§5. Internal topology

5.1. Internal cHa's and their representation.

Let £ be any topes. A cHa-object in E (or: an internal cHa in F,
or even: a cHa in & 1= a tuple (H, =, 1, AN) satisfying the axioms for
cHa's in the logic in F4 in other words, H is an object of F ,

<: HxH > Q@ (a binary relation on #)

La 15 (a 'global element' of H or:

a zero-ary operation on H)
A HxH - H
V: P > H
two of the axioms written out explicitly:

[E= [x2V(5) < v (vex » x2y)]
xefl it

teP(H)

[we put the variables x, I wunder the validity sign %= equivalently to
writing ver,EeP(H) in front of the formula; this axiom says that \/ is
the sup operation for the relation <, another axiom would say < is a

partial order, etc.]

— Vo= Vamx

2, T
where Z(A)x is the term {yAx: yell}, i.e. T (A)xe=+{zeH: ayEH(YEZ&Z = (yAx))}
The other axioms are similarly natural translations of axioms for ordinary cHa's.
A morphism between cHa's in E, h: (Hl,S,...) +—(H2,£,...), is a

morphism (in E) between the 'underlying sets' h: Hl %-H2 satisfying

E
|= "h preserves =, 1, A and V".



Written out in detail, preserving \/ means

E
| VH h(z] = h(VH 5)
1

EeP(Hl) 2

where h[I]+=+{h(y): yEE}'=°{ZEH2: ayeH (yeL A h(y) = z)}. Composition of
morphisms of cHa's in E is defined automatically as composition of morphisms
in E (of course, one has to check that the composition of two cHa-morphism
is one such again, etc.). In this way we have defined the category cHa(E)
of cHa's in E.

Now, we take E to be Sh(L) for a cHa L. Given the cHa L, an L-cHa,
or a cHa-extension of L, is a cHa H together with a cHa morphism L -+ H.
The category of cHa-extensions of L, L-cHa, has all such arrows L - H as
objects, and a morphism from (L - H) to (L - K) is a cHa-morphism H -+ K

such that the diagram

L

o

commutes. (If you are familiar with rings, this situation is similar to the
category of R-algebras, with R a fixed ring.)

The main aim of this subsection is to prove the theorem saying that the
categories gﬂg(Sh(L)) and L-cHa are equivalent, in fact by a very natural
functor. This theorem is due to Fourman and Scott (see FS, 8.13 Theorem, p. 388)
and, independently, to André Joyal (personal communication).

We now define the functor T: cHa(Sh(L)) - L-cHa. For any category G

with a terminal object 1, the functor represented by 1, P = Hom

C(l(_)

(or: the global section functor) is the functor T: C -+ SET with
ra) = Homc(l,A), and for A ~h£-+ B, T (f) is the map Homc{l,A} - Homc(l,B)

: : ' £ ’
that associates with any 1 -+ A the composite 1 + A —— B. For a Grothendieck
( V

topos C = E, T is the right adjoint of the unique continuous SET - T in

the case of E = Sh(L)), so, in particular, it preserves all projective limits.



The functor, also denoted T, from gEg(Sh(L)] + L-cHa 1is derived from I's {£+ SET
for E = sh(L). - Dealing with E = Sh(L), we will talk about L-sets, but will
feel free to assume that they are actually 'sheaves', i.e. complete and separated.
Some turther preparatory remarks:

1. If X is a 'sheaf' (i.e. it is a complete and separated L-set) then
a '"global section' 1 + X 1is represented by a unique function

e

an arrow in L-sets,

l: terminal object of L-sets

{*} » |X| such that its value (at *) is a global element of X, i.e. some

X € |X| such that Ex =1 (= lL); in brief, global sections are the same

as global elements.

2. The syntax of the logical language allows the use of individual
constants, i.e. zero-ary operations. Given E, the arrows 1 ek X in
E can be employed in formulas as individual constants; for such a ¢, 'x = c'
or % = E' is a well formed formula [and we don't have to write c(y) for
¢ with y a variable of sort 1]. We use the underlining under ¢ in x = c
to make it clear that ¢ is not a variable here.

3. Given a global element x € [X| of the L-set X, and a morphism
X —-Ew—+ Y with Y a 'sheaf', then there is a well determined gg;gg af £
at x: it is the global element of Y which corresponds to the composite

'global section' 1 X X £ Y as in 1. We'll denote this 'value'

by f(x), and by |f(x)| if we absolutely have to. =- It is easy to see that
an identity of two terms which is valid in E gives rise to true equalities
between values: if e.q. F%T? glif(x)) = hiy), then qglElx)) = hiy), fox
global elements x and y of the right kind. [Note that since the notion

of 'global section' makes sense in any category with 1, this last remark also

applies in this generality. ]



To define T': cHa(Sh(L)) - L-cHa, let (H,5,1,A,\) € |cHa(sh(w))|;
without loss of generality, H is a 'sheaf' (why?). The cHa

H= (H,< = VH) is defined as follows:

A
H'lH' H

H = T(H) (with T: Sh(L) > SET the global section functor)

% = I (s) & HxH [more precisely: <: HxH » Q@ gives rise
to its kernel, also denoted by <: <& HxH; applying T
and noting that it preserves product and monomorphism, we

obtain the subobject SHC———+ HxH]

A
H

u

T(A): HxH =+ H

Rel)s dla-x B
[En
terminal object in SET.

The only slightly involved part is the description of \/H: let ® € H be
any subset of H = I'(H); define the predicate <¢> as follows:
[x e <¢>] = <o>(x) = [W x = cl [W¢ (infinite) disjunction sign in place
of \ﬂ since the lattercfg becoming overused; the elements of & are global
sections, hence W x = c is a well-formed formula of the (infinitary)

ced

language Ll]; now, <3>¢ |P(H)| and in fact, it is a global element of

P(H) [remember the definition of P(H)!], so we can put

\/ o] 5} \/<¢>

H

with actually |\/<¢>| in mind. - We now have to verify that H is cHa;
once we have done that, we'll also define a cHa-morphism L - H; and,
finally, this will be the value of the functor T: Eﬂg(Sh(L)).+ L-cHa at

H= (H,...) € |cHa(sh(L))]|.



We leave it to the reader to check that iH is a partial ordering,
AH is the g.l. b. operation with respect to SH and lH is the greatest
element in H. We verify that \/H® is indeed the sup of &: let xeH;
th o D= b <> =1 =(v c <> i =
en VH [x v | . [ YGH{Y x 2yl 1

=y JMy=crz2pl=-1"1M %2 = 1+ foraall 3,

T Y ced ced
by intuitionistic logic
[x = gﬂ = 1= for all e=l, X > ¢, as required.

We next show that H satisfies the local identity (\/HQ)AHX =

\/H(®(AH)X). First of all, we claim that for a global element =xeH

<®(AH)x> = <d>(A)x
\._.-_f__)
the value of the corresponding

term at the global arguments
<0% ‘and %, with A Ehe

internal intersection of H.

Writing = for valid bientailment (equality of truthvalues; ¢ =

meaning [¢] = [v]), we have

z € <0>(A)x EYEH(Y € <0> & z =y A x)

11

HveH“WY: e) ¥ 2 =3 4 x)
ced

1]

Wiz = (¢ A x)

by (ilrlfinitary)////‘r ced

intuitionistic logic

On the other hand

I

W (z = 4)

de@{AH)x

W(Z=gﬁx).

ced

Zie <¢(AH)X>

Il

55

B



56

From these, our claim above is immediate ('extensionality'). The local

identity now follows:

(V21ax = (Veor)ax = Vicoran) = V<a(n )z

T T

the internal claim
local identity
applied to the

global arguments

<> and x.

= Vyemon.

|

def. of Vg

Having verified that H(= T(H)) is a cHa, we now define the requisite
cHa-morphism i: L > H. Given UeL, let {llU} be an abbreviation for
{xeH: x = lH & U} (here U is used as a zero-ary predicate, a proposition;

it is not a variable), and define i +to be the function such that

i = V{1|u}
LG

a global element of P(H)
|58

J
~

a global element of H, hence an element of H.

[{1|u} is the predicate for which {1|Uul}(x) = [x = 1Hﬂ Ul -

Let us verify that i preserves 1, <, A and \/. Leaving 1 and <

to the reader, we first note that

(\/zl) A (V) =V(zltn)22)

with erl(A)Ez S x =y Ayz for some yiezi(i = 1,2), is a general fact

d!

about cHa's, true internally as well (exercise).



1AWy = (Viluh  (Vit|o,h Vidi|u 1 (1o, b

= V{llulALuz} = i(Ulf’\Uz),

since xe{lIUl}("\){l]%} - TR e L yle{l|Ul} s yyeflju}) =
1 2 (‘_._.__y i 2 o J

¢ =1 o f LA U

i

2

= xe{l]Ulf\LUz}; this shows that i preserves A .

To show that 1 preserves \/, we first note the equivalence:

E x2Vii|u} < @+ x-= 1))

(UeL) (exercise).

Then we have: for a family <Uj: jeI> of elements of L, and

U= V(L){Uj: jeL},

%= A \j/U,)<==>x2i(U)‘=’x2\/{l[U}@f—“—"U-%*x:l
j

|

above equivalence
and the fact that
now

x 2 Vi1|u} = = x > V{1|u)

H

= k= Ug > x =1, forall jeI < x 2 i(Uj) for all jer
elementary
intuitionistic logic; alternatively

{i\e/IUi < [x = lH]]) =% u, S lix = lH]] for all ieI

which shows that i(U) answers the description of v P, 1.es

J
if( VUj) = V i(Uj} as claimed.

j 3

We have defined the functor T: (;._I_'_IE{Sh(L}) -+ L-cHa.
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Theorem 5,1.1. T: cHa(Sh(L) » L-cHa is an equivalence of categories.

In the next 3 lemmas, let H = (H,...) € cHa(Sh(L)); assume H is a 'sheaf'.

Lemma 5.1.2. Every x ¢ [H] is the restriction of some global section, in

fact x-=-(\f{x})|EX.

[Note that every x ¢ |H| gives rise to the predicate P on H s.t.

P(y) = [y = xl; denoting this predicate by {x}, we have that {x} is

global element of P(H); so V {x} is a global element of H].

Proof: Our assertion is that [x = \/{x}ﬂ = EX.

But y 2 Vixlz v (zelu) + y22) =

= >
VzeH(Z X e 7

= W=

hence [x =V ix}] =[x > Vix}]-[Vix} 2 x] =
[x = «[Vix} = Vix}]

v

Ex.lL = Ex, as required. O

Notation: For any x € |H|, and UeL, 1let us write {x|U} for the
predicate such that {x|u}(z) = [z € {x|u}] = [z = x]*U (check that this
is a predicate); Vf{x[U} then is a global element of H, denote this last

by [x;ul.

Lemma 5.1.3. [z, 0] = x AH i(U) whenever x € H. (x is global)

Proof: i s L 1 HRE S V{zeH: A lH gul =

= VzeH: z = 1H §UA)K) = V{ueH: u = x & U} \/{x|u} =

by (internal) local by logic def
identity in H
o — b | O



since 2 is
an (internal) partial order .

Clearly [u + (x = y)] = i, =0 = ix = vl.

Hence [x,U]s=«[y,U] = [[V‘[XIU}

I

Viy|ull =1

s=>uslx =yl a8 clained. O

Lemma 5.1.4. Let x,y be global elements in fH]; xX,v €H; and let
Then
U<[x=y] if and only if [x,U]l-=-[y,U].
Proof: We have [x,U]-=+[y,U] =
= E[v{xlU} = V{Y|U}]]= lL; on the other hand:
Vixlv} = Viylor = vz 2 Vixlu} < z 2 Viy|uh;
note that z = V{x[U} = v H'[v' € {xlU} >z 2 v]
ve
=X plrmix g Ul %2 2 9]
= il o =
by logic
therefore (V{X|U} = V{y[U}) EV_ yllu+z2x) < (U>z2y))

e

UeL.



Claim 5.1.5. The functor T: cHa(sh(L)) - L-cHa is faithful.

Proof: ILet h: H + K be in cHa(Sh(L)); let h0 = Fithy: H > k. FEor
any x € |H|, we have [x = x] = Ex for X = \/{x} (by 5.1.2.); also

Ex = lL; it follows that [y & T(T)H= [yen(x)].Ex (why?); on the other hand
(yve |K]|)

|nx)| = (Th) (x) e Kk and [y e hx)] = Iy = |n(x)|], hence

[y e hix)] = [y = (Th) (x)] *Ex; so, if hl,h2: H =% K are such that

Fhl = th (both cHa(sh(L))-maps), then the last equality applied to both

l'h2 as h yields that

[y e hl(x)]] = [y e h2(X)]I

Claim: 5.1.6, The fwnetor T dig full.

Proof: Let hO be a morphism in L-cHa; i.e. we have a commutative
diagram
h
0
H K
ot (,} zjieh
3 &

1 sn
allsa, lekt L —~>5 H be the I'-image of H € cHa(sh(L)); L SO ' (K).

In particular, assume that H and K are sheaves. To show the fullness of
I', we have to show the existence of h: H + K ¢ cHa(Sh(L)) such that
I'(h) = h . - The following fact that we now claim to hold is clearly

0

necessary for the existence of such an h:



Bl

for x, yeH=TH,
5T o)

[x .y vl .S [[ho(x) ¢ hO(Y)]]

To prove this, let U =[x =y]. Since U <[x=y], by 5.1.4 and 5.1.3
we have x AH 1(U) e=+y AH i(U). Let us apply h0 to both sides and recall that
1 = 4. O | = A 1 1 -
h, preserves A as well as hei i'; we get ho(xJ A 4 (U) ho(y) - (U) ;
applying 5.1.4 and 5.1.3 again (in the opposite direction and to K in place

of H), we get U < IIhO(x) =¢ b (y)] as required.

0

For an arbitrary x € |H

, let x = V{x}(e H and define Eo(x) = ho(:_c);
we have 1_10: [H] > |K]; EO represents a morphism h: H -+ K in Sh(L) since

[x=4 vl < [x=3y] < [ ) =h ] =lhy6 = h ]

| |

(why?) by 5Ll 4

Wwe have [y & h(x)] = [y =k ho()_c}]I.Ex (as we know). - It is obvious that
Eth) = hO(H & K are sheaves) (why?); it remains to verify that h: H > K

is a cHa(Sh(L))-morphism.
A

Showing that h preserves <, 1 and A is easy - and it can be left
safely an exercise. Preservation of v is more complicated; somehow we have
to get a hold of VI for an arbitrary predicate EEIP(H)[ through sups

like VH<I> of ordinary subsets ¢ c© H. We now make some crucial definitions.

Let, for any predicate I ¢ [P(H)l and any xe€H, [x, [xez]] =

Xy &t

x A ilxez]) =V {x|[x€z]} (see notation and 5.1.3. above; this definition

can be made with any H € cHa(Sh(L)); we will use it for K as well). Next,
the set @E of global elements, <I>E c H, 1is defined as <I>Z I {xz: xeH}.

The first step in getting a hold of Vi is



512,

Lemma 5.1.7". v2-=-V<®Z>

[0f course, both I and <<I>Z> (see bottom of p. 5.1.5) are global elements

of P(H); hence the two sides of the equality in 5.1.7' are global elements

of |H|1.

Proof of 5:1.7'. Let xeH = T'(H). We have [x,u] = V{ZEH: (z = x) & §};

hence it is easy to see that U< [[x,U0] = x] (exercise). Applied to
U = [xeZl, this gives us [xell < [x = xEI[; clearly (look at the definition!)
[x = x;] <[x e <¢>]; this shows [xeI] < [x € <¢,>] holds for all global x.

For an arbitrary x € |H|, we have xeH such that Ex = [x = x] (by 5.1.2); so
P i,

[xez] < [xez].Ex < [x ¢ <¢Z>]].Ex =[x e <cl>z>]} 2

T T

because I is a because <&_> is

z
ai .
predicate a predicate

What we have shown is [I c <¢Z>]} = lL; it immediately follows that the

left-hand-side in 5.1.7' is < r.h.s.

Next, look at any xeH again. Clearly, II{x[[[er]]} cor]ie 1L
(membership in {x|I[er]]} implies, by definition, membership in I; exercise),
50 X, \/{x|l[xe£]}} = VE (with value 1L),- looking at the definition of
0y [y e <¢E>E = HWH = XE]]' we immediately see now that the r.h.s. in 5.1.7'

X€ —

I =5 I .his.

B Fori5i1. 7

We need another lemma before we can prove that h preserves V (internally) .

Lemma 5.1.8. With our previous notation

V<h0[¢2}> = V<®h[2]>



[exglanation: h0[¢] means the ordinary image of the set & under
hO: hO[@] = {ho(c): ced}. h[-] is taking the image internally; hence
h[Z] is the predicate such that [zeh[I]] = ﬂayeH(y € % & =z= higl.

For the meaning of ¢(_) and <->, see bottom of p, 5.11 and

p.4 . The sup signs on both sides refer, of course, to the sup morphism

VK. pug - K.
Proof: We make two preparatory remarks:
(5.9) zce hlz] = HYEH(Y e I & z=h(y))

1t
I

ayeH(Y EL &Z= ho(y)}

-

(recall: Ey = [y =vy]l, [z e hiy)] = [z = h0{§}H.Ey)

(,;E W eelaza ho(c)).

ceH
(reasons are the same)
< < .
(5.10) for any xeH, [xeZ] <L Hho{x) % ho(xz)ﬂ.

to show this, first of all recall that
it ([xez]) = ViveK: v = lK & [xez])

hence [xeX] < [i'([xeZ]) = lKﬂ: (%)

now, X5 = x A i(Ixezl), hence

ho(xz) = h (x) A it ([xez])

(since hO preserves A, and hei = i').

By (*), [xez] < [[ho(x) =% it ([xez]) 1.

From the expression for ho(xz], now the assertion is clear.

=13,



5,14,

Now, to show that 1.h.s. £ r.h.s. in 5.1.8, let =xeH be arbitrary,

S5 hO{x). Since Xp = % A i([xeZ]), we have ho(xz} = ho{x} A it ([xez])
(since h0 preserves A, and h°i = i'). On the other hand,
Vgy S i*(Iy e h[Z]]) = h (x) A i'([h (x) e h(z1]).

Now, clearly [xeI] EL ﬂho(x) e h[Z]l, hence
it ([xezl) <, i-(ﬂho(x) e h(Z]]);

= J
and so hO(XE) = yh[Z]’

clearly, yh{Z] < \/<@ (why?)

n[z]”

hence hO(xZ) SK \/<®h[2]>

hence | VZEK(Z € <h0[®z]> 2z S V<o (why?)

n[z]”
and finally, F \/<h0[@z]> SK \/c@h[z]>

as we promised.

Next, we show that r.h.s. £ 1.h.s. in 5,1.8. Denoting the l.h.s. in 5.1.8

By =z by (5.1.10) and the definition of =z it is clear that for any =xecH

Ol ol’

[ xeZ] SL ﬂho(x) < oz A

Now, let zeK be arbitrary.

We conclude by the last line that for any xeH

[z = ho(x) & X € z] éL [z EK zoﬂ;

hence

[W(z=n(x) Axe5)] <
0 i
xeH

L112< z 1;

By (5.1.9), we obtain



[z € n[zl] <L [z % zolh

F (zeihl] s >z =0 2.0 .

Since {z]ﬂz e h[B]l} = {2" € K: 2' =2 & 2 ¢ h[Z]}, we obtain

Eﬂ z' ¢ {z|[zen[Z]} > 2 K 2o

Now, = \/{zlﬂzeh[Z]ﬂ}; it follows that

Zniz]

a 2ot B Zige

This last inequality being true for all 2zeK, a glance at the definition

of the v.h.s. in 5.1.8 =shows that r.h.s. £K Z as required;

0!‘

the proekt of B.l.8;

this completes

Having the two Lemmas 5.1.7 & 5.1.8, we can now finish the proof of h

preserving \/(internally) as follows: we show that for any I € IP{H}l, we

have \X{K)(h{Z]} = h(\/”ﬂ(z)} (remember, £ is a global element of P(f),

here we mean the literal equality of global elements of K, or equivalently,

that the equality has wvalue lL); this will be clearly sufficient (why?) .

(K) (K)
Y Yapn s Y <015

by 5.1.7

- Ak
= \/ <h0[¢2]>

I

by 5.1.3

K
=Y (hy[o,])

I

by the definition of
K
\/ derived from K

LB
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H
hO(V (8:))

—

since h
0

preserves \/

H
= <d_>
ThO(V 0,>)
def. of VI
H H
-n, V@) = nVian,
by 5.1.7 since
h = Tih
o (h)
El For B.l.6
The final task in the proof of 5.1.1 is to show
claim 5,1.11. For every L - in L-cHa, there is H such that
r(H) = (L ——> H).
4 : . :
Proof: Let L ——— H in L-cHa be given. We define (H, <, 1, A,\/} as

follows. H is the L-set for which |H| = H; we define [xsy] = \/{ueL:

X AH i(u) <y AH i(u)}, and of course

[x=y] = [x<yl.[y<x] = \/{veL: x A i) =y A i(}. It follows that [x<y]

is the maximal element U in L such that x hH iUy =y AH 1), similarly

for '='. Namely, if U0 = [x<y], then

x Ay 1(U) = x A i(\tver: x Ay i) =y AL D

.= A \/(H){i(U)z TR Rl 88 i(u)}
= Vi, A e x A i) =y A, i(u)}
= V(m{y AH dl) s x AH iy = v AH i(v)}

= emas = N3 .
- 48 1(U0)



B

We denote (as before) x A i(U) by [x,U]. - It is easy to see that H
is an L-set, every element of |H| is global, and (H,<) is a partially

ordered set (internally in L-sets).
P~

A few more remarks: What we said above about [x<y] being the maximal
T e inai®

element U such that ... can be rephrased by saying:

A < A
X i(u) Y

4 i(v)= us= [ x<yl

H

X AH i(y) =y b i(y) =vu SL [x=y] .

It immediately follows that
[xez] < ﬂx=xzn
and also, that x SH y = [x<y] = lL E

It is easy to see that the morphism A: H x H - H represented by

AH: H x H> H is the (internal) intersection for (H,<); lH is lH.

: V (H) - . :
To describe . foe % e [P and meH deflne X 5 X AH i(lxez])
(as before), @E & {XZ: xeH} and \/(H)E 3F \/(H)QE. We next verify that,

indeed, \/(H)Z so defined is the (internal) sup of ZI.
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; e (H) e
Let vyeH be arbitrary, xo IF V (CIJE), U 3t ﬂver(xez +> X =< y)]]-

Our assertion is equivalent to saying that U = ﬂxoéyﬂ.

We have [xeZ] SL |[x=xz}] and [[xzixo]] = 1 ; this clearly shows that

L
ey TS I A
I 0 ! L

To show the reverse inequality, start with x /\H i([x<vyl) £H y (see above).

Intersecting with i(U), and using i([x<yl.u) = i([x<y]).i(Uu), we obtain

X A i([x<y].v) g Y Ay 0.

Since [xeZ].u SL [x<y].U by the definition of U, we obtain

X AH i([xez].u) SH v AH i(u)

or X A i(l[xsZI[}IAH i(vu) SN i(v)
1'4

-

:.\/(H){xZ Ay 1(0): xeH} <y AL i(D)

\/(H){XE: xeH} A i(U) S ¥ AL i(v)

L oJ
W

X
0

g = ][xOSy]], as required; thus

we have verified V (H).

Next, we verify the internal local identity for H. This is equivalent
H
to saying that, for any I € ]P(H)| and xe€H, we have (V( )E) Amatias V(H} (Z(A)x)
(remember that the opposite inequality is automatic, and that 'all elements are

global' now), or equivalently
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L () H
(" vV 2.) “xqu’z(n)x .

We have (\/(H)QE} AXx= \/(H](Qz(h)x) by the local identity for H.

Now, let vy € @E{A)x be arbitrary, i.e.

y = ZZ Ax=2z A i[zeX] A x.

i i X 3 % o~ " ] =
Let y' = (zax) A i (zAx) € Z(A)x]; clearly, y' € QZ(“)X' Since
H
< A Sy ¥ S .
[zez] < [(2Ax) € Z(A)x], we conclude y <, v's, V "l TWRER F € St
was arbitrary, it follows that (\/HQZ) AxX= \/H(QZ{A)X) < \/HQZ{h}x as

required.

Having verified that H is an (internal) cHa in E, now we check that

Ul & 1 = B,

Lemma 5.1.12. The correspondence X |——— the arrow 1 —— H in

L-sets represented by the function * fb— x is a 1-1 correspondence

of H with HomL_sets{l,H).

Proof: Let f: 1 ——— H be any arrow in L-sets;
. e \/(H) : ; .
define |f| T (xAi[x @ £]) [we write [x © f] instead of [x © f£(*)],

|1. wWe claim: [|f]| © £] = 1_ . Indeed,

with * the unique element of |1 I

L-gets
for any x,x' € H, we have: [x' e fl.[x & f] < [x = x'] hence:
x' Ai([x' e fllx e £]) = x A i([x' & f][x e £]) (by using the 'basic equiv-
alences', p. 5.17). Since the right hand side is (x A i[x & f]) A i[x' & f]
we get x' A di(lx* & £]) A idlx & £l) = x A iflx e £]) hence

(\/{x' Adlx' e £])) A dilx e f] < x A ilx e f]

x'eH

or
|£] A ilx e £] < x A i[x o £] .

By the 'basic equivalences",



[x & £] éLi[[f| < x].
On the other hand, it is easy to see that

[xefl < [xx |£|1;
hence

[xe £] <[|£]| = =] .

M

since [|f]| = xJ[x e £] < [|£]| = £], we obtain [x e £] < [|£]| e £];

taking sup on the left

3oh= \/(L)[x e f] = H[fl g £l, as

xeH

claimed. - This means, as it is immediate, that f: 1 — H

is represented

by * p—— |f[; showing that the described correspondence is onto; one-one-

ness is left to the reader.

Now, we remind the reader of the definition of T (H).

where H' is the partially ordered set <H',<'> with

Hom
L-sets

H* = L)

(1,H), <' =T(5), with < understood as the subobject

moreover, 1' is defined as follows: with any UeL, we associate

Bl o5 Ty

il
L —— H',

— H x H;

the predicate

{1|u} € |P(H)| (such that [x e {1|u}] =[x = lHﬂ.U}, then we consider the

corresponding arrow 1 _i}lﬂih+ P(H) (represented by * —— {1|U}), and

finally, we consider the composite 1 —ilell—+ P(H) -_yi_ﬁﬂ+ H;
—— . o
L sets H (e T(H)) that we designate as i'(U).

Let us call the function defined in 5.1.12 by g:

this is the arrow

| e o DL SR [ )

says that g is one-one and onto; we leave it to the reader to check that it

is actually an isomorphism of the partially ordered sets

and (H' ;=47

hence, of course, g is also a cHa-morphism, and an isomorphism in the category



cHa. We claim that the triangle

commutes; this will finish proving that, in the category L-cHa, (L — H)

is isomorphic to T (H).

(H)
Let UeL. i'(u), i.e. the composite arrow 1 —illgl—+ P(H) % H,

is represented by

® fens il \ MMy

according to our description of \/(H),

V™ 1|03 = VFerpny = VP ix a ilx e o

xeH

Il

= V(H){xni[[x 1H]I ki)l = =%
X

chantiy 2

We will be finished once we see that this last quantity equals i(U). It is

trivial that, for each x¢H,
x A ifx = lHﬂ A dqm) = d(u), Hhence

X, = 400D ;

On the other hand, taking x = i(U), we see that the term
e = lHE A ARy i X becomes equal i(U) (exercise). This completes
the proof.

We have finished the proof of Claim 5.1.11, and thereby the proof of

Theorem 5.1.1 as well. 0O

el
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5.2 Restating matters in the sheaf theoretic language

et L be a cHa, and consider the category of sheaves, Sh(L), over L.
With TI: Sh(L) — SET the global section functor (see i

I' induces an equivalence
T: cHa(Sh(L)) — L-cHa;

this is a consequence of 5.1.1, and the existence of a (natural) isomorphism

between [I': Sh(L) —— SET and the composite Sh(L) %ﬁ L-sets s SET.
In this subsection, we restate some of the detailed results of the last section.
It turns out that the picture obtained that way is more appealing geometrically

than the one in 5.1. No proofs will be given; the proofs are routine by actually

examining the above isomorphism of functors.

(1) Here is how I‘(@) = L —— ® looks for a cHa-object @ in. Shildi) .

[We write @ for a cHa, in E, using then H for underlying set-object;

similarly for @.]

@=<H,g,___>; @:cﬂ,s,,,,>

H = T(H) (I': Sh{(L) -+ SET)

L e I

<& — H x H, so TI(2) is a subset of H x H;

< = T(%)
) e

qis SIE @ is defined as follows. We have the supremum morphism

of (H))
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\/: PtH) ———H

{for Pi(H), etc., see ). Let Uelkl.

(U) (U)

Define h is;a nat. transf. H=>Q; for = e H(V),

€ {P(H})(lL): h

"My )

v

l
I

Viwsv:x[w=1, [ w

H

the largest W = V such that

er=lHrWeQ(V);

L asgs ()
put i(u) = \/{lL)(h B

(2) Let L ———s @ be an object of L-cHa. We construct @ , denoted
sh(L —— @] (or: sh(i), or even sh@}, as follows: define

H: 1P — sET by

H(u) = H|i(V) (= {xeH: x < i(U)});

for =efiin), Vi=mu
x| v=ga ilv) (e H(V)).
H turns out to be a sheaf.
The subpresheaf <&—— H x H is defined as follows: for x,y € H(U),

=Xy £ (= () = % B ¥

N e Pt PP P AP o D e 8 AP S D s A NS,

Now, examining the description of T: cHa(Sh(L)) - L-cHa given in [(1)],

we see that
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Pl e A . ] eaeien )

B Ty rw v Y LR P P | LSRR PO T

literally (and not just up to iso.).

(3) Let us look at a morphism in L-cHa, i.e. a commutative triangle
® L

0

L

We have, by the main theorem , a unique

O—— ®
(where (:) = sh(L ——E-+ Hel) C) = sh(L ———iL-+ K) such that P{E) =
E is a natural transformation
h: H —— K
(with additional properties). - Notice that due to the special definition of H,

we have that each H(U) is a subset of H = I'(H); H(Ww) = H|i(U) c H: similarly

for K. We claim that h is given as follows: for UeL,
h.=h | H.
o [ H ()

Let x € H(U); then also x ¢ H=H(1); also x [ U=x A i(U) = x since

x £ i(U); since the triangle



Sl

commutes, and h preserves <, from x < i(U) it follows that h(x) < i'(U),

~

i.e. h(x) € K(W; so 'f{U(x) =h,x [0 = ﬁltx) MU =nhx) [U=hx

f

since h(x) e K(u)

proving our claim.

(4) Summary : @ every internal cHa € sh(L) is isomorphic to one of

the form sh(L —— @):

for @
®

we have H =T(H), K =T(K) and T induces a bijection between

]

sh (L —t @).

sh (L 5 @)

Homg_l'{g(Sh(L)) (@, @] and

HomL_cHa({L . S @) , L = S @):

——

(iii)) in fact, given any h with

r h € Hom(i,i'")

then the h ¢ Hom(@, @} with T'(h) = h is given "by restriction":

EU =h [ @|i).
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Consider the special case of spaces

0

pl
e e
. 0

over a fixed top-space EO; let L = O(EO), 69 = iE), (:) = {ipt)
do=rp st = (p‘)_l. Then # = shiL . B C)) is the sheaf whose
U-sections are those open sets of E that are contained in the 'cylinder'

p_l(U) (U open c EO)

o L)

If We H(U), then W | V

(for ¥ < U) 1is the inter-

E section W A p_l(v}.

—~— 0
v
U

; slo Gt -1
Given a continuous map E' *~§H~+ E, this induces h = f ": C)-"“+ @D;

if f is a fiber map in the sense that vy ¢ p'_lf{x}) implies f(y) € pnl({x})

fiber over x € E0

then the diagram

will commute, and therefore will give rise to an internal cHa-morphism (:) =2 C]
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5.3. The object of cHa-morphisms
—

Let E be an arbitrary topos, (:],(:) € cHa(E). We have defined the
notion of morphism (:) s (:); but we have not yet introduced the natural
; : *
notion of the object of cHa-morphisms, Hom (C:j,(:)); this should be a sub-

object of the exponential KH (a subsheaf if € = Sh(L)). - We have a formula

M(z) = M@' @ (z)

, : : \ H .
in the language of E, with variable 2z of sort the object K that is

abbreviated
"z is amap H - K that preserves 1, <, A and &

*
(the reader can write this out in detail); we define Hom ((:),(:)) as the

extension of this formula:

Hom (@), @) : = [2: m(z)]— K.

The connection with the ordinary notion of morphism is as follows. Let
H

h: H > K, an arrow in E; 1let h be its exponential transpose 1 — K.

Then the sentence M(h) (substitution for z) is grammatically correct. Now,

h belongs to Homggé(g)((:),C:)) just in case
£ M)

holds; inspection of our original definition will show this.
We want to point out a vivid description of the "object of cHa-morphisms"

in E = sh(L); we will apply this later to identify the real number object

(and other similar things) in such toposes.
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. -
et “E=sh(i). L a cHa: let I S S C), T S LSO L-cHa's; form

)
®

S i @)

sh(t ——— (¥))

(see 5.2). Now, form the following sheaf M over L: for UeL, M(U) is the

set of cHa-morphisms

such that the triangle

plite) ——B kel )
:\\\\\\\ /////f’U

M(U) is the set of functions

commutes; in other words,

h: H|i(u) — k|i' (V)

satisfying: (i) R G v es S SV S Ro e eV ST
(ii) h preserves binary A, and V, of H.

For h e M{O), V= U, 3aé%

h [v = h| H|i(V))

M 1is clearly a presheaf; we'll show below that M is (isomorphic to) the

*
object of gﬂg—morphisms Hom (Gz},(:)). But before we do that, we consider

the case when the cHa's comes from spaces:



el

A O(EO)

@= 0(E)
®

0(E")

Il

; i ; =i ! : L
E B EO fHlves pise o L= pias L—= C], E'-*JQ——+ EO gives rise to
i' = (P')_l: L ———+(::1 A fiber map E' BT =S E 1is one for which the

diagram

commutes. The sheaf M' (over EO) of fiber maps from E' to E is the sheaf

! }

E E

0 0
whose U-sections (U open c EO] are the fiber maps:
(U) —_— (p) (
A (1)
w1th induced (ﬂf
topology p' restricte restricted

gober if E' jsl)
( U e { with 1nduced top

with restriction defined in the obvious way.
To compare M and M', let us assume that EO’ E and E' are all sober.

Then, by 3.5, the commutative triangles (1) are in |—[ correspondence with

those of the form

D —— @)

ilu i'lu
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i.e. with the elements of M(U). - So, the object of cHa-morphisms @ = @

is identified with the sheaf of fiber maps from (E' -+ EOJ te (B = EO) 3

Let's show that M is (essentially) the object of cHa-morphisms. Let

h € M(U) as described above; h gives rise to the natural transformation
h: H|u > K|u
by defining

(hv) (}ICJ = hi(x)

xeH (V )=H|i (V)

(compare dny 4y, 5.2).

Consider the presheaf ‘M obtained by replacing h by h, for all h € M(U);

M@U) = {h: heM(U)};

Notice that M so defined is a sub presheaf of the exponential sheaf HK;

—~—

clearly also M = M.

~

Propogition 5.3.1. M is the object of cHa-morphism

Hom (@), K) (@)= snw —2— @), (&)= shiw —— @)

H
Proof: We have to show that for geK :

g e [M(z)](U) = g e M(U).

—
Hom (@,@)



Let first U=1= 1 . Then ge [M(z)](1) = T'[M(2)] ‘:*]L(L) M(g)
by 4.5.3.2.

By what we said in the second paragraph of p. 5.27,

Sh(L)
}=( Mig) = g ¢ Hom@{g)(@,@).
By &in (4Y, 5.2; g € Hom%(g){@,@) ifE g=g for some

(obviously unique) h € T'(M)

" g € Hom{@,@} =g F{ﬁ}.

The three displayed equivalences show:

[M(z)](U) = M(U)

the general case is obtained by the special case applied in the topos Sh{L|U)

to the cHa-objects @= sh(L|U S H|i(U) Yer @= <o AEXekoise) .

O

As an application, let's see how the notion of 'point' is internalized.
Given @ € cHa(E) (E an arbitrary topos), we have the notion of the object

of points of @

Pt*(@)

defined in the natural way:

Pt*(@) & Hom*cHa(@,@),
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with @ = the initial cHa in .. - Let E =5h(lL). We can assume
that (H) = sh(t —— (@). clearly, (@) = sh(t —2— (@)) (check!).

Therefore, the object of points of @ is the sheaf whose U-sections are

those h: -——~+ @ for which the diagram
H|i (V) aedlne. Llu O 1d
h

|u
commutes. = In case L, H come from the sober spaces EO' E, respectively,
-1 ; :
as usual, i =p , then what we get is precisely the sheaf of continuous
sections of p
s:(x)
P E
: E
0
-+ E; ss = Td
= U p*s U
; ; ; : P
The moral is: the points of the internal cHa (locale) derived from E ———— E

0

are internally the same as the sheaf of continuous sections of p.
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5.4, The real numbers in intuitionism;

the real number object in toposes.

First, we'll theorize about the real numbers in informal basic
intuitionistic mathematics; afterwards we will state some conclusions

concerning toposes.

We restate the well known notion of Dedekind real; we choose a

formulation that is classically the same as the usual one, but intuitionistically

is one of more possibilities (to be sure, the best one).

A Dedekind cut is a pair C = (CR’Cﬁ} of subsets CR’C of the
u
rationals @, satisfying the following conditions:
(1) CQ’Cu are inhabited: there is p such that p € C2 and there

18 g such that g s Cu;

(2) C£ n Ch = @;

(3) C2 is closed downward, Cﬁ is closed upward

1 =
(Pecg,p £Pp =P ECQ)

[Remark: (2) & (3) implies: p € CR' q € Cu =n < gl

(4) for every p e @ there is p! >p, b* ¢ €. (Mo last element™

I L

formulated in a positive way); for every g € Cu there is

gt T d el

(5) whenever p < g are rationals, then EEEEE; P € Cu O e Cg'

End of def. of Ded. real
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Remark: The real number C is being specified by declaring that for

ratiendls:s p < C T p e €. g > == q ¢ Cu. So, (5) is says that given

I
B9

T~
e

we should be able to tell either that C is to the right of p, or to the
left of q; clearly, this says that in some sense we can "locate C arbitrarily

precisely". In fact, consider the following condition:

(5)* Given any n € W - {0}, we can find p € Cg' qe€C, such that

1
(O<Jq-p<n-

To present a typical intuitionistic proof, let's prove that every Dedekind
real satisfies (5)*; it is easy to show that (1) - (4) & (5)* imply (5) back.

[This shows the equivalence of the definitions in FS and TT].

By (1), £ind p € CE' q € Cu. Divide the interval (p,g) into short

pieces: find rationals

— < < ses < —
ELS RS N By 5B =4

=8 % . Now, construct the following subset X of

such that pi+ >n

1

{po,...,pm}: for each pair of indices i < j (in [0O,m]), £find that either
(Base Y pi S CR’ or (Case 2) that pj is in = (be careful: we
i

cannot decide of a given p if it in in Cu!); in Case 1, throw pi into

the set X, 1in Case 2, throw Pj into X (if both Cases hold, drop both

P Pj into X); do this for all pairs i < j; at the end, you have your

set X. [- The good thing about X is that, because of its definition, it



(-» < any finite rational < ®) together with the symbol @ ('empty set')).

Define @ < every element of P;

P> = ' gt g? P EpRgEg,;
<p,q> ¥ £.

It is easy to see that P is a 'finitely complete' poset;

<p,g> n <p',q'> = <min(p,p'), max(qg,q')>

if min(p,p') < max(qg,qg'); otherwise it is @; the maximal element is

<—, w>

[One has in mind that <p,g> is the open interval (p,q).]

We define the following system of prescribed coverings:

1108 for @, the empty family is a covering of @:
c
g e ovo(ﬁ)
2. for <-w, «>, the family of intervals

{<n,n+1>: n € Z} is a prescribed
covering, € Cov0{<—w, 00> )
3. for finite p < q: (a) for any n € ® - {0}, and write

pi P h = i3 (470 L 2n) the family

{<p, /Py, p>: 1=0,..., 202} is
a prescribed covering € Cov0(<P:q>)

(b) the family {<p + %—, g - %¢: nemw -0,

a5

2(g-p) } is a prescribed covering of <p,qg>.

n &=

SEg6 0
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is decidable: we can actually see if a rational has been dropped into X or

- 1 " = = l= TR 1 =
not; if we let X {pi it 1l ,m and either pi € CR’ or pi Cn},

this is not clear of X'.] We claim that there is at most one i € [1,m] such
that p, ¢ X; otherwise we'd have i < j P, pj ¢ X; but then we have not
done our job for i and j ! Now, remember that every element pi of X

comes with our finding out about it that it is in Cz' or that it is in Cy

Let Xy = {pi € X: p; is in CR}' X. - {pj € X: pj is in Cu}' Clearly,

. 5 :
P, S o pj (< Xn imply pi pj Let pi be the largest element of X

r
L 0 0

P. the smallest element of X ; then for any p in (p. ,p. ), we must

3 n k & Jj

0 0 0
have pk 4 X; but there is at most one such pk;
conclision:: 0. <p,. = p. = 2 545 - ~I];~ . This finishes the proof.
e a3

o
The set IR of Dedekind reals is made into a topological space, by the

following definition: for rationals p < g, define

I

*
(p,q) the open interval (p,q) =

e e pE C2 Sk iE Cu} .

One verifies easily that the collection of all "open intervals" (p,q) *

form a basis of a topology, which, by the definition, is the topology on IR.

Henceforth, TR is the topological space so defined [for emphasis, we might
write however. ]

We now point out a p-site, actually a pre-p-site (see end of subsection

3.1), whose points are exactly the reals.

Let P be the following partially ordered set: the elements of P are

ordered pairs <p,q> of extended rationals, p,g € @ U {-», »}, with p < g




There are no more prescribed coverings other than those listed under 1.-3.
- Let P also denote the site generated by the presite given so far; and

let L(P) denote the cHa generated by P (see § 3.)

Theorem 5.4.1. R is homeomorphic to Pt(P) = Pt(L(P)).

Proof: Let's start with a few remarks of a general nature (that actually

would belong to an earlier place).

Define, for a p-site P, Pt(P) = the set of p-site morphisms P - ,-

by the universal property of P —£ & 3(p) (see § 3:-1) , PE(F) ds dnia

bijective correspondence with Pt(L(P)):
x € Pt(L(P)) —— x = xoe € Pt(P).

Defining the topology on Pt(P) by the basis consisting of the sets

U* = {xc BPL(R)s ") = 1} (UeP)

(check), this correspondence actually becomes a homeomorphism (see the
description of L(P); check). - So, we can restrict attention to the top.

space Pt(P).

On the other hand, if P is defined by the presite PO.r and Pt(PO)

denotes the set of left exact functors P —— P (1) preserving Po-coverings,

then by 3.2', we have that
Pt(P ) = Pt(P)

as sets; the topology on Pt(PO) = Pt(P) is as above.
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Returning to our concrete situation, we therefore show that spaces

and are homeomorphic.

@ Define the map R L* Pt{PO) as follows. Given C € IR, let
u(= h(c), in the "prime ficter" style) be the following subset of P:

1, for p =« both in O,

(Pigll EMSE P &G & g F Cu;

L

2. for (_00' q) ’ (p: m) ’ (-ml w) H

(_oo’ oo) Slenl
(_m: q) € u@q € Cu:

(p, =) su‘=’peC2;

cl I

We claim that u is a 'prime filter': it contains lp, is closed under A,

and whenever {Ui < Ui e Tl ¢ CovO(U), Ueu, then for some ieI we have
Ui € u. [such a u obviously defines an element of Pt'iPo)ur and vice versal.
These are routine to check, using the definition of Dedekind cut. E.g. the
last condition with j = {Ui S e Tl sice tiverd for e Cavo(ﬁ),
by the third clause for u; for j € Cov0(<—W, ©>) , by the inhabitedness of
Cg and Cu and an additional argument resembling one below; and for
j e Cov0(<p,q>1, under (a), p,q € Q, as follows:

nsdng (5)*, £ind r',s' =uch that x' e Cz, s' € Cu and
R A é; (g-p); let r = max(p,r'), s = min(qg,s'); then it is clear that

for some i =0,..., 2n-2 (see 3. in the def. of Covo), we have

Pp. = 5.5=p

oat At Follows that p, € €
3 i+2 i

1} and pi+2 € Cn, hence

38.

<pi,pi+2> € u as required. For J wunder (b): use condition (4) for Ded. cuts.
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(:) Define the map h': Pt(PO) —— R as follows. Given

u € Pt(PO) et €= (CR' Cu) be defined as follows (we'll put C = h'(u)):
p € (‘.‘2 ¢ there i8 d & O ‘sneh that <p,g> ¢
q € Cu == there 15 p € @ =such that =p,g> e 1,

Since by (-, ) € u we must have some <n,n+l> € u, it follows that CR'

Cu are inhabited. If r € CR n Cu were the case, we'd have (p,r) € u and
{r,;q) € u, hence @ = (p.r) o (e,g) e u, conkradicticn. Eenditien (3] for
Dedekind cuts is clear. - For (4), use the covering "of type (b)", and for (5),

for a covering "of type (a)".

@ Next we check that hoh' = Id h'oh = IdIR - easy. = The

BE(R) "

topologies on both I]R and Pt(P) are defined by certain bases; to show e.qg.
: ; ; =1 :

that h: IR —— Pt(P) is continuous, it suffices to check that h ~([u]) is

cpen in IR (U< B, [Ul = {u'e PE(B): U e ul); and simidarly for h'. Bat we

find that
_1 *
h “([u]) = U

my ety = ol

* *
here for finite U = <p,g>; U was defined before; <-w, o> =1R,

*
<=, ¢> ={CeR: qeC]l, ete.

Erfer 5.4 1,
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Now, let E be a topos. By formalizing the above, we obtain internal
notions in E. E.g., by imitating the usual construction, one has the object

(E) 12 G

of rational numbers Q = Q in E; then Ded is given as a certain

subobject R ¢&—— P(Q) x P(Q). Also, from Q one derives the 'real pre-site'’

(1) (1)

P introduced above; P (as an object) is a certain subobject of 0 X Q

(Q(l} =QuU {-», »} =0y 2); Cov,, is given as a certain subobject

cho 5 P(P) x P

(meaning: <y,x> € Cov_ < ¥y € Covofx)};

0

*
finally, is the internal space of points of P; the set

* * *
Pt (P) = Pt (L(P)) was described in 5.3; the topology on Pt (P) is
defined by the obvious process of formalization, and it consists in specifying

a subobject

0(pt (P)) “— P(Pt (P)),

The theorem proved above is wvalid in E; it gives us an internal

homeomorphism
*
Pt (P) = RR.

On the account of this, we declare that for us the real number object

*
is Pt (P).



