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Introduction

These notes deal with mathematical theories concerning the
foundations of mathematics. As a result of these theories, most
of which have been elaborated in the last hundred years or so,
our view of mathematics has reached a level of maturity where
several previous conjectural ideas and beliefs have received exact
formulation and confirmation. Also, these theories have revealed
a previously unsuspected depth and richness, in the world of
abstract ideas.

The main ingredient of the modern view of mathematics is
that mathematics is a formaligzed axiomatic theory. It has to be
added that several established philosophies of mathematiecs would
categorically reject the assertion made in the last sentence.
When we learn in detail what the content of this assertion is,
it will, I hope, turn out that this content has a core that is
acceptable to a wide variety of philosophies of mathematics.

The assertion intends to express a statement of fact about the
organization of mathematics.and leaves open the possibility of
differing views concerning the ultimate nature of mathematics.

What is interesting is that the concepts that underlie the
foundations of mathematics themselves have a rich mathematical
theory. This theory actually becomes indispensable for under-
standing, as opposed to meréiy observing the fact of , these
foundations.

In this course, the emphasis will be on the mathematical

theories of the ingredients of the foundations of mathematics
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How mathematics is actually built on these foundations will be

of secondary importance. One reason for this is the fact that

one recognizes in the practice of present day mathematics a strict
adherence to foundational principles. 1In main-stream mathematics,
the concepts are set-theoretic, and proofs are 'almost' formalized
proofs in the formal language of set theory. Therefore, it is not

necessary to make a special effort to uncover the foundations,
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since they are essentially made explicit in the particular mathe-
matical disciplines themselves. Tt is interesting to note that
many active mathematicians would not be able to formulate precise-
ly the structure of the language they are using, but the 'linguist
of mathematics', the person trained in mathematical logic, im-
mediately recognizes the presence of this structure in everyday
mathematical discourse.

The first ingredient of the foundations of modern mathematics
is set theory. The concept of set (collection, totality) may be
the simplest existing abstract concept. Starting with the empty

Wﬁ%et, one can successively build more complicated sets, without
using anything else than sets. In this framework, the whole of
traditional mathematics can be reconstructed, and in fact, con-
temporafy mathematics is being built directly within the frame-
work of set theory.

In the first part of these notes, a very short introduction
to set theory is given. Modern set theory is a rich and complex
discipline, with important consequences concerning the foundations

of mathematies. Our introduction cannot even begin to give an

idea of the scope of this theory.



Set theory will be presented as an axiomatic theory. The
idea of axiomatic theory is very old; Euclid's '"Elements' was
intended as an axiomatic theory of geometry. The axiomatization
of a body of knowledge has two parts. The first is the choice

of the primitive notions of the theory. In Euclidean geometry ,

these include the notion of point, line, 'betweenness' (point B

being on the line AC and between A and C), etc. Once the
primitive notions are delineated, it is stipulated that all other
notions (which may have been 'unanalyzed' in the Pre-axiomatic
theory) have to be defined purely in terms of the primitive ones;

resulting in the defined notions of the theory. The second part

of the axiomatization is the choice of the axioms of the theory:
those statements regarding the primitive (or defined) notions

that are accepted without proof. Once the axioms have been fixed,
all statements, if claimed, have to be proved by pure logical
reasoning, from the axioms as hypotheses.

In the second half of the last century, a thorough revision
of Euclid's axiomatics was undertaken, culminating in David
Hilbert's work, Foundations of Geometry. It turned out that
Euclid omitted to state certain primitive notions as well as
axioms, i.e., he used them only implicitly, and thereby violated
the basic rules of axiomatics. The most important conclusion,
however, that emerged from these investigations was that tradi-
tional axiomatic theories in general, and Euclidean Geometry in
particular, all made tacit use of what we today call set theory.
In other words, a new, more elementary and abstract level of

mathematical hypotheses was revealed in what previously had been



considered 'pure logic' and had remained unanalyzed.

As we said, in Part I we present set theory as a traditional
axiomatic theory. We mean by this that we keep the language of
this theory unanalyzed. Of course, we do not make the mistake
to keep set theoretical matters implicit, as Euclid and others
did for geometry; that would defeat the purpose of the'axiomati*
zation of set theory itself. It may be said that this stage in
axiomatizing set theory is, in fact, a pedagogical exercise, since
it has been deliberately formulated as an intermediate stage on
a way to a higher 1level.

Besides giving an example of a traditional axiomatic theory,
Part I has other aims. Primarily, it is an introduction to set
theoretical matters that every mathematician should know about.
Then also, it serves as the foundation and framework for every-
thing else done in this course.

Part II deals with the main subject, first order logic.

First order logic, or predicate logic, is a scheme for generating
~ languages, one for each axiomatic theory. In other words, dealing
with first order logic we consider an arbitrary specification of
the primitive notions; any such specification then, with appropri-

ate axioms added, forms a first order theory, formulated in first

order logic.

Axiomatic set theory is a particular first order theory.
Actually, we will see essentially different versions of axiomatic
set theory, but now we return to the use of the singular mode
in reference to these, meaning any particular one. Axiomatic

set theory is formulated in first order logic. This means that



its axioms are first order sentences, well formed formulas of
first order logic, based on the primitives of set theory (in one
version, the only primitive is 'x is an element of y', 'x e y').

It also means that there are explicit rules of inference (includ-

ing logical axioms) that are allowed to be used exclusively in
deriving theorems of the formal theory. The explicit specifica-
tion of the rules of inference is the chief novelty of modern
axiomatics with respect to traditional ones. The specification
of a first order theory, with its logical basis made explicit,
is the ultimate realization of the idea of axiomatization. With
this specification given, there is an unambiguous and fully com-
municable criterion for correctness within the theory. 1In the
case of axiomatic set theory, with mathematics developed within
it via a system of defined notions, one obtains a fully explicit
criterion of correctness of mathematical proof; to aylarge extent,
this precise criterion is the one that operates in mathematical
practice today.

The claim that mathematics is exact and rigorous has been
made for a long time, but it was only recently that this claim
could be considered established. Although axiomatic set theoreti-
cal foundations of mathematics is quite simple (in particular,
first order logic is a very simple artificial language), it has
not been easy to arrive at this formulation. In the first place,
it was a highly non-trivial discovery of the 19th century that
the large body of seemingly disparate mathematical notions

(numbers, geometric surfaces and bodies, sequences, functions)



can be 'relocated' as defined notions in set theory. 1In the
second place, it has taken a considerable amount of search to
realize that first order logic provides an adequate linguistic
framework for set theory.

For stating a first order theory, the formal or grammatical
aspects of first order logic, i.e.,rits syntax, are sufficient.

To understand the syntax of first order logic, however, one has

to study its semantics, i.e., the theory of meaning in first order
logic. The chief point here is the question "why exactly the
chosen logical rules of inference, and not others". Although
this is not a priori plausible, it turns out that there is a

satisfactory theory explaining the choice of the rules of in-

ference. However, this theory is based on semantics, and semantics
turns out to be based on set theory in an essential way. Thus, we
have the situation that aspects of axiomatic set theory are being
explicated by using set theory itself. This seems to be an un-

avoidable situation. No defeating circularity is introduced this

dﬁ%ay, however. The statement of axiomatic set theory does not

need set theory; it only needs a primitive syntactic level of
abstraction. Accepting set theory as essentially correct, then
we have a theoretical insight into why that statement was chosen
in the first place. This insight is not a pPrerequisite for being
able to state the axiomatic theory, it is only a welcome theore-

tical development in the meta-theory of the axiomatic theory.

Part II of these notes deals with first order logic.
Chapter I of Part II treats a fragment of first order logic,

propositional logic. This chapter is a pedagogical preparation



for the study of the full language, as well as a store of results
used later.

Chapter II deals with the basics of the semantic study of
first order logic; as we said, this study uses set theory in an
essential way. At first, we do not consider any specific first
order theories; logic is studied "in abstracto™. At the end of
the chapter, we are in the position of being able to give an
argued statement of the axioms of first order axiomatic set theory,
based on the "naive set theory" of Part I.

Chapter III starts with the introduction and justification
of the rules of inference of first order logic. The main result
is G8del's completeness theorem that expresses the sufficiency of
a certain body of rules of inference, in view of the semantics of
first order logic. Appending the rules of inferenée to the system
of axioms of set-theory, stated in the previous chapter, we arrive
at the full statement of first order axiomatic set theory. Of
course, many other first order axiomatic theories are open for
investigation.

The rest of Chapter III is a further study of the semantics
of first order logic. One important theorem, the so-called down-
ward Lowenheim-Skolem theorem is given already in Chapter II.
Another basic result, the so-called compactness theorem, is proved
as a by-product of the proof of completeness. Chapter III ends
with proving Lindstrdm's theorem that is an interesting answer to
the question "what is so special about first order logic?". It
turns out that, under a suitable general idea of 'logic', any

"logic' that obeys the downward LSwenheim-Skolem and compactness
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theorems must be identical to, or at least contained in, first
order logic.

Returning to axiomatic set theory, we may ask why we chose
exactly those set-theoretic axioms that we did. This question has
two aspects. The first is: are the axioms correct?, the second
is: are the axioms sufficient?

These questions seem to be rather intractable at first sight.
If we had precisely statable reasons why the axioms of set theory
are correct, we would state these reasons themselves as 'axioms',
possibly involving primitives other than set theoretical ones.
Then, of course, we could ask the correctness question about the
new system, and, barring an infinite regress, we would arrive at
an unanalyzable situation. As a matter of fact, set theory itself

seems unanalyzable: there do not seem to be any more primitive

notions from ﬁhich set theory could be deduced. Answering the
'sufficiency' question also seems to presuppose a precise pre-
axiomatic grasp of what is true of sets; if we had such a grasp
that could be precisely stated, we would build that into the
axiomatics itself. |
It is important to compare the situation of our two "impos-

sible" questions with the analogous ones for pure first order
logic, successfully dealt with in Part II. The first point to em-

phasize is that that analysis involved an acceptance of a certain

amount of set theory. The second is that it may be simpler to

attack the question of correctness in the context of any and all

first order theories, than in the context of a specific axiomatic

set theory. The point is that in the first situation the



consideration of first order theories other and possibly simpler
ones, than set theory, may (and, in fact, do) decide questions we
raise.

However, the first question of correctness has a dramatic

explicit version. This is the question of formal consistency:

Is there a logical contradiction in the theory under cdnsideration?
At the beginning of Part I, we encounter the famous Russel paradox,
showing that a seemingly fully justified axiomatic theory of sets
contains, in fact, a logical contradiction. Now, with having the
full formalization of first order logic, the question of formal
consistency (freedom from logical contradictions) becomes a very
precise question, completely independent from the intuitions and
assumptions of the theory itself: in fact, it becomes a question
of the syntax of the theory alone.

Ever since the discovery of the paradoxes of set theory,
there had been aﬁ intense interest in the possibility of establish-
ing the consistency of axiom systems underlying mathematics.
Hilbert's program has the ultimate goal of proving, by a direct
examination of the syntax, the consistency of first order axiomatic
set theory. 1In 1931, Kurt G6del made the dramatic discovery that

amounts to a proof of impossibility of Hilbert's program. He

showed that the consistency of set theory, easily formulated in
the language of the theory, cannot be proved in the theory,
assuming that the theory is consistent. Gd&del's argument does

not use much of the specifics of set theory; he shows the result
for any explicitly axiomatized theory containing a certain minimum

of finite combinatorial (number-theoretical) capability. Thus,
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the situation is that either the theory is inconsistent (in which
case anything can be derived in it!), or it is consistent, but
knowing this fact requires going beyond the capability of the
theory itself. The theoretical possibility is there for going
beyond the established principles of set theory in a way that does
not lead to more abstract principles, merely to different ones,

in order to prove the consistency of set theory. However, such a
possibility seems unlikely to be realized.

As far as the question of sufficiency of the axioms is con-

cerned., it has a similarly sweeping general-n gative answer; in

fact, the answer is contained in the above! Roughly speaking,
Godel's incompleteness theorem says that no explicitly axiomatized,
formally cosistent theory having a minimal combinatorial capability
can be complete: there are statements that are recognized to be
intuitively true, but are unprovable in the given axiomatic system,
In fact, the consistency of the system is such a statement!
Technically, the incompleteness theorem is derived first; the
(stronger) result on consistency is then proved by applying the
ingredients of the incompleteness proof. |
G6del's theorems are the highlights of Part III. The general
framework of this part is that of recursive function theory. The
concepts of recursive function theory serve to give a precise
meaning to the adjective "explicitely axiomatized" used in the
description of G&del's theorems. Recursive function theory has
relevance to an experience broader than axiomatic systems; it is
a theory of effective generability and computability in general.

Chapter I is an introductory one; Chapter II contains the basic
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concepts and results of recursion theory. Chapter III is
dominated by G&del's theorems., Chapter IV is an account of
more recent and technical aspects of recursion theory.

Modern mathematical logic has developed explosively in the
last quarter,oficentury. These notes can only give a first glance

at the subject! The following books, containing much of the

modern theory, are recommended for further study:

J.R. Shoenfield, Mathematical Logic, Addison-Wesley,

1967.

K. Kunen, Set Theory, An Introduction to Independence

Proofs, North-Holland, 1980.

C.C. Chang and H.J. Keisler, Model Theory, North-Holland,

1973.

T. Jech, Set Theory, Academic Press, 1978.

H. Rogers, Theory of Recursive Functions and Effective

Computability, McGraw-Hill, 1967.
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1. Sets and classes

The concept of set is one of the simplest abstract ideas
available to us. It is not possible to define the concept of
set; we can only circumscribe it, relating it to other concepts,
and ultimately, we can axiomatize it, putting down a hopefully
complete list of postulates concerning it. |

A particular set is given by a specification of what things
belong to it (and by inference therefore, what things do not).
In symbols, "x Dbelongs to the set A" is written "x e A".
Usually, one arrives at a particular set by a rule that singles
out certain things to belong to the set to be defined, or by a

property (predicate) that is (somehow) defined to be possessed

.. by (to hold for) certain things, and not for others. E.g., if
a property P 1is specified (so that we know unambigously, if any
thing has P or not), the extension of P is the set such that
any thing belongs to the set just in case the thing has P. The
difference between the property P and its extension [P] is
that whereas P wuniquely determines [P], [P] is an abstraction
of P, and it well may be that for another, very different, pro-
perty Q we have [Q] = [P] : this happens precisely if any
thing has P if and only if it has Q.

The above discussion contains two basic ingredients. One

is that
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two sets A, B are equal just in case, for every thing X,

x belongs to A if and only if x belongs to B,

which is called the principle (axiom) of extensionality. The other

is that sets can be created by properties, by passing from the pro-

perty to its extension:

given any property P, there is a (by extensionality,
unique) set [P] such that for any thing x, x belongs

to [Pl if and only if x has the property P,

This last principle is called the principle of unrestricted

comprehension. As far as we do not undertake analyzing the notion

of 'property', we remain in what may be called naive set theory,
But it should be said that properties are linguistic objects.
We can 'enunciate' a property, making a linguistic utterance, and
thereby creating (mysteriously) a 'physical' (metaphysical) object,
its extension. It is the main purpose of this coursex%o come to
a satisfactory clarification of the notion of "property'. ’But,
it is possible, and in fact, also necessary, to deal with sets
before we have made that clarification.

Let us ﬁext turn to the greatest embarass ment of set theory,
which seemingly destroys the possibility of a theory of sets
along the lines sketched so far. We will survive this destructiong
but only at the expense of having to deal with an essentially more
complicated theory.

If any of our initial declarations are to make any sense, a

set is a thing again, with the implication that it may, or may not,

r————
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belong to another set. Confirmed in this belief, now consider
the following property of sets: the set A has the property P
in question just in case A does not belong to itself; in
symbols:

A has P ¢ A ¢ A.

Consider the extension [P] of the property just defined. Does

[P] belong to itself? Well: ) , “
AC[FI A has P> Ad A fec A
P\;} A=(PJ ¢ [P1 ¢ [P] = [Pl has P « [P] ¢ [P].

] |

by the definition by the definition
of 'extension' of P itself, for
the set A = [P]
We obtain that [P] belongs to itself just in case it does not.
This is a logical contradiction: neither of the two cases
"[P] belongs to itself", "[P] does not belong to itself"
;%&may hold, since by the equivalence demonstrated, from either one
ﬁ the opposite follows. Even before doing anything specific about
logic, it is clear that this situation is not containable. This

argument is called Russel's paradox.

The way out of this situation will be the partial renunci-
ation of the principle of unrestricted comprehension. Our point
of view will be that the trouble is that unrestricted comprehen-
sion creates certain 'collections' that are too 'large' to be sets.
Although the analogy is not perfect, we still may contemplate
the following. Suppose some creatures have an intuitive concep-

tion of 'finite set', but not of 'arbitrary' sets in our sense,
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although they are not aware of this since they don't know about
any other than finite sets; they call the things they know simply
sets, or in other words, they believe that every set is finite.
In their set theory, they have a principle that says, 'every set
is finite'; this may be formulated e.g. by saying that for every
set A there is a natural number n (a concept that has to be
and can be, axiomatized itself) and a one-to-one correspondence
between the elements of A and the natural numbers less than n.
Now, unrestricted comprehension is clearly untenable; e.g. the
'set' of all natural numbers will not satisfy the axiom of
finiteness.

The analogy fails in the sense that the hypothetical
creatures have a way out by recognizing that their belief in the
principle "every set is finite" was mistaken, and still hold on
to unrestricted comprehension. Still, I believe, the analogy
points to the basic attitude we will assume. This is that the
'galaxy' of sets is only a part of the 'cosmos' of all kinds of
'totalities' and when one 'comprehends' a property of sets, say,
by forming the extension of the property, one may step out of
the 'galaxy'. This attitude has the important positive element
of recognizing the validity of comprehension with the modifica-
tion that the result is an entity not necessarily among the ones
(sets) so far considered.

In this realm of abstraction there is so little possibility
for analysis in the sense of dissecting the notions into more
primitive ingredients that we have to be content with formulating

our standpoint as clearly as possible and venture out to test its
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consequences. This is what we will soon do.

To repeat, our situation differs from that of the hypothe-
tical creatures believing in finiteness ip that, although our sets
necessarily form only a part of things, still, we do not have a
neat delineation of the part in question, as the creatures do by
having their finiteness principle. We can make only fairly vague
statements what distinguishes (delineates) sets from the rest of
things. These vague statements will guide us in our choice of

several "special principles of comprehension" that we need to

have the universe of sets sufficiently rich for building mathe-
matics. In the view that nowadays is called the Cantorian view
of sets, the sets are 'completed totalities', completed in the
sense of an idealized process of construction. There are, on the
other hand, non-completed totalities such as the universe of all
sets. The complete statement of the philosophy of Cantorian set
theory is tantamount to an argued listing of the principles of
set theory.

An important, and mathematically meaningful realization of
the idea that sets are gradually constructed is the notion of
pure set, developed in the next section. Simply put, pure sets
are those that can be built by starting with nothing, using the
'construction principle': take any number of previously con-
structed pure sets; if their collection qualifies as a set, take
that set to be an accepted pure set as well. If this sounds to
be empty words, wait until the next section.

In our naive set theory, we take advantage of the 'positive!

attitude towards the paradox-as follows. We take as basic
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the concept of set; then we also consider as basic the notion of
class, however, we restrict classes to collections all whose

members are sets. Soon we will be able to limit our attention

to sets all whose members are sets again (even though this looks
pretty much impossible); at that point, every set itself will be

a class too. A class that is not a set is a proper class. We

assume the principle of extensionality for sets as well as
classes (if every set is a class, it suffices to assume the
principle for classes alone). The principle of comprehension

that we adopt will be:

(Axiom of Class Comprehension) Given any property P
of sets, there is a (by extensionality, unique) class
[P] such that for any set x, x belongs to [Pl if

and only if =x has the property P,

The actual unfolding of set theory will consist in declaring
about certain classes that they are, in fact, sets,

The vagueness of the notion of 'property' will remain with
us for some time, however.

A piece of notation: for the extension of a property P
we usually write: {x : x has P}. This notation is mainly
used when P is given by an expression stating an assertion on
x so that having P 1is equivalent to the truth of the assertion.
E.g., the 'paradoxical set' (but harmless as a class) 4is
{x : x ¢ x}. The role of stating the variable x in front can
be seen when one defines a property by referring to other (fixed)

entities, also denoted by variables. E.g.
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{x 1y e x}

is the class of all sets that have the fixed y as an element.
0f course, {x : x € y} is the same as y.
Let us record here the content of Russel's paradox in our

new setting:
Theorem 1.1 There is a class which is not a set.

Proof: exercise.

It could be legitimately said that our severe restriction
on classes, namely that every class that is admitted in the theory
is a subclass of the class of all sets, is unnatural. It would
be natural to allow classes of proper classes, etc. In that
case, however, a concept of 'superclass' would have to be con-
templated; the totality of all classes would have to be a super-
class. Notice that we do not have to stop at this new level
either. It seems to be an important question of the foundations
of mathematics what can be said about the seemingly infinite
hierarchy of the so obtained "set theories". It turns out that,
in a very definite sense, the theories so obtained are getting
strictly stronger and stronger. This fact, and other important

ones, will be discussed in due course.
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2. The universe of pure sets

The next question we have to tackle is: what are the things
sets are made out of? The answer will be: sets themselves!

We have to convince ourselves that there are enough sets
around whose members are themselves sets. But how can we start
building such sets if we do not have any material yet for their
members? Is there at least one such 'pure' set?

The answer is: yes, the empty set. The empty set, @, has
no members; hence, in particular, it is vacuously true that all
its members are sets. At this point, note that the 'absurd'

property (e.g., x # x) defines the empty class #.
Xe@g < x # x.
Our first set-existence principle is:
(Axiom of Null Set) The empty class is a set.

Now, other sets are possible: the set, denoted by {8},
whose only member is @ is a new one, or the set having the
sole elements @ and {0}, denoted {8,{0}}, is another one.
Here is a principle that codifies the process of construction

employed here.

(Axiom of Pair set) For any sets x and y, the

class {x,y} 1is a set.

Here {x,y} denotes the class whose sole elements are X and

y, 1in other words
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{x,y} = {z : 2= x or z =y (or both)}.

In fact, it is clear that by repeated use of the pair-set

principle, we can have 'infinitely many' sets - but, we do
not get any infinite set without further set-construction

principles.

Before going on to those, we want to describe the general
idea of 'pure set'. The above examples of sets are all pure.
Moreover, the set-construction principles we will adopt give
pure sets when we apply them to pure sets. In short, set theory
will take place in the realm of pure sets.

Let us emphasize that we presuppose the concepts of 'set!
and 'class', in the way we said in the last section. In other
words, the definition of 'pure set' will rely on the "unanalyzed"
notions of 'set' and 'class'.

The basic principle is that if all members of a given set
X are pure sets, then x itself is pure. This expresses the
primitive idea that we accept unlimited set-formation as the
basic 'construction' for sets: if we have accepted that certain
things are pure sets, and we throw them into a box, thereby
forming a class of sets, and then we recognize that the class so
obtained is a set, then we accept this set as a pure set. More-
over, we want to be parsimonious about the concept of pure set
in the sense that we allow something to be a pure set only if
we are forced to do so by the principle just formulated. Notice
that we are so forced in the case of the empty set g, and then,

in turn, for the two other examples of sets we mentioned above.
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The precise concept now is dictated to us as follows. The
class of all pure sets, V¥, should have the property that it

is contained in any other class X that satisfies:

whenever every member of a set x belongs to X,

so does x.

Call such a class one closed under set-formation. Let us define

a set to be pure if it belongs to all classes closed under set-

formation. In somewhat formal terms:

x e WV # for every class X, 1if (for all y, yeX

implies y e ¥X), then x e X,

(Notation: ycX means: every element of y belongs to X.)
Notice that on the right hand side of the definition, a property
of the variable set x 1is stated; if we allow it as legitimate,
we may form V¥V, as the extension of that property. Since our

attitude towards properties is naive, we do so without hesitation.

Proposition 2,1 W is closed under set—formfiation.

Before we give the proof, we reiterate that our position
with respect to properties, as well as to manipulating them
(inferring the presence of a property from the presence of another,
which, by the way, is logic) is, at present, naive: we follow

established mathematical practice.

Proof: Suppose x 1s a set such that every element of x

is a pure set (belongs to W). By definition then, if vy e x,
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then y € X for every class X closed under set-formation.

Fixing an arbitrary such class X, we then see that every member
of x belongs to X, hence by the definition of X being closed
under set-formation, x e X. Since this turned out to be true for
all such X, =x belongs to all classes closed under set-formation,

i.e., x eV. O

As a consequence of the last proposition, we may say that V
is the least class closed under set formation: it is closed

under set-formation and it is contained in every such class.

Proposition 2.2 Any element of a pure set is a pure set.

Proof: Consider the class X of all those pure sets for

which it is true that all their elements are pure sets. [Notice
that the last sentence means the application of an instance of
class comprehension.] Of course, Xc V. We claim that X 1is
closed under set-formation. That will imply WcX, hence V = X,
proving the proposition. To show our claim, let x Dbe a set and
assume that all elements of x belong to X. In particular then,
all elements of x belong to V¥, i.e., all elements of X are
pure sets. x itself is a pure set (since V 1is closed under set-
formation); thus we see that x satisfies the requirements of
being a member of X: x e X. This completes the verification of

X being closed under set-formation, and finishes the proof. [

Proposition 2.3 The principle of extensionality holds

when restricted to V. 1In other words, if x and y are pure
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sets, and for all pure sets 2z, we have that 2z e x iff 2z Y,

then x = y.

Proof: exercise.

The definition of V¥V gives rise to a method of proof, called

the principle of e-induction. Suppose we want to show that an

assertion A(x), concerning an arbitrary pure set X, is in fact
true for all pure sets x. Then, the principle says, it suffices
to show the following: whenever x is a set all of whose ele-
ments satisfy A(y), then x itself satisfies A(x). Indeed,

this principle is correct, since we can form the class
X = {x : A(x) is truel;

the assumption then says that X is closed under set-formation,
hence by definition of W, VeX; in other words, every pure set

x satisfies A(x).

Here are two simple applications of e-induction.

Proposition 2.4 (i) For all x €V, x ¢ x.

(ii) For pure sets x, y, it is impossible that

both y € x, x ¢ y hold.

Proof: (i) Suppose the assertion is true for all elements

y of x. If we had x ¢ %, then =x would be an element of X,
hence, in particular, the assertion in question would be true
for x, i.e., x ¢ x, contrary to the assumption X € x. It

follows that x £ x.

(ii) We now have two variables in the assertion:



24

x and y. We form an assertion for only-one of them, namely x,

by considering the assertion A(x):

"for all y eV, y e x and x e¢ y cannot hold

simultaneously".

We show A(x) for all x ¢ V by e-induction; this will obvious-

ly prove the assertion. Indeed, assume A(x') holds for all

x' € x, we want to show A(x) itself. To this end, let y € V,
and assume that, contrary to A(x), y ¢ x and x e€ y both hold.
But by the first assumption, y = %' is an element of x; we

have both x e x' and x' ¢ x, contradicting the assumption that
for =x' the assertion A(x') holds, In other words, A(x) indeed

follows. By set-induction therefore, the proof is complete. [
Corollary 2,4' W is not a set.

Proof: exercise,

We now describe how W is built in stages starting from the
empty set. The description will be incomplete at this time; it

will be completed in Section 5.

X We write VO for the empty set,
Vg = 83
let
v, = {81,
v, = {8,{0}},
Vo = {p,{0},{{8}},{0,{0}}};
in general define for any natural number n, V to be the

nt+l
X Hee the ‘“‘F""““"q Aes‘“?%‘:’“ ﬁ;—e i "\\‘“':“ end on P27 as ndicale
wﬁ L\MK' w & ““EJ "\Af}\k\"c./? huv.«)rt.f) ) C\w\ouj théf‘r; \\’*\"C We wie
'V\at—uﬁﬁ “\.\M.Ln’f( Yoia Lo(‘kga“;_
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of

set of all subsets Wn’

A
wn+1 = {x : x ¢ Wn}~
In other words, the elements of wn+l are obtained by "set-
formation from the elements of Wn"; every element of Wn+l is

one whose elements are in Wn; and in fact, conversely, %fn+1

contains as elements all such sets. Now, we can form

szrwouwltwootjwnu---: uvw

the union of all the &/n's; in other words, something belongs to
Wm just in case it belongs to at least one Wn. With appropriate
set-construction principles, Ww will turn out to be a set. In
fact, Ww turns out to be a very important set, the set of

hereditarily finite sets. It is an instructive exercise to show

that Ww is the smallest class X closed under finite set-forma-
tion: whenever x 1is a finite set all whose elements belong to
X, x € X. [We have not yet 'defined'"finite";still, with reason-
ably plausible assumptions, this exercise can be done. Later, it
can be done formally.]

It is clear that Wgczwl cese c Vn c--*‘Vw; (or: the

sequence WD’WI""’Wn"'.’Wm is increasing). It is also clear

that each Wn is a subclass (in fact, subset) of V. This is
proved most satisfactorily by induction on the nétural number n.
But then it follows that W, itself is a subset of W. 1In other
words, the sequence Vo‘:?lc'°' c Wn Cone Wm represents a

"beginning of a construction of ¥V from below".
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In fact, this construction can be continued. We may
consider the class of all sets obtained by set-formation from
elements of Ww, in other words, the class P(Ww) of all sub-
sets of Wm (notation: P(x) denotes the class of all subsets
of x: P(x) = {y : yex}). We'll have a set-construction
principle that recognizes P(x) +to be a set for all sets x

(axiom of power set). It is clear that P(Ww) cWV: the reason is

that V is closed under (arbitrary) set-formation. It is also
easy to see that Ww S P(Ww) (exercise). Now, we have extended
our sequence "constructing W from below" by a further member
P(Ww)3 the spirit of the construction dictates the notation

Y = P(Ww) (although note that neither w®, nor w+l makes

wtl
independent sense so far). It is now left to the reader to define

appropriately
\Vw+23000, \an}-n’."
Vit (=V,.,)
ww°2+1’ Ww'2+2"”’\vw°2+n"”’
Ww'2+w (= Ww-S}
Wm-u
Wm-n
\4
wew
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Later, we will make precise the notion of what goes into the above

sequence as indices, namely that of ordinal number. Once we have

done that, we will show that the "transfinite sequence" Wa with
a ranging over all ordinals will in fact exhaust all of V:
W = the union of all Va.ﬁ&

From now on by 'set' we always mean a 'pure set', and by
'elass' a 'pure class', i.e., one all whose elements are pure sets.
We will adhere to the useful convention that capital letters mean
classes, lower case ones sets. Of course, a set is automatically
a class; so e.g., a definition involving classes (capitals) can
automatically be applied to sets (lower case letters). Also notice
that if we construct aclass and then declare it a set (by adopting
a "principle of set-construction"), the set obtained is automati-
cally a pure set, since all of its elements are. Especially at
later points, we will use capitals expressly to denote sets; in
such cases, it will be stipulated that the capital in question is
in fact (not just a class but) a set.

Restricting ourselves to pure sets is equivalent to adopting

the following axiom.
(Axiom of Foundation; class formulation) Every set is pure.

In fact, we should pause to consider the assertion just made,
even though it seems to be an evident one. The axiom of founda-

tion is to be true under the interpretation of 'set' as 'pure set',

and of 'class' as 'pure class': if we happen to use the axiom of

foundation, together with the formal definition of 'pure set!,

* OB epenal descrphion
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we automatically assign (as agreed) the meaning 'pure set!'’
('pure class') to the terms 'set' and 'class' in that definition,

Therefore, the first thing is to check that the meaning of 'pure
set' does not change when we make the formal substitution of

'pure set' for 'set' and 'pure class' for 'class' in the right-

hand-side of the definition of pure set. In other words, we want

to see that the following is true: for every pure set x,

X e V * for every pure class X, if (for all

pure sets y, yc X implies y € X), then x ¢ X.

Once we have spelled this out, the verification becomes routine

(verify), and now we can rest assured that in V, indeed, the

Axiom of Foundation is true,

O b s bt el se g
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3. Further principles of set-construction

We have seen two, fairly primitive, principles of set-con-
structions: the axioms of null-set and pair-set. These, and
all the others, are remnants of unrestricted comprehension. Each
principle asserts that certain classes are in fact seté, We give
four more in this section. The next section will contain the
last remaining such principle.

The list to be given is fairly incomprehensible at first
sight: why exactly those and not more or less? In fact, the list
was obtained by search%ﬁ%fthose instances of comprehension that
seemed essential to mathematics awd still seemed sound. It is
a sad fact that we do not know of any convincing argument in
favor of the list, other than the empirical fact that mathematics
seems to need essentially these and no more. Even worse, we know
that, for several reasons, the list cannot be shown to be the
only possible one or even the best one. For an explanation of

this latter fact, we have to wait until later.

(Axiom of Subset; or: Axiom of Separation) Any subclass

of a set is a set.

This principle is clearly in the spirit of the belief that "the
only thing that may prevent a class from being a set is that it
is too big". Therefore, if a class is contained in a set, and
hence is no 'bigger' than a set, it may be safely assumed to be
a set itself. Notice that the following form of the principle is

an equivalent version (because of class-comprehension):
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Given any property P of sets, and a set X, the class

{y e x: y has P} is a set.

In other words, we can form a new set out of a given one, X,
by 'separating' those elements of x that satisfy a given pro-
perty. Indeed, this is the most common way of forming sets in
mathematics.

Given a class X, UX denotes the union of its elements

[recall that every element of X itself is a set!l. 1In symbols,
UX = {z : there is y e X such that z e y}

In short, UX may be called the union of X.
(Axiom of Union) The union of any set is a set.

If we write AuB for {x : x e A or x e B (or both)}

(AuB is the union of A and B), we have

Proposition 3.1 a u b 1is a set.

Proof: Note that avub = u{a,b}. By the axiom of pairéset,

‘{a,b} is a set; by the union-axiom, aub is a set. O

(Axiom of Power-set) The class of all subsets of a given

set x 1is a set,

The class of all subsets of X is {y : yc X} where ycX
means: every element of y Dbelongs to X (so, even if y = X,
we have yc)(), The class of all subsets of X is denoted by

P(X). The principle asserts that this class is in fact a set, in
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case X 1is a set.

Before we formulate more principles, we discuss some derived
notions, and attendant notation. Set theory is used to interpret
basic mathematical notions. We start the set-theoretic inter-
pretation of mathematics with the concepts related to 'relation’
and 'function'.

The first thing is to introduce a concept of ordered pairs.

We should assign a set, denoted (a,b), to any given sets a
and b in a unique manner such that "from (a,b) we can recover

a and b, in this order", or more formally
(a,b) = (a',b') implies that a = a' and b = b'.

There are several ways of defining the assignment
a,b p———> (a,b)

with this property. One of the simplest is to put

(a,b) = {{a},{a,b}}. Notice that U(a,b) = {a,b}, and if

#wa # b, then a is distinguished among the elements of u(a,b)
by the fact that {a} e (a,b). It is easy to conclude that the
required property of the ordered-pair operation indeed holds.

For classes A and B, AxB (the Cartesian product of A

and B) denotes the class of all ordered pairs (a,b) with a

{(a,b) : a e A and b e B}

H

from A, b from B: AxB

t
"

{x + =x (a,b) for some a € A

it

and b e Bl.

We usually picture (resembling an important geometric example)

the class AxB as points of the 'plane' with 'axes' A and B:
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™

(a,b)

o
P ——

\\—fwv A R e

Proposition 3.2 a xb is a set.

Proof: ©Note that
axb ¢ P(P(aub))

(verify). By 3.1, aub is a set; by the power-set axiom P(aub)
is a set; and likewise, P(P(aub)) is a set. Hence, by the sub-

set axiom, axb is a set. [J

Extending our convention on the use of lower-case and capital
letters, we will use capitals in naming special categories of
classes, and lower case initials for indicating that we are talk-
ing about sets. E.g., we now introduce the notion of Relation;
any Relation is a class; at the same time "relation" will automa-
tically r@«%&a set which is, at the same time, a Relation.

A Relation is a class all of whose elements are ordered pairs.
A 1s a Relation if and only if for every x in A there are a
and b such that x = (a,b). Dom(A) denotes {a: there is an

ordered pair in A whose first element is al, Range(A) denotes
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{b: there is a such that (a,b) ¢ A}. Thus, A 1is a Relation

just in case A < Dom(A) x Range(A).

Proposition 3.3 Dom(x), Range(x) are sets (denoted

dom(x), range(x), respectively).

Proof: By the axiom of subset, it suffices to exhibit a
set y such that Dom x ¢ y, Range x ¢ y. But vy = u(ux)

(union axiom!) qualifies (verify). [

Thus, we have the corollary that a Relation A is a set
just in case both Dom A and Range A are sets (why?).

A Function is a Relation A such that (a,b), (a,b') both
being in A implies that b = b'. 1In other words, for every
a ¢ Dom A there is a unique b such that (a,b) € A; this b
is then denoted by A(a). TFor a function f (i.e. a set which
is a Function) and a e dom(f) (dom(f) = Dom(f) is a setl),
we also write

fla for fla).

In fact, we have the particular Function Application:

Application = {((f,a),b): f is a function,

a ¢ dom(f) and (a,b) ¢ f}

for which we have

Application ((f,a)) = f'a

for (f,a) ¢ Dom(Application).
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(Axiom of Replacement). If the Domain of a Function

is a set, then its Range is a set as well.

Proposition 3.4 If the Domain of a Function is a set, the

Function itself is a set.

Proof: immediate from replacement (exercise). [

This axiom is not frequently used in ordinary mathematics,
although it is very important in set theory; we'll see applica-
tions of it later. The rationale behind the axiom is as follows.
Suppose we have a Function F with a = Dom(F) a set. We
imagine F to be a 'process' that 'constructs' y = F(x) out
of any x in a. Hence, F 'constructs' Range F as the class
of all F(x) with x e Dom(F). Therefore, since Dom(x) is a
'completed totality', we may consider Range(F) to be one as
well. Put it in another way, Range(F) is "no bigger" than
Dom(F) (this phrase will acquire a precise meaning later), hence
Range(f) can be accepted to be a set if Dom(F) is one. A
warning: the above is not in any sense a proof of the axiom of
replacement; if such a proof existed, we would not have called it
an axiom!

We'll end this section by discussing a few common pieces of
set-theoretical notation.

We write Az for AxA, AS for (AxA)xA, etc., Also, for
convenience, AO will be {2} (!) and Al = A, The notation

F : A-——>B (similarly, f : a > b, etc.) means: F is a

Function, Dom(F) = A, Range(F)cB,
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With reference to a notation of the form F : A

> B, F

is called onto if Range F = B. It is called one-to-one if

(a,b), (a',b) both being in F implies that a = a', 1i.e.
F(a) = F(a') implies a = a',.

There is a notation for functions defined by 'rules' similar
to extensions of properties. Suppose we have defined a 'rule'
that assigns a certain uniquely determined set & to as; then
the class

{<a,a*> : a e A}

2,

is a Function with Domain equal to A. An example is when a
X
2

is a‘_, This same function is denoted as

[a —> a : a e A

or simply, a }—> a*, when A is understood.
If F is a Function with Domain A, then URange F 1is,
of course, the same as U{F(a) : a ¢ A}, We have the commonly

- used variation U F(a) for the same.
aeh

For any class A, NA denotes the intersection of the
elements of A: NA = {y : y e x for all x e A}, Notice that
Ng = v ( = the class of all sets). Otherwise, however, we have
that Na is a set for any set a (excercise). We, of course,
write anb for nN{a,bl, N F(a) for nNRange(F) (if

aeh
A = Dom(F)).
A-B denotes {x : x ¢ A and x ¢ B}; 1if A 1is a set,

A-B is a set as well.

A further operation on sets is exponentiation, AB denotes

{f: f : B > A}, the class of all functions with domain B

aZI = & X a CCO\FL:SCN\ PM‘,“"’%)
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and range included in A, If B is a proper class, then
AB = ¢ (why?); if both A and B are sets, then AB is a set.

Proposition 3.5 ab is a set,

Proof: Note that ab c Plaxb). O

Because of a possible confusion with cardinal exponentiation
to be defined later, we modify the notation AB to BA from
now on.

*
Let A be a set. We can essentially identify P(A) with
" " A _ . _

a power ,namely 2; here 2 = {0,1} (and in fact 0 = @, and
1 = {#}, although the latter are not important for the time

being; see later). Given any XcA, we can define char(X), the

characteristic function of X, as the function with domain A

for which a ¢ X implies (char X)(a) = 1, and a ¢ X implies

(char X)(a) = 0., Formally
char X = {(a,0) : a ¢ A-X}u{(a,1l) : a ¢ X}.
It is easy to verify that the mapping

X > char X

A

Pa) > 2

is one-to-one, and onto (exercise).
An important 'infinitary' operation on sets is the (infinite)

Cartesian product, Suppose <Ai>id is a "family a sets";

i.e., we have the function
R Ai

with domain Ij; assume that I itself is a set. Then X Ai,
iel

S

X Q{Z coutse Heve's ho*’\v\j Wrou wi denohn
o CI} t:) o Co :Hp geﬁ'\) § Howw A(V\o\f: o CQ&JT ‘{X (& LO‘J‘Q—E"(“PQ
~ { . [N J N — " { t

N a
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the Cartesian product of the family, is the class of all functions
f whose domain is I and for which f(i) ¢ Ai for all 1 ¢ I.
E.g., X Ai is the same as the set of all <ag,aq> with

ie{0,1}

ag € AD, a; e Al, where <a0,a1> denotes the function with

domain 2 = {0,1} whose value at 0 is ag> and that at 1 is

aq . It seems clear that X Ai is 'practically' the same as
ie{0,1}

AOXAl’ since <ag,aq> is 'practically' the same as (ao,al).

Proposition 3.6 Under the stated conditions, X Ai is
iel

a set.

Proof: Notice that X A. ¢ I( u A.), [
bl . i R i
iel iel

There are a few operations performed on functions that are

often referred to., Given F : A >B, G : B > C, the
composite of F and G is defined as the function H whose
Domain is A, and for which H(a) = G(F(a)) for a ¢ A. The
composite is denoted

GoF
(watch the order!); so we have

GeF = {(a,c): there is b such that

(a,b) ¢ F and (b,c) e G}

which makes it possible to consider "o" to be defined on any

clagsses F and G.

If F : A > B is one-~to-one and onto, it has an inverse:
a function, denoted F°1, such that F~ ' : B > A, and
FoF™1 - 14

B
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and

here TIdg is the identify function on B: Dom(IdB) = B,

Idg(b) = b, and similarly for 1Id,. ™1 can be defined as

{(b,a) : (a,b) € F}, which again makes "raising to the power -1"

an operation defined on all classes F. Exercise: verify the
two above equalities under the conditions stated.

If F : A

> B, and XcA, then the image of X wunder F,

denoted FI[X], 1is the class
F[x] = {F(a) : a ¢ X}.

In the same situation, the restriction of F to X, F M x, is

Fn(XxB); Dom(F NX) = X, and (F[X)(a) = F(a) for a e X.
Also, F[X] = Range(F | X).

There are numerous identities and other relations between
the operations on sets and classes we have introduced; e.g.,
f%ﬁn(BUC) = (AnB)u(AnC). I believe that there is no point in
trying to list these. On the one hand, they are all very easy
to verify, and, on the other, they are better motivated when

they are stated for immediate use.
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4. Natural numbers and ordinals

The first aim of this section is to give a set-theoretic
reconstruction of the notion of natural number. Almost simulta-
neously with this, we will introduce a 'transfinite' number concept,
that of ordinal number (simply: ordinal). At first, the notion
of ordinal will not be much more than a formal extension of that
of natural number, but it will eventually emerge that it is the
notion of number that can be used to count arbitrary (even in-
finite) sets.

The most natural approach to natural numbers is the axiomatic
one. After all, it is not that important what the numbers them-
selves actually are; we can identify them with series of strokes
(primitive man's way of keeping count), or ones in the decimal
notation, or even Roman numerals. One might say that what is
important is what numbers are used for (counting), but actually,
the right answer is that natural numbers form a structure which
makes possible all the uses of numbers. This structure is de-
scribed by the so-called Peano axioms. Here is Peano's 'character-
ization' of the system of natural numbers. We put it in the form

of a definition.

Definition 4.1 (Peano Axioms) A Peano system (N,0,S)

consists of a set IN, a distinguished element (called 0) of W,

and a unary operation on IN, i.e. a function 5 :WN >[N,
called "successor of", such that the following conditions are

satisfied:
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(i) 0 dis not the successor of anything;
Sn # 0 for all n e WN.
(ii) Sn = Sm implies that n = m.
(iii) If a subset P of IN contains 0, and is closed
under successor (n ¢ P implies Sn e P),

then P = IN.

A few remarks putting Peano's axioms in perspective. In more

common language, Sn stands for n+l. The two axioms (i), (ii)

are intended to ensure that the sequence

0, SO, SSO, SSS0,...

is without repetition. Axiom (iii) is the same as the Principle

of Induction. If one wants to prove that an assertion A(n) is

true for all natural numbers n, it suffices to show that A(0)

is true, and to show that, for any natural number n, A(n)

implies A(Sn). In fact, the validity of the last sentence follows

from (iii) by defining P to be the subset of N consisting of

n ¢ N for which A(n) is true.

S

Sm

: IN

Proposition 4.1° If M,0,8) 1is a Peano system, then

>IN is one-to-one, and range(S) = [N-{0}.

Proof: exercise.

Of course, for n ¢ N, n # 0, the unique m e¢ N for which

n is denoted n-1.

We are not going to do any of the development of the axiomatic

theory natural numbers; in fact, we later assume a reasonable amount
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of knowledge of the various operations and relations on natural
numbers. We only want to point out here that the basic reason for
the possibility of developing all the theory of natural numbers on
the basis of Peano's axioms is the fact that these axioms essential-

ly characterize the system of natural numbers.

Proposition 4.2 Given the Peano systems (N,0,8), (N',0',8'),

there is an isomorphism between them, 1.e., there is

h : N > INY

which is one-to-one and onto and which preserves 0 and S, in

the sense that
h(0) = 0!

and n = Sm implies h(n) = S'(h(m)).

In turn, the Proposition is a consequence of the Recursion

Principle:

Proposition 4.3 Suppose (N,0,S) is a Peano system. Then,

> B can be defined

for any class B, a unique function f : IN
by the requirements that
(1) £(0) should be a given element, say a, of B;
and
(2) £(Sn) should equal to, for any n, a given
function of f(n); f(Sn) = g(f(n)) for a given

> B,

function g : B

> B, there is

In other words, with given a ¢ B, g : B

a unigue f : N > B satisfying



52

£f(0) = a
f(Sn) = g(f(n)).

Exercise: Deduce 4.2 from Uu.3.

Exercise: Show that, conversely to 4.1, if W',0',S")
is isomorphic to the Peano system (I ,0,S), then it is a Peano

system itself.

We will not take the time to prove 4.3 here; later we will
prove a more general result (5.4). But we should point out that
the Recursion Principle can be used to define operations like
addition, multiplication, and many others. Also, the basic
process of counting is closely related to recursion; this will
be clarified later.

We wish to turn to the task of specifying a particular
system (N,0,S) satisfying Peano's axioms. In particular, all
natural numbers should be construed explicitly as pure sets. As
a matter of fact, the construction is largely arbitrary, but we
will find an attractive solution.

Imagine that we do have already a Peano system (N,0,S).

We now assign a pure set n to every 'natural number' n in N,
with which we wish to 'identify' n. We let 0 = @ (= empty set).
In fact, we pick for n a set with exactly n elements (although
the last phrase has not yet been officially introduced in our set

theory). Assuming that X has been defined for k < n+l, we put

ntl = {0,...,n}.
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(This set has n+l elements, assuming that the k are distinct
for distinct k.) In this way, we have made sure that ntl 1is
the set of all %X for k < n+l. Since n is, similarly,

{0,...,n-1}, we actually have
ntl = nuin}l.

Although above we used concepts related to natural numbers that
we have not formally introduced, now we have a form of the de-
finition of n that complies with the form of the Recursion

Principle:

g

nui{n}.

gl ol
1

(Question: what are f, B, a and g of the Recursion Principle?)
We could easily show that kX # ¥ for k # £. But then, if we

put N = {n : n e N}, the function
n b——>n

k mapping IN into IN is a one-to-one and onto map of N onto .

If, in addition, we define

Sx = xu{x} (1)

for x € N, we theﬁ have (N,0,S), a Peano system: it is
isomorphic to (N,0,S), and therefore, as is easily checked
(see the exercise above), it is a Peano system itself. Finally,
we note that the class IN is actually the smallest class con-
taining 0 and closed under the operation S (exercise).

We have finally arrived at a pure-set-theoretical definition of
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natural number. In fact, we may, from a formal point of view,
forget everything in this section so far, and start with the

definition below. We drop the bars from above [N, 0 and S.

Definition 4.4 The class [N of natural numbers is de-
fined by
X ¢ I[N ® x belongs to every class X that contains @
(called also zero, 0) and that is closed under
the operation S (see (1), with S for 73):

if x ¢ X, then 8x e X.

It turns out that the set-construction principles so far
are not sufficient to ensure that IN is a set. We have one

last such principle as a postulate:
(Axiom of Infinity) The class of natural numbers is a set.

Proposition 4.5 We have 0 € N, and that N is closed

under successors: if n e IN, then Sn ¢ N. Moreover, [N, 0
and S so defined form a Peano system. Also, any element of a

natural number is again a natural number.

Proof: exercise (hint: we use 2..4(ii)).

It is clear from our preliminary discussion that the ordinary
ordering relation < on [N should coincide with e
k <n *® k en. Namely, n having been defined so that 1n is
the set of all k for k <n, we do have k <n ¢ Xk en in
that context. Therefore, we define < on W as e : for

k,n ¢ N, we put
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k<n ® kX e n.
daf

0f course, we now have to prove required properties of the re-
lation < so defined (by the way, formally:

< = {<k,n> : k,n e N and k e n}).
Instead of doing this directly, we generalize the concept of
natural number. For motivation, we turn to the discussion of the
sequence <Wa>a at the end of Section 2, except that now we are
interested only in the indices o of this sequence. We felt
compelled to introduce the index w as a 'stage of construction'
coming right after all the natural numbers. Following the
principle that "every natural number is the same as the set of
the previous natural numbers", we try to identify w with the
set of all natural numbers, i.e. in fact w = [N. Continuing in
the same spirit, we put wtl = wu{w} = Sw, etc. The indices so
obtained are particular ordinal numbers. The spirit of the above
is that "any ordinal should be equal to the set of all preceding
ordinals™. This entails, in particular, that every ordinal should

be a transitive set; a transitive set x is one for which 2z ey

and y € x 1imply that 2z e x (note that, for ordinals, y € X
should mean 'y precedes x'; 2z ¢ y means 'z precedes VA

so certainly then 'z precedes x').

Definition 4.6 The class of ordinals, Ord, is the

smallest class X satisfying the following:

whenever x 1is transitive and =xcX, then xe X.
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(In other words

Ord = {x : x ¢ X for all X such that for all
- 50
transitive y, y cX impling y e X}.

Under the latter definition, it is easy to show that, indegd
Ord satisfies the first form of the definition.)

Proposition 4.7 (i) Every element of an ordinal is an

ordinal.

(i1) Every ordinal is a transitive set.

Proof: exercise.

Proposition 4.8 0 is an ordinal, and if o is an

ordinal, so is So. As a consequence, all natural numbers are

ordinals.

Proof: exercise.

Proposition 4.9 (Trichotomy of ¢ on Ord)

For any ordinals o and B, either a ¢ B or q = R,

or B € o.

Proof: We are going to use e-induction; note that the
assertion contains two variables. Let us abbreviate by Pag
the assertion

"either a ¢ B, or aq = B, or B e a".

PaB can be read: "o and B are comparable”,
Let Qa stand for:

"for all ordinals B, Pag".



47

We show Qo by e-induction. Thus, we fix an ordinal o, and
we assume that for all a' ¢ o (any such o' is an ordinall),
we have Qu'. It remains to show that Qa holds, i.e. that

for all B ¢ Ord, we have PaB. Since the latter is an asser-
tion concerning a fixed a, and all B, we regard PaB as an
assertion on £ and prove it by e-induction on 8. (Thus, we
have an induction on B inside the induction on a.) Accordingly,
we now fix another ordinal B as well and we assume that Popg!
holds for all B' ¢ B. To summarize our assumptions: we have
particular ordinals a and g£; we have Qu' for all o' ¢ a,
i.e.

for all vy e Ord, Pa'y (a' e o) (2)

(note the change of the variable B8 in the above to y; B has

now been reserved for the second fixed ordinal), and also,

PaB! (B'" e B). (3)

Our task is to establish Paf from the assumptions (2) and (3).
To complete the proof, we now distinguish some cases.

First we make the assumption that a ¢ B (Case 1). This means

that there is a' € a such that a' ¢ B. By (2), for y = B,

a! and B are comparable. Since a' ¢ B, we must have either

a' = B, or B e a'. In the first case, by o' ¢ o we have

8 ¢ a, hence B and o are comparable as required. In the

second case, we have B € a' and o' ¢ o. Hence, since o is

transitive, B € o again, hence PaB holds too. This completes

the proof In Case 1.
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(Case 2) has the assumption that B8 ¢ a. The proof that now
@ ¢ B is similar to the above, and it uses (3) instead of (2);
the details are left to the reader.

To finish the proof, we notice that after Case 1 and Case 2,
we have the only remaining possibility that both o < B and
g < a hold. By exteﬁsioﬁality, now o = B3 Thence again,

PaB. [

For ordinals o and B, we write a < g for a ¢ B.
Notice that in the last proposition we established the so-called
trichotomy property of the relation < on 0Ord:

either o < B, or o= B, or R < a;
and, in particular, the same for natural numbers. Also note
that the transitivity of ordinals amounts to transitivity:
o < B and B < y imply o < Y3
again, as a consequence, this holds for natural numbers as well.
Note also that irreflexivity
ot a
is a special case of 2.4(i).
The last three properties of the relation < qualify it to be

called a linear ordering of Ord.

Also note the following: if a, B are ordinals, then
ac B *® o< 8

where o < B abbreviates "a < B or a = B" (exercise).

Proposition 4.10 If a 1is an ordinal, So <can be

characterized as the smallest ordinal B such that o < B
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(i.e., o < Sa, and whenever a < B, we have Sa < B).

Proof: Suppose that o < B. By trichotomy, Sa and §
are comparable; hence it suffices to show that B8 < Sa 1s not
possible. If B ¢ Sa then either £ ¢ o or B8 = a. But both

possibilities are incompatible with o ¢ 8 by 2.4. [J

As we already mentioned, IN itself is an ordinal; formally,
this is because of the Axiom of Infinity and the last part of
4.5. In the context of ordinals, IN 1is denoted by w. The
sequence of ordinals continues with Sw,SSw,...

Every natural number except 0 1is of the form Sa (see

4.1'). w is the first example of a limit ordinal: one which

is not 0 and not a successor either. Put in another way, a
limit ordinal A is one that is different from 0 and for
which o < v implies Sa < y; this follows from 4.10.

Let X be any set of ordinals, and consider
a 5} U{SB : B ¢ X}. By 'replacement' and 'union', a 1is a set.
Since every SB (B ¢ X) 1is transitive, it immediately follows
that o is transitive. Since each member of each SB is an
ordinal, each member of a 1is an ordinal. It follows that a
is an ordinal. For B ¢ X, B < SB <= a (since SBcaqa), thus
B < o. But also, a is the least ordinal a' _such that B < a!

R4
for all B ¢ X (we say that o is the least“ipper bound of X,

S
and write a = EYGLb.(X)): if B < a', then SB =< a', hence
SBca'y thus if B < a' for all B € X, then

a = U{SB : B € X} c a', i.e. a < a'. We have obtained
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S
Proposition 4.11 For any set of ordinals X, £5§fb.(x)
awved 1t (¢ an otdiwel

existquTT“~“””“““”“J

Proposition 4.12 Ord is not & set.

Proof: exercise.

Proposition 4.13 (Characterization of ordinals).

A pure set x 1is an ordinal if and only if it satisfies
the following two conditions:
(i) x is transitive,
(ii) =x 1is trichotome: for all y € x and 2z € X,

either z ey or z =y Or y e Z.

Proof: exercise.

Proposition 4.14 (Characterization of natural numbers).

A pure set x 1s a natural number if and only if it is an

ordinal, and in addition, the following holds:

1

(iii) for all y € xu {x}, either y = 0, or y = Sz

for some =z.

Proof: exercise.




