X) =¢ p>p€ R|L R is the "most general" atomic formula using the relation

R - R : :
£ {xp. PER| L} such that R g5 RS <Xp> is a well-formed atomic

pER|L)
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R . Moreover, for peR| L, we let

s X X prHxR (q:K_—>K ), x, > xD

p Kp R q ap p g’ Kp p

Changing the meaning of the symbol ModD(C' ) , let us use the notation now in the variable
sense of either of Av3 (C,D) , Av—>3V(C,D) , av=3(C,D) as the context requires it,
according to which logic we are dealing with. In what follows, € is a category having enough
structure for the logic at hand: it is a coherent, a Heyting or a Boolean category in the three

respective cases.

We have a "forgetful" functor

() : Mod (1) %Modc(T) ®))

P(cC)

defined as follows. Given P= (P, Py) eMod? ([T]) , we define P :L—>C,

(C)
P_EModC(T) ,by P (K) = P, ( [IK]) ; for p:K%Kp, P (p)=Pl([sp]) (see (3))

(more briefly, P 'K=P, o1, for the canonical embedding i:K-—>B); for ReRel (L) ,

1

P (R) the domain of a monomorphism m representing the subobject P, ( (¥ R R]) of

Pl([/l’R]) ; and for p:R%Kp, P (p) =Pl([sp])°m-

For h:P—Q in Mod? ([T]) (thatis, h: Plte with properties), h = ho 1 ;itis

(C)
easy to see that h is an arrow P —>Q .

In the case of coherent logic, the functor (5) is full and faithful, and in the case of intuitionistic

and classical logics,

() : Mod;,s(g) ([T1) %Modéso(T) : (6)

with both categories restricted to have only isomorphisms as arrows (thus, they are groupoids),

is full and faithful. The faithfulness is obvious; the fullness requires an easy proof by induction
on the complexity of formulas.
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In fact, in the case of coherent logic, (5), and in the other two cases, (6), is an equivalence of

categories. Indeed, if M:L— C is a model of T, we define
M] : [T] — P(CO)

by [M] 1 ([4]) = M[X], [M]2 ([X:0]) = M[X:@] . The fact that M is a model ensures
that [M] is well-defined (on equivalence classes); the rules of the logic, built into the
definition of [T7] , ensure that [M] is a morphism of fibrations with the appropriate
preservation properties. Finally, we have 7 ¢ [M] ~ 'K = MK whose components are
canonical isomorphisms M ( [/l’;{] y=M(K) ,and 7 M is in fact an isomorphism

J Ve [M] =M.

The completeness theorem

THe & TI:Setg

for coherent logic with dependent sorts, with or without equality, is now an immediate

consequence of 3.(5). Indeed,

TH qo:fu/ — [4:0] <y [(A:y] in [T]
by the construction of [T] ;
— forall P: [T] >P(Set), P[X:¢p] < P[X:y]
by 3.55) ;
— forall MET, MF o=y
y 4

by the above description of the equivalence Mod C,( T) ~ Mod?( 0) ([rri1),
— Thgop @ :; W

by definition.

3.(6) gives a proof of the completeness theorem for intuitionistic logic. 3.(6) says that there is

a category K, namely Mod (T) , such that T has a conservative Heyting morphism into

set® ; changing here K into a small category, and then into a poset is an easy matter; see
[MR2], [M3].
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As it is well-known, completeness for classical logic follows from that for coherent logic

directly.

In summary, it is worth emphasizing that the study of first-order logic with dependent sorts

E
without equality is the same as the study of "quantificational” fibrations (Cl, @) where the
B

base category is B= ( (SetK) ) P for a simple category K, with @ being the class of

fin
all epimorphisms in B . This is a remarkably simple algebraic description of the objects of our
interest, even though it is not one that is conjured up immediately by the idea of "first-order

logic with dependent sorts".
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§5. Equivalence

Let L be a fixed DSV, K the full subcategory of its kinds.

We have defined what an L-structure is; even, what a C-valued L-structure is, for any C
with finite limits. In what follows, we will make the minimal assumption that C is a regular
category (which is equivalent to saying that P(C) , with "total" @, is a a3-fibration: just
ignore £ and v in the definition of Av3-fibration).

The category of C-valued L-structures, Str (L) , has objects the C-valued L-structures,

(o4
(L) is a full subcategory of ct (with L in
(L) .

and morphisms natural transformations; Str c

its last occurrence understood as a mere category). We write Str (L) for Str Set
Given MeStr (L) , we have MIK:K— C, its K-reduct, the structure of kinds associated

(o4
to M. For any ReRel (L) , we have the canonical monomorphism m_:M(R) ~—>M[R] =

R
(MIM'K) [R] (see §1). For a natural transformation (f:U—>V) € ck , we have the
canonical arrow f[R] :U[R] —> V[R] for which
f
ulr] — LBl yiR]
U 1%
”pl o l”p
K _— K
U( p) B v ( p)
p

forall peR|L.If (h:M—>N) € Str (L) , then

M(R) R N(R)
R O R

(MM'K) [R] —5 (N'K) [R]
[R]

which shows that hl'K:MIK——> NIK determines h (if any).
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We have the forgetful functor & c L:E :Str (L) — foad ; £ is faithful, by the last remark.

(o4
& is a fibration. Indeed, given £:U->V in CrK ,and N over V (thatis, NIK=V), then the
Cartesian arrow h:M->N over f is obtained by defining M and h such that MK = U,
h'K = f and, for all ReRel (L) ,

h

M(R) R N(R)

M O N

R R

UIlR] VI[R]
sy

is a pullback (it is immediate to see that h so defined is Cartesian). As usual with fibrations,

let us denote M so defined by £ (N) , and the Cartesian arrow h by 0 £ £ (N) >N.
& is a fibration with fibers that are preorders.

When in particular € = Set (which is the most important case), a functor U: K— Set is
called separated if U(K)NU(K’) =& whenever K, K’ are distinct objects of K. For a

separated U, we define |Ul = | J U(K) ; for a general U, we would put Ul = || U(R) =
KeK KeK
{ (K, a) : keK, acU(K) } . Of course, every functor is isomorphic to a separated one. When

f:U—V,and U is separated, for a€ |Ul we may write h(a) without ambiguity for
h,(a) for which ae U(K) . For notational simplicity, we will restrict attention to separated
functors K— Set .

I will now isolate a property of a natural transformation £:U—V in c® . Let first

C = Set . We say that £ is very surjective if whenever KeK <ap>peK\K€ U[K] , the
mapping

f< : UK(<ap>peK\K) HVK((fap>peK\K) : ab—f(a)

ap>pEK\K

(see (3) in §1) is surjective.
For a general C (assumed to be regular), £:U—V in K is very surjective if for every
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Ke K, the canonical map p:U(K) > P=U[K] X1 V(K from the diagram below is

[K]
surjective (a regular epimorphism):
£
U(K) K V(K)
u NO v
”Kl o P~ an
/ B )
U[K] VIK] .
g

It is clear that if £ is an isomorphism (in fond ), then it is very surjective. It is easy to see (by

induction on the level of Ke K) that very surjective implies surjective (being a regular

epimorphism in foad ), but not necessarily conversely.

In this section, we consider logic with dependent sorts only without equality; all L-formulas
are without equality.

(1) Let £:U—V in c® be very surjective, and any Ne Strc(L) over V. Let

hzef;sz*(N) SN,

(a) Let first € =Set . h is elementary with respect to logic without equality in the
sense that for any context 4 and L-formula ¢ (in logic with dependent sorts and without
equality) with Var (¢)cd’, and any <aX>XEIEM[I] ,

ME q’[<ax>xe/l’] —— NE qo[(haX>XEI]

(b) For a general € which is a Heyting category (to interpret all L-formulas), for any
¢ and A as above, there is a pullback

M[X: @] %N[I%qo]
. | (1b)

b 4
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(the vertical monomorphisms are representatives for the subobjects M[X:pleS(U[L]) ,

N[ZX:¢plesS(V[X]) ; in other words, (1b) says M[X: @] = (f/l’) *N[/l’:qo] ).

here, f ¥ is the canonical map determined through by the definition of U[X] , V[4] as

limits in C.

Obviously, (b) generalizes (a).

The proof for (a) can be given as a straightforward induction on the complexity of ¢ . The
clause for atomic formulas is essentially the definition of M . For the propositional
connectives, the induction step is automatic. By the duality in Set between 3 and V ,itis
enough to handle the inductive step involving 3, which is done using the "very surjective"”
assumption. In Appendix B, I will take a "fibrational" view of the notion of equivalence, and

give a detailed proof of the more general form (b) .

Let M, N be C-valued L-structures. We say that they are L-equivalent, and we write

M~ N, if there is a diagram

A,

in Str C,(L) such that mM'K, n'K are very surjective, and m and n are Cartesian arrows

in the fibration & c L Paraphrased, this means that there exists a functor e X and very

surjective maps m:W->MIK, n:W->NIK such that m (M) = n (N) , that is, for all
ReRel (L) ,
M(R) ¢<—M(R) X W[R] = N(R)XN[R]W[R] — > N(R)
m] I ] I (1
M[R] W[R] NI[R]
"R "R

M[R]

(where the equality means equality of subobjects of W[R] ). In case € =Set , (1') means that
if ReRel (L) , <Cp>pER | = W[R] , then
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<mcp>pER\KEM(R) = <ncp>pER\KEN(R) . (1

The data (W, m, n) are said to form an L-equivalence of M and N ; in notation,
(W, m, n) : M ?N .

It is easy to see that the relation ~_ is an equivalence relation (for a proof, see Appendix B).

L
It is also clear that isomorphism of L-structures implies L-equivalence.

Let us write M= LN for: MFo < Nko for all L-sentences in logic with dependent sorts
and without equality. We have

2)(a) MNLNZé MELN .

This immediately follows from (1).

The word "equivalence" is used in " L-equivalence" because of the relationship to the various

notions of "equivalence" used in category theory; see later.

At this point, the reader may want to look at Appendix C, which may help understand the
concept of L-equivalence.

We now will exploit the fact that we have specified variables "with arbitrary parameters". In
what follows, a context is a, not necessarily finite, set Y of variables such that ye ),
xeDep (y) imply that xe Y. When we want to refer to the previous sense of "context", we
will say "finite context". A specialization is a map of contexts whose restriction to all finite
subcontexts of the domain is a specialization in the original sense. Just as in case of finite

contexts, there is a correspondence between contexts and functors F:K— Set which is an

equivalence of the categories set® and Con_ [K] , the category of all (small) contexts and

specializations.

Given a context ) and an K-structure M, the set M[ )] is defined by the formula (1), §1
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(which was the definition of M[}Y] for finite ) ). Given a formula ¢ with Var (¢)c),
M[Y: @] is the subset of M[)] for which, for any (ay)yE),eM[)’] ,

(ay) e M J:0] — (ay)yey,eM[)”:qo]

vey

for any (equivalently, some) finite context Y’ with Var (¢@)c)y’c) . As before, we write
l ‘MI: . .
also (p[(ay)yey] for <ay>ye)7€ M[D: @]

Suppose X is a context, M, N L-structures, a:<ax>xe/l’e M[A], b:<bx>xe/l’e N[A] .

We write

(W, m, n) : (M, &) 5 (N, b) (3)

if (W, m, n) :Me—F—N and there is <Sx>xe/l£ w41 such that ms =a_ and nsX:bX

for all xeX . We write (M, 5) g, (N, B) if there is (W, m, n) such that (3) holds.

With M, N, 2, 5, 13 as above, we write (1, a ) = 1 (N, 5) for: for all L-formulas ¢ with
Var (@)cd, we have MP(p[(aX)XEI] = NP(p[(bX)XEI] .

We have the following generalization of (2)(a) :

@) (14 a) ~, (N, b) — (M a) = (N b) ;

L

this also follows immediately from (1) .

Let ) be a context, x a variable such that x¢) but JU{x} is a context (thus, X pe)’

9

for all pe KX| K),and let ® be a set of formulas in logic with dependent sorts over L such
that var (®)=\_J var (¢) C JU{x)} ;such ® iscalleda J-set (of formulas; with x any
variable as described with respect to ). Let M be an L-structure, and

%: M ) W . o e . - . .
a (ay)yE),E (D] e say that @ is satisfiable in (M, a) if there is a€ |M| (more
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precisely, aeMKX[ (a ] ) such that MI=(p[§, a/x] (of course, 5, a/x

)
Xy o pE KX|K
stands for <ay>ye)/1){x}
satisfiable in (1M, a ) if every finite subset of @ is satisfiable in (14 a ) . M 1s said to be

for which a}’/,:ay for ye ), and a=a ). @ is finitely

J-L-saturated if for every aeM[)] and every J-set @, if @ is finitely satisfiable in

(M, a) , then @ is satisfiable in (M, a) .

Let k be an infinite cardinal. We say that M is Kk, L-saturated if it is )-L-saturated for

every context ) with cardinality smaller than «x .

For saturated models for ordinary first order logic, see [CK]. In [MR2], one can find a detailed
introduction to saturated and special models for multisorted logic; the basic facts and their

proofs in the multisorted context do not essentially differ from the original one-sorted versions.

K, L-saturation is K-saturation with respect to L-formulas. Since L-formulas form a part of
the multisorted formulas over |L| , it is clear that if M, an L-structure, i1s K-saturated as a
structure for the similarity type |L| ,then M is kK, L-saturated. More generally, suppose that
we have "interpreted” L in a theory S in ordinary multisorted first-order logic; that is, we
have a C-valued L-structure I:L——>C, for C the Lindenbaum-Tarski category [S] of S
(see [MR]; [S] is a Boolean category). Then if M is a model of S, or equivalently,
M:C—Set is a coherent functor, and M is Kk-saturated in the ordinary sense, then the
L-structure MML=MI:L—>Set is K, L-saturated.

By the cardinality of the structure M, #M, we mean the cardinality of its underlying set
M|
(4) Suppose the L-structures M, N are K, L-saturated, and both are of cardinality <k .

Then the converses of (2)(a) and (2)(b) hold:

M= N = M~ N;

and more generally, if 4 is a context of size < K, aeM (x, BEN [X] , then
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(M, a) =, (N.b) — (M &) ~ (N, b)

Proof.

For a given infinite cardinal «k, and a given context 4 of cardinality less than x, let
U=UTxK, X1 be a context such that ## = xk, XU , and for every sort X with Var (X)c¥ ,
the cardinality of the set of variables xeZ/ with x:X is equal to k. It is easy to see that
such an # exists; we define contexts le. by recursion on i<k for k the height of K let
U Oz@ ;if le. has been defined, pick, for every sort X whose kind is of level i and for
which Vvar (X) c le. , aset VX of variables v:X such that #VX:K, and let Zli+1 be the

union of Zli and all the Vy for all such X ;if k=w, let lez iya)”i ; let lellk .

Next, enumerate Z as a sequence (u a> o< N such a way that for each <k, (u oc> a<pB

is a context; equivalently, such that for each <k, Dep (u B) Clu,: o< B} . Note first of all
that for any finite context ), there is an enumeration )= { Y i<n} such that ( Y ) i< is
a context for all j<n ; enumerate first the level-0 variables, next the level-1 ones, etc. Call
such an enumeration of Y "good". Now, take first an arbitrary enumeration (v _) of

o’ o<K

U ; define the increasing sequence (f3 oc> o<k of ordinals and the partial enumeration

(u }/> v<B by induction on « as follows. For a limit ordinal o , 3 azlimﬁ 5 - For
o o<o
)

o=0+1,let (u be a good enumeration of Dep (v5) U{v5} , and let

i<n

ﬁ5+i
ﬁa:ﬁ5+n.
For every sort X such that Var (X)c¥,let (u o ) vei

X,V
order of all u o of sort X for which u aezl’ . Finally, for any o<k ,let v[a] be the ordinal

be an enumeration in increasing

v for which ocX, v o where X is the sort of u o

.
) ) < _
Assume A is a context of size < K, #M#N< K, a (aX>XE{1,eM[/l’] ,

BzU%QX€IEAHI],am1(M;g)EL(N;B).Fm%myIWﬁHtMK(U&Q “MK(C) ,

PEK]| K
let us fix an enumeration (eg) =(e, > ¢) of the set MK(C) ; here, A, >
E/E<A™ VTR ¢, &8<AL 2 K, ¢

<K.

Consider #/=U[k, X1 constructed above.
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We define a context Z, a subset of X, by deciding, recursively on o<k , whether u o

belongs to Z or not; furthermore, we also define, for each u an , elements ¢ ae IM| and
d of Nl . Let Z o denote the set of all u, with <o for which u ﬁeZ ,and c[a] be the

sequence (cZ> e IUZOCEM[IUZOC] for which cxzaX( xel) and CUB:CB ( uBeZa ).

Similarly, we have dlal € vIHUZ o) - The induction hypothesis of the construction is that
(M, clo+l]) =, (M, dlo+1]) . (5)

Suppose o < Kk, and Z o Z[oc] , d [a] have been defined so that, for all f<o,

(MM, 8[ﬁ+1] ) = (MM, 3[ﬁ+1] ) . Since in the definition of " = ", formulas with finitely

many free variables are involved, we can conclude that

(1, clo]) =, (M, d[a]) . (©6)

Look at the variable u, and its sort X . If uaezl’,we let uan, Comly d=b_ .(05)

is now an automatic consequence of (6).

If not all the variables in X (which are u B s for B<a) arein Z,then u aEZ , and we are

finished with the stage o .

Assume that u ae/l’ and all the variables in X are in Z . Look at the ordinal v = v[a] ;
write Vv in the form v=2-u or v=2-u+1 as the case may be. Let first v=2-u . With

X=K((ug ) = MK(CZ) and its

: pEK|K) , consider the M-sort MK((CB )

5 PEK]| K

previously fixed enumeration (e ?;') E<A (=(e % o §> E<h ). If u=A , then again
s s K, c

u aEZ . If, however, u<A ,then u an . Moreover, ¢ 0 daf € "

Let & be the 4UZ o Set of all formulas ¢ with Var (¢)ctuZ aQ{ u a} for which
MF@IClal, e,/ ] - T claim that @ is finitely satisfiable in (1, dlal) .Let ¥ bea

finite subset of ® . For ¢= /\ ¥, we have MI=(p[Z'[oc] , e“/u] , hence,

M= (Eluaqo) [clal] (note that Elua(p is well-formed, since for every zevVar (@) , Z#U,

we have ze zl’uza , hence Dep (z) c/l’uza , and uae Dep (z) ). As a consequence, by (6),
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NE (Jug) [81[0(] ] . This means that ¥ is satisfiable in (N, g?[oc] ) as desired.

Since #(4UZ,) <k, and N is k, L-saturated, ® is satisfiable in (N, d[a]) , by

d £ NK ( (d B ) , say. The choice of ® ensures that (5) holds.
b

PEK| K)
In case v=2-u+1, we proceed similarly, with the roles of M and N interchanged.

With the construction completed, we put Z= | | Z o We let w be the functor
o<K
Fg:K—Set associated with the context Z (see §4). m:w—MIK, n:wW— NIK are defined

by m(ua) =c n(ua) = da( uan) . The definition ensures that AcZ and

a’
m(x) = a, . n(x) =bX(X€/l’).

Let us see that m is very surjective. Let KeK. W[K] is the set of all tuples (zp)

PEK|K
for which each zpeZ ,and X=K( (zp)

PEK]| g isa (well-formed) sort; WK ( <Zp>pEK| )
is the set of all zeZ such that z:X. So, assume that

X=K( <Zp>pEK| x) =K <uﬁp>pEK| % is a sort, and

aeMK((mzp)p = MK(cC)

EK|K) = MK(<Cﬁp>pEK|K)

Then a=e_ - for some u<A & and for ox = « , the construction at stage «

K,C,‘LL X,2"LL

puts u,:X into Z ; that is, u,£ WK ( <Zp>p€K| K) , with a=c,=mu, as desired.

The fact that n is very surjective is seen analogously.

We have that (W, m, n) : M TN , since (1") is a consequence of (5) being true for all

0<K ; one has to apply (5) to atomic formulas.

This completes the proof of (4).

Let € be a small Boolean category. By a model of C we mean a functor M: C— Set
preserving the Boolean structure (that is, M is a coherent functor). We write MFC to say that
M is a model of C.
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There is a theory T c” (L c’ 2 C,) in multisorted first-order logic, with L c the underlying
graph of €, such that the models of C are the same as the models of T c (note that both the
models of € and the models of T c are particular diagrams L c
subobject @eS cld) , AeC, there is a (simply defined) L C—formula @ (x) with a single
free variable x:A such that for every MFC and acM(A) , Mr@lal (& MF@la/x] ) iff

aeM(@) (cM(A) ). See [MR].

— Set ). Moreover, for any

For oces (1 C,) , a subobject of the terminal object in C, we write Mo for M(o)=1 in

Set . We will call a subobject of 1 ¢ & sentence in C.

Let I:L—C a C-valued L-structure (in particular, I:L— C is a functor from L as a
category). When C is the Lindenbaum-Tarski category [S] of a theory S=(L < 2 ) in
ordinary multisorted logic (see [MR] or [M?]), then such an I is what we should consider an
interpretation of the DS vocabulary L in the theory S. An example is obtained by taking
S=(lol,2[L]) (for 2[L] ,see §1), and for IT:L— [S] the [S]-structure defined by
I(A)=[a:t] for AeL where a:A,and for f:A—>B,

I(f)=(at>b:fa=b):[a:t] > [b:t]. I:L—[S] is the canonical interpretation of
logic with dependent types in multisorted logic. In this case, for any formula ¢ of FOLDS

over L, with Var (¢)cd, we have I[1:@] :m*[/l’:(p*] ; here,

m:I[X:p] — {&} 45f HA’KX is the canonical monomorphism, m" denotes pulling back
X€E

along m; (p* was defined in §1.

For a general I:L—C, and for an L-sentence O, let us write I (0) for the sentence
I[@:0] of €.Incase €c=[S], I(0) also stands for any one of the S-equivalent

L s-sentences which are the representatives of the C-subobject I(0) .

When MEC, the composite MT:L->Set is an L-structure. We also write MI'L for MT ;
ML isthe L-reduct of M (via I).

Let ¢ and D be small Boolean categories, I:L—C and J:L— D . Notational conventions

introduced above for I:L-—>C are valid for J:L— D, mutatis mutandis.

(7)(a) Assume that o is a sentence of C, 7 a sentence of D, and for all M=C, NFD,
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MEO & MerLNrL —— NET.

Then there is an L-sentence O in logic with dependent sorts without equality such that for all
MEC, NED, we have

MEo — MILEO and NILE O — NET.

For a more general formulation, consider a finite L-context 4, and the object I[X]1eC.

I[X] is defined as a finite limit in C; see the end of §1; let 7« I —>1T (KX) be the

[x]
limit projections ( xed’ ). Given any MFC, we have similar projections

0 [x]° (MtL) [X] %MI(KX) in Set , and a canonical isomorphism

w: (ML) [A] SsM(T[d]) making each diagram

) ( ')

© _——M(rm

o
[x] MT (K )K
X

[x]

commute. If 5:<ax>xe/l£ (MML) [X] , we write (&) for u(a)eM(I[X]) .Once again,

similar conventions apply in the context of J:L—>D.

(7)(b) Assume that 4 is a finite L-context, GESC,(I[I] ), TE SD(J[I] ),

and for all M=C, NED, ac (ML) [X] ., be (N'L) [X] ,

(a)eM(o) & (ML, a) ~, (NIL, p) —— (b)eN(T) . (8)

Then there is an L-formula O in logic with dependent sorts without equality with
Var (@) cd such that

I(t:01, J[X:0] SJ[I]T' (8"

GSI[I]

Note that (8') may be written equivalently as
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for all M=C, NED, ac (MML) [X] and be (N'L) [X] .

(a)eM(o) = MM TFO[a] and NMJFO[b] —> (b)eN(T) .

Proof. Let us extend the vocabulary L c o Lale) by adding a single new individual

constant ¢ of sort A A1 . For any (peSC(A) ,let ¢(c) denote @(c/x) ,the

= I[
def
result of substituting ¢ for x in @(x) . Foran L-formula 6 with Var (0)cd, let 0(c)
stand for (I[4:01) (c) . Similarly, we introduce d:B —fJ[/l’] ; for YesS,(B) , w(d)

de
and for O as before, 6(d) .

Let © be the set of all L-formulas 6 with Var (0)cd such that o < 2 I[X:0] . Consider
the set X~ 43f ZDU{ 0(d) : 60} of LD(d) -sentences. I claim that

(LD(d),Z) Ft(d) . )

Once the claim is proved, by compactness there are finitely many 91.6@ ( i<n) such that
(LD(d), ZDU{Gl.(d) :i<n}) E 7(d) , which means, for 6= /\ 91. € O that

i<n
(LD(d), ZD) FO(d) —t(d) , thatis, (LD(d), ZD) FVx:B.(0(x)— 1(x)) , which

means J[X:0] SB 7T ; thus, it is enough to see the claim.

Assume that there is an infinite cardinal A>#L c such that )L+:2)L

legitimacy of this assumption). Let k=A% . According to the existence theorem for saturated

(see below for the

models (see [CK], [MR2]), any L D(d ) -structure is elementarily equivalent to a K-saturated
structure of cardinality < k . Therefore, to show (9), take (N, b/d) , a k-saturated model of

cardinality <k of (L_(d), Z) ,toshow (N, b/d) E 7(d) .

D
Let ® be the set of L-formulas ¢ with Var (¢)cd such that be N(I[X:¢@]) C NB; for
every L-formula ¢ with Var (¢)cd, exactly one of ¢, —¢ belongs to ® . Since

(N, b/d) 1samodel of (L_(d), 2) , with 2 defined as it is, we have © c ® . I make the
subclaim that the theory

D

(Lgle), Zguio(c) }u{g(c) :ged}) (10)

is consistent. Consider a finite subset {g,: i<n} of ®.If
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(Lc( c), ZCU{G( c) }U{qol. (¢) : 1<n}) were not consistent, then we would have, for

o= /\ qol.ed) ,that o< a7l [4:=¢@] , which would mean that —¢@e® c ® , contradicting
i<n

@e® . This shows the subclaim.

Now, let (14, a/c) be a k-saturated model of (10) of cardinality < k. Let ae (MML) [X]
such that a=(a) (see (7')) and be (N'L) [] such that bz(fp) . Then, for any
L-formula 0 with Var (0)ct such that MMLEO [5] , we have —0¢® , hence 0c® , hence

NI‘LI=9[B] . This says that (MIL, a) = NI, B) .By (4), (M'L, a) YL (NTL, B) , and

I (
by the (8), the assumption of the proposition, <B>EN () ,thatis, NFT[ (B)/x] , that is,
(N, b/d) E 7(d) as promised.

The set-theoretic assumption used in the proof is redundant, by a general absoluteness theorem
(arithmetic statements are absolute with respect to the constructible universe, in which the
Generalized Continuum Hypothesis (GCH) holds; see [J]). On the other hand, one may use
"special" models in place of saturated ones, and avoid the use of GCH; see [CK], [MR2].

(11)(a) Assume that S is a theory in multisorted logic, and I:L— [S] is an interpretation
of the DSV L in S . Suppose that the class Mod (S) of models of S is invariant under

S—structures M and N, MeMod(S) and
ML ~ LN 'L imply that NeMod (S) . Then S is L-axiomatizable; that is, for a set © of
({1(6):6e0}) = ConL (ZS) ; here, ConL(d)) is the set of

S S

L-sentences that are consequences of the theory (L, @) .

L-equivalence in the sense that for any L

L-sentences, Conp

Note that the conclusion can also be expressed by saying that for any L g structure 17, MEX s
iff MILFO .

(11)(b) More generally, assume, in additionto S and I:L— [S] ,atheory T ina
language extending that of S (L L ) such that

for any M, NeMod (T), MI‘LSeMod(S) and MI'L wLNI‘L imply that
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NPLSeMod(S) .
Then, there is a set © of L-sentences such that, for any M=T, MEX s iff MMLEO .

(11)(a) is the special case when T=( a) .

LS s
Proof of (11)(b). For any 7€ ZS ,MFT and NET, we have

MI=ZS& MerLNrL — NET.

By appropriately coding the condition ML~ N 'L in first order logic with suitable additional
primitives, and by applying compactness, we can find o[ 7] , a finite conjunction of elements
of ZS , such that for any MFT and NET,

MFoO[T] &MI‘LNLNI‘L = NET.

Then by (7)(a), applied to C=D=[T] ,and I=J: L% [S5] & [T] , we can find

0[7],an L-sentence, such that TFo[7]-——I(0[7]) , TEI(0[7])— 7. Clearly,
O={0[71]: 1€X S} is then appropriate for the assertion.

We leave it to the reader to formulate a version of (11) with formulas in a given context 4

instead of sentences.

The following, which is a special case of (7)(b), says that a first-order property invariant under

L-equivalence is expressible in logic with dependent types over L.

(12) Let I:L—>C be as before. Assume that 4 is a finite L-context, oeS(I[X]) , and

for all M, NeC and ac (MM'L) [X] ., be (NI'L) [4] ,

(a)eM(o) & (ML, a) ~, (NIL b) —= (b)eN(0)

Then there is an L-formula O in logic with dependent sorts without equality with

Var (0) ct such that G:I[/l’] I[X:07.
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The notion of L-equivalence as defined is relevant to FOLDS without equality. However,

frequently we deal with FOLDS with restricted equality. As explained in §1, when M is an

L-structure, it can be considered as an Leq—structure, with the additional relations E K

interpreted as true equality; let us write M for the resulting "standard" £5%structure as well.

What does it mean to have an equivalence (W, m, n) : M qu\f for L-structures M, N?
L

Clearly, this is to say that (w, m, n) : M ?N and, for any maximal kind K, and ce WIK] ,

eWK(mg) , we have that mc.,=mc. iff nc,=nc, . Let us write (W, m, n) :M%N

€1 < 17MC; 1715
for (W, m, n) :M TqN , and let us call such (W, m, n) an L, =-equivalence; also, write
L
M zLN for M ~ eq I ; note that throughout, ¥ and N are L-structures.
L

Let us define M= _ N aswedid M= LN above, except that we refer to logic with equality.
=

Then, using the translation (pH(;) mentioned in §1, we obviously have M= N <
L=
M= N . Thus, by (2)(a) we have
A

(13) For L-structures M and N, M= N= M= _N .

L

L,=-equivalences can be "normalized" in a certain way, which will be useful for us later.
Let U, Ve set® . A very surjective morphism f£:U—V is normal if for any maximal kind
K, and any ac U[K] ," £ is 1-1 in the fiber over a " that is, if b, ce UK(Q) , then
f(b)=£(c) implies b=c . Together with the very surjective condition, this says that £

induces a bijection UK(a) —=>VK(fa) .

Let M, N be L-structures. A normal L,=-equivalence (W, m, n) :M%N is an

L,=-equivalence in which both m and n are normal. We have the fact

(14) For any L-structures M, N,if M= LN , then there is a normal L,=-equivalence
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(W, m, n) :M%N.

The argument is as follows. Start with any L,=-equivalence (W, m, n) : M %N . Define

weset® by setting W’ K=WK for all KeK except the maximal ones; for a maximal X,
W'K 43 fWK/ ~, where ~ is the equivalence relation on WK for which b~c iff b and ¢
are over the same acW([K] , and m(b)=m(c) . When in this definition, we replace m by

n , the result is the same; this is because (W, m, n) being an L,=-equivalence, m(b)=m(c)
iff n(b)=n(c) for b, c over the same element in W[K] . For an arrow p:K%Kp ,

W' (p)=W(p) when K is not maximal (in which case Kp is not maximal either); and for K
maximal, (W’'p) (b/~)=(wp) (b) ; the latter is well-defined, since by the definition of ~ ,
if bvc,then (Wp) (b)=(Wp) (c) . Clearly, W’ :K— Set is well-defined, and we have
obvious maps p:W-—>W’' , m' :W' —>MIK, n’:W’ —>NIK such that

I claim that (W', m’, n’):M %N ; the normality condition is clearly satisfied. Consider a

relation R in L. In the commutative diagram

* q *
(m MR—*——>(m" MR———> MR

| | |

W[R] ——— > W' [R] ?M[R]
PIR] [R]

the outside rectangle and the right-hand square are pullbacks. It follows that the left-hand
square is a pullback too. Obviously, p [R] is surjective. It follows that g is surjective. This
determines the subobject (m’ *M) R >—> W' [R] as the image of (m*M) R >—>W[R] under

PR . Switching to N from M, (n’*N)RHW’ [R] is the image of (n*N)R>%W[R]
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under p . Since (m*M) R = (n*N) R, it follows that

[R] [R]

(m’ *M) R=_, [R] (n’ *N) R as desired. The additional condition concerning equality is

clearly satisfied.

Notice that the above proof works for an essentially arbitrary € in place of Set .

*
Note that if m:w—>MIM'K is normal, then m M formed from M as a standard 5% structure
is a standard LS%-structure too. Put in another way, the standard fiberwise equality relations

on the maximal kinds in m M are formed by the same pullback operation from the

corresponding relation on M as any primitive L-relation.
We have the following variant of (12).

(15) Let c be a small Boolean category, I:L—C . Assume that 4 is a finite L-context,

oeS(I[X]) ,and for all M, NEC and ac (ML) [X] , be (NIML) [A] ,

(a)eM(0) & (ML, a) =, (N'L b) —= (b)eN(0)

Then there is an L-formula 6 in logic with dependent sorts with equality with Var (0)cd

such that o = I[X:07.

I[4]

Proof. By definition, for each maximal K, I[E K] =T (K) I(K) .Letus form

*I[K]
9159 ¢ extending I:L—>C by specifying that, qu(EK) = I[E.], with

1°%(e, ) =T (e, ) =1 . We apply (12) to 1°9:1°9 > ¢. For MFC,

I[EK]

Mt £€9=po 789 is, clearly, the same as MI'L as a standard % structure. Thus,

(M€, a) ~ eq (NzfY By — (ML, a) ~. (NIL, b)
L
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Thus, from the hypothesis of (15), that of (12) follows. By (12), we have some 6 in FOLDS

without equality over 9 such that o = ! [4:0] ; but clearly, for 6’ in FOLDS

I[d]
with equality over L such that 0 = 0,wehave I[X:0'] =159 [F:0] ; thus C=riy
I[X:0']1 asrequired.

]
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§6. Equivalence of categories, and of diagrams of categories

The simplest application of the results of the last section is to invariance under equivalence of
categories of first order properties of diagrams of objects and arrows in a category. In what

follows, until further notice, L stands for L the DSV for categories introduced in §1; a

cat’
category A may be regarded an L-structure. A context of variables for L is essentially a

functor K:Lgraph — Set , that is, a graph; we are mainly interested in finite contexts,

although for the notions to be introduced next, there is no need to confine attention to finite

contexts.

For a context ', an augmented category of type A is a pair (A, a) ,with a4 a category,
and acA[X] (thatis, a a diagram of type the graph 1 ). Until further notice, notations

5
such as (&, a) , (B, b) denote augmented categories. Mere categories are considered

special cases of augmented categories of type @ ; A, B efc. denote categories.
-
For augmented categories (A, 5) , (B, b) of the same type, we write
- ~ -

if there is an equivalence functor F: A=B ( F 1is full and faithful, and essentially

. . . - g . g ~ -
surjective on objects) that maps a to b ; we may also write (B, b) «<— (A, a) for the
same. Note that the relation —> is reflexive and transitive but not symmetric (an
equivalence functor A=>B may take two different objects A#A’ in A to the same B in
B;then (A, (A, A’))—> (B, (B, B)) but not vice versa). The special case when the type

. . . ~ . . ~ . .
A is @, 1is, however, symmetric; A—> B implies A<—B since every equivalence functor

has a quasi-inverse (by the Axiom of Choice); A—5 B is the same as equivalence of

categories, A~ B.

The equivalence relation generated by the relation — s only "one step away" from —

itis <« defined as
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A

(A, 5) PN (B, B) (%% there is (C, Z) such that (A, 5) «——(C, Z‘) s (B, 1;) (1)

~ - ~

~ —>
To see the transitivity of the relation <«— , assume (A, 5) <—— (D, d) — (B, b) and

(B, b) <—(E, @) —> (C, &) , and consider the diagram

/\
/\"/\

where the quadrangle has F the "isomorphism-comma" category, with objects

(D, E, @Di VWE) , and arrows the usual commutative squares, with c: F—~>D, 7:F—>E
the forgetful functors. Since ¢, y are equivalence functors, so are o, 7. Let
f:(fX>XEIeF[/l’] be defined as follows. For xet, x:0, let

fX= (dX, e id: qodx% l//eX) ; note that (de= Ve, by assumption. For xed’,
x:A(y, z) , let fX= (dX: dy% dZ, e: ey% eZ) :fy% fZ ; note that qodle//ex by
assumption. We have that (F, fc ) s (D, g]) , (F, fc ) s (E, 5) . Using the composites

~ i .
F>A,F—>C,weobtain (A, 5) <— (B, b) as desired.

Recall the relation = I, of the last section; = I is, in particular, a relation between augmented
categories. We have that = 1 is the same as «— .
- ~ i - -
@ @ (A, a) <> (B,b) <= (A a)= (B D) ;
(b) AxB < A= _B.

Proof. Assume (A, 5) =_ (B, B) . By §5, there is a normal L,=-equivalence

L
(W, u, v) : (A, a) (B, b) Then, C = u* (A) = V* (B) is a category, since, by 5.(1), as
a standard L—structure, C satisfies all the axioms of category which are formulated in FOLDS
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(see 5.(2)(a)). Furthermore, clearly, Gu :C—>A, GV: C—> B are surjective equivalence
functors. This shows the right-to-left direction in (a). For the proof of the other direction, we

prove the implication

(A a)—>s (B, b) — (A 5)~L(B,B);

to this end, we "saturate" the given equivalence appropriately; we will do this proof in a more

general situation below.

Knowing the transitivity of the relation ~_ , the transitivity of < also follows from (I)(a).

L b

(b) is a special case of (a).

Recall the translation ¢@— (p* in §1; this is just to say that any formula ¢ of FOLDS over L

may be regarded a formula ( (p* )over |L| in ordinary multisorted logic.

Let Tqt= Ll , X ) the theory of categories in ordinary multisorted logic ( an can

at cat t

be taken to be Z[Lcat]u{e*:OGG)} ; 2[L] forany DSV L was definedin §1; © is
the set of axioms in FOLDS for categories as given in §1.). When T is a theory extending
T ( ol cL > atCZT ), and MET, we write [M| for MI'L, the underlying

cat T' "¢
category of M.

(2)(a) Let T be a theory extending Tca _ Let X be a finite context over Lca L0 an

L T—formula such that Var (o)ct . If
for any M, NET and diagrams ac |Mi (], Be INl [X], MI=G[5] and

(1M, a) <> (NI, B) imply Neo[b] ,
then

there is 6 in FOLDS with restricted equality over L, with Var (0)cd such that

at
for all MFT and diagrams ac |Mi [X] , we have MI=G[§] iff MI=9*[§] )
T,and for any M, NET, MFo and

Ml ~ [N imply Nko, then there is a sentence 6 of FOLDS over L.t such that for

(b) In particular, if ¢ is a sentence over L
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any MET, MEG iff MO |

Proof. We apply 5.(15)to €=[T] , with I:L—C the composite of IT:L—> [T
defined in §5 before (7)(a) and the inclusion [TC

cat]

] = [T] ; moreover, we take o in
at
5.(15) to be m ([X:0]) —I[X] (m:I[X] — {L} ;see §5 before (7)(a)). By (1)(a),

the assumption implies that

Meolal & (1M, a)= N, B) —> NEoO[D]

The conclusion of 5.(15) is what we want. (b) is a special case of (a).

We say that a theory T extending T, is normal if for any MFT and any category A, if

A~ |M| , then there is a model NET ?uih that A= [N| . In other words, normality of T
says that the property of being the L., t—reduct of a model of T is invariant under
equivalence of categories. Most theories of categories (possibly) with additional structure are
normal. E.g., so is the theory of monoidal categories, or the theory of categories with specified
finite limits. Of course, Tca t itself is normal.

Let X be a finite context, and ¢ be a formula over L _, with Var (o)cd . Let us say that

T
o is preserved along equivalence functors between models of T if the following holds:

whenever M, NET, geM[/l’] , BEN[I] , then MI=G[§] and ( IMl, 5)%( INI| , 5)
imply 1\7|=G[.8] . When in this definition, ( M/, a) —> ( NI, B) is replaced by

(1M, a) «( INI, B) , we obtain the notion of being reflected along equivalence functors.
Now, notice that for T a normal theory, the hypothesis of (2)(a) holds iff ¢ is preserved and

reflected along equivalence functors of models of T (the point is that, in case T is normal,

in (1), when A (and B) are reducts of models of T, C can also be expanded to a model of

T ). Thus, we obtain the following variant of (2)(a):

(3) Let T be a normal theory of categories (possibly) with additional structure. Let 4 be a

finite context over Lot Suppose that the first-order formula o over L., with free

at T
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variables all in 4 is preserved and reflected along equivalence functors of models of T'.

Then there is a formula ¢ in FOLDS with restricted equality over L, with Var(g)ct

at

*
such that o is equivalent to ¢ in models of T.

Freyd's and Blanc's characterization (see [F], [FS], [B]) of first order properties of finite

diagrams invariant under equivalence is (3) for T=T . In fact, the general result (3) can

also be obtained by their methods, which is very diffgr%ﬁt from the methods of this paper (we
will comment on this in Appendix C). It seems however that the more general result (2), in
particular, (2)(b), cannot be obtained by the Freyd's and Blanc's methods (although I should
concede that the added generality in (2)(b) consisting in a reference to not-necessarily normal

theories does not seem very important).

The results of §5 that are more general than 5.(15) (e.g., the "interpolation-style" result (7)(b))
will also have consequences for equivalences of categories; we leave their formulation to the

reader.

Extending the Freyd-Blanc result to more complex categorical structures will involve a new
element. For instance, in the case of structures consisting of two categories and a functor
between them (an example of which is a fibration), the first-order properties invariant under
equivalence (in the appropriate standard sense; see also below) are not those expressible in
FOLDS directly, but rather, those that are expressible in FOLDS in the language of the
so-called saturated anafunctor associated with the given functor. Anafunctors are treated in

[M2]; explanations will be given presently.

We now proceed to giving the framework for dealing with structures consisting of several
(possibly infinitely many) categories, functors between them, and natural transformations
between the latter. We will return to the simplest special case of two categories and a functor

between them afterwards.

Let I be a small 2-graph; I:L
I: L

5 —graph% Set . We associate the graph Ldiag [T] with

diag [I] serves as a similarity type for diagrams I—Cat of (small) categories,

functors and natural transformations. The objects of L are as follows:

diag[I]
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OI , AI , II , TI ( IeOb(I) )
0. , A. ( i€EArr(I) )
Oa (oe2-Cell(I) )

The arrows of L diag [I] are shown in the following three diagrams:

3)

Tr Tr
tIO\\\iIl\iIZ//lI
A

I

which displays the arrows associated with an arrow i:T—J in I ; and

(@]

12

(@] Ol O AJ
;}/ o a
u
0. 0. 7
J
Ojl\

0 mo

J

1
which displays the ones associated with the 2-cell 1:1—>7 (I [1[J).
J

Given a I-diagram
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D:I>Cat : ((CI>IEI,(Fi:CI—>CJ>i:I4>J,(hl:Fi4>Fj> i) 4
T lig

J
of categories, functors and natural transformations, we construe D as an

L ag [ I]-structure as follows. (3) is interpreted as the category C I When i:I—>J,

di
©i0
Oi is the set of pairs (X, FiX) with XeOb(CI) , with (X, FiX) —X,
;1 £ F;f
(X, FiX) #%Fix. Ai is the set of pairs (£, Fif):(X% Y, FiX%FiY) , with
d; i 240
h

a. 1
il . . 1 X
(£, Fif) #%Fif. For Iﬁ :'ZLJ , Ol is the set of pairs (X, FiX%FjX) . The

effect of the remaining arrows, as well as the corresponding commutativities, are shown by the

following picture:

hyx
(X, F.X— FjX) ;

012//

Let L [I] be the DSV defined as follows. The underlying simple category of

anadiag

L oha diag [I] is generated by the graph L diag [I] , subject to the following equalities

between arrows:

the ones ensuring that (3) generates a copy of L.t (see §1);
©09: 91350 ©319: 92410 ©50%: T %50 ©11%: T CgPin

d.o

70%11 7 95912 79410 0 ©)

=© i1°10° €5°%12 7 %5171 -

©i0°10

The relations of L are exactly its top-level objects; that is, T I I I Ai , 0 Lo for I, 1

and 1t ranging over the O-cells, 1-cells and 2-cells of I, respectively.
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The equalities on arrows are suggested by what is true for I-diagrams as structures. In fact,

every I-diagram is a functor D:L [I] —> Set , that is, the equalities listed are

anadiag

true in it (as identities). Also, the relations of L [I] are interpreted in D

anadiag
relationally (the corresponding family of functions is monomorphic). In summary, every

I-diagramis an L [ I]-structure.

anadiag

Lona diag [I] is the similarity type of what we call the "anadiagrams" of type I . An

anadiagram M:I 2scat isan L [ I]-structure satisfying the following axioms

anadiag
1
(AO) to (A6) in FOLDS with equality ( T ILJ range over objects, arrows and 2-cells in I

J
as shown; the unique existential quantifiers in (A2) and (A5) are abbreviations in the usual

way, and they refer to equality on the sorts A J( o) ).
(A0): axioms expressing that for each IeOb (I) , the part of M referringto I isa
category .
(A1) VX:OI.EIA:OJ.EIS:Oi(X, A).t .
(A2) VX, Y:0,.VA, B:O_Vs:0,(X, A) .Vt:0, (Y, B) .V£:A_ (X, V).
EI!g:AJ(A,B).Ai(s ,t ., £, g)
d. c. a., a.
i "1 10 "1l
(A3) VX:OI.VA:OJ.VS:Oi(X, A) .VO(:AI(X, X) .VO(:AJ(A, A)
(A, (s, s 0 Q) — (II(dX' ;0 ) — I (A a))]
' tr
(A4) VX, ¥, Z:0.VA, B, C:0,.Vs:0, (X, A) .¥t:0. (Y, B) .Vu:0, (2 C)

VEA (X, Y).Vg:A_ (Y, 2) .Vh:A_(X, 2)
Vf:AI(A, B) .Vg:AI(B, C) .Vh:AI(A, C)
[((A;(s, t, £ £)AA;(t, u, g, §) AR, (s, u, B, h)) —>

(AS5) VX:OI.VA:OJ.VB:OJ.VS:Oi(X, A) .Vt:Oj(X, B)
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J1F:A (A, B).O (s, t, f)
°10 11 %12

(A6) VX, Y:OI.VA, B, C, G:OJ
Vs:Oi(X, A)Vt:Oi(Y, B) .Vu:Oj(X, C) .VV:Oj(Y, G)
Vf:AI(X, Y) .Vg:AJ(A, B) .Vk:AJ(C’.G’)
VZ:AJ(A, ) .vm:AJ(B, G)
[(0; (s, t £, 9) AOj(u, v, £, k) n0 (s, u, K)Aol(t, v, m)) —
dn:A (B, C) . (T (g, m, n)ATJ(l, k,n))]

For a less formal explanation of the notion of anadiagram, I refer to [M2]. In that paper, I
introduce the notion of anafunctor between categories, a generalization of the notion of
functor. An anafunctor defines its values on objects only up to isomorphism. Formally, the
definition of anafunctor is obtained by specializing the definition of "anadiagram" to the case

when I is the (2-)graph 0 M 1 (without 2-cells). Anadiagrams have anafunctors

instead of functors as 1-cells, and natural transformations of anafunctors as 2-cells.

Note that any I-diagram D:I>Cat is an anadiagram; all the axioms for "anadiagram" are

satisfied in D (as an L [ I]-structure). In fact, the diagrams are essentially the same

anadiag
as those anadiagrams M in which the sorts 0. ( ieArr (I) ) are interpreted relationally,

that is, the family (Mp) is jointly monomorphic.

p:Oi%Kp

On the other hand, any anadiagram gives rise to a diagram, obtained by making some

non-canonical choices. Let M be an anadiagram M: I @5 cat ; we construct D: I——>Cat ;
we use the notation (4) for the ingredients of D . For IeOb(I) , the category C T is given
directly by the data in M corresponding to I (see (A0)). By (Al),forany i:T—J in I

i_ )
and XeOb(CI)—MO we make a choice of AX AXGMO and sX—sXeMOi(X, A) ; we

put F .X:A . Starting with £:X— Y, and using (A2) with A:AX , B:AY ,» S=Sy,
tzsy, we let F f=g whose unique existence (A2) states. (A3) and (A4) assure that F, s0
defined is a functor F C %C . Using (AS) with A= AX, B= Agf, s= SX’ t—sg{, we put
l X =f forthe f Whose ex1stence (5) asserts. (A6) ensures that h is a natural

transformation h GEL Fj . Let us refer D as the diagram obtalned from M by cleavage

(in analogy to the terminology used with fibration); of course, it is not uniquely determined.
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Next, we describe the saturation D of a diagram D:I—>Cat , an anadiagram canonically

associated with D . (As a matter of fact, the components corresponding to the 1-cells

1:I—>J will be the "saturated anafunctors" Fﬁ associated with the given functors F., in
the sense of [M2].)

#

In D" , the interpretation of each part of L [Z] asin (3)is the same asin D.

anadiag

#

For i:T—J,al-cellin I, D Oi is the set of triples u=(Xx, A, FiX%A) with

o. o.
XeC,, AeC, and u an isomorphism as shown; uk%ox, uk%lA. D
of all entities

#Ai is the set

In

X F.X——A

(£, *F.fo lg
Y FiYﬁB

with the displayed entity mapped to (X, A, u) by d,,to (Y, B V) by c,,to f by

1
# .
aio,andto g by a.q .For T j',l J, D Ol consists of all

Fx—E >a

(X, hlxl lg) ,

F.X— = B
P

0

and the displayed item is mapped to (X, A, u) by 0,0t (X, B, p) by o 11 and to g

by 0,5 -

We leave it to the reader to verify that D# so defined is an anadiagram.

p satisfies a property that distinguishes it from diagrams; it is saturated, by which we mean
that it satisfies, foreach i1: T—J in I, the FOLDS sentence
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(A7) VX:OI.VA, B:OJ.Vs:Oi(X, A) .Vf:AJ(A, B)
(Iso(f)—3! t:Ol.(X, B) .EIg:AI(X, X) . (II(g) /\Al.(s, t, g £));

here, Iso(f) abbreviates
EIh:AJ(B, A)EIk:AJ(A, A)EIK:AJ(B, B) . (IJ(k) AIJ(E) /\TJ(f, h, k) /\TJ(h, £, 1))

In fact, it can be proved (although we will not need this result) that, up to isomorphism as

L . _ [ I]-structures, the saturated I-anadiagrams are precisely the ones of the form
anadiag

D# , for some diagram D.

Given D asin (5), and another I-type diagram

tF,

D:I—>Cat : (<CI>IEI’ (Fi:cIecJ>i:I7>J, (hl. S Fj> 1 ),
T g
7?

(6)

we say that D and D are equivalent, and write D ~ D, if there exist a family

<EI:CIiCI>IeI of natural

isomorphisms as in

of equivalence functors, and a family (ei ) P g

c c;
Fil :{ lFi e;:F 0B, YEoF;
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1
for every T j,l J in I . The data E:(<EI>I6I’ <ei>ieArr(I)) form an
equivalence of D and JS, in notation,
E= (<EI>IeI’<ei>ieArr(I))‘D ——D. 7

This notion of equivalence is a "bicategorical” notion; it is the equivalence in the internal
sense of the bicategory (actually, 2-category) Hom ({I),Cat) of homomorphisms of
bicategories, pseudo-natural transformations and modifications, with (I) the 2-category
generated by the 2-graph I . (The main part of the fact that the "one-way" formulation of
equivalence given above as the definition, and the "internal" concept just mentioned coincide,
is the symmetry of the relation ~ ; an outline of the proof of the symmetry of =~ is given
below.) It is the "good" notion of equivalence, the one that comes up in practice. For instance,
in Chapter 4 of [MP], diagrams of sketches, and diagrams of accessible categories are dealt
with, and the present notion of equivalence is the one which is operative. Specifically, the
Uniform Sketchability Theorem, one of the main results of [MP] (4.4.1 in [MP]) says that a
small diagram of accessible categories is equivalent to one obtained from a diagram of

sketches by taking the categories of models of the sketches involved.

Although the fact is well-known, I outline the proof that the relation D ~ D is symmetric.

Since it is easily seen to be transitive and reflexive, ~ is an equivalence relation.

Assume data as in (7); see also (4) and (6). We define ﬁ : JS%D . With TeOb(I) ,

~ I I_ . = o o _
AEOb(CI) , choose X =X e€0Ob(C.) and &,=¢ EIXA%AE Arr(CI) . Put EIA—

A TA I A A
XA.For f:A—>BE Arr(C,) , EIf is the arrow that makes the square
€
A
—
EIXA = A
EIf l o lf
=
EIXB 8B B

commute. E 1 SO defined is a functor E I (o4 P (o4 I it is an equivalence functor; it is a
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= I

quasi-inverse of E :we have ¢ EE 1 c, with components the &€ 202 and
n.:1 =.E_E_ with components 1 for which E_(n ) = (SI )_l For
I-c I I I, X I I, X EIX )

I
i:I—J in I, we define e.:F, EJ%EJFI as the composite

nJF E _1§ EJF
N l J N N J I N N N l I
F, EJ%ETEJF E —%E EI J%EJF

N

(el. ) ieArr (I) will be compatible with the h , and give E:D =D as desired.

Let K, be the full subcategory of L oha diag

for all ITeOb (I) . A restricted context is a context over KO . We have D I‘KO = D# I‘KO

[I] consisting of the objects O I and A T

and hence, for a restricted context £, D[X] = D# (4] .

With & a restricted context, an augmented I-diagram of type A& 1is a pair (D, a) where
- . - N
D:I—>Cat,and aeD[A] ; notations such as (D, a) , (D, b) denote augmented
~ N ~ A
I-diagrams. We write E: (D, a) = (D, b) for the following: E:D—>D with E asin (7)

g ~
such that E(a)=b in the obvious sense that E rla,)=b_. The relation — between
augmented diagrams is defined thus:

(D, 3) —> (D, b) “—> there exists E: (D, a) —=> (D, b)

We write (D, 5) PN (15, 5) for: there exists (15, Z‘) such that
(D, a) «— (15, c) —> (15, B) . The relation «— is the equivalence relation generated by
s ; this can be seen directly, but it also follows from (8) below. In particular, when =0 ,

. ~ . . . . . . . .
the relation «— coincides with ~ for I-diagrams (since =~ is an equivalence relation).

(8) For augmented I-diagrams (D, a ), (13, 5) of the same type, we have
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(D, 3a) <> (D, B) «—— (D", 3) = (o' By -

here, L=1L (1] .

anadiag

As a special case, for (mere) I-diagrams D and D,

Proof. (A)(&<=:) Let (7, Ty rl) : (D#, a) Ny (f) , 5) be a normal L, =-equivalence
(see 5.(2"). Let ceR[X] (X the type of (D#, a) , (15 ,B) ) for which r, (C)=a,
ry (Z‘) =B .

Let M:r; (D#) :ri (f)#) , a standard L-structure. Since D# is an anadiagram, and the

concept of "anadiagram" is elementary in FOLDS over L, by 5.(1)(a), M is an anadiagram.

Let D be obtained from M by cleavage. We show that there is an equivalence E: D-=5D

which extends

_ ) _ # _
mI‘KO—Gml‘KO .MFKO_DPKO —D I‘KO—DI‘KO

(thatis, E_= (Qm for all TeOb (I) ; here, we used the notation (7) for E ), and similarly,

I ) I
there is E:D =>D extending n I‘KO . In particular, it will follow that E( c)=a, E(C) =5

~ ~ ~

and (D, 5) «— (D, ¢) — (D, f)) as desired.

We use a notation for D that is analogous to (6). The functor E 1:Cr—Cp is defined by

the effect moI and mAI ; since Gm:M — D preserves the relations T T and T I E I isa
functor. By the normality of ry. B induces bijections on hom-sets, and by the surjectivity
of r, on O B is a surjective equivalence.

0 I

Let i:I—J.Looking back at how the cleavage D was defined, we see that F.X=A

X’
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. # L # ~
with s eMOl.(X, AX) . Then m(sX)eD Ol.(mX, mAX) =D Oi(EIX’ EJFl.X) . By the

X
definition of D# , this means that ms x° FiE IX = E J}iX . We put €, ~MSy . To see that
ei:<eiX>XEOb(C ) 1sa natural transformation e;:F.E.~—EF., let f:X—>Ye C,
We see that F f 1is defined by the property that M (A ) (s Sy Sy £, %’if ) should hold. But
# . el
Gm preserves A ; hence, D (A.) (e;p €, ELf, E J_F . £) , which, by the definition of
p , means
e.

1X ~
FiEl_X% EJFl.X
FiEIfl @) iEJFif
FiEY—g —EFY
1Y

which is the naturality of e; .

1
Let T [ 1/J be given. The naturality condition on (e., e.) withrespectto t1:1—>7 is
R o
seen as follows. Let XeOb (C ) The definition of the component h i E X FjX is
i Jy
x °x lX

. & # o1 med mh :
Gm.M%D preserves the relation O L It follows that D" O . (msy, ms5, mh . x) holds; that
#

is, D"O (e holds. Considering the definition of D#O - this says that

defined (in the process of cleavage) by the condition MO, (s ) . The map

ix €ix Eoix)

EJF XAF EIX

EJthl © lhlEl_X
EJFJXT F_E X

which is what we wanted.

(B)("only if'"") We show that (D, a) —> (D, b) implies (D, a)=

an equivalence relation, the desired assertion will follow.
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Ao
Suppose that E: (D, a) (D, b) ; E is taken in the notation in (7) ; we construct

=
(R, r 0 I1 ) : (D )% (D#, B) . The kinds of L are as in

T J
T "
0 0. 0

°j0 1t ©°i1 J

with 1:IT—>J in I ; we have to define & on these kinds.

A A A =~ A A r
We put 20, = { (X, X, 0) : XeDO_, XeDO _, 0:E XX}, with (X, X, 0) ~Ox,
r

(X, X, O) Hlx . The "very surjective" conditionon r,, r, at O T holds by the essential

0’ 71

surjectivity of E I
X

X
M2, = (((XX0), (V.Y 1), £, l):
Yoy

Ex- 9% 5x.
N N f
(X, X, 0), (Y, 7, r)e%oI, EIfl o é 1

I

with the displayed item being mapped to (X, )}, o) by Ad roto (Y, iA/, T) by Ac roto £

by r,,and to £ by T The mapping

O 9

fesf:Dax v) — DA x )

so defined, with fixed (X, X, o), (Y, Y, 7)eZ0 I is a bijection; this holds since E 7 is an

r, at A

equivalence of categories. This shows the "very surjective" condition for r 1 I as

O 2

well as the preservation of By
I

B0, qzr (XX, 0), (A4, 0), 1) (XX 0)€B0,, (A A ®)eRO, u:F,X =4},
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with the displayed item being mapped to (X, )}, o) by 7|loiO ,to (A4, 2&, o) by 7|lol.l , to

N

(X, A, ,u)eDOl. by T, , and to ()A{, 2&, ﬁ)eDOi by rq where ﬁ is determined by the

following commutativity:

N G N N
F.EX——_ >F.X
eiX =
EF.X O u )
E i =
E_A %3 A

Note that since all given arrows are isomorphisms, u is uniquely determined, and it is an

isomorphism. Moreover, since E _ is an equivalence of categories, the mapping

J

Wi D#Oi (X, A) Hﬁ#oi (X, A

so defined (with the rest of the data fixed) is a bijection, which shows the "very surjective"

condition at Oi , and the preservation of EO .
1

This completes the data for (&, o rl) ; it remains to verify the necessary properties.

Let us consider the preservation of the relation Ai by (A, Ty rl) . What we have to do is

this. We take four items

such that (Xd , X, X , X yeR[A.] , that is,
ey Ta. a. 1
1 1 10 11
(10) Ro,olxg ) =Rdp(x, ), Rosq(xg ) =R (x, ),
1 10 1 11
7ZC)iO(Xc.) :%CI(Xa. ) %Oil(xc.) :%CJ(Xa. )
1 10 1 11
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we consider their r, and rl—projections; and we have to show that

0
#
(roxg » FoXo 12 ToXy - Tp%X, ) EDA, (11)
1 1 10 11
if and only if
(r,x r.x r.x r.x )EJS#A (12)
1"d. "1%c. "17a.,” T 17a. i
1 1 10 11
Let x5 = ((XX0), (A4, W
1
with 0:E X=X, 0:EA->A, U:F. XA,
x, =%, Y, 1), (B BB,V
1
with T:E Y =Y, ﬁ:EJ_B%B, ViF,Y =>B;
©i0 ©i1 ©i0 ©i1
note that xq =00, xg ——>a, X T, X ]
1 1 1 1

The first and third of the above conditions (10) force the first two components of X to be
i0
(X, )A{, o) and (Y, 1A/, T) , respectively. Let

Xy = ((X,X,0), (Y,Y,7), £:X>Y, £f:X>Y) ;
10

we have

Ex-%x,

£
B £ o l . (13)
EIYﬁY
Similarly,
x| = ((A, A @), (BB B), g:A>B g:A >B
i1
with
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Eﬁ%ﬁh
E,g| o© 9 (14)

(11) means

Fl.X#A
lF.fo lg, (15)
F.y-1 B

whereas (12) means

N

%
.f ©

1
A
\%

M >
.
> — >

g (16)

o> ¢ >

>

1

where ,ﬁ and v are defined as ﬁ is in (9); we want to see that (15) iff (16). Consider the

following diagram:

F.X — K A
F.C 1 a
\l e. E /
2 1IX 3 JFl 4 J‘A5
F.f FiEIfl EJFl.fl Eng g
FiBrY o,  EF Y 5 v BB
" 1Y J
AMAJ:T 6 AA
F.Y B

1%

The cells 1 and 6 commute, by the definitions of ﬁ and v (see (9)). 2 commutes by
(13), 3 by the naturality of e, and 5 by (14). Note that all arrows except the vertical
ones are isomorphisms. If (15) commutes, then so does 4 ; the resulting commutativity of the
outside square is (16) as desired. Conversely, if (16) commutes, then so does 4 (using the

isomorphisms in the diagram), and since is faithful, so does (15).

Es
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i
Let us look at the similar verification of preservation of O - I [Ji17J.Wetake
J

(XO P Xy X )E%[Ol],thatis,
10 1l 12

©)

x :HXXMJAAMJUE%i
L0

with G:EIXiX, oc:EJAiA, u:FiXiA;

x = ((XX0), (BB f),p) €RO.
Oll J

with the same o as above, and B:EJBiB, p:FiXiB

(since we must have %o ., (x ) =Ro_.,(x ) (see the first equation in (4)), the first
i0 °.0 70 °,1
components of x and x have to agree);
o o
10 1l
x, = ((4 A ), (B B, B),g:A>B, g:A>B
12

with (9) holding (see the other two equations in (4)). Looking at the definition of D#O -

D#O Lo what we have to see is that

Fx—E >a Fx—Ht a
thl o Jg iff thl o lg . (17)
FX 0 B ﬁj)}— lE) 4

Consider
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Fx z A
wiG 1 %
e. E
~ 1X J#
2A FiEIX——————>EJFiXE—————éEbA

~ h 3 EJh 4 > ~
h lEIXl le Eng g
F.E X——F X————F

. J IX er JFj EJp
A A F‘T 6 ﬁ A
F X J - B

0

The cells 1 and 6 commute for reasons as before. 2 commutes because of the naturality of

N

h Lo 3 because of the naturality of (el., ej) with respectto t1:1— 75, 5 because of
(14). 4 is the antecedent of (17) with
(17). The assertion in (17) follows.

E applied to it, the outer square is the succedent of

The remaining properties are the preservation of the T oI and of the equalities on the

Ar, 0., These are immediately seen.

R
We need that (7, o rl) "relates a to b". For X the restricted context involved,

az(aX>XE{1,, bz(bX>XEI;szwant c=(cX>XEIED[zl’] such that ry(c)=a,
rl(c):b . For xed, KX:OI,deflne cX:lEIaX:EIaX%bXe 7ZOI;We have

ryc,=a, rch:bX.For xed, X:AI(_Y, z) , define cxz(c C_.a bX)e%AI;

Vv "z

c € RA I indeed holds since this means

c

v
E —b
I(ay) h%

EI(aX)l O lbx

EI(aZ) CZ bz

and this holds since EI(aX) :bX ; also, T, (cX) =a_, Iy (cX) =bX.

This completes the proof of (8).
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Let T [T]) be the theory of I-diagrams of categories,

diag[:’::I - (Ldiag[I] ’Zdiag
functors, and natural transformations. T diag [I]

[I] are those L

is a theory in ordinary multisorted logic

with equality. The models of T -structures that are

a; [T]
iag
ag [ I]-structure (see above). Indeed, we can

diag
isomorphic to some D:I—Cat as an Lqs

easily write down a set of axioms X g [I] over L whose models are, up to

dia diag[I]

isomorphism, precisely the D’s. Now, the construction D}~ D# is related to an interpretation

q):Lanadiag [l — [Tdiag [Z]] (19)
. ) - oo -
of the DSV Lanadiag [I] in the theory Tdiag [I] ; namely, D" = Do® ; here,
D: [Tdiag [IT]] —> Set is the coherent functor induced by D: Ldiag [I] >Set.
To describe @ , I first introduce certain specific formulas over the language L diag [I] . We
1
refer to the (arbitrary) objects, arrows and 2-cell T ELJ in I.
J
II(K) 45f EIXEII.iI(x):K (K:AI)
II(X, K) 43f II(K)/\dI(K)ZX (X:OI,K:AI)
TI(f, g, h) 45f EIXETI. tIO (x) =f/\tIl (x) =g/\tIO (x)=h ( £, g, h:AI)

TI(X, Y’ Z’ f9 g’ h) déf
dI(f) =X/\CI(f)=Y/\dI(g)=Y/\CI(g):Z/\dI(h):X/\CI(h):Z A TI(f, g, h)
(XY, Z:OI; £, g, h:AI)
Iso (M) 43¢ Elv,K,)LEAI.II(K)AII()L)ATI(u,v,K)ATI(v,u,)L)
(u:AL)
Oi(X’ A, U) 43f IsoJ(,u.) /\CJ(X) =A/\EIXEOl..ol.O (x) =X/\dJ(,u)=ol.l (x).
(X:OI, A:OJ, ,LL:AJ)
CommJ(,u, g, h, v) 45f EIkEAJ.TJ(,u, g, k) /\TJ(h, v, k)
(‘LL, ga h’ V:AJ)
Ai(X’ Y, A B U, Vv, £, g) daf
Oi (X, A, W) /\Ol.(Y, B, V) /\EIXEAl..al.O (x) =f/\CommJ(,u., g a.q (x), V).
(X, Y:OI, A, B:OJ, f:AI, u, v, g:AJ)
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O, (X, A B W v, h) 4=¢

OlO (x) =X/\CommJ(,u., h o ,(x), V).

Oi(X’ A, ,u)/\Oj(X, B, v)/\EIXEOl.ol.O 12

(X:OI, A, B:OJ, u, v, h:AJ)
This is the description of the effect of ® on objects:

Q)(OI) = [XEOI: t]
Q)(AI) = [XEAI: t]

Q)(II) = [XEOI, KEA _: II(X, K) ]

I

Q)(TI) = [X, Y, ZEOI;f, g, hEAI: T (X, Y Z,f, g h)l

I
d)(ol.) = [XEOI, AEOJ, ueAJ: Oi(X’ A, 1)l
d)(Al.) = [X, YeO ; A, B€O 5 fER W, V, g€EA ;: AL (X, Y, A B UL, V, £, 9)1]

d)(ol) = [XEOI; A, BEOJ; u, v, heAJ: OL(X’ A B U, Vv, h)l]

To complete the definition of ® as in (19), we should also specify the effect of ® on arrows;

this is done in the way straightforwardly suggested by our intentions with @ .

#

The fact mentioned above that D" = Do® holds will be seen directly. In fact, if we define D

in the standard way (among the possibilities that differ by isomorphisms only), we obtain an

equality D# = Do .

Next, we explain a translation of formulas to formulas induced by ® . Temporarily, let us call
a FOLDS variable u special if p:0, (X, A) for (unique) suitable i:I—JeArr (I) and

X:0p, A:0 . Let us fix a 1-1 mapping ,U.H,u* of special variables u to variables ,LL* in

*
ordinary multisorted logic over L diag [I] such that, when u is as above, u :A J The
anadiag ciliag[l-:I ; if

X:OI, X:OI in the sense of multisorted logic, and if X:AI(_Y, z) , then X:AI in the

sense of multisorted logic.

non-special variables over L [I] are considered variables over L

For a special variable u as above, we have the formula ¢ [u] d&f 0.(X, A, ,u*) , with the

;5
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latter formula introduced above. For a finite context 4, we let 4 =~ {ued: u
special } U{ ,u*eﬂ’ : u special} (exchange every special variable u for u* ), and consider the

formula Py aaf /\ {(P[‘u] : ue & special} ; Var((p[{l,] ):/l’* . For a finite set ) of

variables over L , we write {} for the product-object [Yit]= [] [ yEKy: t] in

diag (1] ey

[ [I]1] , where @ﬁ’Ky'

Tdiag
Recall that, with @ as in (19), for any finite context 4, we have the object ®[4] defined as
a certain pullback. Inspection shows that ®[4] can be taken to be |[4 * P 11, the
domain of the subobject [4 " P ] of {4 *} ; we have a canonical monomorphism
m:o[X] —{X *} . Thus, for any 6 in FOLDS with restricted equality, with Var (0)cd,
O[F:0] —d[4F] may be regarded a subobject ®[4:0] —O[L] SN {zl’*} of {/l’*} .

We can produce a formula 0" such that Var ( 9*) =Var (0) " and

O[Y:0] = 07

*

{4}

(equality of subobjects of {4 *} ) as follows. We have, for atomic formulas

(T(X K) = T(XK)

(Xx:0 K:AI)

II
* .
(TI(X, Y, Z, f,qg h)) = TI(X, Y, Z, £, g, h)

(X, Y, 2:05 £:A_(X,Y); g:A (Y, 2); h:A_(X, Z))

I
* . * *

(Ai(X’ Y’A’B’.LL’ Vv, f’g)) EAi(X’ Y,A,B,M,V,f,g)

(X, Y:OI; A,B:OJ; ,LL:Oi(X, A), V:Oi(Y, B), f:AI(X, Y), g:AJ(A, B) )

*

* . *
(0, (X A, B, U, v, h)) 0, (XA B MU,V ,h)

(X:OI, A,B:OJ; ,LL:Oi(X, A), V:Oi(Y, B), h:A

g(A B) )

(f:AI(X, - g) = d (f)=d (g)=Xnc(f) =CI(9’)=Y/\f=AIg
(X, Y:05 £:AL(XY), g:AL(X Y))
) = Oi(X’ A, ,u)/\Ol.(X, A, V)AL =AJV

*

(“:oi(x, a)Y
( X:0p5 A:0 5 M, V:0, (X, A));
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for connectives

*

t =t
*
£f =f£
* * *
(8rp) " = 67 Ap
* * *
(Bvp) " = 6" vp
* * *
(0—p) = QD[I]A(G —p ) (X=vVar(6—p) )
and for quantifiers
* *
(Vx0) = Vx€0_.0 (x:0,)
(Vx0) = VxeA_. ((d (x)=yAc (x)=2) —0 ) (x:A_(y, 2) )
(Vx0) = VX*EAJ. (0, (. z. x)—0") (i:I57,%:0,(y,2) )}

the existential quantifier is dealt with correspondingly.
*
Notice that if Var (0) is a restricted context, then Var (0 )=Var (0) .

The upshot of all this as follows. For an I-diagram D:I—Cat , and its saturation D# ,if X

is a finite restricted context over L [I], 6 isa FOLDS formula with

anadiag
Var (0)ct, and geD[/l’] , then

p"E0[a] —— DF 6 [a]

For a structure M over a language extending L diag [I], |Ml denotes its reduct to

Ldiag [ZT]; IMl is the underlying I-diagram of M.

(20)(a) Let T be a theory extending T diag [T] . Let X be a finite restricted context over

L : [I], 0 an L, -formula such that Var (o) cd . The following two conditions (i),
anadiag T

(i1) are equivalent.
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(i) Forany M, NET and tuples ac |M [X] , be Nl [X] , MrFola] and

(1M, a) <> (IN,B) imply Neo[b] .

(i1)) There is O in FOLDS over L [T] with Var (0)cd such that for all

anadiag
MET and tuples ae M| [X] , we have MEG[a] iff M=6 [a] .

(b) In particular, if o is a sentence over LT ,and for any M, NET, Mo and

Ml ~ [N imply Nko, then there is a sentence 6 of FOLDS over L . __[I] such
anadiag

that for any MET, MFo iff M= .

Proof. ((ii)— (i)) Given 6 as (ii), we have

Meola] e M0 [a] «— M FO [a] — M TEO[a]

and similarly,
Neo[B] — IV "EO[B]

Assume the hypotheses of (i), in particular, ( [M], 5) PN ( INT, 5) . By (8), for

L=L 1z, (1w * 3=, (¥, B) | hence, by 5.2)(b),

anadiag
|| #|=6[§] & |NI #|=6[B] . By what we saw above, this means MI=G[5] = 1\7|=G[.8]
as desired.

((i)—> (ii)) Assume (i). We apply 5.(15) with 6:m* ([X:0] € S(O[L]) in place of 0
m:®[X] —> {X} as above. The condition MFo[a] translates into (a)eM[G] ; now,

#

(ay=a.Recall that MML=Mo® = |M| ™ . Thus, also using (8), we have

forall M, NET, ac (ML) [X] . be (N'L) [X] .

(a)eM[o) , (MML, a) = (NIL, b) — (b)eN[o]
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Since every PEC is isomorphic to one of the form M , with MET , we have the hypothesis of

5.(12). The conclusion gives 6 in FOLDS over L such that 6:q) (2] ®[4:0] , which

suffices.

The result of (20) can be paraphrased by saying that a first-order property of a diagram of
categories, functors and natural transformations is invariant under equivalence iff the property
is expressible in FOLDS with restricted equality as a property of the saturated anadiagram

canonically associated with the diagram.
It is left to the reader to formulate stronger versions of (20), based on results of §5.

A normal theory for I-diagrams is a theory T extending T diag [I] such thatif MFT and

D~ |M| , then there is NET such that [Nl =D . For a restricted context 4, and formula ©

of L with Var (o)cd’, we define the concepts " o is preserved/reflected along

dia [T]
g
equivalences of models of T

"

in the obvious way, in analogy to the case of a single category

(see above). We have the following analog of (3).

(20') Let T be a normal theory of I-diagrams of categories, functors and natural

transformations. Let 4 be a finite restricted context over L [I] . Suppose that the

anadiag

first-order formula o over L diag [I] with free variables all in 4 is preserved and

reflected along equivalences of models of T . Then there is a formula ¢ in FOLDS over

L : [I] such that o is equivalent to qo* (defined above) in models of T.
anadiag

Let us discuss the special case of I = ( 0 M 1) consisting of two objects and an

arrow between them; there are no 2-cells. The intended structures for

_ (0,1) i . .
Lean™L diag [ (0—~—"=>1)1 are functors; more precisely, structures consisting of two

categories connected by a functor. Fibrations are such structures. There are many first-order
conditions on fibrations and on objects and morphisms in fibrations that are of interest. On the

other hand, in [MR2], several elementary (first-order definable) classes of L n—structures

fu
were introduced as categorical formulations of modal logic; these "modal categories" are not in

general fibrations.
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Let me restate the basic concepts for L fun * Cfun 8 the following graph:

Ty To
t00\\201 oz /1o
/
A

Ty T
tlo\\\ill\ilz//ll

a

. A

a
0
0 A 1
Ao el el
(0] (0] (0]
0 oO o1 1
(0,1)

Lonafun = Yana diag[ (0—~—=%>1)1 is generated by L fun ’ subject to appropriate
equalities of composite arrows. A functor F: X—> A isregarded an L £up - Structure in such a
way that the interpretation of the relations O and A are the graphs of the object-function and

of the arrow-function of F, respectively.

Given functors F:X—>A and G:Y > B, an equivalence between them is a triple
(Ey, By, €) asin

x5 sa

Eol e/lEl : e:ElF;%G'EO

Y 5 >B

in which E, and E, are equivalence functors. This notion of equivalence of functors can be

motivated by saying that it is the combination of two simpler notions: one is the isomorphism

of two parallel functors

X =le A,
G
F Eo  F
and the other is the relation between X-—~>A and the composites Y——>X >4,
Fo, M
X ~—>A——>B where E,, E. areequivalence functors. Since the second notion only

0> "1
involves changing a category to an equivalent one, the change affected on the functor should

be an "inessential" one; the resulting composites should be "equivalent" to F'; they are,

104



according to our definition. It is clear that the equivalence relation generated by the two

special cases of "equivalence" is the full notion of "equivalence".

For F: X—>A asan L n—structure, F# , the saturation of F, an La n—structure, has,

fu nafu

among others,

F'O= {(X A W): XeX, ACA, U:FX-=54}
and
F'A= (X A W Y. B v, £ g)
- _ _ Fx-—Hoa
(x-S v)ex, (A-95B)ea, u:FXx-=>A, v:FY-=>B suchthat Ff| o lg}.
FY— B

In the spirit of [M2] , within the notation for F#A , the object A is also written as Ft (X) ,

and g = F#

‘u’v(f).

The various kinds of modal categories of [MR2] are each defined by a finite set of first-order
axioms, and each kind of modal category is invariant under equivalence: if F:X->A belongs
to the given kind, and G:Y > B is equivalentto F:X >A, then sodoes G:Y>B. It
follows by our invariance theorem (15) that the axioms can be formulated in FOLDS, although
not as statements about the functor itself, but as statements about its saturation. However, it is
not necessary to use the invariance theorem (which is anyway proved in a non-constructive
way) to obtain the individual FOLDS-statements; in each case, one can find them directly,

rather easily. I will give an example of an axiom thus reformulated in FOLDS.

Suppose the functor F:X—A preserves monomorphisms, and consider the following

condition on F':

(21) For any XeX, the induced map (X) ——8S, (FX) of posets has a right

F %* S x
adjoint (denoted Y}>OY , the necessity operator).

I want to show that the (21) can be equivalently written as a statement about F# . The simple

105



observation is that if (21) holds, and u: FX =4 , then the map

Q=@ U] :SX(X) HSA(A) defined by ¢([Z E5x1) = [Fz MA] also has a right

adjoint ( [Z L5 X1 s the subobject of X given by r); it is this latter, more general,

statement that we can (almost) directly formulate in FOLDS about F# .

For variables U, V:OO , u:AO (U, v) , let MO (U, V, u) , abbreviated as MO (u) , and
intended to say that u is a monomorphism, be the L -formula

anafun
VW;OO_VV, W;AO(W, U) (EIZEAO(W, V) .TO(V, u, z) /\TO(W, u, z) 'HVZAO(W, o) w) .

Changing all subscripts 0 to 1, we get the formula M, (u) . Here is the sentence 0 for

which F#I=9 is equivalent to (21):

VX:OOVA:01V/.L:O(X, A) VB:01Vm:Al (B, A) {Ml (m) —
HY:OOHH:AO(Y, X) [MO (nn) /\VZ:OOVC:01VV:O(Z, C) Vr:AO (Z, X)VS:A1 (C, A)

(MO(r)/\MO(s)/\A(v, uwr, s ) —
d c aO a;
Elt:AO(Z, Y) .TO(Z, Y, X, t, n, r) < Elu:Al(C, B) .Tl(C, B, A ums))]}

To help reading the sentence interpreted in F , here is a display of the data involved:

x A
y» 1 sx B *éAzF‘uX Fx—H a
o o 7 =
K/f ‘N/S—Fv‘u(r) FrT (:) Ts
7z C=F 2 FzZ—=—>C
FX =5a
H (rz 22F5 a1 = 10 S a
FZ =scC

Let us discuss fibrations. The first thing to say is that the concept of fibration is not invariant
under equivalence of functors. An equivalence functor is, clearly, not necessarily a fibration;

an identity functor is one, however; it follows that the concept of fibration is not invariant
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under equivalences of the form (EO, Id, id) .

On the other hand, once we know that F: X—>A and G:Y—> B are fibrations, then the

usually considered additional properties of F', and of diagrams in the fibration F, are

inherited along arbitrary equivalences F =5 G . The reason is that any equivalence F=56
gives rise to a "strong" equivalence from F to G ; and the usually considered properties are
invariant under the strong equivalences. In fact, the notion of strong equivalence is related to

looking at a fibration as a structure for a new DS vocabulary L Let me explain.

fib~

Consider the following DSV L fip

O O\\O 1\0 2/
po e

Wl

1 l
% — dll lcl
o T .
— 0, ;
here, besides the two obvious copies of L. We have the equalities
odOaO = dla1 , OCpay =Cqiaq

(The simpler version that has an arrow A, —>A. in place of Aj<—A-——A is not suitable;

0 1 1
we need equality on A, toexpress fully the properties of the arrows of the base category;

with the version indicated, Ay would not be a top kind, therefore would not be eligible for

carrying an equality predicate in the language.)

Among the L fib—structures, we find the functors; given F:X— A, it is understood as an
L. ,-Structure in the natural way in which the 0-copy of L.t is X,the 1l-copy A, o

is the object-function of F', and the relation A is the graph of the arrow-function of F . Note

that whereas L is a simplification of L , its height is 4 , and that of L is 3.
fun fun

fib

Here is an axiom in FOLDS over L that formulates the existence of (strongly) Cartesian

fib
arrows:
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VA:0,VB:0,Vf:A (A B)VY:0,(B)3u:A (4 B X Y) (A(u, £)A
¥C:0,¥g:A, (C, 4)3h:A, (C, B) [rfl(g, £, h) AVZ:0,Yv:A, (C, A, Z, V) (A (v, h) =

J1wing (C, A 2, X) (A(w, @) AT (w, u, v))) ]} .

Here is a diagram to accompany the sentence:

We have employed the usual abbreviations in writing the atomic formulas; the unique
existential quantifier 3! may be expanded in the expected way. Adding further axioms that

are easily obtained, we get a sentence in FOLDS over L that axiomatizes the notion of

fib

fibration. This would not be possible to do over L .
anafun

Let us call functors F:X—>A and G:Y— B strongly equivalent, F~ G, if there is an
equivalence ( EO, El’ id) : F~G (in the previous sense), with an identity in the third

component;

x5 sa

Eol o lEl (22)

Y5 B

(23) For functors F and G, FzSG iff F= G . As a consequence, a first order
fib
property of objects and arrows in a prefibration (functor), in particular, in a fibration, is

L

invariant under strong equivalence iff the property is expressible in FOLDS over L Fib -

I only outline the proof. Of course, the second statement is obtained
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as a consequence of the first by §5. Given (&, r, s) :FWG , for any

fib
A€FO,=0b(A) , let us pick Ae 7801 by the Axiom of Choice such that r(A) =4, and put
Ey (A)=s(A) . For XeOb (X) ,let A=F(X) ; thus, XEFO, (A) . By the very surjectivity of

r, there is }}eﬂoo (A) such that r(X)=X: we let Eo (X)=s(X) . We have defined the
object-functions of equivalence functors E|:A>B, Ej: XY, and note (the main point)
that, at least as far as the effect on objects is concerned, the diagram (22) commutes (and not

just up to an isomorphism). The rest of the verification is left to the reader.

Note that the treatment of fibrations did not require a passage to an "anafunctor". The usually
considered properties of fibrations are invariant under strong equivalence. On the other hand,
there is a simple, and well-known, "transfer property" for morphisms of fibrations which

ensures that for fibrations F and G, F~ G iff Fzs G ; in fact if (EO, El’ e):F~G,

there is E(’):X%Y such that Eé = E and (E(’), El’ id) :F~G.
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§7. Equivalence of bicategories

For 2-categories and bicategories, see [M L], [Be], [S].

In this section, I discuss invariance of properties of bicategories, and of diagrams in

mn

bicategories, under biequivalence (however, I will call "biequivalence" "equivalence of
bicategories"). To mention just two examples, the property of a bicategory having finite
weighted (indexed) limits (see [S]) is a first-order property invariant under (bi)equivalence; but
the property of a 2-category having finite 2-limits is not so invariant. The main result of this
section (see the Corollary at the end) implies that the first-mentioned property can be
expressed in FOLDS, although not quite in the language of the bicategory itself, but in a
modification of it. In fact, the formulation of the said property in FOLDS can be done directly,

quite easily.

One possible choice of a similarity type for 2-categories is the following graph Ly cat

0
Tl H
hy
tlolltllltlz hzl h3lh4
£
ClO CZO 20
R 2
o L €1 L Cy €1 T,
11 . 21
Tll 12 22
T Iy

The following explains the meaning of these symbols in the case of a 2-category:

C 0" (the set of all) objects (0-cells),

Cl : arrows (1-cells),

C2 : 2-cells;
C10 Ca0" domain,
Ciq 7 Coq: codomain,

T, : commutative triangles
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tlZT
of 1-cells,
T, ! commutative (for vertical composition) triangles
t,,0
o _ ltzoe ltzzeﬁ
l 21
of 2-cells,

H : commutative (for horizontal composition) triangles

E1000"M ©11%10"0" \\\\\\\\\ E11B"

% -
hon - \\\\é\\\33”
/////// ////////Elohln B >
E1o04M
m = C1ot10Pg" Th4” €11%10%0"
E1200M
of 2-cells;

Il : identity 1-cells,
I, identity 2-cells.

in

satisfying certain axioms 22 —cat

A 2-category is the same as a structure for L
2-cat

multisorted first order logic with equality(ies) over Ly cat

For the concept of bicategory we need, in addition, the sorts A , L and R, accommodating
associativity isomorphisms, and left and right identity isomorphisms, respectively. More

precisely, we introduce, besides these three new objects, the arrows
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0
ST a
a 4
e
Tl al A C2 ,
2
%
a3
2 2
¢ sz £y r, }-”2 r,
with these additions to L2 _cat » Ve obtain Lbica ,

In a bicategory, the symbols of L,_ are interpreted as expected (as in a 2-category). A

cat

% a1% ar ag
(i=0, 1, 2, 3) are commutative triangles of 1-cells (elements of Tl ), and a

stands for the set of 5-tuples o = (a o, a~o, a,d, a 4oc) where the a,o

L& isa 2-cell,

fitting together as in

N - A
aoa—Tﬂ ala_%i

azaz\?l ajo="1.y

with 17 standing for t

a.o) ,and a
1

17 ( P is the associativity isomorphism

o :h(gf) = (hg) £. L is the set of triples A = (ZO/I,Zl/I,Zz/I) as in

f, g h

c10t10%0%

f=t gLt tlzzol\\\\\Zgz\$\\\\f:iiozol
T~ 3

B:clolll ,

1071 lellfllztllfOl

and { 2/1 is the identity isomorphism A Filgef =5 F. R is similar, mutatis mutandis.

B
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Bicategories are L -structures satisfying a set zbi of axioms, in multisorted

bicat
first-order logic with equality over L

cat
. Of course, 2-categories are those bicategories

bicgt ' '
for which each o f.g. h° A £o Pgoare identity 2-cells. We write T

(Lbicat’zbicat)'

bicat for the theory

Now, we introduce the DSV L . The underlying simple category is generated by

anabicat

the graph Lys subject to the following equalities:

cat’

1020 T 1021 » ©11%20 7 €1121 ¢

€11%107C10%11 7 €10%10 7 C10%12 7 €11%11 T C11%12 ¢
C10t1 T C11t1 -
C21%20 7 C20%21 7 €20%20 T C20%22 7 €21%21 T C21%25 ¢

Co0t2 = C2112 ¢/

E10M%0 = 202« B1oMq T Ca1My v Byqhg = Cpghy s Byqhy =y s
E1200 = Cooly + B1pPq =S50y -

£10%0 = %1083 © F1180 T 1082 © F1282 T t1183 © B1230 T Fq1087 -
t1181 = 1185 -

€034 = 1281 © €184 = Fqp83 ¢

18y =98 cxpby=typly corly=tipty .

1171 7 %90%0 © C20F2 7 F12%0 7 €212 7 1170 -

The relations of L . are exactly its maximal objects, that is, its level-3 objects,
anabicat
IZ,TZ,H,A,LandR.

The equalities between composites arise naturally; they hold in a bicategory (as a
L, . -structure); also, the relations of L

bicat anabicat
"relationally"; in brief, every bicategory is an L

are interpreted in a bicategory
anabicat Stucture.

In [M2], the concepts of anabicategory, and saturated anabicategory were introduced.
Although these concepts implicitly underlie all that follows, they will not be relied on
explicitly.

in

An anabicategory is an L -structure satisfying certain axioms X

anabicat
a saturated anabicategory is one that

anabicat

FOLDS (with restricted equality) over Lo habicat
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satisfies a larger set X of axioms in FOLDS over L (these facts will

sanabicat anabicat
be seen upon inspecting the definitions in [M2] ). An anabicategory is like a bicategory, with

the composition functors replaced by composition anafunctors.

For the reader who has a copy of [M2], I now point out some details, which, however, are not

needed later.

Let A be an anabicategory as in [M2]. In explaining in what way A is an

-structure, we will write T. for ATl , etc. For a diagram

Lanabicat 1

f B g
ST T3 (1)
A A c,

T1 (f, g, h) (short for T1 (A, B, C, £, g, h) ) is the set \OA B C‘ ((f, g), h) , the set
of specifications s for h being the composite of f and g, h = gosf (see 3.1.(iv) in
[M2]). For f:A—>Ac¢€ C1 , Il(A’ f) 1is \1A\

being the identity 1-cellon A, £=1 A i (see 3.1.(iii) in [M2]). For

(*, £) , the set of specifications i for £

B g C
f] T . lh )
A
Jj

in A, and

aeT, (f, g, 1) , beT (i, h, ), c€T, (g, b, k) , deT, (£, 7, ), (3
and o: 77— ¢ ,we have

A(a, b, c, d,a) < a:aa,b, c. d

(see 3.1.(vi) in [M2]). (According to our conventions in logic with dependent sorts,
A(a, b, ¢, d, o) isshortfor A(A B, C, D, £, g, h, 1, 7, k, {;a, b, c,d,a) ).
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Every bicategory (as an L -structure) is an anabicategory, although not necessarily

anabicat
saturated.

Whereas the interpretation of T. in a bicategory, the notion of "commutative triangle of

1-cells", is a relation on trianglei of 1-cells (where a triangle of 1-cells is three objects and
three arrows (1-cells) appropriately related via the domain/codomain functions), in an
anabicategory, we have a sort of entity that may be called "specification for a commutative
triangle of 1-cells". Such a specification does specify a unique triangle (via the maps = );
however, the property "commutative" does not figure separately. You may say that a triangle is
commutative if there is a specification for it to be commutative, but in the concept of
anabicategory, we do not work with this notion, we only work with the specifications. In an
anabicategory, the expression "commutative triangle (of 1-cells)" should always be interpreted

as "specification for a commutative triangle".

Next, we define a translation of the language L .
anabicat

— >

into the theory Tbica . that is,

a [T_. ]-bicat structure I:L ] . Via this translation, every
bicat

anabicat Tbicat

bicategory A gives rise to A = Ao 1 ,an L Sstructure. A" is in fact a saturated

anabicat
anabicategory; however, for the main result, we will not need this fact; we will use the actual

construction of A# asan L_ .. _ -structure only. (In [M2], A# was defined for the

special case of a monoidal category (one-object bicategory) A only.) We define the passage

A A# ; this will describe the said interpretation as well.

In A# , the interpretation of the part

t
clO CZO 20
C (@ t T
0 1 2 21 2
11 21 1 Tt
22
1
of L is the same as in A .

anabicat

Under (1) (O-cells and 1-cells in A as well as in A ),
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A (£ g 1) 1sod(gf, B)

def

= the set of all isomorphism 2-cells gf =h.

B
£ h
/ g/ \ ~
If — // k ' \\g -
A ‘ 1€ c
J

and seA#Tl(f, h, 7), tEA#Tl(g, i, k) , then

hf—2 55
AM(s, 6B, 8, 8) —— 5B l o le .
def
Under (2) and (3) in A"
%f 9. h
h(gf) — 292 5 (hg)
lha cfl
A*a(a, b, o, &) ——  hi o kf 4)
def
» a|

3 & {

here a reference is made to the associativity isomorphism o given with A.

f, g h
Fora l-cell f:A—>A, A#Il (A; ) = Iso(lA, ) .

For
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acA'T (A B B £, g h), i€, (Big) . A:C,(h £) |

1 BJ&L of

e 10 o=p )Lfl o la,
f%ﬁh

where a reference is made to the identity isomorphism A £ given with A . The definition of

A#R is a straightforward variant.

In a bicategory A, a l-cell f:B->A is an equivalence if there is £’ : A—>B such that

fof'=1,, frof=1p; this is equivalent to saying that for any Ce A, the induced functor

*
f :A(c, B) — A(C, A) is an equivalence of categories.

We have the notion of functor of bicategories; this is just a different expression for

"homomorphism of bicategories" (see [Be], [S]). A functor F:Z¥—— A of bicategories is an

equivalence (of bicategories) [instead of "biequivalence"], in notation F:/4 =4 , if

(i) for every AcA, there is Xed and an equivalence f:FX =5a;
and

(ii) for X, yeX, F induces an equivalence of categories X (X, Y) — A(FX, FY) .
See [S].

We say that the bicategories 4, A are equivalent [instead of "biequivalent"] if there is an

equivalence & =5 4. Equivalence of bicategories is an equivalence relation (this requires the

Axiom of Choice; the fact is well-known, but it also follows from (5) below).
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Let L= Lanabicat ’

(5) For any bicategories X', A, X~ A iff ¥ =y A.

r.): I#é/(# . We construct F: ¥ =>A.

Proof. (A) ("if'"') Let (7%, Ty T T

We write (&) for r,(€) ,and [&] for r, (&) . We will write % for ISI#ZII.A#

ol
too.

Given any XeAC o » We pick (by Choice) Xe 7ZCO such that (X)=X.We put FX df [Xx] .

Forany f:X >Y in X, pick (by Choice) fe AC, (X, Y) suchthat (f)=f, and for

g _ o _ _
x [Bly, ﬁeC2 (£, g) with (B)=B (B is uniquely determined); define Ff = [f] ,
g

FB=1PB].

£ . _ _
For X 257957 in 4, adgflgfe/l’#Tl (f, g, gf) ;let ae7lTl (f, g, gf) such that
(a)=a ; then [é]eATl (Ff, Fg, F(gf)) , thatis, [a] :FgoFféF(gf) . Therefore,

we may define Fe g def [al .

The coherence condition that the F £ g have to satisfy (the sense in which F preserves the

associativity isomorphisms) reads as follows: given

X v 9 5z W,

we have
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%rf Fg, Fh

Fh(FgFf) (FhFg) Ff
Fth’ g Fg, th
FhF (gf) o? F(hg)Ff
Fgf, h Ff hg
F(h(gf)) F( (hg) f)
F(af, g, h)
Writing azlgf, bzlh(gf) , c:lhg, dzl(hg)f,thm amounts to the same as
o 61, 1gl. 1h] | (130 iony 17
[h] ([g] [£]) » LG ([h][g]) [£]
[h] [a] [c][f]
[h] [gF] o? [hg] [ £]
[b] [d]
[h(gf)] [hg] [ £]
[af, g, h]

But by (4), the last commutativity is equivalent to saying that

S
A" (lal, (b, [c]. [d); [ay

, which in turn follows from X #A(a, b, c d o

nl) holds. The latter is a consequence of

RA(a, b, ¢, d; o g, h) ) , which,

2 f7 g, h
finally, holds by (4) since a, b, ¢ and d are identities.

The preservation by F of identity isomorphisms, and that of horizontal composition (see
[MP], §4.1, (2)(v) and (2)(iv)) are similar, and use L , R and H, respectively.

The facts that F preserves identity 2-cells and vertical composition of 2-cells are immediate.

We claim that for any Ae ACO , there is Xe /l’CO such that FX~ A . Given A, pick Xe 7ZCO

with [)A{] =A, and let X:()AQ . (Picture:
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X

Y,

X 2
X A FX L)
3 1 5

N —

Consider 1XE/1’C1(X, X) , and let ie%cl(}}, }A{) , je7lC1(X, ) such that
(i)z(j)le.Wehave

[i]:FX—>A, [j]l:A—>FX

in A.Let leXolxe/l’Cl(X, X) , and fe7lC1(X, X) , fe7lC1(X, X) such that

_ _ A _ . . . # .
(£y=(£)=£ . Consider 1fe/l’C2 (1X 1X’ £) ; then 1fe/l’ Tl(X’ X, X, 1X’ 1X’ £) . Let
leTl(;{, X, X 1, 3, f) , l'eTl(X, X, X, 3, 1, £) suchthat (1)=(1’ >:lf.Then

[l]EA#Tl(FX, A FX; [1], [7], [£]) , and thus

[1]:[F1e[i] —=>[f]; (6)

similarly,
[1']:[i]005] —=>[F].

But, qod(:efl félx,thatis, (pe/l’#Il(X, £) . Thus, there is (?)67311(5{, £) (such

1X‘
that (@)=¢). Then, [@leA"T, (FX. [£]) .ie. [¢]:1,, =>[£].Combined with (6),

weget [Flo[1i] = 1FX' Similarly, [i]o[7j] = lA . Thedata [i], [j] provide an
equivalence of FX and A as claimed.

Let us see that Fy o Y(x, v)—A(FX, FY) is an equivalence of categories. That it is a
bijection on hom-sets is a consequence of the fact that (7, Ty rl) respects the equalities

on C,-sorts. To see essential surjectivity on objects, let g: FX— FY, that is,

geA#Cl([}}], [Y]) . There is J‘Afe%Cl(;{, Y) such that [fi"] =g; let fz(%) . We now
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have £, 2’ both in 7ZC1 (X, Y) , and both "over" £ . There are ie7lC2 (f, %) ,

jezc:z(%, £) . Lefc, (£, £) Eezc:z(%, £) such that <i>:<j>:<2>:<2>:1f.We

have /1’#12 (£;1

f) :lFf.

, hence, %Iz( - /) and A#IZ(Ff; [£]) ;thatis, [£]
Similarly, 2] :1g. Since A’#TZ (f, £, £;

l1p,1.,1,) ,wehave BT, (£, £, £; 1, 7, {)

[
and 7|ZT2 (1?, £, %; 7, 1, 2) , and as a consequence, A#T2 (Ff, g, Ff; [11, [7], 1Ff)
and A#Tz(g, Ff, g, [7], [1], lg) ;thatis, [7]1[1]=1 [1] [j]:lg.This shows

that g = Ff as desired.

F£”

ry) AT We will again

(B) ("only if'') Let F:I%A, we construct (A, r T

O’
write (&) for ro(e) . [€] for r(€) .

We put 7ZCO 43 {(X, A, x): XEICO, Ae AC ., x is an equivalence X:FX%A} ;

(X, A x)) 35X, [(X A x)]

O I
def?-

Let us introduce a helpful notation. For any object D of Lo habicat Ny d€ AD and

dZEAD, %D[dl, dz] stands for {deRD: (d)zdl, [d]zdz} , "the fiber of AD over

(dl’ dz) ". We extend this definition to any sort ZD(e, e’, ...) in &, in place of AD;
RD(e, e, ...) [dl’ dz] = {deRD(e, e, ...): <d>:d1’ [d]=d2} ;
here, it is assumed that dlezl’#D((e>, (e’), ...), dzeA#D( [el, [e’], ...) .

The definition of 7ZCO together with effect of ry, r, on it, can be put, more succinctly,

2
as

BCy[X A] = Equiv(FX, A) = {x: x:FX =>A} .
Continuing, we define, for f: X—Y, f:A>B , x=(X, A, x), y=(Y, B, y)e?ZCO ,

7ZC1(X, v) [£, £] = Iso(yoFf, fox) ,
the set of all 2-cell-isomorphisms ¢ as in
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FX— > 5a
Ffl E/lf

rv— P8
y

7ZC2 is relational, meaning that its fibers are either {*} , or @ . Instead of

"x e 7|ZC2 (x, v, 0, y) [u, v1 ", we just write " 7|ZC2 (%, v, 0, 7) [u, v1 "

£ f
For X g\ u Yyin X, A :v Bin A, x, y and ¢ as before, and
g

ve®C, (% v) [g, g1,

FX = A
FM Iloll E ¥ é
Ay (% vi @, 7) (U, V] & Ff —5 |Fg
()
def /
FY - B
v
yoFf%yoFg
A qol O ly
def

f°X7W gex

Using that x, y are equivalences, and that F is an equivalence of bicategories, we see that,

for fixed x, y, ¢, 7y, the relation 7ZC2 (x, v; @, Y) [u, v] of the variables u, v is a
bijection

ue vz XC, (£, 9) é/(cz(f, g) .

This implies that (7, Ty, rq) preserves the equality relation E. . Also, with reference to

2
E
I é%Y A ﬁB and neRC, [h, h] , we easily see that
h

%Cz(x,y“,qo, Y) [U, VI ,7zc2(y, z, v, M Ilp,ol, pu=§&, ov={ =—

122



AC, (%, 237, M) (& &1,

from which it follows (by the above bijection uf—> v ) that

pu=§& < ov=_.

This means that r. T (I#T ) _rt (A#T ) ;thatis, (R, r

0 5 1 5 ry ) preserves T

0’ 2°

Given

(x:FX%A)e%CO[X, Al,f:X>X in ¥, f:A—>4 in A, geRC (x, x) [£, £],
that is,

X A
XFf—%EX
XF&TE ET&X
7(11( x ,0) [a al — XF(lX) o lAX
c, A1 def
1071 <F. | = =2
X1 X
XlFX% X
x
Given

(*) (x:FX%A)e%CO[X, Al, (y:FYf%B)E%CO[Y, Bl ,

(z:FZ%C)e%cO[Z, cl,
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Zin X,A™ — Cin A,
1

£ g £ g
X- .

(a:gf S1)ed'T (£.0. 1), (a:gf Si)ed'T (£.q. 1),

ge®C, (x, v) [£, £1, veRCy (v; 2) [9, 9], 1€RC, (x 2) [4, 1],

we have

T (@, 7, 1) [a, al] &

def
(front)
~ zFaFf
(zFg) Ffﬁz(FgFf) 2 zF1
(right) yFf j jl (bottom)
o)
(gy) Ff <~ g (yFf) ix

AN
(left) gqo\ /4 (back)

g(£x) > (gf) x

(we have referred to the following diagram of 1-cells, and its "faces":

N

The facts that EI , ET are preserved are shown through the facts that the definitions of
1 1

%Il , 7|ZTl give bijections al>a .
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The proof that (72, o rl) so defined preserves A and H is put into Appendix D .

We have an "augmented" version of (5), similarly to §6. I will state this without proof; for the
proof the details of the notion of anafunctor would be needed, together with a concept of

cleavage; the proof is, in outline, quite similar to the proof of 5.(8).

Let K, be the full subcategory of L=L consisting of the objects Co» O and

C, . A restricted context is a context of K, - For a bicategory 4 and its saturation A# ,

AI‘KO:A# I‘KO  ALX] =A# [X] whenever X is restricted.

anabicat

Let X be a restricted context. An augmented bicategory of type & is a pair (A, a) ofa
bicategory 4 and a tuple acA[¥] ; symbols such as (A4 a) , (¥, x) stand for augmented
bicategories. The notation E: (2, %) —= (A a) signifies that E:¥-=A and E(x)=a.

The relations —> and < are now defined in the same way as for I-diagrams in §6. For

bicategories, that is type-@ augmented bicategories, the relations —5 , <> coincide with

equivalence ~ . Generalizing (5), we have

(7) For augmented bicategories (2, %) , (A a), (/l’#, X) zL(A#, a) iff
(X, X) — (A4 a) .

We can, analogously to §6, define a recursive translation 0}— 9* from FOLDS formulas 0

*
over L to formulas 60 in ordinary multisorted logic over L such that, if

bicat
A=Var (0) is arestricted context, then Var ( 6*) =X, and for any bicategory A,

acALX] , ATEO13] iff A=67 [3] . We obtain the following analogs of 5.(20) and 5.(20').

(8)(a) Let T be a theory extending Tbica e Let 4 be a finite restricted context over

Lanabica L >0 an L T—formula such that Var (o) cd . The following two conditions (i), (ii)
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are equivalent.

(i) Forany M, NET and tuples ac |M [X] , be Nl [X] , MrFola] and

(1M, a) <> (IN,B) imply Neo[b] .

(i1)) There is O in FOLDS over L with Var (0)cd such that for all

anabicat
MET and tuples ae M| [X] , we have MEG[a] iff M=0 [a] .

and for any M, NET, MFo and
such that

(b) In particular, if o is a sentence over LT’
Ml ~ [N imply Nko, then there is a sentence 6 of FOLDS over L .
anabicat

for any MFT, MFo iff M0

(9) Let T be a normal theory of bicategories. Let 4 be a finite restricted context over

. Suppose that the first-order formula o over L with free variables all

L . .
anabicat bicat
in & is preserved and reflected along equivalences of models of T . Then there is a formula

¢ in FOLDS over L such that o is equivalent to (p* in models of T.

anabicat

(8)(b) follows from (5) (proved in detail above) and §5. As was mentioned, the proofs of
(8)(a) and (9) require a more detailed look at anabicategories, similarly to what we did in §5

on anadiagrams in the proof of (20)(a); this work is omitted here.

A paraphrase of (8) can be stated as follows. A first-order property of a bicategory, or of a
diagram of O-cells, 1-cells and 2-cells in a bicategory, is invariant under (bi)equivalence of
bicategories if and only if it can be expressed in FOLDS as a statement about the saturation of

the bicategory.
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Appendix A: An alternative introduction of logic with dependent sorts.

The way we defined the basic concepts of FOLDS in §1 may look somewhat ad hoc because
of the a priori role of the one-way (simple) categories as vocabularies. There is a more direct
definition of FOLDS which does not start with assuming simple categories as vocabularies.
The notion of "vocabulary" that arises naturally in the direct approach does, nevertheless, turn
out to be equivalent to the one we started with in §1. More fully, the direct approach and the
original approach turn out to be equivalent in all essential respects. This Appendix describes

this state of affairs.

We first define the classes of entities called kinds, sorts, variables, contexts and
specializations, and certain relation between these entities. Each kind, sort, variable, context
and specialization has a certain level, which is a natural number; the definition of the said

entities is by a simultaneous induction, proceeding by the level.

For the present purpose, we use the set-theoretic notion of function as a set of ordered pairs
with the usual condition; the point is that we do not make the "categorical" specification of the
codomain as part of the data for a function. Given functions s and t, teos is always
defined and is a function; dom(tes) = {xedom(s) : s(x)edom(t) } , and for
xedom(tes) , (tes) (x)=t(s(x)) .

The kinds of level 0 are the entities of the form (0, @, a) , with a any set. We say that

the kind K = (0, @, a) is of arity @, and we write KZ@ . The sorts of level 0 are the
entities (1, K, @) , with K akind of level 0 ; we put Var (K) =@ . A variable of level 0
is any entity of the form (2, X, a) with X a sort of level 0, a any set; we say that the
variable x = (2, X, a) is of sort X, and we write x:X . (The definition ensures that every
variable of level 0 has a unique sort of level 0 .) A context of level 0 is a finite set of
variables of level 0 . A specialization of level 0 is a function s whose domain is a context

of level 0, and for each xedom(s) , s(x) 1is a variable of the same sort as x .

Suppose n is a natural number, n>0 , and we have defined what the kinds, sorts, variables,
contexts and specializations of level k are, for each k < n, such that each context of level
< n is a finite set of variables of level < n, and each specialization of level < n isa

function whose domain and range are sets of variables of level < n . Suppose moreover that
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we have defined the concept of a variable x being of sort X, for variables x and sorts X

of level <n.

A kind of level n is an entity (0, ), a) , where Y is a context of level n-1, and a is an

arbitrary set; we say that Y is the arity of K=(0, ), a) , and we write K Z Y.

[Kinds are to form sorts (see below); kinds are incomplete sorts, with places for variables to

fill; when these places are filled in a correct manner, then we have a sort. In our formulation,
we did not introduce "places" as distinct from variables, although we could have done so; we
used variables to denote "places"; this is the same as the "nameforms" in [K]. Our procedure
may be compared to the one when, in ordinary first-order logic with several sorts, a relation

0 ¥ - Fpo1)
X of definite sorts; the arity of R then may be identified with the set

symbol R is introduced in the form R (x , with distinct specific variables

=g, x5 X g

as x. ) using R can then be identified with the pair (R, s) (=" R(s) ") where s is the

} ; the atomic formula R ( Yoo ¥Yqr -+ yn_l) ( v of the same sort

function with domain 4 for which s (Xi) =V .

A sort of level n isany X=(1, K, s) , written more simply as K(s) , where K is a kind

of level n, s isa specialization of level n-1,and K Z dom(s) ;

Var (X) range(s) .

def
For a sort X, a variable of sort X is any x = (2, X, a) ; we write x:X.

A context of level n is any set of the form JUZ where ) is a context of level n-1, 4 is
a (non-empty, for having level exactly =n) finite set, and each xed’ is a variable of level n
such that if x:X, then Var (X) c ).

If X=K(s) (=(1, K, s)) ,then X|t denotes K(tos) (=(1, K, tes)) .[ X|t is the sort
obtained "by substituting t (x) simultaneously for each xeVar (X) in X"] t isa
specialization (of level n)if t is a function whose domain is a context, and for every
xedom(t) ,if x:X, then X| t is a sort (of level <n ), and t(x) is a variable (of level

<n)ofsort X|t (and there is at least one xedom(t) of level n).

The above may be put in a more compact manner, without talking about levels, as follows. We
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define classes

KIND , CONTEXT , SORT , SPEC , VARIABLE

such that

JYeCONTEXT == X is a finite subset of VARIABLE ,
SESPEC =— s is a function, dom(s) and range(s) C CONTEXT ;

predicates

C KIND X CONTEXT (read KZ)’ as " K 1is a kind of arity ")
C VARIABLE X SORT (read x:X as" x is a variable of sort X ")

and the function

var : SORT%?’f. (VARIABLE) ,
in

by the closure conditions:

1 FYeCONTEXT — (0,%,a) € KIND and (0, ¥, a) _¥;
2 @ € CONTEXT ;
3 AeCONTEXT, XeSORT, x:X, Var(X) cd = Ju{x} € CONTEXT ;
4 SESPEC , KEKIND , K_dom(s) =
(1, K, s) € SORT and Var ({1, K, s)) = range(s) ;

5 0 € SPEC ;

XeCONTEXT , s€e SPEC, XeSORT , X| S€SORT ,

x:X, x¢dom(s) ,Var(X)cd, y:X|s == sU{(xy)} € SPEC ;

( <1a Ka S> | tdéf <1a Ka t°S> )
7 XeSORT = (2, X, ay € VARIABLE and (2, X, a):X.
By definition, the intended system (KIND, ...) is the minimal one satisfying the given

closure conditions.
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Let us give some examples. Let O , A , A, , U, V, u, v be arbitrary entities, U#V,

1 b
u#v . Here are specific kinds, variables, sorts and contexts, introduced by the above rules; at

the start of the line, the number of the clause used is shown:

2 Je CONTEXT ,
1 O 43¢ (0,2,0) € KIND , O @ .
5 Sy 4zf (0:0—>0) € SPEC
4 Odéf(l,o,s())ESORT,Var(O):®
7 Ugzs (2,0, U) € VARIABLE, U:0
V 43 (2,0,V) € VARIABLE, V:0
3 twice {U, V} € CONTEXT
1 A 4z (0, (T, V},A) € KIND, A {U, V)
6 twice S| g3f ld{U, V}:{U, vV} - {U, V} € SPEC
4 A(U, V) déf<l,A,sl>ESORT
7 zf (2,A(U, V), u) € VARIABLE, u:A(U, V)

u

d
V 45 (2,A(U, V), v) € VARIABLE, v:A(U, V)
3. {U, V, u, v} € CONTEXT

Al 43¢ (0,{U, V, u, v},§1> € KIND

For a variable x, we have a unique sort X_ for which x:X_; X _=K_(s_) for a uniquely
X X X X X

determined kind K and specialization S, For akind K, 4 K is the context for which
o
K & X

A pre-vocabulary is a set K of kinds such that KeK, xed % imply that K EK. (I am

talking about pre-vocabularies because relations are not yet contemplated.)

We compare the present approach to the one in §1. Let K be a pre-vocabulary. We make K

into a category with objects the elements of K. Arrows of K are the identity arrows, and the

pi: K—>K_,one for each pair KeK, xed X Composition is defined thus. Given

Y
K K Ky (xe/l’K, ye/l’KX) ,
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XX: KX(sX) , with s :A’K *>>Var(XX) .z sX(y)eVar(XX) Czl’K; also,

X def
X
K
b K
K _=K__; therefore, K—— 2 >K_ . We define p XopszK.
z Y Yy % X z

This composition is associative as is seen by using the equality s (sy( u))=s ) (u) ,

which in turn is part of the definition of s being a specialization.

The category K so defined is clearly a simple category; the levels of kinds as given in the
definition above are the same as their levels in K.

Let us use K as a category of kinds in the way done in §1. I claim that the resulting notions
of Variable1 , sort1 , and context1 are essentially the same as those of VariableK, sortK and
context . in the sense of the present Appendix, with the only kinds allowed the ones in K.

More precisely, we define, by a simultaneous recursion, functions
XX : SortK% Sortl (D)
X—>x : Variable ——Variable, ; (2)

by putting (2, X, ay = (2, X, ay ,and {1, K, sy = (1, K, <Xp>peK|K> , where
xp:s (y) for the unique y for which p:pfi . I leave it to the reader to check that (1) and
(2) are bijections, and x:X < x:X . Moreover, we have that the bijection (2) induces a

bijection between Context, and Context,..

1

Let us return to the development started in this Appendix. A relation-symbol is an entity of the
form (3, 4, a) where X isa context; X is the arity of the relation-symbol R=(3, 4, a) ;

RZI . A vocabulary is a set L of kinds and relation-symbols such that the set K of kinds in

L is a pre-vocabulary, and if R is a relation-symbol in L, RZI , xeX, then K EK.

Our comparison above of pre-vocabularies and simple categories of §1 clearly extends to an

essential bijection between vocabularies as defined here, and DSV's of §1.

An atomic formula (in logic without equality) is any (4, R, s) where R isa
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relation-symbol, s is a specialization, and RZdom (s) .

I leave the rest of the development of FOLDS in the style of this Appendix, and its comparison
to the main body of the paper, to the reader.
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Appendix B: A fibrational theory of L-equivalence

Ec Bp
Consider fibrations C| ,D| , and the category Fib[C, D] of all maps
B B
C D
My
EC%ED
M= (M, M,) :C—>D :: C| o D (1)
BC'iMl *Bp

of fibrations; Fib[C, D] is a full subcategory of [C, D] ;see [M3]. Fib[C, D] is the
total category of a fibration denoted Fib(C, D) ; its base-category is the functor-category
[BC" BD] , and the fiber over U: BC%BD has objects all the M as in (1) with the fixed
U=M, , and arrows as in {C,D) defined in [M3]; the fiber of Fib{(C,D) over U is a full
subcategory of the fiber of (C, D) over U.Given (f:U—>V)E€ [Bp Bpl . and N: C—>D

h=0
*
over V, the Cartesian arrow M=f (N) 41\7 is obtained by the stipulation that for all

h
AEBC , XEC‘A , M(X) HXX is a Cartesian arrow over fA: U(A) > V(A) ; the definition

of M on arrows is the obvious one; see also below. The fact that M so defined is a map of

fibrations is shown by the diagram:

MO
q

Here, Gq: X—Y is a Cartesian arrow over g:A— B ; the issue is to show that Meq is
Cartesian (over Uqg ). The definition of M on arrows makes MGq an arrow over Ug making
the upper quadrangle commute (unique such MOq exists by h,, being Cartesian). As a
composite of Cartesian arrows, (NGq) th is Cartesian; as a left factor of the last, MQq is

Cartesian.
In what follows, the base categories By . By will have finite limits. Fiblex(C,D) is the
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subfibration of Fib(C, D) with base-category Lex (B, Bp) »a full subcategory of
[Bp Byl . with fibers unchanged from Fib{C,D) .

Next, assume that C and D are A3-fibrations. We have the prefibration A3-(C, D) , with
base category Lex (BC" Bp) . and total category A3(C,D) . The fiber over UeLex (BC" Bj)
is the full subcategory of the fiber of Fiblex(C, D) over U with objects the maps of

A3-fibrations M:C—D. A3-(C, D) is not a fibration; however, for certain maps

f:U->V, £ (N) calculated in Fiblex(C,D) does belong to A3-(C,D) , as we proceed
to point out (from which it will of course follow that over such £, Cartesian arrows do exist
in A3-(C,D)).

Assume that D is a aA3-fibration, with QD = Arr (BD) .Letus call geArr (BD)

. . . . * *
surjective if EIth =ty If g is surjective, then for any veDP , Equ Y = EIq(tA/\q Y)
= Elqt ANY =Y (where the second equality is Frobenius reciprocity). It is clear that a pullback
of a surjective arrow is surjective, and the composite of two surjective arrows is surjective. It

is also clear that if gr is surjective, then sois g.

Let us call a commutative square in B;

{_F
A

a quasi-pullback if the canonical arrow p:A’ —AX_B’=P is surjective.

B

Using the stated properties of surjective maps, we easily see that if in the quasi-pullback (1'),

g is surjective, then sois g’ .

Consider two adjoining squares and their composite:

|

)

D>
W—— W
[\
D>
(O8]
Q—0
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(2) The "composite" of two quasi-pullbacks is again a quasi-pullback: if both 1 and
2 are quasi-pullbacks, then sois 3.

The verification uses both the pullback and composition properties of surjective arrows noted
above.

) In (1"),if 3 is a quasi-pullback, 2 is a pullback, and 1 commmutes, then 1 is
a quasi-pullback.

(3") If in the commutative diagram

.
) — T

the two quadrangles AA’AA’ and BB’ BB’ are pullbacks, and the square AA’BB’ isa

quasi-pullback, then AA’ BB’ is a quasi-pullback too.
This follows from (2) and (3).

3'") Ifin (1"), 3 is a quasi-pullback, and AB is surjective, then 2 is a
quasi-pullback.

To see this, let P=Bx _C’ for 2, and R=AX

c o’ for 3 . We have the commutative diagram

135



R
17

with two pullbacks as indicated. Since AB is surjective, so is RP . The assumption gives that
A'R is surjective. Now, the composite A’ P is surjective, and so is its left factor B’ P,
which is what we want.

(4) The Beck-Chevalley condition for 3 holds (not just with pullback squares, but
also) with quasi-pullback squares.

Indeed, consider the diagram

and calculate: 3 ,a x=3 3 a x=33 qr x=3 r x=b 3 _X ; the third equality
_ g s™p s™p s g
is the "quasi-pullback” property, the last ordinary B-C .

Let us continue to assume that 2 is a "full" A3-fibration ( QD contains all arrows), let C be

an arbitrary A3-fibration, (g:A— B) €B . We callamap (£:U—V)eLex (BC" BD) very
surjective with respect to g if the square

UA UB

Ug
\ &
fA
VA VB

is a quasi-pullback. (The concept of "very surjective" is relative to the fibration 7, although it
does not depend on the fibration C except for its base-category.)
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(5) If £ 1is very surjective with respect to an arrow g, then so it is with respect to
any pullback of g;if £ is very surjective with respect to a pair composable arrows, then so

it is with respect to their composite.

This follows by (3) and (2).

We say that £ is very surjective if it is very surjective with respect to every quC, ; by (5), it

is enough to require the condition for a "generating set" of g's .

(6) The composite of very surjective arrows (in Lex (BC" Bj) ) 1s very surjective; the

pullback of a very surjective arrow is very surjective.

This follows by using (2) and (3).

Let K be a simple category, B = Con (K) °P . Lex(B, Bj) can be identified with
Fun (K, Bp) ; this is the kind of base-category for the fibrations we are interested in. In §4,

we made two different choices for the class @ of quantifiable arrows in B . The choice for
the purposes of the main body of §5 is Q¢ ; this, in the version that is closed under

composition, is simply the class of epimorphisms of B. When we make the choice of g~ for
g, we get as the very surjective maps in the sense of this section the ones we called normal

ones in §5; we leave it to the reader to verify this.

(6') Let (f:U—>V)eFun(K, BD) be very surjective (with respect to Q¢ ). For

every finite context 4 over K, £ Fol Uld] > VI[A] is surjective. For any KeK,

[
fK: U(K) — V(K) is surjective.

The first assertion is shown by induction on the cardinality of 4 .If 1 is of positive size, we

can write X as JU{x} such that ) is a context too. By the paragraph after (4) in §4, for

RK=K_ , we have a pushout diagram
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in Con (K) , which, with V:IK, ZI:II*{, gives rise to

Uly]— vyl

T

Ut > VIU] vl vl

T

U] ——— > VI[L]

to which (3') is applicable. The square 1 is a quasi-pullback (by £ being very surjective),
hence, so is 2 . Since by the induction hypothesis, U[ Y] — V[J)] is surjective, so is
U] > vid] .

The second assertion follows immediately from the first by the quasi-pullback

U
Ty
U(K) — & U]
le lf[K]
V(K) VK]
U
Ty

note that U[K] = U[zl’K] , etc.

Assume now that C and P are av3-fibrations, 7 a "full" one.

*

(7) If £:U-—>V is very surjective, and Ne av3a (C, D) ,the M=f (N) calculated in
Fib(C,D) isinfactin Ava(C, D) .
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First of all, using that for each geArr (BD) , g* is a morphism of lattices, we immediately

see that M preserves the fiberwise operations.

Consider

\ \
\\

MEIX fBNEIX fEI NXEIfNX EIqMX;

here, the first equality is the definition of 1/ ; the second the quality of N being a morphism

of J-fibrations; the third f being very surjective; and the last again the definition of .

Now, assume in addition that both C and D are Av— 3V-fibrations, again with

QD = Arr (BD) . I claim that

8) If £:U-—>V isvery surjective, then Ne Av— 3V (C, D) implies that

ﬁ:f*(z\r) e av=3IV(C, D) .

The additional fiber-wise operation, Heyting implication, is dealt with as before. Let

(g:A—>B) EQC , XEC'A ; we want to show that MVqX = VMqMX; that is, for any e VB ,

o< MY qX ~— (Uqg) "< mMx.The left-to-right implication is automatic. Assume

~UB ~Ua
(Uq) o< MX, )

“UA

and consider
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(Uq)  d<MX= f:;UX ®

2

(Vq)*(af ®) <NX 3.0
B B

e \VB

As indicated, we consider the object 3 £ ® over VB, and claim that the inequality marked ?
B
is true.

(Vg) (3. @) =3, (Ug) ® (10)
fB fA

by the (generalized) B-C property for 3 with quasi-pullbacks. (9) implies that

* *
3, (Ug) &<, 3, Mx=3, f NX<NX . (11)
fA UA fA fA A

(10) and (11) imply what we wanted. Now, from this, 3 . ® <V _  NX = N(V _X) , and
fB \%ej q

D < f;EIqu) < f;N(VqX) = M(VqX) as desired.

M, Ne Anv— 3V (C, D) are said to be equivalent, M~N , if there is a diagram

W om

such that m, n are Cartesian in Fiblex(C, D) , and m, Pl%M1 g Pl%N1

very surjective. Equivalence is clearly reflexive and symmetric; it is transitive too; given

MM/Q\nNyR\pP

are
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with the relevant properties, one forms the pullback

ql/Sl&
« R
\nl ni/ 1
3

&
Ny

Q)

in Lex(BC,BD) , and defines S as (ni)*(Nl) ,for n'=n ;let n":S—>N

17719 =015
be the Cartesian arrow over nj . Then n being Cartesian implies that there is a (unique) g

over q; such that ng=n" ; similarly for r over r, . Since n" is Cartesian, so are g

1

and r . Since q, ., rq are pullbacks of very surjective arrows, they are very surjective. We

1
conclude that mg and pr are Cartesian arrows over very surjective ones, which proves what

we want.

Let us take T=(L, @) , the "empty theory" over the DSV L,andlet C=[T] ,a
nv— 3V-fibration with base-category B = (Con[K]) °P and class of quantifiable arrows

Q:Q¢ . Recall the canonical i:K— B induced by Yoneda. Mod c,(T) = Str (L) , and we

c
have the fibration £:Mod el — X as explained in §5. We also have the fibration

D=Fiblex{(C,P(C)) : Fiblex[C,P(C)] ——Lex (B, C)

We have a "forgetful" morphism () :D—>&; (),

1 is the equivalence

Ubs Uoi : Lex (B, C) —>cX:

and () 5 is defined as P +> P was defined in §4 (see (5)) for the special case when
PEMod?(c) (C) c Fiblex[C,P(C) 1 .Itis easy to verify that () is a morphism of
fibrations.

We have the quasi-inverse

Ui [U] : ¢ Frex (B, C) (12)
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specified so that [U] ([4]) = U[4] ; we have the canonical isomorphism jU: (Ul =U
natural in U. () :D—>& restricts to an equivalence
- iso iso

()7 : Modp &) (C) — >Mod "o (T) (13)
whose quasi-inverse is

M [M] ModiC,SO(T) %Mod%s(g) (C) c Fiblex[C,P(C) ]
constructed in §4 , with the canonical isomorphism j Ve [M] = M natural in M. These are
connected to (12) by [M] ;= [MIK] Gy 17Tk

Let us deduce (1)(b) of §5 from (8); let's use the notation and hypotheses of 5.(1)(b). Consider
the following diagram in the fibration & :

[M] [N]

[(u] — [V]
[£]

The two quadrangles commute, by the naturality of 7 . It follows that

£ " :[M] —> [N] is Cartesian over [f] :[U] ——> [V] . Consider the Cartesian

arrow 0O

[0

*

[f]:[f] [N] —> [N] over [f]:[U] —>[V] in D.Since () is a morphism

of fibrations,
(G[f]) :([£f] [N]) —> [N]

is Cartesian over the same [f] :[U] —> [V] . It follows that there is an isomorphism
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([£f] * [N]) =M over 1 - . But then, since (13) is full and faithful, it follows that

[U]
[f] [N] = M. Hence,

ML) = ([£] [N]) [X:0] = £p([N][X:0]) = Fp(N[X:0]) ,
¥ ¥

where the second equality is the description of Cartesian arrows in 7, the last is the definition

of [N] ; and this is what was to be proved.

Continuing in this manner, we see that, for M, N eMod C,( T) , M~ LN in the sense of §4 iff
[M]~[N] in the sense of this Appendix.
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Appendix C: More on L-equivalence and equality.

Ordinary multisorted first-order logic without equality and without operation symbols (only

relations are allowed) is a special case of FOLDS as follows. Let L be a multisorted, purely

relational vocabulary. We associate a DSV L with L. The kinds of L are the sorts of L ;

the relations of L are the relation symbols of L. For R issorted " R C |_| Xi ", we have
i<n

proper arrows pl;’: Ro>X, (i<n) . This completes the description of L . Clearly, the

L-structures are essentially the same as the L-structures.
L just constructed is a very simple DSV its category of kinds has height 1 .

Now, a natural notion of "isomorphism" for L-structures "without equality" is the ordinary

notion of isomorphism modified by dropping single-valuedness and 1-1-ness. Let M, N be

L-structures. By definition, h: M %N means a family of relations h x° MX— \ — NX

( XeSort (L) ) such that dom(hX) =MX , range (h,)=NX, and for any " RC [] Xi " in
i<n

X

N - .
L, a:<ai>i<n€ |_| MX b:(bl.>l.<ne |_| NX, ,we have that a h . b, forall i<n
i<n i<n 1

(briefly, ahb ) implies that a€MR < beNR. It is pretty clear that h:M %N preserves

the meaning of L-formulas without equality: ahb — (MFQ| al NE@I al); this would
hold good for infinitary logic, and other extended notions of "formula". It is also clear that if
for each sort X of L, there is a relation " E XXX " whose interpretation in both M and

N is ordinary equality on X, then h:M %N is the same as an ordinary isomorphism

ME5N.

The last-mentioned notion of "relational isomorphism" coincides with the relational version of
L-equivalence, for L the DSV constructed for L as above, defined as follows. For a general

DSV L, we call the L-equivalence (W, m, n) :M TN relational if m and n are jointly

monomorphic; we indicate the said quality by the letter r in (W, m, n) : M %N . This
means that for every kind K in L, the pair (mK, n K) of functions is jointly monomorphic,

mg ng,
that is, the span MK WK NK is a relation.
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For simplicity, we deal with Set-valued structures in what follows. Suppose

(W, m, n) :M %N . For each kind K, define the relation p KCMKXNK by

appb Jce WK.mgc=anng,c=b . For X a finite context, a:<ax>xe/l£M[I] ,
b:<bx>xe/l£N[I] , We write ap yb &= JdceW[K] .mc=annc=b . It turns out however

that ap {1,13 = Vxed.a Pr Py Indeed, the left-to-right direction is obvious. Conversely,
X

. -
let C EWK_ such that mKXcX= aX/\nKchsz . I claim that c={ CX>XE EWLK] . For

this, we need that if yel , pe Ky| K, then

c =(p) (c_) . (D
*v.p o
But m(wp) (cy) = (Mp) (mcy) = (Mp) (ay) —axy’ 5 , and similarly n (wp) (Cy) —be’ p,
since c= C €WK is uniquely determined by the property m(c) =a,, &
Y’ p Y’ p Y’ p
n(c) :bX , (1) follows.
Y’ p

As a consequence, a relational equivalence can be described in terms of the relations p x as

follows. A relational equivalence p:M %N is a family p=(p K> KR of relations
P R CMEXNK such that, with

gp{l,b Sot Ver.aXpK b_ ., 2)
X
the following hold:

(3) For any p:K%Kp, aeEMK , beNK

appb = (Mp) (a)p, (Np) (b)
b

(4) Forany KEK, acM[K] =M ], PeN[K] =N[X.] ,

apy b & acMK(a) — 3IbENK(b). aap ,bb.
K K
apy b & bENK(D) —> 3JaeMK(a). aap ,bb .
K
K
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(5) For any relation Rin L, and geM[R]:M[IR] , BGN[R]:N[IR] ,

gp{l, b —> ( a€MR «> beNR) .
R

* N * .

, X_ are from §4; aa denotes (dX> *eM[/l’K] for which

(the notations &, 4 R
xed %

K’ 7K

d.=a_ when xel_,and d_ =a).
X X K XK

By what we said above, every (W, m, n) :M%N gives rise to a p:M%N ((3) is

naturality, (4) is the very surjective condition, (5) is the preservation of relations). Conversely,
given p:M%N, putting WK={(K, a, b): ap,b} , my( (K, a, b)) =a,

nK((K, a, b))=b gives (W, m, n) :M%N.

We can make some steps towards Infinitary First Order Logic with Dependent Types. (We
refer to [Ba] as a basic reference on infinitary logic and back-and-forth systems.) Let us fix the
DSV L as before. The syntax of the logic L_ o of FOLDS over L with arbitrary (set) size

conjunction and disjunction, and finite quantification should be obvious; as usual, we only

allow formulas that have finitely many free variables. To fix ideas, we consider logic without

equality. M= 1 N means that M and N satisfy the same L_ o Sentences without
o, () ?
equality. We have the following "back-and-forth" characterization of the relation = I LA
o0, w

weak relational L-equivalence p:M %N is a system p=(p /l’> y of relations
00, w

P 4~M [X1XN[A] , indexed by all finite contexts, satisfying the following conditions (6)-(9):

(6) for any specialization s:4— ), aemM[ )] , BEN[)’] ,
gpygﬁ (gos)PI(BOS) ;
here, if az(ay)yey,then aos=(as

(x) >X€/l"

(7) ®p®® holds.

N

(8) For any finite contexts X, XU{x} , geM[/l’] , beN[X] ,
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%

ap{l,b & aEMK(a) — EIbENK(b) aap{l,u{ } ,

ap{l,b & bENK(b) — JacMK(a) . aap{l,u{ }
9) =)

I, if there is p:M%N.
L, w Loo o

We say that ¥ and N are weakly L-equivalent, M ~

Given p:M %N , then, with making the definitions as in (2), we also have p:M %N .
oo, w

The reader will see that in the case of ordinary multisorted logic, the definition of weak
relational L-equivalence reduces to the well-known concept of "back-and-forth system" that
figures in the characterization of ,w-equivalence. Thus, the following generalizes that

characterization.

(10)(a) For L-structures M and N, M=, N iff M NL, WN .

(b) For countable L-structures M ariil’ ?\T, MEL N iff M~ LN'

(¢) For any countable L, and countable L—struct::;ewM , there is a ("Scott"-)sentence
o, of L such that N=, M iff 1\7|=GM

M (1)1, w w0, )

The proofs are routine variants of those of the classical cases.

There is a simple categorical restatement of the notion of weak IL-equivalence. Consider

B= (SetK) i—)p

subset P(R)CP([X]) for each relation R of L. A morphism of L-pseudo-structures is a

as before. An L-pseudo-structure P is a functor B— Set , together with a

natural transformation of functors B—>Set preserving each R in the obvious sense. Each
L-structure M can be regarded as a pseudo-structure, since any functor K— Set has a

canonical extension B—> Set which is in fact finite-limit preserving. Let PStr (L) be the

category of pseudo-structures. We have a forgetful functor £’ : PStr (L) — setB ; £ can

be seen to be a fibration. Now, a (not-necessarily-relational) weak L-equivalence

(W, m, n) : M WN is, by definition, a functor we SetB , together with arrows
m:wW—&'M, n:W—E'N such that m, n are very surjective with respect to all

epimorphisms in B (according to the definition before B.(5), with Lex (BC" Bjp) replaced
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by set® ), and there is a pseudo-structure P, with Cartesian arrows Gm: P—>M, Gn: P—>N

over m and n, respectively. We write M ~ N for: there exists (W, m, n) : M WN .

L, w L
It is not hard to show that M ~ L w™ iff there is a weak relational L-equivalence
p:M %N ; the proof is similar to the proof below concerning non-weak relational
o0, w
equivalences.

We return to ordinary (non-weak) equivalences. When M and N are Set-valued

L-structures, with any (W, m, n) :M?N , there is a relational (W', m’, n’) :M%N; in
fact, W’ can be chosen as a subfunctor of I, with m’ and n’ being restrictions of m and
n , respectively. To define W’ KCWK , we use recursion on the level of K. Fix K. The

induction hypothesis gives us the inclusion W’ [K] »~—>W[K] . Consider the pullback

P:WKXW[K] W’ [K] asin
. m
P = WK K MK
| ° |
W' [K] —>W[K] — > M[K] ,

with 1 an inclusion; look at g= (mKi, n Ki) : P——> MKXNK , and, using the Axiom of
Choice, split h: P—»Im(g) by an inclusion k:W’'K — P asin
P W' K
O =
g o Im(g) B

MKXNK/ ;

we have defined W’ K . Inspection shows that W’ 1is appropriate.

For not necessarily Set-valued L-structures M, N, let us write M ~ - N for: there exists

L,
(W, m, n) :M%N.

What we saw says that the concept M~ N remains unchanged, at least for Set-valued

models, if we ignore all but the relational L-equivalences:

148



M~ N &> M-, N (11)

N
However, the more general notion (1, 5) 1, (N, b) goes wrong under the same alteration.

For one thing, the need for not-necessarily-relational L-equivalences is natural if we look at
the proof of 5.(4). Given 4 and the tuples acM[X] , BEN [X] as there, the desired

N
L-equivalence (W, m, n) : (I a) > (N, b) is constructed so as to continue the mappings
xt>a, , x>b_; if the latter two mappings are not jointly monomorphic, the resulting
L-equivalence will not be relational. On the other hand, the entry of non-relational

L-equivalences is not just a characteristic of the proof of 5.(4); it is in fact unavoidable.

Consider the following example of a DSV, called L:

11 _
o p Peqp=Pe11

A standard structure M for L is one for which, for bO’ bleM [Kl] , that is,
(Mp)bO: (Mp)bl , we have bO (MEl)bl = bozbl , and also, MEO
on MK 0" Consider the following example for an L-equivalence (W, m, n) : M ?N , for
certain M and N:

is ordinary equality

Z0 %1

Yo Y1
b, by dy 4,
a c

Here, MKOZ{a} , MKlz{bO, bl} , NKOZ{C} , MKlz{dO, dl} , WKOZ{XO, Xl} ,
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_ Wp Wp
WKl—{YO, Yl, ZO, Zl} ’ YO, ZOHXO ’ Yl, Zlel ’ and

m m m m
YOHbO’ Ylel, ZOHbl, ZleO H

n n n n .
E, and E, are interpreted in M and N as equality.

This shows that, for the context /l’:{xo, X :KO; Yy :K1 (XO) ¥y :Kl (Xl) } , and for
az(a/xo, a/x1, by/ vy, bl/y1> , c=(c/x0, c/x, dy/ vy, do/y1> , we have
(M, 5) 1, (N, 8) . On the other hand, there is no relational equivalence

(W', m’,n"): (M a) <> (N, ¢) .In any such, WK, is a singleton {x} ;me,a,

X}Lc;wehave some ug, ug emw’ Kl( x) such that uOmH’bO, ulmH’bl;andthe

07
preservation of E. implies n’ ( ) #n’ , contradiction.

1 uj (ul)

This example also dispels the possible belief that an L-equivalence (W, m, n) : M <> N can
always be reduced to a relational one by taking the image of (W, m, n) . Let U=MIK,
V=NIK, and consider

e
YAz

where r and 1 form the surjective/injective factorization of (m, n) : W-—>UXV . In other

(12)

words, when 1:® > UXV is an inclusion, for any Ke K, the relation ®KCMKXNK is given by
a(®K) b & dceWK.mc=a&nc=>b . When applied in our example, (D, ¢, ) so defined

does not preserve El .

I now turn to some remarks on equality.

Let L be an arbitrary DSV. Let us augment L to I , another DSV, by adding a relation
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GK to L for every KeKind (L) , with proper arrows Iro* GK%K, I GK%K,
together with all composites Pgp . GK% Kp , PEK|L (1=0, 1). We do not identify P90

with Py - For an LG—structure M,

M[GK] = {(a, a b, b): a beM[K], acMK(a), beMK(b) } .

The letter G is used because we are dealing with global equality as opposed to fiberwise
equality (see below). A standard LG—structure M 1is one in which, for 5, BEM [K],

aeMK(g), bEMK(B) , (5, a, B, b)EM(GK) iff a=b ; more briefly, M(G ) as a subset

K
of MKXMK is { (&, a) :M(K)} . Any L-structure can be made into a standard LC structure

in exactly one way. When an L-structure is used as an LG—structure, we mean the

corresponding standard L structure.

The effect of adding global equalities is that all L-equivalences can be canonically replaced

by relational ones, by taking the image of the given one. If (W, m, n) : M N, then for
L

(®, @, ¥) defined above, we have (@ 00 ¥ %9:;] 3 -

To see this, first we show that the arrow r in (12) is very surjective; that is, for any KeK,

the diagram

Tk
W(K) —————>® (K)

]

W[K] ——® (K)
T K]
is a quasi-pullback. Assume QEM[K] , BEN[K] , aeMK(g) , bENK(B) such that
(a, b)ed[K] , (a, b)e®K(a, b) ,and ceW[K] with mé=a, né=b (that is,
(C)=(a, b) ); we want c€ WK (c) such that mc=a and nc=b . By the definition of

FIK]
® , there is dewK with md=a, nd=b. By the very surjectivity of n, there is ce WK ( c)
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such that nc=b . But by the presence of the relation G md (MGK) mc iff nd (NG K) nc;

K‘ b
that is, md=mc iff nd=nc ; which says that mc=a as desired.

By B.(6"), the induced map iy wid] — o [L] is surjective.
Now, looking at

r

®
wig] — KL oy LKL Sk WIK] (K] . wix)
W(K) ——>®(K) ———>M(K) W(K) M(K)

we see that B.(3") is applicable to yield that ¢ is very surjective.

Given a relation ReRel(LG) , 1f (5, B)E(D[R] ,then by r :W[R] —®[R] being

[R]

. . . - . - - . - = -
surjective, there is ce W[R] with r (c)=1(a, b) , thatis, mc=a, nc=b, and thus

[R]

acMR iff BENR . This completes showing that (®, ¢, y) :M%N .
L

We have shown something more general (and more technical), which is independent of

equality. This is that

(14) If (w, m, n) :M> N and we have

w
2% e
U ® 1%
¢ v

such that r is very surjective, then (O, @, v) : M eLeN ;

the relational quality of (¢, y) is not relevant to this.

Clearly, a relational equivalence preserving global equalities on all kinds is nothing but an
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isomorphism. We have shown that M~ GN implies that M=N, and (1 §)~ G (N, 13)

L L
implies (1 a)= (N, B) . But, all formulas in multisorted logic over |L| are preserved by

isomorphism. By the invariance theorem 5.(12), we conclude the following.

(15) For any context 4 over L, and any formula ¢ of multisorted logic over |L|

with Var (o) ct [remember, a variable x:X of FOLDS counts as a variable of sort KX in
multisorted logic], there is a FOLDS formula 6 over LG with var (0)cd such that o

and 0 are logically equivalent (over 1 ):

EVA(o— 9*) ; or in other words, M[A:0]=M[X: 9*] for any L-structure M. (We
apply 5.(12) to 1:2° > [( Ll ,Z[L])] ;for 2[L] ,see §1. T is essentially the identity
except that all the G K's are interpreted as equality. In M[1: 9*] , M is understood as a

standard LG—structure.)

Notice the small point that in the statement of (15), we are not allowed to start with a

\L| -formula o with arbitrary free variables; the free variables have to form a context. E.g.,
in the case of the language of categories, a formula with a single arrow-variable cannot (of
course) have an equivalent in FOLDS with the same free variables; we have to add the

"domain and the codomain of the arrow-variable" as free variables.

Let us hasten to add that it is possible to show (15) directly, by a rather simple structural
induction on the formula o .

We have an instance of what we may call expressive completeness of FOLDS: full first-order
logic over |L| can be expressed in £® . This is accompanied by a mode of deductive
completeness. We will give a deductive system for entailments over 8 , extending the
standard system for L for logic without equality by specific rules related to the

G-predicates, which is complete for semantics restricted to standard LG—structures, that is,
semantics of true equality.
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The set G K| L, the arity of the relation G x is the set

{pg g PER|LYU{g Lo} U{Dg ¢ PEK|LIU{g ]

Accordingly, we will write atomic formulas G K(E) , z indexed by G K| L, in the form

G (X, X v, v) ;here, x=( ) K(x), y=( ) K(y)
X, X, Y, ; , x=(x , x:K(x), y= , vV .
K ¥ ¥ P9y PEK|L Y= ypgKO PEK|L y=aly

Here are some other pieces of notation. For any object A of L (kind or relation), and tuples

;cz(xp)peA X ;:<yp>peA| I for which A(x) , A(y) (types or atomic formulas) are

well-formed, pre f/ denotes the formula

[A]

A e

PEA|L "p

When X:<Xp>pEK|L, Xpdéf<xqp>qEKp|L.

V. Global-equality axioms.

(Gl) = =

t — G (X X, X, X)

K
e

(Gz) - - - -

GK(X, X, YY) — GK(y, VY, X, X)

e

(G3) - - - - - -

GK(X, X V,yY) A GK(y, Y, Z, Z) T GK(X, X, Z, Z)
(G,) (pPEK|L)

4 - - - -

GK(X, XV, Y) T GK(yp, yp, Xp, Xp)

(G) - (x:K(x))

XG[K]y :/l’> dy:K(y) Gp(x X v, ¥)
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(G

) - - - -
6 XG, .y —— R(X¥) <>R(Y)
[R] P

The proof of the said completeness is done in the traditional manner; we use completeness for
logic without equality over L for the theory whose axioms are the (conclusion-)entailments
in the equality rules. Given any structure M for L satisfying the equality axioms, we

construct a standard L -structure M/~ which is LG—elementary equivalent to . For a kind
K, let Vg be the relation on the set MK defined by aNKb = MGK( [al, a, [b], b)
holds; here [al=( (Mp) (a) >p€K|L’ and similarly for [b] . By (Gy). (Gy) and (G5),
each ~_, 1s an equivalence relation; let us write a/~ for the equivalence class containing

K
a. (G4) implies that if f:K—>K' , aieMK, aiz(Mf) (ai)eMK’ , then aq~ gy =

aj” g, as . Let U=MIK. We define U/~:K->Set by (U/~) (K)=(UK) /~
(déf {a/~: aeUK}),and ((U/~) (f)) (a/~)=((Uf) (a))/~ , which is well-defined.
For a=(ap>p€R|K€M[R] ,weput a/~ = (ap/~>p€R|Ke (M/~)R.

We define M/~ by (M/~) R=U/~,and

(M/~)R(a/~) = MR(A) ;

by (G6) , this is well-defined; we have completed the definition of M/~ .

For any finite context 4, we have (M/~) [4] = (M[X]) /~ (déf{g/w: geM[/l’] ).

Moreover, when geM[K] , then (M/w)K(g/w) :MK(Q)/~ (déf{a/w: aeMK(Q)} .

This is not automatic; it requires (G5) . Finally, we show, by structural induction, that for any

0 over LG with vVar (0)cd , and geM[I] ,

M/~ E Ola/~] e ME 0[a]

Having the construction M > M/~ with the properties shown, the proof of the standard

completeness for £® can be completed in the expected manner.

155



In place of global equality, it seems natural to consider fiberwise equality for FOLDS. Let, for

any DSV L, L® denote the DSV obtained by adding to L a new relation E x for every

e
KO
. . — _ . . . eq
kind K, with E K K and pe ®0=Pex1 (pEK|K) as for maximal kinds in L™= . A
e
K1
standard LE-structure is one in which each E., is interpreted as equality; to give a standard

K

LE—structure is the same as to give an L-structure. In what follows, M and N are

L-structures; when they figure as LE—structures, they mean the corresponding standard ones.

Suppose p:M %N . I claim that each p KCMEXNK is the graph of a bijection MK > NK .
L

By (6'), dom (pK) =MK , codom (pK) =NK . Thus, it remains to show that
aieMK, bieNK, aipri (1=1,2) = a;=a, = blzb2 (16)

We show this by induction on the level of K. Assume the hypotheses of (16). Let
aieMK(gl) , bieNK(bl) . Then, if glz(a;>p€K| K’ blz(b;> then

i i
ap Kpbp (by 3)).

PEK| K’

Assume (e.g.) a,=a, . Then 51:52 =a , that is, azlj:a; for all peK|K. By the

def

. : : : 1 .2 I
induction hypothesis, (16) applied to Kp , we have bp—bp , thatis, b =b de f—b . We
have a aZEMK(a) , bl’ bZENK(b) , and aaip{l’*bbl. . Therefore, by (6),

K
MEK(a, a az) = NEK(b, bl’ b2) ; that is, a,=a, = blzb2 as desired.

Given that each P is a bijection, clearly, p is an isomorphism p:M—N (of

L-structures). We conclude

M~ N =— M=N (17)
L ,r

(the above argument did not depend essentially on the fact that we dealt with Set-valued

structures)
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Applying 5.(12), we obtain

(18) For every sentence o in multisorted logic (with equality) over |L| there is a sentence
o of FOLDS over L™ such that for every L-structure M, MFo < MFo (here, in the first

instance, M figures as an |L| -structure; in the second instance as a standard LE—structure).

Proof. Consider the interpretation I: LE% [T] , where T=( |Ll, 2_) , extending the

L
"identity" interpretation L—> [T] , and interpreting each E x as equality. We apply 5.(12) to

I, A=0 and o . Suppose M, NET are Set-valued models (!),

mr® - ENPLE (19)
L

and Mo . M and N are L-structures, and M I‘LE, NILE are the corresponding standard

LE—structures. By (19) and (11), it follows that M=N. Since "everything" is invariant under
isomorphism, NFo . Thus, the hypothesis of 5.(12) holds. The conclusion is exactly what we

want.

Note that the result of (18) cannot be generalized to formulas with free variables in place of
sentences. That is, the statement of (15), with " replacing L is not true. This is shown by
the example that we gave above; in that example, L:Lg for L, consisting of K., K, and

0’ "1

p (and no relations). With A={x » Yo yl} as in the example, if for the formula

0 %1
0=y,=¥q (whose free variables are in 4 ) there were 0 in FOLDS over L with

Var (0) cd such that, for every LO—structure M (also counted as a standard L-structure) and

az(ao, a,€MKy; bOEMK1 (aO); bleMK1 (al) Y,

MFo(a) <= by=b, 2 M=0(a)

0

then for every equivalence (W, m, n) : (14, 5) N (N, Z') , where
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c=<c0, C,ENK,; dy€NK, (c); dj€NK, (cq) ),

since it would preserve 0 , we would have

b :bl(éé)d

0 =dy ;

0

but the example shows that this conclusion is false.

(18) can be used to give another proof of 6.(3), the Freyd-Blanc characterization result, at least

for =0 ; this proof is a variant of what is contained in [FS].

Let T be a normal theory of categories with additional structure. Assume © is an
L T—sentence such that for M, NET, |Ml ~ |N| implies that MFo iff NEo . In particular,

for M, NET, |M| =[Nl impliesthat Mo iff Nko .

By ordinary model theory (a version of Beth definability), it follows that there is a sentence 7

in multisorted logic over ‘Lca t‘ such that for models of 7', o and 7 are equivalent. By

(18), there is a sentence v in FOLDS over Lga which is equivalent to o in all

t

L -structures (also counted as standard F
cat ca

v, Ey and E

t—structures). There are two E-predicates in

. Replace each occurrence E . (X, Y) of EO by the formula

A @)

"nX=y" = 3feA (X, Y) .IgeA (Y, X) .TheA (X, X) .TieA (Y, Y)
(I(h)AI(i)AT(f, g, h) AT (g, £, 1)) ;

call the result O . Notice that 6 is a FOLDS formula of Lig c (it has only the allowable

equality predicates in Lig c ). I claim that for all M=T,
MFOo &~ MFO

Let M=T . |M| is a category; let |M| S be its skeleton. Since M| ~ |M| S , by the
normality of T, there is NET such that |N| = [M]| S Now
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MEo &= NFO since |M|~ |N| ,and M, NET

& NF7T since NET

&~ [N kT

&~ Nl ky

& |N| K6 since |N| is skeletal (that is, for objects X, Y, X=Y
iff x=v)

& |M|EO since |[M| ~ |N| ,and 6 is a FOLDS formula with
equality over L.t

& MFO .

This method of proof is also applicable to the "higher" cases. Let us consider the case of
bicategories; let us show that if a sentence ¢ in multisorted logic over

L | is invariant under equivalence of bicategories, then o is equivalent

Lbicat: anabicat

* *
in bicategories to 6 for a FOLDS sentence 0 over L 0 1is the translate of

anabicat ’
0 such that AFQ*@A#FQ.

A bicategory A is skeletal if any two equivalent objects are equal, and any two isomorphic
parallel 1-cells are equal. For any bicategory A, there is a skeletal one, AS , which is

(bi)equivalent to A .

The first step is to use Beth definability to the interpretation ¢: L [ 1.

anabicat - Tbicat

Since A*=B" implies that 4~B , it follows that there is a sentence 7 in multisorted logic

over |L | such that for every bicategory A, AF0 & Afer By (18), we can

anabicat

find a sentence y in FOLDS over LE such that, in particular, A#I=‘L' = A#I=l// .

anabicat
Now, transform y in the following way. Each occurrence E c (X 7) of E c is replaced
0 0

by the formula

"Xyt o= o

and each occurrence EC (X

Y) of E c is replaced by the formula
1

N
7 1

"f=g" = ..

159



eq

The resulting sentence 0 isin L .
anabicat

. I claim that for any bicategory A,

AFo = AI=9* . Indeed,
AFo = ASI=G = (AS) e s (AS) #I=u/ = (AS) o —s A#I=9 — A0 ;

the next-to-last last biconditional holds because Asz/(, of which (AS) . qu#
L

(L=L ) 1is a consequence, and because 0 is a FOLDS sentence over 9.

anabicat
This proof replaces the general invariance theorem 5.(12) by Beth definability, and a special
case of that invariance theorem, (18). It falls somewhat short of the results of §7, partly
because we have confined the situation to an empty context 4 . Also, this approach is not
available in constructive category theory; the existence of the skeleton (already in the classical
case of mere categories) depends on the Axiom of Choice. As we will see in Appendix E, the
main theory of equivalence of §5 has a constructive version involving intuitionistic logic.
Modifying the notions of equivalence to notions of "anaequivalence" (using, and building on,

[M2]), we obtain versions of the results of sections 6 and 7 for constructive category theory.
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Appendix D: Calculations for §7.

D1. Define the generalized DS vocabulary L,_ as the full subcategory of L

cat anabicat

on the objects of L2—cat , with relations Il , 12 , T1 , H, T2 ; it is generalized since a
non-maximal object, T

is also made into a relation. Accordingly, an L -structure is a

1 2-cat

functor from Ly _cat in which the listed relations (including T, ) are interpreted

relationally. This is the picture for Ly cat

. 0
Tl H
hl
tlolltllltlz hzl h3lh4
t
19 €20 20 -
% £
o 4 e ©2 £21 T
11 T 21 29
I I
A 2-category-sketch (2-cat-sketch) is, by definition, a structure of type Ly gt > Maps of
2-cat-sketches are natural transformations of functors. For a 2-cat-sketch S, |S| isits

underlying 2-graph, its reduct to

C

10 20
I
0 &G G
€11 €21

Any bicategory has an underlying 2-cat-sketch. We will look at maps S——>A, Se2-catSk
, A a bicategory.

M
—

Let S A . A transformation T:M— N is given by
>
N

@1) TX:MX%NX for each XGS(CO) ;

:NfoT —Eér oMf as in

(i1) for each (f:X%Y)eS(Cl) Te x v
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MX—— NX
Mfl Tr le
&

MYﬁNY

Y
such that

B

(a) for any X (pg Y in S,
Tr
Nfo Ty - ’L'YOMf
NqooTXl o eroMqo;
Ngo Ty T,oMg
g
(b) (f:X%Y)ES(Il) — Tf:lTX ; and
£ B\g
() for every A — > C¢ S(Tl) (note that MgMf=Mh , NgNf=Nh ),
va M yp MI e MA Mh Mc
T T _
T R
Nf Ng
NA NB NC NA NA NC
that is,
’L'ng o
(’L'CMg) Mf——— (NgTB)Mf%Ng(TBMf)
o ) lrng

M MO
Given S II‘L‘N A and ®:T— S, wehave T IIT?\)@ A for which (‘L'CD)fZ‘L'ch

for feT(Cl) .
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D2. Going back to the definition of 7ZT1 in part (B) of the proof of 7.5,
and using the notation there, that definition can be put as follows. Consider the 2-cat-sketch

SO:

B9 5 ¢
T ~ -1
a: gf—1i

and the two diagrams S A defined as

0 v

Frv—t9 . rgz B—9 > ¢
_ FgFf _ 7] 9f ~

FX : A

ba=FaF g:FgFfiFi Ya=a:gf —>1

Then 7ZT1 (g, v,m) [a, al iff x, y, z, @, y, 1 are the components of a map ¢ —>V .

D3. In what follows, we will consider the following 2-cat-sketch S and various of its parts
(subsketches):
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S(Tl) has six elements, (f, g, gf) , (gf, h, h(gf)), (i, h, hi), (g, h, hg) ,

(£, hg, h(gf)), (f, k, kf) ; the notations showing composition are purely symbolic. The
f" and " 1h "of
S(I,) and two corresponding elements of S(H) . S( I,) = . There are further 2-cells and

elements of S(Iz) and S(T

horizontal compositions cf and ha signify the presence of elements " 1

to the effect that a, b, ¢, d, @ and P are isomorphisms,

5)
and o is the composite d(cf)f (ha) 1yt

In case of a general 2-cat-sketch S, for a sketch-map M:S-—>2 and a functor F: >4 of
bicategories, the composite FM cannot be defined (think of a sketch in which a 1-cell is a
composite in two different ways); in the case of our S however, since S is sufficiently
from D2, for M: S

"free", a useful sense can be ascribed to FM . First of all, for S —4X,

F:¥Y—>A, FM is defined as ® was above: for

0 0

as M, we put FM to be

ry— 9 @z

FM = FfT/i%?é;jjifh
Fi1

FX

Fa=FaF, _:FgFf —>Fi

f,g

Now, there are four mappings of the form S, —> S, corresponding to the four items

0
a:gfii, b:hiij , c:hgik, d:kf =51 .We define, for any M:S-—>4 and
F:X—>A, FM:S—A as follows. First, we make sure that for any of the four maps
0:S,—S, (FM)o = F(Mo) . This requirement determines FM as far as its restriction to

0
the subsketch
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is concerned. But then the effect of FIM is uniquely determined on the items h (gf),
(hg) £, cf, ha . Next, we define (FM) (f) so that the following diagram commutes; we
wrote f, g, h for Mf, Mg, Mh:

Fh Ff Ff h
(FhFg)Ff— 29  sp(hg)Ff— 229 S F((hg) f)
(FM) (ﬁ)T o TF(Mﬁ)
Fh(FgFf) —= >FhF(gf) ————>F(h(gf))
f,g gf, h

Finally, the effect of FM on o in S is now uniquely determined. It is worth noting that if
MB = ar 9. b’ then (FM) (B) = Fh ( f=Mf , etc.); the reason is that F

"preserves" o (see above).

Yrf, Fg,

I claim that, for FM: S— A so defined, (FM) (a) = F(M(«) ) . This is demonstrated by the

following commutative diagram:

(FM) (o)
4
Fex
FKFf ’ F(kf)——ﬁa——éFf
(FM) (c)
2 FcFf 6 F(cf)T
Fy FE
(Fth)Ff;———LQ———>F(hg)Ff;—ﬁ—————>F((hg)f)
£, hg
(FM)(ﬁ)T 1 TF(Mﬁ) 8 F(M(x))
Fh(FgFf) —gp=—>FhF(gf) —% > F(h(gf))
f,g gf, h
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3 thFa 7 F(ha)l
(FM) (a)
] F(hi) — Fy

RN
i, h Fb

(FM) (b) 2 T

Here, the cell 1 commutes by the definition of (FM) () ; 2, 3, 4, 5 commute by the
definition of FM on the 2-cells a, b, ¢, d; 6 and 7 by the naturality of F  ;and 8
by the fact that Mo is the appropriate composite. The assertion is the commutativity of the

outside perimeter of the diagram.

D4. Let S, be the following subsketch of S:

B 9 ¢
fT gf hglh
A hg £ P

h(gf)

( S1 (t)=0 for all te L2—cat , except for t=CO , C1 , T1 ), and let 5'2 be the sketch
(subsketch of S) obtained by adding the 2-cell o:h(gf) — (hg) £ to S - Suppose we

have M, N:S,-—>A such that Mo = o and No = o Ng., Nh (associativity

2 Mf, Mg, Mh NE,
isomorphisms), and, also writing M for M I‘S1 , we have

M
s, it A (1)

Then 7 is a map with respect to 5'2 , that is,

M
S, lt A .

S
N
This fact expresses the naturality of the associativity isomorphism in a sense that is

considerably stronger than the one required in the definition of bicategory. The proof of the

assertion is contained in the diagram
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—— (h(gf)) 1 ((hg) £) T,

TR 1 ¥ (hg) £
h((gf) T,) —>h(g(£T,)) — (hg) (£T,) IV
h(gt,) ] [ (hg) 7, -
; B(g(1gf)) > (hg) (15£) > ((hg)Ty) £e 19
T
h((gty) £) (h(gTy)) £
h 1 T nt )z
h(rgf) B g
h((1.9) f) (h(7o9)) £
1 1 Ir
- h(T(gf)) — (hT.) (gf) —>h(T,(gf))
h(T .) C C C
of 7, (gf) | [ o f
(T,h) (gf) —> ((Th) @) Fe—— (T (hg)) £
T IIT
h(gf) 1 1
7, (h(gf)) 7, ((hg) f) —

in which t is written for Mt , t for Nt , for all relevant values of ¢, and all unmarked
arrows are instances of associativity isomorphisms, possibly horizontally composed with a
I-cell. The issue is the commutativity of the outside quadrangle. The four cells marked T,
IT, IIT and IV commute by the definition of 7 being a map as in (1). The
commutativity of the pentagons are the associativity coherence axioms for bicategory; the
commutativity of the small quadrangles are instances of the (ordinary) naturality of the
associativity isomorphism. Since all cells commute, the outside commutes as a consequence,

and this is what we want.

DS. Now, start with the part (subsketch) 5‘3

of S ( 5‘3 (t) =97 for all tELZ—cat , except for tzco,Cl ), and a map
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M
SéTA . 2)

—
N

p
It is clear that if we have any T 10 A,and T’ is the sketch obtained by adding a

Q

new element " gf=h "to T(T,) ,where £ and g are already in T, but h is new, then

1)
p
P, O and O uniquely extend to T’ L0 A. Now,let s 4 be the part of S which

Q

is S without the 2—cells(S4(t)=S(t) for t:CO,Cl,Tl

Applying the above remark four times, we have, a unique extension

and S 4(1:):@ otherwise).

M
S, lo A

—
N

of (2).

D6. Suppose T is asketch, T’ 1is a subsketch of T missing only some 2-cells and
Tz—elements of T, and that T is generated by T’ in the sense that T is the least subsketch
T" of T suchthat T" contains T’ and every time when (p, G.Q)ET(TZ) ,

p, oET" (CZ) , then OeT" (C2) , and every time when (p, 0.0)eT(H) ,

M
p, oeT" (CZ) , then OeT™" (C2) . Then every transformation T’ 1 1{7 A is also one

M
asin T T A . This is immediate.
%
N

D7. Let us turn to the proof that 7 preserves A . What we need to show is this. Assume that

we have
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the items listed under (*) in §7, the further items

(W:FW!5>D)e%cO[W;D],

(b:hi =) ed" T (i, b 7). (b:hi S f)ed'T (4. b 7).
(c:hg4§>k)EI#Tl(g,h,k), (E:E§4§>E)EI#T1(§,E,£),
(d:kf = 0 e’ (£ k £) . (&:kf S Oed'T (£ k ),
ne®C, (z, w) [h hl, YeRC, (x, w) [, 51, keBC (v, w) [k, K],

AeqC, (% w) 14, €] ;

and assume that

%Tl(¢,y,t)[a,é], %Tl(l,n,w)[b,B],
%Tl(y,n,K)[c,E], %Tl(m,w,l)[d,&]

hold. Under these conditions, we want that if 7ZC2 (x, w; W, A) [o, a] , then

I#A(a,b,c,d;a) = A#A(é,B,E,&;&).

I claim that it suffices to show that
P'a(a b e, & a) and A'a(a, b, ¢, & @) imply RC, (x, w; ¥, A) Lo, @]

We use that for the given a, b, ¢, d, there is a unique o such that A’#A(a, b, ¢, d;, o)
(see (4) in §7), and similarly for a, b, c, d; and we use that for the given x, w; W, A, the
relation 7ZC2 (x, w; ¥, A) [o, o] of the variables o,0¢ establishes a bijection

aF> o : ICZ (7, 4) i/(cz (7, £) . The claim now is easily seen.
Thus, we assume I#A(a, b, ¢, d; o) and A#A(é, b, c, d a) .
Recall the sketch S . The data give us diagrams M.:S——>4X, N:S—— A ; the effect of

0
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My, N are given by the notation, except that M, B=c £ g

NB = oz g i (associativity iso in 4 ). Composing M, with F, we get M:FMO:SHA

3 —>A, N: S5 —A . The data
x, vV, Z, w, 0,7, 1,N,W,K,A supply the components of a map

J (associativity iso in 4 ) and
(see D3). Consider the restrictions M: S
M
S l7 A .
—
3 N

By D5, we have a unique extension of 7, also denoted by 7, as in

M
S, K A .

e
N

Let 5'5 be the subsketch of S that consists of S 4 and the 2-cells a, b, ¢, d. The

assumptions and D2 (applied to the four maps S, — S ) tell us that we have

0

M
Sg K A .

N
Now, add also 8 back to S, getting Se - Since by D3,
MB = (FMy) (B) =

%rf Fg, Fh - *Mf, Mg, Mh

D4 says that we have

M
Se It A,

N
and finally D6 says that

M

S K A .

e
N

The fact that 7 is natural with respect to o is the desired fact 2C,, (x, w; Y, A)la, al ,
since, by D3, Mo = F(Mooc) .
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D8. The proof that (2, r
this. We have

0’ r,) preserves H is similar, and simpler. Now, the situation is

Y\

f / — h
B
///// 0 X : \\$\§
X ‘ 1€ z
J

in 4, and

in A; we have

(x;pxiA)e%cO[x, Al , (yzpyéB)e%cO[y, Bl , (Z;Fz%C)eﬂcO[z, cl,
ge@C, (x, v) [£, £1, neRCy (v, 2) [h hl , yelC, (x 2) [J, 5],
ve®C (x, ¥) [g, g1, 1€RC (v, 2) [4, 1], keRCy (x, z) [k kI,

st (£.h 7)., ted'T (g 1K), sed'T (£ B 7). ted'T (g 1K)

such that
R, (% v: 0, 1) (B, B), R, (vs z M, 1) [, 8], 3)
%Tl(qo, n, v) [s, s] and %Tl(y, 1, K)[t, €] . 4)

Under these conditions, we want that
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RC, (%, 23 ¥, K) [€, €] — (X' (s, £ B. 5. &) <= A'H(s, £:B. 5. 8)) .
Again, it suffices to show that

(s, B, 6, &) and A'H(s, & B, 8, &) (5)

imply 7ZC2 (x, z; ¥, K) [€, €] . (6)

Assume (5). Consider the 2-cat-sketch

f h
_— ﬁ { %ﬁ
- / / ) \
X 1€ ) Z
Ts t hE
|oP ig
hf-5s 5
We have (f, h, hf), (g, 1, ig)eT(Tl) , (B,06,0B)eT(H) ,and 88 | o |e& (the

latter by an (unmarked) 2-cell o, and (s, €, 0), (0B, t, 0) ET(TZ) ).

The conditions in (5) ensure that the data we have give rise to morphisms My : T4,

N:T— A . As in the case of the sketch S, we can form the composite M=FM_:T—>A; we

0
have M(s)=Fso Fge 4, M(t)=Fto Fg I the commutativity of the diagram

b

Fth———E§E§——>FiFg
Ff, hl e} ng, 1

Fhf) —EOB) | piig

o

F(7) TF(]{)
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ensures that M is indeed M:T->.4. Consider the following subsketches of T':

Y
f h
& e
///7 : \\ e
T, = k 3
X Z
Y
f h
// \%T
7 S
T, = - k \
X 7 Z
Ts t hf
ig

The data x, y, z, ¢, v, 1, L, ¥, K give, via the relation (3), a map

M
T, lt A,

which, by (4) and D2, uniquely extends to

M
T, lt A

—
N

By D6, this extends to

M
T lt A

—
N

The naturality of 7 with respect to € is the desired relation (6).
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Appendix E: More on equivalence and interpolation

In this section, S and T are small Heyting categories, L is a DSV , K its category of
kinds, and F:L—S, G:L—T are S-,resp. T-valued L-structures. Mod (S) denotes the

category of coherent functors S— Set , a full subcategory of set” ; similarly for
Mod (T) .

Primarily, we have in mind T (also, S ) obtained as the Lindenbaum-Tarski category [Ty]

of a theory T, in intuitionistic logic. We will be looking at Kripke-models of T ; that is,

0
Heyting functors ®: T Se £€ , with various exponent categories C; we write ®ET for " @
is a Kripke model of T"." o is a sentence of T", " ®Fc " and other unexplained notation

have the meanings analogous to the ones used in §5.

We have the following intuitionistic version of the interpolation theorem 5.(7)(a).

(1) Assume that o,7 are sentences of T, and for all Kripke models &, YET,
dFO & Q)I‘LNL‘PI‘L == VYET1.

Then there is an L-sentence O in logic with dependent sorts without equality such that for all
OFT,

bFko — OILEO and OlLEO — Dk 7.
In (5) below, we will reformulate (and strengthen) the theorem in a purely syntactical fashion,
by removing references to Kripke semantics.
We will imitate [M4] in the proof of (1).

When I:T—Q isa Heyting functor, and F:L— T, we have an obvious composite
IF:L—Q.
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H

R . . B )
Recall that for L . Q, 0:H N I (called an L-equivalence) is o= (A, %y ocl) , with
A:K—>Q and 0 :A>HIK, o A= I MK with suitable properties. Given also J: 0-—>R,
we have the composite Jo 43f (JA, J(XO, Jocl) :JH N JT ; the requisite properties are
easily checked.
Consider data as in

s— H o

FT TI o: HF e% IG )
—
L G T

with H, I Heyting functors. Fixing the items L, S, T, F, G, and for Q a Heyting category,

let C 0 be the groupoid whose objects are triples (H, I, &) as in (2), and whose arrows

(H, I, a) = (H', I, a") (where o= (A, %y ocl) , o'=(A", océ, oci) ) are triples

(@:HiH’, v = I, }/:AiA’ ) of natural isomorphisms such that

gr— PF g
aOT o Ta(')

AT 5 a 2)
O‘% o l“i

G >I'G

Composition in C . is defined in the obvious way. We may write (Q;H, I, o) for

Q
(H, I, o) to emphasize Q.

Given an object I'=(Q; H, I, o) of C,.,and L:Q0— R, a Heyting functor, we have the

Q
composite object LI'=(R; LH, LI, Lo) (with Lo described above) of C R Moreover, we

have the functor

*

*
FR: I' : Hom(Q, R) %CR

where Hom (Q, R) is the category (groupoid) of Heyting functors Q— R with isomorphisms

*
as arrows; the object-function of y is Li> Ly as described, the arrow-function being
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similarly defined by composition.

There are Q=S+ . T-a Heyting category, and ['eC ., given by the data

Q
o
S%SWLLT
FT TIl a:IOFe?IlG 3)

such that (Q; I') enjoys the universal property that for any Heyting category R, I ; isa

surjective (on objects) equivalence of categories (groupoids).

The description of Q = S+ LT is as follows. Q is the Lindenbaum-Tarski category [QO] of

a theory % in intuitionistic logic. L consists of L .SULT , the disjoint union of the

Q
0
underlying graphs of S and T, together with new objects AK , one for each KeK, arrows

Ap:AK%AKp , one for each KeK and peK| K, and arrows OCOK:AK%FK ,
0 AK—GK . The axioms of X~ o, are those of S and T (formulated for the symbols that
0

are the images of the original symbols of S and T in L 5j_|L T ), together with axioms

00 %1) = (BE Ogpo O p) ge g
between the S-model and the T-model involved. The object I'eC 0 is the evident one.

amounting to the assertion that (A, o is an L-equivalence

Kripke-models of S+ LT are essentially the same as triples (MFES, NET, o: M N N) ; this
fact is essentially the universal property of (S+ T Y) with respect to R a presheaf

category set€.
We call (3) the L-pushout of (F:L—S, G:L—T) .
Next, we introduce some auxiliary concepts.

Suppose that in
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O 1is a coherent category, H and I are coherent functors (however, S and T are still the

same Heyting categories as before). Let A:K-—>Q, 04 :A>HFIK, o A= IGIK. We

write o= (A, Uy, 0) :H—> T if the following holds:

(3") for every finite K-context 4, and any L-formula 6 of FOLDS,

(aq) (a,)
This refers to the arrows HE[A] 0° [4] A[d] 17 (4] IG[ 4] induced by
o, and o - We write (A, U, Oq) sHe T if both (A, %, Oq) s H—> T and

(A, ay, o, ) : I—— H; of course, thlS just means an equality in place of < S AL in (3") .

Finally, we write (A, %y, O ):HTI if o= (A4, U, O ) sHE T and o, and oy are

Very surjective.

Notice that if (A, ocO, oy ) e HTI then o= (A, ao, oy ) : HeLeI the latter involves

preserving atomic L—formulas only.

Let us explain the meaning of the last-mentioned concepts when Q=Set , and
H=MeMod (S) , I=NeMod(T) .

With ¥ and ¢ as above, let a= (a ) € (MM'K) [X] . We write Ml=w(p[§] for

(a)eM(F[/l’: Ql) (CcM(F[X]) ); here, the notation (5) is used in the sense given to it in
the line after 5.(7'). The subscript w is to serve as a warning that this is a "non-standard"
meaning for truth ( E ); the coherent functor M: S— Set 1is not supposed to respect the full

logical structure of S, hence it does not necessarily "recognize" the full meaning of ¢ ; M is

a "weak model for L-formulas". We have that for U: K— Set , and M ULN,
(U, m, n) :M—>N iff forall ¥ and ¢ as above, and for any <CX>X€J£ U]

MI:wq)HmCX>XE/l’] - N|=w¢[<ncx>xeﬂ’]
Note that when U=0, (J, J, @) :M—> N means that M(F[@:¢])=1 = N(G[D:¢@])=

Let
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T Fe#ef G 4)

FT TI o= (A, ocO, al) :HFT IG , 4

in the following natural sense, amounting to a modification of the definition of S+ .7 The

category C i

0 for Q a coherent category, has objects (4'), and arrows

(@:H>H', y:I->I', y:A>A"):(H I, 0) —> (H, I',a")

(o= (A, %y Ocl) , o'=(A", (Xé, Oci) ) such that (2') holds; it is important that here ¢, y
and y are not restricted to be isomorphisms. For any coherent category R, and FEC#Q , we
have
* #
I' : Coh(0Q, R) —Cp
Q

where Coh (Q, R) is the category of coherent functors Q— R, a full subcategory of R* .

The universal property of S+ uT is that, for I' given by (4), for any coherent R, I isa

surjective equivalence of categories.

The construction of S+ #T is similar to that of S+ LT . S+ #T is the Lindenbaum-Tarski

category of a coherent theory Qg ; the language of Q:g is the same as that for 9 given
above for S+ T We include (coherent) axioms to ensure

* *

for each 4, O as above. Note that the (ordinary, Set-valued) models of S+, T are

#
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essentially the same as triples (M, N, u) , with MeMod (S) , NeMod (T) and u:MTN.

(4) may be referred to as the #-pushout of (F:L— S, G:L—T) .

Notice that there is a coherent comparison functor J: S+ yT—>5+, T for which JI 0=Io

JI 1714 and Jo=ca . The reason is the universal property of S+ uT > and the fact that, for
Heyting functors ®: S—R, ¥Y: T—>R, OC:QT‘P implies (X:(DT‘P .

Any diagram

involving (at least) coherent categories and coherent functors, is said to have the interpolation

property if the following holds: whenever A is a finite context for L, o0€S S (FLA1) ,

TEST(G[I]) and (aO)’EI] (Ho) SA[I] (al)’EI] (I7) ,then there is an L-formula 0

(of FOLDS) such that o < F[X:0] and G[X:0] <

SFLY] ot T

Using the (Kripke) completeness theorem for intuitionistic logic (for any small Heyting

category S, there is a conservative Heyting functor S— set€ ), it is easy to see that (1) is a
weakened form of saying that the L-pushout diagrams have the interpolation property. Thus,
(1) will follow from

(5) Both the #-pushout and the L-pushout of a pair (F:L— S, G:L—T) ,with S and T
small Heyting categories, have the interpolation property. Moreover, the comparison map
J: S+ T—> S+, T is conservative; thus, the assertion for the L-pushout is a consequence of

L
that for the #-L-pushout.

For the proof of (5), we will employ the method described in [M4] (and adapted there from
[GD.
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Let MeMod (S) . MIM'L MoF ,and MIK .=_ MoFo 7, for the inclusion j:K—> L. For

def def

we SetK, an arrow m:W-—>M means an arrow m:W-—>MMK .

We write L s for the underlying graph of the category S, and regard it as a vocabulary for

intuitionistic first-order logic. (Now, S is a general small Heyting category; in particular,

what follows will also be applied to T'.) For a finite sequence x= <Xi ) i<n of distinct

variables , by [x] we mean a chosen product X, XX, X...X

0%%1 Xn-1°

with free variables in ;c, we have [;(: Q] ,a

where x.:X. . For
1 1

any (first-order) formula ¢ over L 5>

subobject of [x] , the "internal interpretation of ¢ in the context x in S"; see [MR1].

We will use the coherent theory TgOh: (L T Z;Oh)

category introduced in [MR1]. Mod (S) is identical to Mod (T

, the internal theory of S as a coherent

coh
S

of the theory TgOh with ordinary homomorphisms as arrows. For a coherent formula ¢

) , the category of models

with free variables in x, M( [x: ¢@1) , asubset of M( [x]) , is identical to the ordinary
interpretation of @, {a: MEQ| a/x]} , modulo the canonical isomorphism

3o M1 X, >M(Ix]) (x=(x)

. -
. )i<n Xi:Xi),thatls, M([x:0]) =
i<n

J( {a :MEQI a/x1}) . For coherent formulas ¢ and v over L 5> with free variables

. . Ind
included in x,

TSk g—y (thatis, for all MEMO(S) . M= VX (9—y) ) iff
X

[x:0]< > [x: 9] ;

[ %]

in other words, a coherent entailment is an ordinary semantic consequence of TgOh iff it is
internally true in S ; this is but a form of the (Godel) completeness theorem for coherent

logic.

Now, we refer to F:L— S as well. Let x> x a 1-1 mapping of variables of FOLDS over L
into variables over L g SO that x: F (KX) . Let, for any finite context 4 of L-variables,
E(4) denote the formula
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/\ { (Fp) (x) = ¥x D" xed, pEKX|K} .

p b

This formula describes that the x for xed’ fit together via the maps Fp , pe KX| K, as
dictated by the structure of the context &4 .

Recall F[A] defined as a certain pullback; we have a monomorphism m: F[4] -~ [4] for

which T em=T ( xed'); here, we refer to the evident projections. In fact, m represents

the subobject [4A:E(X)] of [4] .If ® = [n: |®| ~—>F[4]] is any subobject of F[X] ,
then ® .= [mn: [® [ [£]] isasubobject of [4] . We have a formula ® (&) with
free variables in 4 such that [Z:®(4)] = ;

Q(i’) 43f dze \Q)\XQI(EXOH) (z)=x

(nX:F[/l’] ——FK_ ). When ¢ is an L-formula in FOLDS, with Var (¢)cd4 , and we take
O=F[L:@leS(F[A]) , we get @(4) 33f FIA:0] (X)

Note that if MeMod (S) , then for <ax>xe/l£F[I] ,

ME @l{a,) .yl = Mo la /x] _yp. (59
If var (¢)cdcd’ |, then
(A" :E(@")rp(d)] = [4 :0(XF")] (6)

as is easily seen.

Let Ac) be finite contexts over L ; assume Var (@) cC)Y. Letus write V (JY-4) @ for the

formula V21V22 e Vzn(p , where <Zi>?:1 is a repetition-free enumeration of the set
J-X such that for all j<n, AU {Xi :1<37} 1is a context (an enumeration in a non-decreasing
order of the level of K_ will ensure this; the formula V21V22 .. .Vzn(p is well-formed as a
consequence. YV (J-4) ¢ is not quite uniquely determined, but it is, up to logical

equivalence). We have the equality:

[X: (V-2 @) (D)1 = [X:BEX) AV (J-2) (B()) =(N)]; 7
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here, V (J-4&) stands for VleZZ. . .Vzn for J-4 = {zl, .. .zn} as above. This is

easy to show by induction on the cardinality of J)-4 .

Other easily seen equalities we will use are

[D: N, N1 = VEDAN@; (D], (®)
1<m 1<m—

[): vu/ N1 = [D: E()’)Avtxf N1, )
j<n _7<I1—

[D: (9=y) N = [D: EDA@D=>wN)]T , (10)

under the natural conditions on the parameters involved.

The following is the analog of Lemma 3 of [M4].

(11) Suppose MeMod (S) , NeMod(T) and (U, m, n) : M—= N . Then we have
PeMod (S) , (f:M—>P) € Mod(S), g:U—>V and (V, r, q) : P& N such that g is

very surjective, and

(12)

Proof. We first construct
v q
o o
U NI'K
n

in set® such that g: V—>»NI'K is very surjective and g is a monomorphism. We put
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n
u Nt = U NMK, and by recursion on i<k, the height of K, assuming

0
i1

———— NIK as follows. For all KeK except when
K= UiK . When Ke Ki , we put, for all

n.
U. > NM'K defined, we define U.
1 1+1

the level of K equals i, we put Ui

aeU,[K]=U, | [K], U,  K(a)=UK(a)||(NIK)K(n,(a)) ;here, we use the

notation of 1.(3). (This means that U, 1K= | ] (UiK(§)|_|(N|‘K) K(n, (a))) .) We
ae Ui [K]
have the map 9; 141:Y;72U 4 whose component at each K¢ K, is the identity, and

. - . . .
whose component at Ke K. on the fiber over ae U, [K] is the coproduct coprojection
- - .
U,K(a) — U, (K(a). The component of n. . at each RZK, is that of n.. For

KeK, K— (NIK) K maps the image of beU.K(a) in U,  K(a)

1+1K

under the first coprojection to (ni ) K(b) , and the image of be (NIK) K(nl. (a)) in

(ni+1)K:Ui+1

- . . .
U,,1K(a) under the second coprojection to b itself. We have that n;1°9; 41705

n.
Having defined all Ui — LNk ,welet V=colim U. when k<® ), with the

(=0, _
i<k i+1 k-1
g, ;4.1 @S connecting maps, and g = colim n,.g is the coprojection Uy —>V. It is
fairly clear that V, g and g so constructed are appropriate.

We may assume that g is an inclusion (that is, each of its components I is an inclusion of

sets).

Consider the (infinite) contexts )’UC)’V associated with U and V as in §4. For

X€E )’V— )’U , let x denote a variable for ordinary multisorted logic over L g of the sort
F(K, ) ; the mapping x> x is 1-1. For any A€S, aeM(A) , let (A, a) , abbreviated as
a , be a variable of sort A ; assume that the a are different from the x . With

Cdéf {;_g;xeyv—)’U} U {a:AesS, aeM(A)},

by a C-formula we mean one over L _ whose free variables all belong to C.

S

For XE)’U , m(a(x)) isanelement of M,thus m(a(x)) belongs to the second term in

C . When xe )’U, let x stand for m(a(x)) . (Recall the correspondence between the

elements of )’V and those of V; for any fixed KeK, di> y; d is a bijection
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V(K) = {XE)’V: KX:K} , with inverse xt>a (x) ). Now, xeC is defined for all xe)’v,

and we have x:FK_ .

We now write down a set X~ of formulas over the language L s with free variables in the set

C . 2 1is the union of the following five sets of formulas in classical first order logic:

zgon (13.1)
{o(g)zBl_J : (0:A—>B)ES, acMA, be MB, (Mo) (a)=b} (13.2)
{ (Fp) (x) :F-Kph : XE)’V, pEKX|K} (13.3)
{p(X) : var (@)cdc)., , NFW¢[<qX>XEI]} (13.4)
(=) : Var (y) ), , NE_wi{ax) _ 41} (13.5)

(note that N#Wt//[ <HX>XE/1’] is not the same as N|=W(—|l//) [(nx)XEI] N.

Let us understand the free variables in X as individual constants. Assume that X is
consistent (satisfiable); let (P, é) ceC be a model of X . Then, by (13.1), PeMod (S) . By

(13.2), £ = for which £ A (a) :é (A€ S, aeMA) is a natural transformation

(falacs
f:M—P. By (13.3), r=(rK>

N

. LV
REK for which rK(d) = (yK’ d) whenever KeK, deVK

is a natural transformation r:V— PI'K. Since for ceU, y; . m(a (y; .

we have the left-hand commutativity in (12). Finally, by (13.4) and (13.5),
(V, r, q) : P> N (see (5')). We have verified that the consistency of X establishes (11).

)) =m(c),

Let us prove that X is satisfiable. Assume that a finite subset ® of X is not satisfiable. ®
involves a finite number of C-variables. There is a finite context )’CZ[V and a finite set A of
elements a= (A€ S, acMA) of M such that all formulas in ® have free variables from

WA; Y={y:ye)} , A={a:ac A} . Let O denote the set ®N(13.2) ; for all formulas

0c0® , Var (0)cA. By increasing @ , we may assume that it is a subset of
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sCOh U E" (M v o (a.):i<m}u{ﬂ(u/jwj)):jm} (14)

S Pi'%

where E’ () is the set whose unionis E()) ,each ¢. (Zli) belongs to (13.4) , each

—|(1// (V ) ) belongs to (13.5) , and . C)’ V4 C)’ Let 6= /\©.
The inconsistency of (14) is the same as saying that

TS OARD) A N9 (U) —— V2R
i<m= 2+ Av) _7<I1——

By our remarks above (completeness), this is the same as

[AVD: ORE(D) A /N @ (U,) ] < [AVD: \/l// (V ) ]

i<m= L _7<I1— —Z

By (6) , this may be rewritten as

[AVY: OAE () A /N @ (D] < [AWD: \/ V(D]

i<m—= _7<I1—

With o= /\ ., y=\/ v, we see that @ () e(13.4), = (y (D)) )e(13.5).

i<m j<n

Also using (8), (9), we have

[AVY: OAE (D) A@ (D) ] < [AVY: w(D) ]

In other words,

[AUY: OAE (D) ] A TAUY: (D] < [AY: w(D) ]

and as a consequence, using the Heyting implication in S ( [AU)])

[AUY: OAE (D) ] < [AUY: ()] — LAUY: w(D) ] = LAY: () = y(D) ]

By (10), it follows that
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[AVY: OAE(D) ] < [AVD): (9= ) (D) ]

and

[AU): 0] < [AU): E()) — (9= y) (D] . 15)
Let ¥=)n),; . We have that ¥ = AnYc d AVY=AU (J-X) .Let m: [AV)] — [A]
be the projection, let 7 = E()) — (¢— )’ . As was mentioned above, Var (0)cA .

. *
Using 7 —|V7r

T A:0) < [AUY: 7] = [4:0] SV _[A0): 7] .

By (15), it follows that [A:0] <V _[AUY:7] . Now, V_[A)Y: 1] = [A:V ()-4) 1] . We

conclude

[A: OAE(X)] < [A: BE(X) AV (J-2) E(Y) — (=) ()).]
and by (7) ,
[A: OAE(X)] < [A: (Y(I-) (9—=y) (4] . (16)

By the definition of E (&) , MFE (4) (m(a(x))/g)XeI.But, for xed, x=a for
a=m(a(x)) ;thus, MFE (1) [a/g]aeA.By @C(13.4),Ml=9[a/§]a€A.By (16), we
conclude that M= (V (J-4) (9= y) (X) [a/g]aeA,that 18,

M= (V()-2) (9w (X)) (m(a(x)) /%)

xed -

By (U, m, n) : M—= N, we conclude

NE (V(D-2) (9o ) (D) [q(a(x) /x]__,

( g extends n ). By the choice of ¢ and vy,

NFplg(a(y)) /X]ye/l’ ,
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Nh‘l//[q(a(y))/z]yell, .

Also,

NFE(Q) [L(a(y)) /y) e p -

However,

[JY: (V(D-X) (¢=y) (X)) A@AEDN] < [): vl

The last five displays contain a direct contradiction.

This completes the proof of (11).

The following is essentially simpler than (11); it is the analog in our context of Lemma 4 of

[M4].

(17) Suppose MeMod (S) , NeMod(T) and (U, m, n) : M<=> N . Then we have
QeMod (T) , (h:N—>Q)eMod(T), g:U—>V and (V, r, q) : M~ Q such that r is

very surjective, h is pure, and

v — T
r o h
%gT
M U N
m n

( h:N— Q being pure means that the naturality squares

NaNm g

hAl lhB

QA yrm ~ 9B

corresponding to monomorphisms me T are pullbacks.)
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Combining (11) and (17) in an "alternating chain" argument (see the proof of Lemma 2 in
[M4]), we obtain

(18) Suppose MeMod (S) , NeMod(T) and (U, m, n) : M—= N . Then there are
M'eMod(S) , N'eMod(T), g:U—>U'", f:M—>M', h:N—>N' and
(U',m',n'):M' TN, (in particular, m’ and n’ are very surjective) such that h is
pure, and

M’ U’ N’
f] R Tg o Th (18"
M U N .
m n

(Observe the asymmetry; (U, m, n) : M—= N, and not the other way around; h, but not £,

is required to be pure.)

Let us prove the assertion, contained in (5), that (4) has the interpolation property. Let o and
T be as in the interpolation property, assume the hypotheses, and also that the conclusion
fails. That is,

(19) (o) [ p1 (T90) Sz () (7 (I T)
however,

(20) there is no L-formula 6 (of FOLDS) such that GSF[ 2] F[4:0] and
G[X:0] SG[I] T.

I claim that (20) implies that

(21) there are MeMod (S) , NeMod(T) and (F/l” 5, B) :M—= N such that

M= o[a] and NH T[D] .
w w

188



Let xt—>x be a 1-1 map of variables xed’ into variables over L.,, x:GK_.Let 6 range

T’
over L-formulas with var (0)ct . E’ [4] , 0(4) and 7(4) were defined before.

Consider the set

SCOR B [X] U {0(X) o<

c FIX:01} U {=(1(2))} . (22)

FLA]

If this were inconsistent, we would easily conclude that there is 6 with G[4:0] < a1 T

contrary to (20). Let (IV; x/x) oy be a model for (19). Next, let x|->x be a 1-1 map of
variables xeX into variables over L g X: FKX , and consider

Zcoh

CUUE I UAS(0(D): (I x/x) _H OB U{a(D] . (23)

This is easily seen to be consistent by the fact that (IV; x/x) oy is a model of (22). Now, if

(M; %/ x) is a model of (23), then with a=(x) b=(x) _, we have (21).

xed xed’

Now, apply (18) to (Fp, a, b) :M—>N as (U, m, n) : M—— N ; we obtain that

(24) there are M’'eMod(S) , N'eMod(T) and (V, m, n) :MTN such that

M= o[a] and N T[D] .
w w

(Indeed, h being pure ensures that N#W‘L' [b] .) On the other hand, by (24) and the universal

property of (4), there is P: S+, T Set such that Pfo =M, PflzN and

- _ _ X * *
P(A, aO, al) =(V, m, n) . Applying these to (19), we get m[{l,] (Mo) SV[I] n[{l,] (NT) ,

which contradicts the conjunction of MI=WG[§ 1 and N#WT [b] .

It remains to prove the other assertion of (4), namely that the comparison J is conservative.

For any small coherent category R, we have the evaluation functor e: R— SetMod (R) ,

a
conservative coherent functor, and if R is Heyting, e is Heyting (Kripke-Joyal theorem; see

[M4]).
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We show, in analogy to Proposition 7 of [M4], that

I
(25) For R:S+#T, the composites T%lRe%SetMOd(R) ,

To Mod (R)

s—2>R-S 5set are Heyting.

The argument is similar to that in loc.cit. We deal with the first composite; the second is

symmetric. Upon an analysis similar to that in loc.cit., we see that what we need is this:

given k:A—>B in T, XeS(A) , MeMod(S) , NeMod(T) ,
u= (U, m, n) :MTN, yeENB such that yeN(VkX) ,

there are M’'eMod(S) , N'eMod(T) , u’'=(U’', m', n) : M’ TN’ and
(f:M—>M', h:N—>N', g:U—>U"): (M, N, u) > (M', N’', u’) , an arrow in Cget , and
xeEN’ (A) =N’ (X) such that hB(y):(N’k) (x) .

* * * * * *
As in loc.cit., we have N eMod(T) , h :N—>N , x €N (A)-N (X) such that

h; (y) = (N*k) (X*) . We build a commutative diagram

g m__y n N’
d d |
*
M U N
(A 'R)on . ,
Ly| 1y] [k
M U N
m n

The lower half is already constructed. The important remark is that (U, m, n) : M<> N

implies that (U, m, (h* 'K) on) : M—> N . Then, by (18) , we have the rest such that, in

addition, (U’, m’, n) : M’ TN * and h’ is pure. Taking the vertical composites, in

* * *
particular h=h’'oh ,and x=(h’) 2 (x ) , noting the purity of h , we have what we
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want.
Having (25), the proof of the conservativeness of J is as in loc.cit.

This completes the proof of (5) and (1).

The results proved may be applied to characterizations of formulas invariant under equivalence
of categories, of diagrams of categories, and of bicategories, in category theory done in
intuitionistic set-theory. However, the condition of being invariant under equivalence cannot,
in most cases, be stated by using the traditional concept of equivalence. Note that in the proofs
of 6.(5), 6.(23), 7.(5), one direction (passing from an L-equivalence to a categorical
equivalence) uses the Axiom of Choice, not available in intuitionistic set-theory. [M2]
introduces "ana"-versions of certain concepts, among others functors of categories and functors
of bicategories, that can be used in this context. The condition of invariance under categorical
equivalence has to be strengthened, in general, to invariance under categorical anaequivalence,
to have the characterizations analogous to the ones we proved for classical logic.

Let us note that statement (5), being in essence of a syntactical (arithmetical) nature, can be
proved constructively, in intuitionistic set theory, by a general transfer result of H. Friedman
[Fr]; thus, (5) is available when doing category theory intuitionistically. However, to be able to
apply (5), the assumption of invariance under equivalence has to be available in the "provable"

sense.

In the case of equivalence of categories, essentially because now there is no need to pass to a
notion of "anacategory", we do have the direct analog of 6.(3) for intuitionistic logic. In

particular:

(25') Let ¢@(4) be a first-order formula on a finite diagram 4 of objects and arrows in the
language of categories. Suppose that it is provable in intuitionistic set-theory that the property

of ¢ (&) being true is preserved and reflected along equivalence functors. Then there is a

formula 6 (4) in FOLDS over L.t such that V& (p«— 9* ) 1is provable in intuitionistic

predicate calculus from the axioms of category
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(here, 0" is the usual translate of € into ordinary multisorted logic, given in §1).

In the rest of this Appendix, we discuss (simple) Craig interpolation and Beth definability for
FOLDS.

For specificity, we consider FOLDS in the sense of classical FOLDS with (restricted) equality;
theories efc. below are to be understood accordingly.

First, let us put ourselves in the context of Appendix A. Suppose L. is a vocabulary. A

1

subvocabulary of L, is a subset L of L. which itself is a vocabulary. Note that the

1
set-theoretical intersection and union of any number of vocabularies are always again

vocabularies.

In terms of the terminology of §1, instead of the above notions, we would use the following.
Let L, L1 DSV's, i:L%Ll
objects, (b) for any object R of the category L, ReRel (L) iff iReRel (L) » and (c) for
every AcL, i induces a bijection A|L— 1A

a functor. I call i an inclusion of DSV's if it is (a) 1-1 on

L . Obviously, i preserves levels. A

sub-DSV L of L, is given by an inclusion 1:L— L, of DSV's for which i acts as the
identity ( 1 is a "real" inclusion). If we have inclusions il :L—> L1 , 1 5 :L—> L2 , We may
consider the pushout L,+ L, ; asa category, it is a pushout in the ordinary sense; the
relations of L+ L, are defined to be the images of those of L,

1 %L1+LL2 , L2 %L1+LL2 are inclusions too.

and L2 ; clearly, the

coprojections L

Let us use the terminology of Appendix A. Suppose that T, is a theory in FOLDS over

L1 , and LCL1 . Then Tl 'L denotes the theory (L, CnL(Tl) ) , where CnL(Tl) is the
set of L-consequences (in classical FOLDS) of T, . (A small point to make here is that an
L-formula is not necessarily an Ll—formula, despite the fact that LCL. . The reason is that a

1

kind K in L may be maximal in L, but not maximal in L, in which case equality on K
is allowed in FOLDS over L, but not in FOLDS over L1 . The definition of Cn 1 ( Tl) is
-sentences, and which are consequences

LVT, 18 the theory over L, VL, for

which X~ T, UT, =X TluZ T, " When two theories 54 and S, are over the same language

L, then SluSZ is also over L.

that it is the set of all L-sentences which are also L1

of T, ) If T, is a theory over L. (i=1,2), then T
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In the §1 terminology, when T, is a theory over L, (i=1,2), we can define the "pushout"”
theory T+, T, in the obvious way.

We will revert to the Appendix-A terminology.

Craig Interpolation for classical FOLDS. Suppose L, , L, are vocabularies (for FOLDS),
L=L,NL,, T, is a theory over L. (i=1, 2) . Then T, VT, is consistent if and only if

(T1 ML) U ( T2 ML) is consistent.

Of course, only the "if" part requires proof.

Let us illustrate the meaning of the above statement of the Craig interpolation theorem for
FOLDS.

Suppose o 1S a sentence over Li (1=1, 2) , and Gl|=62 . Consider Tl over L1
whose single axiom is o) and T2 over L2 whose single axiom is -0, . Then, TluT2
is inconsistent; hence, so is (T1 ML) U ( T, 'L) . This means that there are sentences 91, 92
over L such that Gll=91 , —|G2|=92 and {91, 92} is inconsistent; but then Gl|=91 and

91|=62 ; we have the usual form of interpolation.

There is a generalization of the above statement of interpolation, obtained by allowing
individual constants in the theories. A vocabulary L with individual constants is a set of the

form L:LOUC' , where L. is a vocabulary, and C is a (not necessarily finite) context of

0

variables (individual constants) such that for ceC, Kce LO . Intersection and union of
vocabularies with individual constants is again such. An L-sentence is an LO—formula with all

free variables in C. A structure M for L isone, say M, ,for L., together with an

interpretation of the C-symbols: some (ac> e =My [C] . For an OL—sentence O, M=Q ot
MOI=q0[ (ac> CEC] . A theory over L is given by any set of L-sentences; a model of the
theory is an L-structure satisfying all the axioms. Now, all the terms in the above statement of
the Craig interpolation theorem have natural meanings when L,, L, are vocabularies with
individual constants; the theorem remains correct in the generalized form.

In the well-known manner, the Beth definability theorem can be deduced from Craig

interpolation, by using individual constants. We obtain
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Beth definability theorem for FOLDS. Suppose T is a theory in FOLDS, LCLT , X isa

finite context for L, and ¢ is an LT—formula with Var (¢)cd . Suppose that for any two
models M, M, of T, if My ML = M, 'L, then My [4: ] =M, [4:¢] . Then there is an
L-formula 6 with Var (0)cd such that M[4X:¢@] = M[X:0] for all models M of T.

For the proof, make two copies L., L. of the vocabulary L, by renaming all kinds and

17 72
relations Ae L,-L in two distinct ways as Ay and A, , and by putting
Ll.:Lu{Al. : Ae LT—L} ; leLZ:L . For any Lu{4}-sentence Y, we have the

Liu{/l’ }-sentence Vs with the same free variables (in 1), obtained by the appropriate
renaming. Applied to all members of X T this gives Zi , a set of L , -sentences. Consider
the theories le (Llu/l’, Zlu{(pl} ), T2: (Lzu/l’, Zzu{—mp2 }) over vocabularies

Lluﬂ’ , LZUI with individual constants. Craig interpolation applied for 7. and T, gives

1 2
the desired conclusion.

We make some preparations for the proof of the Craig interpolation theorem.
Recall our definition of saturation in §5. We make some modifications on it.

Let us fix the DSV L ; K is its category of kinds. First of all, in contrast to §5, we now want
to deal with logic with equality; formulas now may have equality. The definitions up to
" J-L-saturated " remain the same, except for the change in what counts as a formula.

Consider a context Y, and a J-set ® of formulas; all formulas in ® have variables in the

context JU{x} . Let us say that @ is low if KX is low, that is, it is not a maximal element

of K. This is the same as to say that no equality predicate is allowed on K. -

The L-structure M is said to be strictly )-L-saturated if for every acM[Y] and every

J-set @ ,if @ is finitely satisfiable in (1 a ) , then (1) @ is satisfiable in (1, a ) , and (2)

if ® is alow set, then @ is satisfiable by an element a for which a;ﬁay for all ye);

here, a=( ay) We say that M is strictly K-L-saturated if it is strictly J-saturated for

yeJ:
all ) of cardinality < k.

There are two issues: existence and uniqueness; let's deal with existence first. To that end, we

give a simple general construction.
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Let M, N be L-structures. We write M< LN if M is a subfunctor of N (note that both M

and N are functors L— Set ), and for any 1, EEM[I] (cN[A] ),Ml=(p[§] iff

nﬁ#qo[g] .

(26) Let M be any L-structure, K a low kind, acM [K] ,and MK (5)7&@ . We can

- -
construct another structure N such that M{LN and MK (a)ci:NK (a) .

For simplicity, we assume that 1M is separated (the MK are pairwise disjoint). Let

@GMK(Q) .

Let U=MIK. Construct V:K->Set as follows. Say of xe |U| thatitis above b if there is
f:K’ — K (possibly the identity) such that (Uf) x=b . Note that

27) if g:K, >K x.€UK, and x.=(Ug) (Xl) , then if x. 1is above b, sois

1 27 71 1 2 2

Introduce a new element x for every x above b, distinct from each other and from the

elements of U.Put VK'=UK'U{x: x€ UK’ above b} . The effect of V on arrows is

defined so that U is a subfunctor of V, and by the following determinations. For

. _ .5 Vg . 3z :
g.KleK , XleUKl above b, let X2—(Ug) (Xl) ,XlEVKl w X, if X, s
above b, 5{16 VKl % X otherwise. It is easy to see, using (27), that V is a functor,

we have the inclusion 1:U-—V, and we have the retraction r:V— U for which }E}éx;
i=1__.1claim that = i jective. If y=(y_) VIK] , yFx, x€UK(X)

ri=1l,.lclaim that r 1s very surjective. y= yp p€K|K€ , Y x, x) ,

then if x is not above b, then no yp is above b and xe VK ( ;') , and of course x}éx;

butif x is above b, then xeVK(y) , and of course x| T5x.

*
Returning to 1M, using the very surjective r:V—>U, define N=r M (see §5). When we

regard M and N as structures for 4

, with standard equality for the equality predicates,
then still N:r*M . This amounts to the following: if K’ is a maximal kind , ;/E VIK'],

, - A 4 r r _ . . _
Yy Yo€ VK (y), vFox, ylel , YZHXZ , then X=X, implies Y=Y, If
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X=X, , the only way Y1#Y, could be the case is that x. is above b, y{=X and

1 1 1

Yo :;}1 (or the other way around). However, if so, then since K’#K ( K is low), we have

p:K’ — K proper such that (Up) xlzb , hence, (Up) 521:15 , and, since b#b, Y{=%1 »

Yo :5{1 cannot both be in VK’ ( 37') for the same f/, contradiction.

We have, by 5.(1), that Gr is elementary (with respect to logic over L9 without equality;
1.e., with respect to logic over L with equality). Combining this with rile, we
immediately obtain that 91. :M— N is elementary, that is, M< LN as desired. This proves (26).

The usual proof of the existence of saturated models (see [CK]), using unions of elementary

chains, is now easily supplemented by uses of (26) to provide

(28) For any infinite cardinal k=#L ( L any vocabulary with individual constants), any

consistent theory T over L has a strictly k", L-saturated model of cardinality < 2 K.

29) If M, N are strictly k, L-saturated L-structures, M= LN , both of cardinality < Kk,
then they are isomorphic.

Proof. Inspecting the proof of 5.(4), we see that we can make both maps m and n bijective.
This suffices.

Proof of Craig. Suppose (T PL) U ( T, 'L) is consistent. Let M be a model of it; M is an
L-structure. Let X be the set of all sentences in FOLDS over L that are true in M ;
T=(L, 2) . Both TluT and T2uT are consistent; if not, we would have (say) 7eX such

that Tl|=—|7: ; but then, by definition, —7eX hence MF-T ; contradiction to TeX .

Tll‘L

A

Choose )LZ#Ll, Z#L2 such that xk=A"=2 . By (28), let Ml.I=Tl.UT (i=1, 2) strictly

K, Ll.—saturated, of cardinality <k . Then Mi 'L is also strictly K, Li—saturated, of

cardinality <k . By (29), there is an isomorphism £: M, I‘LiM2 'L . There is M and an
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isomorphism g: M’ =, M. such that M 'L = My 'L (and glL=f). But then the

2 2
LluLz—structure N for which Nl‘leM , NI‘L2=M’ ,is a model of T.UT

1772

Finally, let us note that Craig interpolation and Beth definability hold for intuitionistic FOLDS.

Looking at the above formulation for classical FOLDS, we are led to the following

formulation:
S S+ RT
P o /
S——— >S5+ RT F, G conservative = H conservative
T o
R T G T

This is to be understood in a suitable doctrine. Above we proved, in essence, this in the
doctrine of Av—3-fibrations (see §3) restricted to fibrations obtained from simple
base-categories as described in §4 , with arrows restricted to inclusions as defined above. The
claim is that the same holds when we switch to Av— 3V-fibrations. The proof is along the

lines we presented in the first part of this Appendix.
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