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5. Well-founded Relations and recursion

We now extract a property of the e-relation on W, because

of its importance and use in other situation. For a relation R,

we write 'yRx' for '(y,x) e R'.

Definition 5.1 Let R be a Relation on the class A

(RecAxA), and for any x € A, let us denote the class {y : yRx}

by R.; elements of R, are called R-predecessor of x. R is

called well-founded (wf) if the following holds:

whenever XcA, and for all x € A, RXCX implies x e X,

then X = A.

As an example, consider A = W, and let R be the e-rela-
tion on V: R = {(y,x) : y € x}. Now we have R, = x. R s
well-founded, and this fact precisely expresses the fact V is
the smallest class closed under set-formation.

It is easy to see that the restriction of a wf relation to
a subclass is again wf. (If RcAxA, and BcA, then the re-
striction of R to B 1is Rn(BxB)). It follows that the e-

{(a,B) : a,B € Ord, & ¢ B} is again wf.

relation on Ord, <

Again, we have <o T - As an even more special case, we obtain

that < on WN is wf.

Another example is the following relation R on N (or,

on IN, in any Peano system (N,0,S)):

mRn 5} Sm = n.

Now, R_ = {n-1} if n # 0, Ry = # (see 4.1'). The fact that
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the latter relation is wf also comes from a general principle;

this and the one about 'restrictions' are both contained in

Proposition 5.2 If ReAxA, and R is wf on A (note

that the definition 'wf' depends on A too!), then for any R'cR

and B such that R'<BxB, R' is wf on B.

® Proof: exercise.

So, in particular, R being wf does not depend on which
class A is taken (such that RcAxA) in the definition. Now,
the last example comes from the proposition, since Sm = n
implies m < n.

Every wf relation R on A has a corresponding induction
principle associated to it, which is merely a reformulation of
the definition of 'wf', and which reads as follows. Assuming
that for an assertion P(x) for elements x of A we have that
from the fact that P(y) holds for all y such that yRx, it
follows that P(x), we may conclude that P(x) holds for all
x ¢ A. Note carefully that for the first example, this is e-in-
duction, and for the last, ordinary (complete) induction. The

case for ordinals deserves separate mention.

Principle of Transfinite Induction. Assuming that an

assertion P(a) concerning ordinals a holds whenever it holds
for all B < o, we may conclude that P(a) is true for all

ordinals o.

An easily verified equivalent definition of 'wf' is contained

in

-
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Proposition 5.3 R 1is wf on A 1iff the following holds:

whenever XcA and X # @, then there is an R-minimal element

x in X: x € X but no R-predecessor of x is in X.

Proof: exercise.

Let us see what this proposition means in the case of
A = 0rd, R =€ on Ord. Let XcOrd be non-empty, let x ¢ X
e-minimal (<-minimal) in X. Since trichotomy holds (4.9), every
y € X 1is comparable to x; since x is minimal, y < x is
impossible. Hence, for all y € X, we have x < y. In other
words) x 1s the least element of X; clearly, only one such
is possible, since y < x and x £y imply y = x (why?).
We have obtained: for every non-empty class of ordinals, there
is a unique least member of the class.

One way we use this principle in practice is a method of
definition of functions with ordinal values. Let A be a class,

~"and assume that for each a € A we have a property P(-,a) of

ordinals (for the blank), the property itself depending on a,
and assume that we have established that, for all a € A, there
is at least one ordinal x satisfying P(x,a). Then we can pick
the least such x, for any fixed a € A, and define a Function
with Domain A,

F : A > Ord

such that F(a) = the least ordinal y such that P(y,a) holds.

In terms of class comprehension:

F = {(a,g) : a € A, x ebrd, P(x,a), and for all y ex, not P(y,a)k
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Corollary 5.3' For any non-empty set x, there is y e x

such that =xny = 0 .

Proof: exercise.

The statement in 5.3' is called the axiom of foundation,
in 'set-form'. It expresses precisely the fact that
e = {(x,y) : x e y} is a wf Relation on V. Namely, let x = X
be a non-empty set; then an element y of x with xny = § is
the same as an e-minimal element of x. It can be shown that
the well-foundedness of €, in the formulation of 5.3, is a
consequence of 5.3' (i.e., we can show the general form of 5.3,
with X a class, from the special case with X restricted to
be a set).

Given any wf relation R on a class A, we can uniquely
define a Function F with domain A once we have a prescription
how to compute F(x) (x ¢ A) from the values of T at R-pre-
decessors of x. This fact is called the recursion principle
(for R). This principle is one of the most important theorems
of set theory. Definition of functions by recursion along various
wf relations is an important ingredient of constructions whenever
set theory is used, and in fact, even in more common mathematics,
in the case of recursioncon natural numbers.

To give an exact form to the principle, we have to formulate

what we mean by "computing from the values of F at R-predeces-

sors of x". Given a function F : A > B, the object that
contains the total information concerning the values of F at

R-predecessors of x is, clearly, the restriction F | R -
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Thus, the data in a definition by recursion should include a rule

that assigns to any x din A and any object of the form F hRX,

> B, an element b of B;

preferably to any Function F' : R,
the intention is that F(x) be b. 1In order to formulate this

in our present framework, we have to assume that

for all x, RX is a set.

This last condition will be assumed and, in fact, be considered
as a part of the definition of well-foundedness. Note that the
examples all satisfy the additional condition. If, under these

conditions, F : A

> B is any Function, then F }R_ is in

fact a set, by the axiom of replacement.

Theorem 5.4 (Principle of Recursion) Suppose R is a wf
Relation on A; B another class, and C +the class of all pairs
(x,f) where x ¢ A and f is a function of the form f :R_ —> B,

e
Suppose

G : C —> B

is given. Then there is a unique Function F : A > B that
satisfies the identity
F(x) = G(x, F PR)

for all x € A.

Note carefully that 5.4 specializes to 4.3 in case

A =N, and R is defined by mRn ¢ Sm = n.

Proof: The recursion principle in the case of the natural
numbers (in the formulation of 4.3) is justified, intuitively,
by saying that the recursion equations allow us to compute all

values of f step-by-step:
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£(0) =a,

£(1) =£(80) =g(£(0)) =g(a),

£(2) = £(880) =g(f(S0)) =glgla)),
etc.

In fact, at any finite stage n, only a finite approximation of f is computed, namely
fl{k:k<n} ; the total function f is the 'limit', formally the union of all of its finite

approximations:
£ = \J {fMk:k<n} : nelN }

This description is not far from the actual proof of the general case. On the other hand, note
that in the proof of the general case, we use the word "Approximation” (the capital is because
Approximations may be proper classes) in a generalized sense so that the total function F
itself is an Approximation. Now, we turn to the proof proper.

We are given the data as in the statement of the principle: the classes A, R, B, and G
satisfying various hypotheses. Let us call a subclass D of A closed if for all xeA, xeD
implies R CD . In other words, D is a closed subclass of A is xeD and yRx imply that

yeD .

Note, first of all, that A itself is a closed class. Next, note that if R is, in particular, a
transitive relation, then for any xeA, the set R, is closed, and it is the least closed subclass
of A containing x as an element.

By definition, an Approximation (of the Function F to be defined) is a Function
E:Dom (E) —B such that the following conditions are satisfied:

(i) DyggPom (E) is a closed subclass of A ;
(i) forevery xeD, the recursion equation
E(x) = G(x, EtRX}

holds true. (Since D isclosed, and xeD, we have R cD, thus E PRX is a function of the
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form R —B; thus E?Rxec, and so G(x, E?RX} makes sense.)

Claim 1. Any two approximation E, and E, coincide on the common part of their
domains: E; (x)=E, (x) forall xeD daf Dom(E;) nDom(E,) .

Proof of Claim 1. The proof is an induction on x along R (that is, it is an application of the
induction principle associated with R ). Suppose xeD . The induction hypothesis is that for all
yeD such that yRx, if yeD, then E; (») zﬁ'z (y) . But,since D is closed (it is easy to
see that the intersection of closed classes is closed), we have that R cD, and so for all
YER, ., Ej (¥)=E,(y) . This says that E, ?Rxmsz PRX . But then, by (ii),

El (%)= G(x, El I‘RX) = G{x, E2 i‘Rx) = EZ (x)

as required.

end of proof of Claim 1.

We make the following definition:

F = {a: there is an Approximation E such that acE} . (1)

Remarks. The definition of the class F says that F is the union of all the Approximations;
‘In particular, for all Approximations E , we have EcF . However, an Approximation is not

necessarily a set; therefore, we cannot talk about the class of all Approximations; if we could,
and that class were Approx, then the short description of F would be F= \U Approx .
When the originally given classes A and B are, in particular, sets, then all Approximations
are sets, and the class Approx exists and can be used as shown.

Note that since all elements of an Approximation are ordered pairs, so are all elements of F .

Claim 2. F is an approximation.

Proof of Claim 2. First of all, we show that F is a Function. As we noted, all
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elements of F are ordered pairs (so, F is a Relation). If (x, u;), (x u,) are both in
F, then there are approximations E ., E, with (x, uJ€E; , (x, u,)€E, ; by Claim 1,
it follows that u;=u, , as desired.

Secondly, Dom (F) is closed. Indeed, if xeDom (F) , there is an approximation E with
xeDom (E) ; by the definition of "approximation”, R, cDom(E) ;but Dom(E) c Dom(F) ;
50, Rxc Dom(F) .

Thirdly, we have the functional equation:

F(x) = G(x, FI‘RX) (x€e Dom(F) ). V)]

The reason is that if xeDom (F) , there is an approximation E such that xeDom (E) ; since
E is an approximation, we have that

E(x) =G(x, EIR,) ;
but EcF ; thus, F(x)=E(x) and FPRX=E PRX (note that R, cDom(E) ); (2) follows.
Claim(2) done.
Claim 3. For every xeA , there is an approximation E with xeDom (E) .
Proof of Claim 3. The proof is by R-induction (see middle of page 52). Let xeA , and
suppose the assertion holds for all YER_ . Let YER by the induction hypothesis, there is an
approximation E such that yeDom(E) . By the definition of F (see (1)), we have

Dom (E)cDom (F) ; thus, yeDom(F) . (In other words, the one and the same approximation,
namely F, works for all y'sin R, 1) Now, consider

*
F =Fv {(x G(x, FPRX) b
* * *
We claim that F is an approximation. F is a function; indeed, since F is a Function, F

could possibly fail to be a function only if xeDom (F) ; in that case, since F is an

b
approximation, F(x) = G(x, FPRX) , which is the value of F on x "added” to F; so,
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* *
after all, there is no "conflict”, and F is a Function. Dom(F )=Dom{F)v{x} ; thus, it is
*
closed, since Dom (F) is closed, and R cDom(F) c Dom(F ) .Finally, the functional
*
equation holds for F since it holds for all y € Dom (F) ( F is an approximation), and the

definition makes it hold for x itself. Of course, xeDom (F*) .
Claim 3 done.

* . - . . .
Remark. Note that we can see that F in the previous proof is in fact the same as F , since,

* *
being an Approximation, F CF, and, by definition, FcF .

Proof of the Principle of Recursion. Returning to the definition of F, we see that Claim 3
says that Dom (F) = A . Since F was already shown to be an approximation, F satisfies all
the requirements of the theorem. The uniqueness of F is a consequence of Claim 2.

end of the proof ""Principle of Recursion"

Let us make a remark on a possible simplified formulation of the recursion principle. Suppose,
in addition to the conditions of the statement of the principle, that szRy implies that
x=y . Then the recursion scheme can be equivalently rewritten as

- F(x) = G(FIR,) ;
that is, we may take G to be a one-variable function instead of the original two-variable one.
The reason is that, in this case, x can be recaptured from R_, hence the additional

argument x in the original formulation does not carry additional information. All the
examples in this section satisfy the additional condition.
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We have already mentioned that recursion for natural numbers,
4.3, is a particular case of the general principle. Let us note
that if we again take N for A, but this time for the relation
R we take <, we obtain the following form of recursion. Since

now R_=n = {0,...,n-1}, the recursion equation
F(n) = G(F M{0,...,n=1}) (3)

tells us that F(n) 1is determined by 6 once we know the values
F(0),...,F(n-1); the previous values of F. In the version of

4.3 TF(n) has to be determined from F(n-1) alone (if n > 0,

and it is determined outright if n = 0). Thus, in a sense, the
second version is more powerful; it allows more complicated con=-
ditions to govern the values of F. Note that for n = 0, (3)
gives F(0) = G(g), thus again, F(0) is, in fact, determined
outright (despite the fact that this is not mentioned separately
in the definition).

We cah use recursion on natural numbers to generate many
ordinals. By recursion, we may define the function

f . w—> Ord by the requirements
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£(0) = w
f(Sn) = S(f(n)).

We obtain f(1) = Sw, £f(2) = SSw, etc. Notice that if
o < f(n) for some n € w, then either a € N, or o = f(k)

for some k < n (exercise; use induction on n). In other words
w u range(f)

is a transitive set; therefore it is an ordinal itself. At the
end of Section 2, what we called wtn is f(n), and what we
called wtw, or w+2, 1is the last defined ordinal.

By transfinite recursion we mean recursion on Ord, or a

subclass of Ord, with respect to the wf relation <. To

repeat, this takes the form
F(a) = G(F M ad * (4)

(now, R = {B : B< o} =oa); with a given function G.

Usually, G is given partly verbally, by spelling out in words
and symbols how to obtain F(a) from F Ma. Class-comprehension
can always be invoked to get a Function 6 so that the verbal
recursion will be identified with the formal one as in (4). One
frequent occurrence is the distinction of three cases: o = 0,

a successor, o 1limit, in giving F(a) from previous values.

Consider the following definition:

WD = g /
W&lz NW? E (5)
Waz U WB (alumt}j

B<o
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First of all, from now on we write Bg+1 for ©SB even though we

have not yet defined + for ordinals. The equations (5) are

intended to define the Function T : ord > Vi we wrote Vg
for F(a). It is a proper recursion since every ordinal o
falls in exactly one of the three categories: o is 0, or o
is PR+l for a unigue B, or o is limit. In each case, the

function value is given in terms of function values of arguments

less than a. Formally, we can define

G : C >V,

with C = the class of functions f with domain some ordinal,

as follows

f

<f,a> e 6 * f ¢ C and either (dom f 0 and a = @)

Hi

or for some B € Ord, (dom f Bt1l and a = P(£f(R)))

or dom f is a limit ordinal and a = U range(f).

OQur preceding arguments amount to a proof of the fact that G
is a Function (exercise), and then clearly, equation (4) will be
equivalent to the system (5) (exercise).

Note that we have now defined precisely the so-called

cumulative hierarcﬁg of pure sets, begun at the end of Section 2.

Proposition 5.5 The cumulative hierarchy is increasing:

Wa <V for a < B. Moreover, we have

B

v o= uov
ae®rd

Al ¢ach \\/oti o oa %hg{h"m SL%‘ Cs\\ajj I~ ?w\r’il g\n{' gj
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i.e. for every x there is o ¢ Ord such that x e WQ.

Proof: The proof of the first part is left to the reader

(exercise). To prove the second part it suffices to show that

v v (= U range W ) is closed under set-formation. So,
a (+)
oeOrd
suppose that x ¢ U WV _. This means that for every y e x
aeOrd

there is an ordinal o such that y e A Define the function

r o X > Ord by the formula:

r(y) = the smallest ordinal a for which y ¢ .

Consider the set {r(y) : y e x} = range(4). Apply 4.1l to
obtain an ordinal B such that r(y) < B for all y ¢ x.

Then y e Wa A\ for all y € x, idi.e. x CWB, and thus

B

y
) =V c UV, O

X € P(W B+l eOpd

B
In more advanced set theory, one encounters complicated
recursive constructions. E.g., we may construct several objects
at the same 'stage' o, with a ranging over all ordinals, or

all ordinals less than a fixed one. In the construction, the
items constructed at 'stages' B < a are used. Such a re-
cursion will fall under our general scheme of transfinite re-
cursion if we form a single object using ordered pairs, triples,
etc., of the ones to be constructed. A more important aspect of
some of these constructions is the fact that the construction of
the items in stage o depends on certain properties of the
items constructed at previous stages; simply, the construction

cannot be carried out without the previous items having these
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properties. Then, of course, it is an integral part of the
construction to show that the items constructed at stage o
continue to have these necessary properties. Such a recursion

could be called an instance of transfinite recursion with

induction hypotheses. We will encounter the first such recursion

in the proof of the compactness theorem for propositional logic,
Theorem 1.6.5 in Part II.

It turns out that recursion with induction hypotheses can
also be subsumed under the general framework of our formal
principle. The idea is simply that we may "ignore" the induction
hypotheses and, at stage o, say that if these hypotheses do not
hold then the items to be constructed at stage o are taken to
be some arbitrary (irrelevant) objects. The function defined
by the modified recursion (without induction hypotheses) will
be the same as the one intended by the original recursion. The
reason for this is that, as a matter of fact, the induction hypo-
theses will hold at every stage (and thus, we'll never have had
to resort to the "irrelevant objects"), as a consequence of the
fact that the induction hypotheses 'propagate themselves' from
earlier stages to later stages.

Here is a formal way of making the above somewhat speculative
considerations precise.

Let us confine ourselves to the case when R is a transitive
well-founded relation on A (which is the case when A = Ord
and R = e€). We consider a Function G whose domain is a sub-

class of the class of all pairs (x,f) with functions f of

the form £ : R, > B and for which G(x,f) ¢ B. This reflects
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the situation that the 'construction' of F(x) = 6(x, F [R))
may be carried out only if f =T FRX satisfies certain con-
ditions (ensuring that (x,f) € Dom G). We also consider a
relation I <V xV representing the "induction hypothesis”

(the sum total of all the induction hypotheses). The essential
conditions that we have to assume are the following.

(i) Whenever £ : RX > B is such that

(y, f h(RyU{y})) e I for all y with yRx, then (x,f) € Dom(G);
and

>. B is such that

(ii) Whenever f : qu{x}
(x, £ NR) e Dom 6, FGx) = 6(x, £ PR and (v, £PR YD) € I

for all y with yRx, then (x,%) e I.

In those conditions, "(y, F F(Ryu{y})) e I" expresses
the "induction hypothesis at y", for F the function to be
defined. O0f course, the conditions have to be expressed without
referring to F the proof of whose existence is the final aim.
(i) expresses that the induction hypothesis suffices for being
able to carry out the construction given by 63 (ii) expresses
that the induction hypothesis propogates from earlier stages to

later stages.

Theorem 5.6 (Recursion with induction hypotheses)
Under the above notations and conditions (including (1)

> B such that

and (ii)), there is a unique Function F : A

for all x € A, (x, FMx) € Dom 6, and F(x) = 6(x, F }x).

> B

. %* .
Proof. Let us define G to be any function c* . v
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extending G (e.g., for any =x 4 Dom G, 1let us put G%(x) = by

for a fixed element b of B). Using 5.4, we let F : A > B
be a Function such that
' %
F(x) = G (x, F FRX) (8)

for all x € A. We claim that for F so defined, we have
(x, F MR U{x})) ¢ I for all x e A. Indeed, suppose x e A
and that this holds for all y (y in place of x) such that
y € R, (induction hypothesis). Then for fF=r }(RXU{X}) and
f = f MR, we have f PRIV = F NRUIYD (v € R)), thus
(y, f %(Ryu{y})) e I by the induction hypothesis. Hence, by
condition (i), we have (x,f) € Dom G. Note that, since
G*(a) = G(a) for any a ¢ Dom G, we have, by (6), that
Fx) = G(x, £ PRX). Thus, by (il), we conclude that (x,%) e I,
completing the proof of the claim.

Now, applying (i) again, by the claim it follows that for

= every x e A, (x, F PRX) e Dom G, and thus, by (6),

F(x) = 6(x, F PRX) as desired. [
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6. Indexing by ordinals and the axiom of choice

Counting a set =x means calling an element of it the first,
another the second, another the third, etc. We change this
slightly by starting with 0 instead of 1. The counting of x
is completed, and x is shown to be finite, if for soﬁe natural

h

number n every member of x has been called the kt for some

k < n. In a formal language, this means a function

f :4{k : kxk<n}=n > %

h element of x.

which is one-to-one and onto; f(k) is the Kt
Having such an n-indexing of x we say that "x has n ele-

ments".

Ordinals are used to count possibly infinite sets. For an

ordinal, an a-indexing (or: o-counting) of =x is a function

f : {B: B < a}=a

> X

which is one-to-one and onto. Usually, an a-indexing is denoted
% - kd
by a notation like

<y8>5<3
here yg = f(B) with f from the previous indexing.
The following defines an w-indexing of the (positive,

negative, and zero) integers:

Yon = +n (n ¢ N)

Yont1 = —(n+l) (n e M)

O0f course, the identity function is an w-indexing of N.

But there is an wtl-indexing of W as well:
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y, = ntl (n e N)

Yo ° 0.

This possibility of having indexings of the same set with different
ordinals as domains is an anomaly one is not used to in the realm of
finite things. Certainly, if the two countings induce us to say
that N has w elements as well as w+l elements, then there
is something left to be clarified. This will be done in later
sections in the theory of cardinal numbers.

The main question we are interested in here is whether every

set can be counted. In fact, we will prove

Theorem 6.1 For every set X, there is an ordinal a and

an a-indexing of X.

The idea of the proof of this theorem is very simple. If
X is empty, then a = 0 is appropriate. Otherwise, X has an
element. We pick one, and call it the ’zeroth', Yo If there
are no more elements of X, we stop and put a = 1. Otherwise,
we pick another element y, € X - {yo}, and 'continue'. E.g.,
if we have defined Y, for all n < w, we ask whether
X = {yn :n < w}y; if not we pick a 'next' element Y in the
difference. This means that we define Yq for increasing
ordinals o as long as X is not exhausted. Since there are
'many ordinals' (4.11, u4.12), it turns out t%at X has to be
exhausted sooner or later. At that point, WQQEZmpleted the

I3

definition of the indexing.

Ostensibly, the above construction is one by transfinite
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recursion. Let us formalize it in the form (4). First of all,
we will construe the indexing as a function on the whole class
Ord, since we do not know in advance what the domain will be.
We take an entity % (e.g. X itself) that is not in X and
we'll define the value of the function F to be =% once we
have exhausted X. G now should be defined so that, as a con-

sequence of (4), we would have that

F(a) = an element of X -~ range(F |} a)
if this difference is non-empty;

% otherwise.

In other words, we need 6, a Function defined on the class
C of all functions with domains ordinals, such that for

f. e C.

G(f) € X - range(f) if this difference
is non-empty

and G(f) = % otherwise.

It turns out that without postulating a new principle of our
set theory, we cannot prove the existence of such a 6. Clearly,
what we need is a Function H that assigns an element of x

to every non-empty set x.

> W

Axiom of Choice.  There is a Function H :Vy - {8}

such that for all: x ¢ VW - {g}, H(x) e x.



For future reference, and to avoid repetition, we now formulate and prove a more detailed
version of 6.1.

A choice function for non-empty subsets of a set X is a function
£f:P(X-{0) —> X
such that for any Acx, A#0, wehave f(A)eA . When H isa "global" choice function

as in the formulation of the Axiom of Choice on p. 65, then £ gl P (x)~{@} is a choice
function for non-empty subsets of X .

Proposition 6.1'. Let £ be a choice function for non-empty subsets of X . Define the
Function F:0rd——V by transfinite recursion by the formula
f(X-range (Fla)) when X-range (Fla) =@

F{ga)y =
X o therwise

Then there is an ordinal ¢ such that F (o) = X, and for the least such @, we have that
Flao : a—=—5Xx :

that is, Fla is an @-indexing of X.

Proof. First, we make a couple of remarks. For any ordinal 7,
either F(y)eX, or F(y)=X, and of course, not both.

This is because the first clause of the definition of F makes F(7) an element of X, since
all values of f are elements of X . Next,

if B<y and F(y)eX, then F(B)eX aswell, and F(B)#F(7) .
(1
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The reason is that, assuming <y and F(7y)eXx, we have that X-range (Fly)#0 ,
hence, since X-range (Fly) ¢ X-range (FIf) (right?) , also X-range (F!B) 20 ,
therefore, for B too, the first clause applies, making F(B)ef(X-range (FIfB)) . In
particular, F(f)eX . Butalso, since F(7}) =f(X-range (Fly))eX-range (Fly) , and
F(B)erange (Fly) (right?), it follows that F(B)#F(y) .

Let us put b {PeOrd: F(B)ex} . By (1) theclass Y is transitive: B<y and yey
imply xeY . Moreover, FlY is one-to-one: for B#y,bothin v, either B<y or 7<f,
and so by (1) again, F(B)#F(y) . We have that

Fly: Ym’?”——‘»range (FlY) ¢ x 3
T
(N

from which, the inverse Function (F!Y)) 1 exists, range (FlY) isa set, and

1 : range (Fly) —=—3 vy R

(Fly)~
and so, by Replacement, Y isa ser. Y, being a transitive set of ordinals, is an ordinal; we
write & for Y. Finally, I claim that range (Fla) = X . Indeed, otherwise

range (Fla) c X, which, according to the definition of F , makes
#
F(a)=f(X-range (Fla)) € X, therefore, by the definition of Y , O€ Y ; but this means

o€ a : contradiction.

We have proved that F!a : @—=—5 X as desired. It is also clear that o is indeed the least
ordinal for which F(@)=X (why?).
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The axiom of choice is a principle entirely different from
the other principles of set theory. The form we gave it above
is called the principle of global choice. A somewhat weaker
form says that for any set X of non-empty sets, there is a
function h with domain X such that hi(x) e x for all x ¢ X.

This principle is intuitively clear. If X is, in parti-
cular, a finite set, the statement can be proved without using

any axiom of choice. But already for the case of a set
X = {x :mne wl

indexed by w, the axiom cannot be proved from the other

principles of set theory.
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7. Well-orderings

The conclusion of the ordinal indexing theorem 6.1 is
usually expressed in another way. This way does not mention

ordinals; rather it starts with an abstract treatment of the

'ordering' relation obtained from an indexing: Yy is less than

iff o < B. We step back and introduce a series of commonly
Yg P

used concepts.

A Relation* R on a class A 1is called a quasi-ordering of

A if the following are satisfied for all a, b, ¢ in A (we
write aRb for <a,b> € R):

aRa (reflexivity)

aRb and bRe imply aRe (transitivity).
If, in addition, we also have

aRb and bRa imply a = b,

R 1is a (reflexive) partial ordering of A.

An example for a partial ordering on V 1is containment:

aRb ® achb.
af

An equivalence, or equivalence relation, on A is a

quasi-ordering which is also symmetric:
aRb implies bRa.
If R 1is a quasi-ordering on A, we can define E by

akb ¢ aRb and bRa;
daf

E will be an equivalence relation (exercise).
Equivalence relations are "generalized equality relations".

Let E be an equivalence relation on A, and for a e€ A, let

BK -Ft‘om
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a/E denote {b e A : aEb}; a/E is called the equivalence class

of a. We have the following fact:
akb ® a/E = b/E

(exercise). "Passing to equivalence classes changes equivalence
into equality." Taking equivalence classes is a common device
in mathematics.

Suppose R is a quasi-order on A, E the associated
equivalence relation. Assume that each a/E (a ¢ A) is a set.

~

Then on the class A/E = {a/E : a ¢ A} we can define R:

(a/E)R(B/E) + aRb
af

(exercise; one has to verify that this definition is legitimate)
and the relation R on A/E so obtained is a partial ordering

(exercise). The partial ordering R is said to be derived from

R. If the equivalence classes a/E are not necessarily sets,
the above constructions are not permitted in our framework; we
cannot take a class of possibly proper classes. In that case
still we can say the following. If we let A' be any subclass
of A such that for the restriction of =< to A' and E!
derived from this restriction, a/E' = {b € A" : bE'a( e bEa)}
is a set for any a e A', then the above construction yields a
partial ordering on A'/E' = {a/E' : a € A'}. In particular,
this is true if A' itself is a set (why?). In short, the
construction is valid when one restricts attention to any fixed
subset of A.

A total, or linear, ordering of A is a partial ordering R
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that satisfies
either aRb, or bRa.

Linear orderings usually are given in the irreflexive form.

In fact, partial orderings can also be given that way. Suppose
S is a relation on A satisfying:

not aSa

aSb and bSc imply aSc.

Such an S can be called an irreflexive partial ordering.

Then the relatiog* R on A defined by

aRb ¢ aSb or a=m>
af

is a (reflexive) partial ordering (exercise). Conversely, if

R is a reflexive partial ordering on A, and we define S by

aShb e aRb and a# b
df

then S is an irreflexive partial ordering (exercise). In
fact, if we now define R' as R was defined above from S,

we get back our R itself (exercise). Also, if we start with
an irreflexive S, pass to the corresponding reflexive R, and
then again, to the corresponding irreflexive S', then S' = S
(exercise). In other words, it is practically the same to talk
about the two kinds of partial orderings.

With partial orderings, it is more customary to deal with
the reflexive formulation; with linear orderings, with the ir-
reflexive one. Let us denote an irreflexive linear ordering on
A by <. Then the requirements on < Dbecome:

a$ a

X

See Yhe %oo*’hék ow ‘) 68
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a <b and b < ¢ imply a < ¢
either a < b, or a=Db, or b < a
¢ (exercise).
If a quasi-ordering R on A satisfies
either aRb or bRa
(a,b ¢ A), then the derived partial ordering is a linear ordering
° (exercise).

A well-founded linear ordering is called a well-ordering.

The prime example of a well-ordering is the one we defined on
Ord: e restricted to O¢rd (see the last two Sections). Recall
that in 5.3 we talked about R-minimal elements in a subclass X
of A. If R is a linear ordering, an R-minimal element in X,
) if it exists, is unique (exercise). Therefore, a linear ordering
< on A 1is a well-ordering means that for every non-empty Xc A,
there is a unique least (with respect to <) element in X.
If < is a linear ordering of A, then for any BCA)<
restricted to B ( =<(n(BxB)) is a linear ordering of B; if
¢ the first is a well-ordering, so is the second (exercise). 1In
particular, any set of ordinals, and any ordinal itself, is well-

ordered by the e¢-relation.

X P\gc«if C See P SS) ﬁ\a* {Wén *'é—mamlcj > " cf&o“f H‘{ G:M(J:{‘\’mq
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In a definite sense, talking about indexings by ordinals is

the same as talking about well-orderings. Suppose < is a well-

Wgrdering of A, and F : A > B 1is a one-to-one and onto

Function. Then the relation << on B defined by
F(a) << F(a') ¢ a < a!

is a well-ordering as well (exercise). Thus if is an

<yﬁ>ﬁ<0l
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a-indexing of the setl X, t+hen the relation << on X defined

by
< <
Yg << Yy <

ie a well-ordering of X. Conversely, we have

Proposition 7.1 For any well-ordering << of a set X,

there is a unique o-indexing <y8>B<0£ of x, for a unique
ordinal o, such that
<< é <
YB y"{ B Y

for all B,Y < o.

Proof: The preoo w,}; lre Qc_rjela Fﬁ# as ﬁﬁfgxérq'sel
1\& Sa:} Hav g vauch ‘(-ar ‘H\e é\((:‘feuc& b(,f ‘H\e \-tc(u.:réa( ;hies(:»j )ug&
PNF 6-\/ \mh« g OQC&;wci Cj “ j(/ﬂ')f +Hhe ut\{e\we, <K ~Q£af*’ C(fwxed‘
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H«._ r‘élu:Nol ‘Qnm:u.hk‘.,woi & ‘aoQJ_p Cke.{) {:(\0( s the
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Another approach to ordinals is to define them as types of
well-orderings. Given a relation R on a set A, the pair
(A,R) is called a trelational structure'. TFor two relational

structures (A,R), (B,S), an isomorphism between them, in notation

h : (A,R) —=> (B,S),

> B such that

is a one-to-one and onto function h : A
alRa2 iff h(al)Sh(aQ} for all a,,a, ¢ A. If there exists an
isomorphism between (A,R) and (B,S), we call the two structures

isomorphic, and we write (A,R) ~ (B,S). If R and S are

JD—————

*
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linear orderings of A and B, respectively, (in which case

(A,R) is called a linearly ordered set, or a linear ordering)

then instead of 'isomorphie' it is customary to say 'similar'.
The relation of isomorphism is an equivalence on the class
e of all relational structures (exercise). If we consider the equi-

valence classes with respect to this relation o, then we have
(A,R) = (B,S8) ® (A,R)/> = (B,S)/=.

An equivalence class (A,R)/> is considered the type of the
structure (A,R); the last fact says that two structures are
isomorphic iff they have the same type. Now, ordinals could be
construed as types of well-ordered sets. We now proceed to ex-
plain this.

From now on, R and S are always irreflexive linear

orderings of the sets A and B, respectively. An embedding

h : (A,R) > B such

> (B,S) 1is a one-to-one map h : A

that aRa' implies h(a)Sh(a') for all a, a' in A (notice
& ““that then, conversely, h(a)Sh(a') implies aRa' (exercise)).

An initial segment of (A,R) is a subset X of A such that

a e X and DbRa implies that b ¢ X; X 1is a proper initial

segment if, in addition, X # A. TFor any a, -Ra = {beA : bRa}
. is an initial segment (exercise). If (A,R) is a well-ordering,

then the initial segments are the sets of the form R, and A

s itself; no more (exercise). A comparison map h : (A,R) —> (B,S)

is an embedding such that range(h) is an initial segment of

(B,S). Using a rather temporary notation, we write

(A,R) (B,S)

o
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if there exists a comparison map from (A,R) to (B,S). It is
easy to check that fi is a guasi-ordering on the class of linear
orderings (exercise).

From now on, (A,<), (B,<') denote well-orderings.

Proposition 7.2 (i) If h : (A,<) > (A,<) 1is an embedding

of a well-ordering into itself, then for all a € A, a =< f(a).
(ii) For well-orderings (A,<), (B,<'), (A,<) % (B,<")
and (B,<') 2 (A,<) imply that (A,<) =~ (B,<').
(iii) For any two well-orderings (A,<) and (B,<'), there

is at most one comparison map from (A,<) to (B,<').

Proof: (i) We employ induction with respect to the wf

relation <. Suppose that b =< f(b) holds for all b < a. Since
b < a implies f(b) < f(a), it follows that for all b < a, we
have b < f(a). So, if we had f(a) < a, then, with b = f(a),
we would get f(a) < f(a), which is absurd. Since f(a) ¢ a,

we must have a < f(a) as required.

(ii) Suppose that h : (A,<) > (B,<"),

h' : (B,<") > (A,<) are comparison maps. Consider the

> A. It is easy to check

composite function, h"™ = h'eh : A
that it must be a comparison map of (A,<) to itself (exercise).
If its image were a proper initial segment of (A,<), it would

be of the form <a for some a.e A. But then h"(a) ¢ <50 i.e.,

h"(a) < a, in contradiction to part (i). Hence, range(h") = A.

But then h' : B > A 1is an onto map as well: 1if a € A,
then there is a' ¢ A such that a = h"(a') = h'(h(a')), i.e.,

a = h'(b) for b = h(a').
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(iii) We assume that hy, h2 are comparison maps from
(A,<) to (B,<'), and we prove by induction on a ¢ A (along
the well-ordering <) that hl(a) = hz(a). So, suppose we know
that hl(a’) =.h2(a’) for all a’ such that a' < a. I claim
that h(a) is the least element b of B - range(h M<)) (now,
h is either hy or hz). Indeed, since h 1is one-to-one,

h(a) certainly belongs to this set; hence b <' h(a). Since h
is a comparison map, it follows that b = h(a') for some al,
and necessarily a' < a. But a' < a is impossible since then

b

i

h(a') e range(h M <_). It follows that a' = a, i.e.

i

b h(a), as claimed.

Now, applying this fact to both hl and hz, we get
h,(a) = minimal element of B - range(h; } < ) = minimal element

of B - range(h2 p <a) (since h1 F <g = h2 \ <a) = h2(a), as

required. [

If we write, again temporarily, (A,<) ; (B,<') for "there
is a comparison map from (A,<) +to (B,<') onto a proper initial

segment of (B,<')", then 7.2(iii) implies that

(A,<) 3 (By,<') & (A,<) £ (B,<') and (A,<) # (B,<1)
(verify).

Note that the uniqueness assertions in 7.1 follow from 7.2

(exercise).
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"The last
result does not mention ordinals, and in fact, it is not hard
(after having seen the techniques so far) to prove it directly.

The relation £ among well-orderings is a quasi-ordering
with the additional comparability property (5) ('linear ordering').
The partial ordering derived from it is defined over the equi-

valence classes of the relation

(A,<J)E(B,<') <+ (A,<) 2 (B,<') and (B,<') & (A,<).

(Strictly speaking, this is legitimate in our theory only if we
have restricted the class of well-orderings to a fixed but other-
wise arbitrary set. We suppress the explicit mention of this set,
but strictly speaking, it is there.) By 6.3(ii), E 1is nothing
but similarity of well-orderings. Traditionally, the equivalence
classes of the similarity relation are the ordinals. The trouble
is that ordinals so construed are proper classes (at least, without
the 'restriction’ mentioned above); let us call them Ordinals in
‘recognition of this fact. The important connection between ordi-
nals and Ordinals is that every Ordinal contains exactly one
ordinal and every ordinal is contained in exactly one Ordinal.

The fact that an Ordinal contains only one ordinal is the same as
to say that two distinct ordinals (with their natural well-order-

ings) cannot be similar: indeed, if o and B are distinet
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then either a ¢ B, or B8 e a; in the first case, the identity

map on a 1is a comparison map from a to B, with range a = <g2
where < is the well-ordering of B, hence it is a comparison
map onto a proper subset of £ (o ¢ a); thus, by (iii), o and

B cannot be similar; the second case is symmetric.

The unique ordinal that (with its natural ordering) is

similar to the well-ordered set (A,<}:*is called the order-type

of (A,<), and it is denoted by [(A,<)|. Thus, we have

1

[(A,<)] < | (B,<")| = (A,<) (B,<")

[ (A,<)] < [(B,<')| = (A,<) : (B,<")
We also have

Proposition 7. 2[/]

(A,<) 2 (B,<') ¢ there is an embedding

of (A,<) into (B,<').

Proof: The implication from left to right is obvious.
Suppose, conversely, that h is an embedding of (A,<) into
(B,<'). On the other hand, we have either (A,<) % (B,<'), or

(B,<') X (A,<) by (5). If the first case holds, we are done.

In the second case, we have h' : B > A, an embedding of
(B,<'") into (A,<). If h' is onto, then h' is a similarity
map, hence (A,<) ~ (B,<'), and we are again done. If, however,
range(h') is a proper initial segment of (A,<), +then h'eh

is a comparison map of (A,<) into itself with image a proper

initial segment. Hence }ﬁckx#,IdA, a contradiction to 7.2. [I

X e Proywl}:% 7.2,; °or b /5.1
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In the language of well-orderings, 6.1 becomes

Theorem 7.3 (The well-ordering theorem). Every set can be
well-ordered; for every set X there is at least one well-ordering

of X,

Proof: Let be an o-indexing of X, for some

<yS>B<OL

ordinal o (see 6.1). Then the relation << on X defined by
y06<<y8 < o < B

is a well=-ordering of X. [

Let (X,<) be a well-ordered set. A subset Y of X is

cofinal in (X,<) if for all x € X there is y € Y such that

x £ y. Let us denote the order type of the initial segment <y

with the ordering < vrestricted to <y by lyl.

Proposition 7.4 Y is cofinal in (X,<) if and only if

*

[(X,<)] = t.swle{lyl + v e Y}.

Proof: exercise.

A Lo He (Qemt she o o pp Lrowwd j) @.Lu.b,)s« F«‘r"i.



79

8. Zorn's lemma

Zorn's lemma is a principle widely used in mathematics. It
is closely related to the principle of transfinite recursion. The
advantage of Zorn's lemma is its abstract simplicity; it does not
mention well-orderings or ordinals. Sometimes, however, the use
of Zorn's lemma in place of transfinite recursion is forced and
counter-intuitive. Nevertheless, in many cases it provides elegant
and short proofs.

Zorn's lemma deals with a partial ordering on a set X.
Let us denote the partial ordering by <. A chain in (X,<) is a
subset € of X such that any two elements of C are comparable:

as<b or bs=<gq forany a, b in C. An upper bound of a sub-

set C of X 1is an element ¢ in X such that a < ¢ for all
a e C. A maximal element of X is any a € X such that a < b
(meaning a < b and a # b) is impossible. Thus, a maximal ele-
ment is either greater or equal, or incomparable, to any other
jZlement. Now, we have
Theorem 8.1 (Zorn's lemma). Let < be a partial ordering

of the set X. Suppose that every chain in (X,<) has an upper

bound in X. Then X has at least one maximal element.

Proof: We start by picking an indexing <xB>B<a of X.
The proof consists in constructing a 'maximal' chain, by systema-
tically going through the Xgs and throwing in as many of the
elements into the chain as possible without destroying the chain

property. An upper bound of this 'maximal' chain will then be our
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maximal element.
We decide, by transfinite recursion on g, if Xg should,
or should not, be in the chain C to be constructed. Formally,

we define a function (M“characteristic function™)

f: a > {0,1};

' of ¢
we'll define C = {x8 : B<a and f(B) = 1}. The definitionlis

as follows. Suppose B < o and f(y) has been defined for all
Yy < B. Then, by definition, f(B) = 1 if and only if Xg is

comparable to every Xy such that vy < 8 and f(y) = 1: Xg < Xy

or XY < Xg for all vy < B such that f(y) = 1. (It is left to

the reader to cast this definition, if he desires, into the form
of the 'official' recursion principle). Now, let us define C
from f as indicated. C 1is a chain, since if B,y < a and
f(g) = f(y) = 1, and, say, Y < B, then by the definition of

f(B), we have that x must be comparable to Xy' I claim that

B

C is a maximal chain in the sense that no element of X not al-

ready in € can be added to € so that C remains a chain.
Indeed, let x be an arbitrary element of X; we have x = Xg
for some B < a; if Cu{xg} is a chain, then in particular, Xg
is comparable to every XY with f(y) = 1, hence, by the defini-

e C; di.e., x was in € to

tion of f(B), f(B) = 1 and x g

B
begin with.

Let x Dbe an upper bound of C. If y ¢ X such that x <y,
then Cu{y} is a chain, since for every u ¢ C, u < x <y, hence,

in particular, y is comparable to all elements of (. By what

we said above, this implies that y e C. But then, since x is
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an upper bound of C, we have y = X; thus =x = y. We have shown
that x is such that for any y, x <y implies X = y. This

means that x is maximal. [

A common situation for Zorn's lemma is when X is’a family
of certain subsets of a given set A, and the partial ordering is
ordinary containment (c). A chain is a subfamily of X in which
any two sets are comparable with respect to containment. The
'upper bound’' condition is usually satisfied because for a chain
C ¢ X, UC turns out to be a member of X as well; of course,

then UC is an upper bound of C in X.

¥
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8. - Cardinal numbers

We develop here the theory of 'size', or 'cardinality', of

sets. The familiar case is that of finite sets, where

Definition 9.1 A set x is finite if there exists an n ¢ w

and an n-indexing of x. A set is infinite if it is not finite.

It turns out that if a set has an n-indexing for some n ¢ w,
then it cannot have an a-indexing for any other ordinal a # n.
This justifies our saying that the set has cardinality n: "any
way of counting the set givesg the same result, namely n". As we
indicated above, the situation iﬂ general is not this simple.
Still, it is possible to develop a useful theory of cardinality
of infinite sets. |

We start by some considerations not involving ordinals.

Possibly the most natural beginning is

Definition 9.2 Two sets A and B have the same cardinality

(an indivisible phrase!), or are equinumerous if there is a one-

to-one and onto function

h : A > B.

We write A ~B for 'A and B are equinumerous".

This definition expresses the simple idea that if the ele-
ments of two sets can be exactly paired, one from one set, the
other from the other set, then the two sets have the same number

of elements.

¥ 1h H(: SQC'L:O“ ) -H«t f[{“-e(j A)G }TOS::V{J u;k’Ha Sw{rfcrf\aﬁﬂ)

QQUar JQ“OR. Sk¥f.
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Next, we would like to say that a proper subset of a set has
a smaller cardinality. This, however, we cannot reasonably main-
tain, since, e.g. the proper subset w-{0} of w is equinumerous

with w, by the function

h : w > w-{0}
n —> n+l.
Therefore, we relax 'smaller' to 'smaller or equal'. Then, of

course, we may drop properness of the subset as a requirement.
It is reasonable to consider sets with a one-to-one correspondence

with a subset instead of just subsets; so we obtain:

Definition 9.3 A has cardinality less than or equal to

that of B, or in short, A 1is dominated by B, in notation

> B.

A £ B, 1if there is a one-to-one function h : A

Proposition 9.4 The relation £ 1is a quasi-ordering on V.

Equinumerosity is an equivalence on W.

o Proof: exercise.

Theorem 9.5 (Cantor-Bernstein theorem)

A S B and B £ A imply that A ~ B.

> B, g : B > A are one-

Proof: Suppose that f : A

to-one functions. Our task is to construct, using f and g,

> B. The function h

a one-to-one and onto function h : A

will be built up from f and g in the precise sense that

hcfug-l; i.e., if h(a) = b, then either f(a) = b, or g(b) = a.
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Once we know that we are looking for h of this kind, the con-

struction becomes ’ determined 1§> A farag €x+fn%;
Consider the set AG = A-rangel(g). For a « Ag, there is

no b with g(b) = a, hence we must define h(a) = f(a). Further-

more, let Ay = g{f{AQJE, Note that A;nA, = 0. For a; € Ay, we

have ag € Ay such that for ”bs = f(ae), we have a, = g(bg):

f
aD >ab0
/
a > b
1 £ 1

Note that aj 7 ag- Since h(ao) = b, by the above, we cannot

define h(al) = b without violating one-to-oneness. So, we

0
are forced again to define h(al) = f(al). In fact, by recursion

on IN, we define:

A © g[f[An]];
~<then we put A = U A ; finally, we define h to coincide with
W “n
df n<w
-1
f on Aw, and g on A'Aw'
h(a) = f(a) (a e A,
h(a) = g’l(a) (a e A-A ).

Let us verify the required properties of h. First of all, since

A.cA i.e. A—chzrange(g), and g is one-to-one, g“l(a)

0 w?
is well-defined for a e A-Aw. Clearly, h is one-to-one on the
set Am’ as well as on the set AuAm, separately. To complete

the proof of h being one-to-one, assume (for contradiction)
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-1

that € Am, a, € A'Aw’ and f(al) =g (aQ}. This means

i 2
that g(f(al)) = a,- Also, a; € An for some n < w, hence

a, = g(f(ay)) belongs to gff{Anll = A in contradiction to

2 nt+l?

a, € A»Aw.

2
I+ remains to show that h is onto. Let b be an arbitrary

element of B. Consider a = g(b)., If a e A~Aw, we are done,

since then b = g’l(a) = h(a). Otherwise, a € A, hence a ¢ A

for some n. n cannot be 0, since no a in AG is of the

form g(b). So, a € g[f{An~l]]’ i.e., for some a' € A we

n-1’
have a = g(f(a')). But also, a = g(b); since g 1is one-to-one,
we must have that b = f(a'); since also a' € A, b = h(a')

as required. [

Theorem 9.6 (Comparability theorem).

For any sets A and B, either A £ B, or B % A.

Proof: Unlike the previous theorem, this one uses the axiom

of choice, through the ordinal indexing theorem. Let a, B be

ordinals and <a <b5>5<8 indexings of A and B,

>
Yo y<a?
respectively. Now, either o < B, or B < a. E.g., in the

first case, we may consider the map

aY > bY (y < a < B)s

clearly, it is a one-to-one map of A into B, hence A % B.

The other case similarly yields B A O

This theorem does not mention ordinals, but its proof uses
them in an essential way. It may be said that ordinals are just

the right notion to make the following naive proof of 9.6 precise:
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"S8tart simultaneously counting the elements of A as well as those
of B. The set that runs out of elements before or at the same

time as the other is the one that is no bigger than the other."

A Cardinal number, or simply Cardinal, is an equivalence

class A/~ under the equivalence 'equinumerosity'. The Cardinals
are linearly ordered by the ordering derived from £ (after a
restriction of all sets considered to a subset of W); notice
that by the Cantor-Bernstein theorem, 'equinumerosity' is the same

as the equivalence relation induced by 52. Explicitly:
A/~ < B/~ < ‘there is a one-to-one map from A to B;

here we have introduced the notation =< for the ordering of

Cardinals.  0f course
A/~ < B/~ ® A/~ < B/~ and A/~ # B/~.

We can, in fact, say much more about the ordering of Cardinals.

First of all, notice that we have

Proposition 9.7 Every set is equinumerous with an ordinal. [

This fact is contained in the indexing theorem, and appeared
already in the proof of 9.6.

In other words, 9.7 says that every Cardinal contains at least
one ordinal. The 'anomaly' we noted above is that a Cardinal may
contain more than one ordinal; e.g., w and wtl are in the same
Cardinal (why?). But, still, we can pick out a best ordinal in

every Cardinal: take its smallest ordinal element. Thus, we say
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that a cardinal number, or cardinal, is an ordinal a such that

o is the smallest ordinal in a/~. In a less abstract language,

we can phrase this as

Definition 9.8 A cardinal is an ordinal which is not equi-

numerous with any smaller ordinal.

Thus, we have that cardinals and Cardinals are in one-to-
one correspondence: every Cardinal contains exactly one cardinal,
and every cardinal is an element of exactly one Cardinal. More-
over, we can transfer the ordering of Cardinals to cardinals: for

cardinals x and X, we define
K < A ® g/~ < A/~

Note that, in fact, for cardinals x and X, k < A in the
'cardinal sense' if and only if k < A in the 'ordinal sense'.
First of all, if «k < A in the ordinal sense and «k, A are
cardinals, then clearly, «k < A in the cardinal sense (why?);
but «k/~ = A/~ 1is impossible, since this would contradict X
being a cardinal (why?). Thus, we see that, for cardinals «
and A (l), «k < A in the ordinal sense implies k < A in the
cardinal sense. A moment's reflection shows that the converse
of this implication is an automatic consequence. Thus, there
is no danger of confusion arising from using the notation <
for the two different notions. Moreover, since cardinals form
a subclass of ©Ord, and their cardinal-ordering is the same

as their ordinal-ordering, we obtain that the ordering of car-
dinals is a well-ordering. Of course, it follows that the na-

tural ordering of Cardinals is a well-ordering. Note that the



88

latter statement is one that does not involve the notion of ordinal
at all.
Let us use the notation [A]|, or sometimes card A, for the

cardinal of A (A a set); JA| 1s the unique cardinal equi-

numerous with A. Clearly, |A] can be defined as the smallest
ordinal «k such that A has & k-indexing {(exercise).

Also, clearly,

[A] B

1

w
¢

x>
?

B and A # B.

Al < [B}. & A | .
K C,(aVWa('”szmr%%fnru/)

=
(exercise)?A} S8 Af’
Note that for every ordinal o, Jal < a, and ol = o if
and only if a 1s a cardinal. It is easily seen that o < B
implies J|al s |[Bl. Thus, if « is a cardinal, and « < a, then

k < |al. As a consequence, if «k is a cardinal and |a| < k,

then a < k.

Proposition 9.9 Every natural number is a cardinal. o is

a cardinal.

Proof: an instructive exercise.

The main result that shows that the theory of infinite

cardinals does not collapse to a triviality is

Theorem 9.10 (Cantor's theorem). For every set A,

Al < [P(A)].

Proof: The map h : A > P(A) defined by h(a) = {a}
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shows that |A| < |P(A)| (why?). It remains to show that
|A} # [PCA)|. Suppose, for a contradiction, that there is a

> P(A).  Consider the

(one-to-one and) onto function h : A

'paradoxical set':

B={aehA : a¢ h(a)}.

Now, since h is onto, B = h(b) for some b ¢ A. But then
b ¢ h(b) *® b e B < b ¢ h(b),

T T

since hi(b) = B by the definition of B

i.e. b e h(b) # Db ¢ h(b)

which is absurd. [

Note the similarity of this proof to that of the "Russel

paradox": V 1is not a set.
The method of proof of Cantor's theorem is called the diago-
nal method. Here is another illustration of the method.
o Consider the set INB, the set of all functions f : N —> B,
with B any set containing at least two distinct elements. Sup-
pose we have a subset F of iNB indexed by WN: F = {fn :n e N}

> B not in F as follows.

We can construct a function f : N
We specify the value f at any n so that it is distinct from
fn(n);

f(n) # fn(n);
if |B| 2 2, this is possible. But then f ¢ F. Namely, if f
were in F, it would have to be the same as fn for some n;

but for any n, we have made it explicitly true that f be
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different from ‘fn at a specific argument, namely n itself.
Upon identifying subsets of N by their characteristic
functions, this argument with B = 2 is seen to be identical to
the one in the proof of 9.10 (for A = N).
As a conseguence of Cantor's theorem, we have now at least

the following distinct infinite cardinals:

w
JPCw) |
[ PP(w) ]

[P oo P(w)
Mg

n-times

.

This sequence is a strictly increasing sequence of cardinals.

Corollary 9.11 The class of cardinals, Card, is not a set.
For every set X of cardinals, there is a cardinal strictly

greater than any member of X.

Proof: Clearly, the second statement implies the first (why?).

To prove the second statement, let Y = UX. Since for every K € X,
we have KkcY, we have «k = |k| = |Y]. Then consider A = [PCY) L.

We have, for «k e X, k = |Y| < A, hence k < x. O

Denoting the above sequence of cardinals by ;30’31’;2"“’;n""3

by replacement and the axiom of infinity, we have that

{:n :n < w}

* i Hekrew BETH
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is a set. The last corollary implies that there is a cardinal
strictly greater than any ‘En’ n < w. In fact, it is easy to
see that

d,= U A

@ 4f hew ™

qualifies (exercise).

The 'aleph-sequence' of cardinals is defined to contain all

cardinals. By recursion on Ord, define

&a = the smallest infinite cardinal greater than

all &B, for B < g

(verify that this is a legitimate definition!). Thus, RO = w,
xl is the smallest cardinal for which NO < Nl. Also, we have

K < A3 hence B, < ;1. The question whether X, = ;l is the
famous Continuum Problem; it is not decidable either way using
the principles of set theory we have listed so far.

Note the following obvious relations:

N < K “ o < B
< 0 f3
aéxa

(exercise).
It is important to note that every infinite cardinal is of
the form Ka, for a uniquely determined a ¢ Ord. In fact, let

k be an infinite cardinal, and let X = {B ¢ Ord : B, < k}. X

B
is a set simply because X ck (why?). Thus, there is an ordinal

not in X; 1let a be the smallest such. Since Ba is the

smallest cardinal greater than all the RB for B ¢ X (why?),
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we have that X < k. But 8 <« is impossible, since then
o ¢ X would follow. Hence &a = kK, as desired. The unigueness
of a is clear (why?).

The following proposition involves a simple, but essential,

use of the axiom of choice.

Proposition 9.12 Let A, B be sets, and assume that A # §.

Then |A]l < |B| if and only if there is -an onto function B —> A,

Proof: exercise.

A set is called countable if its cardinality is < 30, i.e.

it is either finite, or equinumerous with [N.

Corollary 9.13 A set A is countable if and only if it is
either empty or it has an enumeration by the natural numbers: an
onto function

N > A

N ee—> an

(Thus, A 1is given as the range of a sequence

D |

apsdqyse--dy

Proof: exercise.
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10. Cardinal arithmetic

We can define addition, multiplication, and exponentiation
of cardinals, directly generalizing those operations on the natural
numbers. Also, having gotten rid of the limitation of finiteness,
we can define infinite sums and products as well. The basic de-
finitions have no use of well-orderings, and in fact, they would
be more naturally stated for Cardinals than cardinals. Of course,
because of their one-to-one correspondence, whatever operation we
define for Cardinals, it is automatically transferred to cardinals.
For this reason, we will not explicitly mention Cardinals at all.

The idea of addition is contained in the observation that if
a set C is the union of two disjoint subsets A and B, then
the cardinality of C should be the sum of those of A and B.
This statement can be turned into a definition of addition as
follows. Let « and A Dbe two cardinais, let A and B be
arbitrary sets such that |[|Al = k, [|Bl = A (in fact, A = k and
B = A qualify). Then consider A' = {0}xA = {<0,a> : a ¢ A},
B' = {1}xB = {<1,b> : b € B}. Of course, we still have |[|A'| = «
and |B'] = A (why?), but we now also have that A'nB' = § (why?).

Consider C = A'WUB'., We define
K + A = JATuB'|.

To have this as a legitimate definition, we have to verify that if
A", B" are other sets such that |[|A"| =k, [B"| = A and
A"nB" = f, we obtain, by using A" and B" instead of A' and

B', the same result for |A"uB"|; in other words,
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A'uB' ~ AMUB".

This relation is almost obvious: by assumption, we have one-to-

one, onto maps f : Al > A", g : B > B"; Dbecause of the
disjointness assumptions, fug 1s a one-to-one, onto function
from A'uB' to A"uB". |

Thus, we have defined « * A unambiguously as%kgcardinal of
any disjoint union of sets the first of which is of cardinality
k, the second A

The definition can be expressed concisely by the equality

|AUB| = |A]l + [B]

*

where the notation AUB refers to a union AuB where AnB = B.

Certain identities of cardinal addition are immediate from the

definition: S S
(k + A) + B =+t (A+B)
Kk + 0 = K
. (exercise).

It is just as easy and natural to define the sum of an ar-

bitrary set of cardinals. Let <k > be an indexed family of

i7iel

cardinals (i.e., we have a function I > Card, ipb—> K; with

I a set). We may define

I kg = U ({i}xk.)
iel df iel =

which is but a short statement of the kind of definition we gave
above for the special case I = {0,1}. The commutative and as -

sociative laws are jointly generalized by the following law.

I
X a0 g i cld b digeid wwen 4 A AT
8 depned owly f AT =g
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Assume that I = U I.; the dot means that the union is disjoint,
jed
i.e. it is assumed that Ijnlj, = p for 3j # j'. Then we have

Poks 1D
teul. jed iel.

(exercise).

Turning to multiplication, we define
Kex = |kxd].
It is important to note that then we have
|AxB| = |A|-|B]|

for any sets A and B (exercise). Multiplication is repeated

addition in the sense that

(the right-hand-side is the sum of the family <k;>; 3 where
each Kk, = k) (exercise).

We have the following laws:

Ked = A*K
(keX)ep = ke (Xep)
(k + A)u = kp + Ay
ue0 = 0
pel =y
(exercise).
The infinite version of multiplication is related to 'in-

finite' Cartesian product. We define
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s s il
iel df "iel
We have the more general equality
| x_ Al = 1 |A]
iel iel

@ as a consequence {(exercise).

We have the combined commutativity/associativity law

I xk: = 0T (0 k)
ie O 1.0 jeg iels 1
Jed J

¢ (exercise). The distributive law, in its full generality, says

1B ¢ Z K.) = z 'H K .
jed iel. Y fe%T. jeg (1)
J et
Jed
. X x
o (exercise).

Exponentiation is introduced by the definition

In other words, we have

Some laws:

¢ (exercise).

In general forms:

iel iel
A ,Z kl
1« 1 Klel
iel

s (exercise).

¥ Toc the defmihon nj >< Ko, iee P 36 y Cost Cine.
teX
XK qee H\c nexd Pede, 9.1,
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Since we have that P(A) ~ ?A (see Section 3), we have

that [P(A)] = 2§Ai. With the notation above, we also see that

8
Jo = ¥ Ay
K

0 n
Cantor's theorem says that «k < 2.

t

2 Y, and in general, ;In+} = 2 V. Furthermore,

There are laws relating the operations to the ordering of
cardinals. E.g.,

k < k' and A < A' imply each of ki = k'tA',

¥
kehA = k'eX', and Kl < (K’)l .

In fact, K. < K. for all 1 e¢ I implies that

iel iel
The following simple proposition states a characteristic

property of infinite cardinals.
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Proposition 10.1 For any infinite ordinal a, ISal = lal.

As a consequence, every infinite cardinal is a limit ordinal.

Proof: Since the ordinals < w are precisely the finite

ordinals, o being infinite means that w =< a, i.e., W < K.

Define the function

h : Sa = {alua > a
by
o b———> 0 ,
n b——> ntl (n € w)
B pb—> B (Bea-w)

h is one-to-one, and onto; hence Sa ~ o.
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Suppose o is an infinite successor ordinal, o = SB. Then
B is infinite too; otherwise, o would be finite. Hence, by
the first part, J|a| = [SB| = |B|. We have £ < a, therefore
a cannot be a cardinal: it is equinumerous to a strictly smaller

ordinal, namely g. [

Cardinal arithmetic, at least its 'finitary' part, is greatly
p?

simplified by certain 'absorbtion' laws, the first example of which

is the last result. The main such result is

Theorem 10.2 For any infinite cardinal «k, we have that

KeK = K,

Proof: The assertion, of course, is equivalent to saying
that there is a k-indexing of the set «xk. It is helpful to
look at the simplest case «k = NO first.

The set N xN can be displayed in an "infinite matrix"
as follows:

(0,0) (0,1) (0,2) ... (O,n) ...
(1,0 (1,1 (1,2) ... (1L,n) ...
(2,0) (2,1) (2,2) ... (2,n)

(m,0) (m,1) (m,2) ... (m,n) ...

We can index the entries of this matrix by w in many ways, e.g..,

according to the following pattern
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‘ L 2 0 3 7 13
i
> 1 2 8 14
1 .. Zn ... .
> i 5 [ 15
3
. g 10 11 12
. v
>
2n-1
This indexing shows that &, « 8_ = §

0 0 0"
The proof of the general case is similar. Instead of an

indexing, we define a well-ordering <« on «kxk, and in fact,
on OrdxOrd. The definition (imitating the ordering obtained

from the indexing in the above picture) of <« is as follows:

(B,y) <« (B',y') iff either max(B,y) < max(B',y')

or (y £ B=8"2%y'" and vy < y') or (B < y = y' > g
and B < B') o <a/£/3 -;/a//>l/3'/>

[max(B,y) denotes the greater of the two ordinals £, Yy

or their common value if they are equal.]

We leave it to the reader to verify that <« is an (ir=-
reflexive) linear ordering (exercise). Let us verify that «
is well-founded. Let XcOrd be non-empty; consider the smallest
ordinal o for which there is (B,y) ¢ X with max(B,y) = a;

and let X {(B,Y) € X : max(B,y) = a}. Let

4

1

X2 = {(B,Y) X

™

1 Y B (=a)}, X, = {(B,y) e X+ B <y (=)}
We have quxg': Xl # 0, and for any x € X2, y € XS’

z e X - (quxa) we have ¥ < y < z. Thus, if X, is non-empty,
wd
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and vy 4is the minimal ordinal for which (a,y) € X;, then (a,v)
is the <-minimal element of Xj; if X2 is empty, then %3:?is
not, and for the minimal B for which (B,Yy) € Xl we ha?e that
(B,y) 1s the <minimal element ofl X.

Ancther easily verified fact is that, for each a ¢ Ord, axo
is an initial segment of (Ord xOrd, <); actually, oaxo = 4(&,0).
Let A Dbe a limit ordinal, and consider Ax)A with < restricted
to it. Then the set {(a,0) : a < A} is cofinal in AxA: if
(ByY) € AxA, let a = S(max(B,y)); we have (B,yY) < (a,0) e AxA.

#*

Let a = |(a,0)] = the order type of <§a 0)?
W,

the notation of 7.4. Then, by 7.4, we have that

ordered by <, in

A s aosalde” s oo < ) (1)
for any limit ordinal . |
Note that
10”1 = laxal = lal-lal
hence for « a cardinal,

lxk | = kvk.

The well-ordering of «kxkx so defined represents a 'counting'
of «kxx by ordinals < K*. We prove that, in fact, K* = k for
all infinite cardinals «k. This will, of course, establish that
lkxk| = k. Note that, since |kxk| 2 k (why?), K* < Kk is im-
possible; we have to see that K* < K.

To prove the claimed equality, we employ induction on car-
dinals; we take an infinite cardinal «k and we assume that

%

A = A is true for all infinite cardinals X < k. Consider an

. . . . s L . s
arbitrary ordinal o < k. If o dis finite, then «a is finite



101

as well, in particular a* < k3 this is easily seen (practically
obvious), and in fact, this is precisely the content of our proof
for the special case «k = RO described at the beginning. If «
is infinite, then Jal 1is infinite as well; of course

(A=)lal < & < k. We have la"| = lal+lal; hence [a*| = lal by
the induction hypothesis§‘]x follows that la*{ < k. Thus,

since «k 1is a cardinal, we must have a* < K. We have shown that
o < k implies a* < Kk (in words: completing the described count-
ing of kxx up to but not including axa, we come up with a
'count'! a* strictly less than k). Now, employ the fact that

k is a limit ordinal (10.1), and the equality (1). We get

% % . % .
K = L.Sauk{a : a < Kk} £ k, since each o < k. This completes

the proof. [

Corollary 10.3 If at least one of the cardinals «k, A is
infinite, and both non-zero, we have

Ked = k+A = max(k,A).

Proof: We have, with u = max(x,\), that
B S K+A £ U+H = P2 < U = U, i.e., K+A = U.

Also, u = pel < K*A =< uey = u, i.e., KehA = u. [

Corollary 10.4 The union of countably many countable sets

is countable. If |I| < R and lAit < R for each 1 € I,

g’ 0
then | U A.] < 8_.
. i 0
iel
* Proof: exercise.

@ Lk A= lot]. Sivnee o(rvk) we have oL Xl A~ AXA, Also,
OL* ~ LAxdL awd x* ~ AXA, %engow 5 LT f\/*ﬂ.*. @3 the wl(&tj{\’ovx
N [ = A = .
hj;&o“?ﬂj‘) 7\'* -;-..%, ﬂ@?(&?t’() GL* ~ k 3 i.e.) \O( { ..lx‘ A‘ {oé



