## Assignment 1/MATH 318/Fall 2007 Due: Monday, September 17

[1] We consider the following eight properties of relations:  $P_1$ :reflexive P<sub>2</sub>:symmetric  $P_2$ :transitive  $P_{\Delta}$ :irreflexive  $P_{5}$ :antisymmetric *P*<sub>6</sub>:strictly antisymmetric  $P_{7}$ :dichotomous P<sub>8</sub>:trichotomous We also look at the seven kinds of relation:  $Q_1$ :preorder  $Q_2$ :equivalence relation  $Q_3$ :reflexive order  $Q_5$ :total reflexive order  $Q_4$ :irreflexive order  $Q_6$ :total irreflexive order  $Q_7$ :graph

(i) Draw the digraphs of the following relations  $R_1$ , ...,  $R_8$ , all on the same set  $A = \{1, 2, 3, 4\}$ ,:

 $R_1 = \left\{ (3, 1), (1, 3), (1, 4), (1, 2), (4, 1), (2, 1) \right\}$ 

$$\begin{split} &R_2 = \left\{ (3, 3), (3, 4), (3, 2), (1, 3), (1, 1), \\ &(1, 4), (1, 2), (4, 3), (4, 4), (4, 2), (2, 2) \right\} \\ &R_3 = \left\{ (3, 3), (3, 1), (1, 3), (1, 1), (4, 4), (4, 2), (2, 4), (2, 2) \right\} \\ &R_4 = \left\{ (3, 3), (3, 1), (3, 4), (3, 2), (1, 1), (1, 4), (1, 2), (4, 4), (2, 2) \right\} \\ &R_5 = \left\{ (3, 4), (3, 2), (1, 3), (1, 4), (1, 2), (2, 4) \right\} \\ &R_6 = \left\{ (3, 3), (3, 2), (1, 3), (1, 1), (1, 4), (1, 2), (4, 3), (4, 4), (4, 2), (2, 2) \right\} \\ &R_7 = \left\{ (3, 1), (3, 4), (3, 2), (1, 1), (1, 4), (1, 2), (4, 1), (4, 4), (4, 2) \right\} \\ &R_8 = \left\{ (3, 1), (3, 4), (3, 2), (1, 4), (1, 2) \right\} \end{split}$$

(ii) Make an  $8\times8$  table whose (i, j)-entry is YES or NO according to whether or not  $R_i$  has the property  $P_j$ .

(iii) Make a similar  $8\times7$  table to record which of the relations are and which are not

of each the seven kinds  $Q_1$ , ...,  $Q_7$ .

[2] Consider the relations listed:

- $R_1$  on **N** (remember: "*R* on *A*" is to say  $R \subseteq A \times A$ ):  $aR_1b \iff a \neq b$  but *a* and *b* have a common prime divisor.
- $\mathbb{R}_2$  on  $\mathbb{N} \times \mathbb{N}$ : (a, b) $\mathbb{R}_2(c, d) \iff$  either a < c, or (a = c and b < d).

 $R_3$  on  $\mathbf{Q}^{\neq 0}$  (=the set of all non-zero rational numbers):  $xR_2y \iff x/y$  is an integer

 $\mathbb{R}_4$  on  $\mathbb{R}^{\geq 0}$  (=the set of all non-negative real numbers) :  $x\mathbb{R}_4 Y \iff y-3x > 0$ .

$$R_5$$
 on  $\mathbb{R}$ :  
 $xR_5y \iff (x-y) \in \mathbb{Q}$ .

Do the work of problem [1] for these relations. Draw up a 5×8 table and a 5×7 table containing the information on the relations as to whether they do or do not have the properties  $P_i$ ,  $Q_k$  defined in [1].

[3] Remember that relations are sets, namely, sets of ordered pairs. Therefore, the intersection and the union of two relations on a set A are relations on A as well.

Let P be a property of relations R. E.g, P could be  $P_3$  in [1] above: "R has property  $P_3$ " means that R is transitive. But also, each  $Q_k$  in [1] above is a possible property of relations: e.g., R has property  $Q_1$  means that R is a preorder.

We say that property *P* is "*preserved by intersections of relations*" if it is true that every time *R* and *S* are relations on the same set *A*, both having property *P*, we have that  $R \cap S$  also has property *P*. For instance,  $P_1$  (reflexivity) is preserved under intersection of relations.

We can talk about a property being preserved by unions of relations in the analogous

sense.

The question is:

which of the properties  $P_1, \ldots, P_8, Q_1, \ldots, Q_7$  are preserved by intersections of relations, which are not? Which by unions of relations?

Give a table with two columns and 8+7=15 rows, the first column for  $R \cap S$ , the second for  $R \cup S$ , the rows for the  $P_i$  and the  $Q_j$ , and the entries containing "yes" or "no". Give brief justifications for the less obvious "yes" answers for the  $P_i$ , and counterexamples for the "no" answers for the  $P_i$ 's.

[4] Let  $A = \{1, 2, 3, 4\}$ . For each of the combinations (a) to (g) of properties below, give, *if possible*, an example of a relation *R*, by drawing a digraph, on the set *A* satisfying it -- or else, if that is not possible, explain why that is so.

- (a) symmetric, irreflexive and trichotomous;
- (b) symmetric, dichotomous and *not* transitive;
- (c) symmetric, antisymmetric and irreflexive;
- (d) symmetric, antisymmetric and reflexive;
- (e) strictly antisymmetric, trichotomous and *not* transitive;
- (f) symmetric, antisymmetric and *not* transitive.
- (g) symmetric, irreflexive, transitive and trichotomous;

[5] Let *n* be a fixed positive integer, and let  $A = \{i \in \mathbb{N} : 1 \le i \le n\}$ . We list some relations on the set A:

$$\begin{split} &R_1 = \big\{ (i, i+1): i \in A \& i+1 \in A \big\} \\ &R_2 = \big\{ (i, i+2): i \in A \& i+2 \in A \big\} \\ &R_3 = \big\{ (i, i+1): i \in A \& i+1 \in A \big\} \cup \big\{ (n, 1) \big\} \\ &R_4 = \big\{ (2i, 2i+1): 2i \in A \& 2i+1 \in A \big\} \cup \big\{ (2i, 2i-1): 2i \in A \& 2i-1 \in A \big\} \ . \end{split}$$

(i) Draw digraphs for the each of the above when n=5.

(ii) Describe the transitive closure  $R_j^{tr}$  of each the above relations, for general n, in a simple way, and determine the number of elements (which are ordered pairs) in each

set 
$$R_j^{tr}$$

## [6] Define the relation E on $\mathbb{N}$ by the condition

 $aEb \iff$  there are integers *i* and *j* such that  $b|a^i$  and  $a|b^j$ .

(i) Prove that E is an equivalence relation on  $\mathbb{N}$ .

(ii) Show that aEb holds if an only if either a=b=0, or a and b have the same prime factors (none if a=b=1).

(iii) Let  $A = \{i \in \mathbb{N} : i < 20\}$ . Give the partition  $A/(E^{\uparrow}A)$  corresponding to the equivalence  $E^{\uparrow}A$  on A (for  $E^{\uparrow}A$ , see "*restriction*": p.36, line 8).

[Note: Recall that  $x^0 = 1$ , even for x=0. For partitions, see Section 2.2, in particular, p. 42].

[7] Consider the following relations R and S on the set  $A=\{1, 2, 3, 4\}$ :



(An edge without an arrow-head is equivalent to the two arrows in both directions between the two vertices.) Give the network ("digraph" without arrow-heads) as well as the adjacency matrix of each of the relations of the form  $R^{\circ m} \circ S^{\circ n}$ ,  $S^{\circ n} \circ R^{\circ m}$ , for all  $m.n \in \mathbb{N}$  (there are just a few distinct ones among of these). Also give  $R^{tr}$ ,  $S^{tr}$ ,  $R^{r/tr}$ ,  $S^{r/tr}$  in both ways.

- **[8]** Exercise 1 (p.31),
- **[9]** Exercise 2 (p.33)
- [10] Exercise 3 (p.35).
- **[11]** Exercise 4 (p.35).

**Remark:** When doing any one of the above exercises, collected in [9] to [11], you may use results appearing anywhere earlier in the text; in particular, any of the earlier exercises. For instance, in doing Exercise 4(p.35), you may use the results of Exercise 3(p.35) even if you did not do the latter.

[12] We have three graphs  $G_i = S_i \cup S_i^*$ , i = 1, 2, 3, all on the set  $\{1, 2, 3, 4, 5, 6, 7\}$  of vertices:

$$\begin{split} S_1 &= \left\{ (1, 2), (1, 4), (2, 3), (2, 4), (2, 5), (3, 5), (4, 5), (4, 6), \\ &\quad (5, 6), (5, 7), (6, 7) \right\} \\ S_2 &= \left\{ (1, 2), (1, 3), (1, 4), (2, 4), (2, 5), (2, 6), (3, 4), (4, 6), \\ &\quad (4, 7), (5, 6), (6, 7) \right\} \\ S_3 &= \left\{ (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5), (4, 6), \\ &\quad (5, 6), (5, 7), (6, 7) \right\} \end{split}$$

(i) Draw networks (edges without arrow-heads) of the three graphs in such a way that the (straight) edges do not cross each other (in these cases this is possible; of course, this is not always possible.)

(ii) Two of the graphs are isomorphic to each other; which ones are they? Give an isomorphism between them.

(iii) Show that one of the graphs is not isomorphic to either of the other two.