
SSSeeeccctttiiiooonnn 6...3 CCCooouuunnntttiiinnnggg

Counting means assigning consecutive natural numbers to the elements of a set in a one-to-one

fashion. Let us formulate counting in a mathematical style.

With n a natural number, let [n) denote the set

[n) = {kε
���

k < n} = {0, 1, ..., n-2, n-1} ;
def

[n) is the primordial set with exactly n elements. If n = 0 , [n) = ∅ , the empty set;

[1) = {0} , [2) = {0, 1} , etc.

We say that the cardinality of the set X is n , or that the number of elements of X is n , if

≅there is a bijection f:[n) ��� ����� ����� ����� X ; the function f provides the counting of X .

≅The question arises if one could have a bijection f:[n) ��� ����� ����� ����� X and another

≅g:[m) ��� ����� ����� ����� X with the same set X , but with different n and m ; if so, the notion of

cardinality would not be well-defined. The answer to the question is "no"; the described

-1situation is impossible. Namely, if we had that situation, h = g � f:[n) ��� ����� ����� [m)
def

would be a bijection (see Chapter 1, p.25, where it is stated that the composite of two

bijections is a bijection), and we would have a bijection between two different sets of the form

[n) , contrary to the third of the following propositions:

If h:[n) ��� ����� ����� [m) is an injection, n ≤ m ;

if h:[n) ��� ����� ����� [m) is a surjection, n ≥ m ;

if h:[n) ��� ����� ����� [m) is a bijection, n = m .

The proof of these assertions use induction; of course, the last part is a consequence of the two

previous parts.

We call a set A finite if there exists n ε
�

such that the cardinality of A is n . That is, A
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≅is finite if there exists a bijection of the form [n) ��� ����� A , with n ε
�

. The cardinality of the

set A is denoted by � A � ; � A � is defined just in case A is finite (in set theory, one talks

about the cardinality of infinite sets too; we will not do so here). Thus, e.g.,

� [n) � = n ( n ε
�

)

(exemplified by the identity function 1 :[n) ��� � [n) ).[n)

A frequently applied method of finding out the cardinality of a set X is to find another set Y

the cardinality of which is known, and to establish a bijection of X and Y ; in this case we

know that the cardinality of X is the same as that of Y . The principle is

≅If � Y � = n and f:Y ��� � � � X , then � X � =n .

≅This is obvious, since, under the assumptions here, we have some g:[n) ��� � Y , and then

≅f � g:[n) ��� � X .

One simple law concerning finiteness is that

any subset of a finite set is finite; moreover, a proper subset of a finite set has a strictly

smaller cardinality.

The rigorous proof is by an induction: one proves by induction on the natural number n that

any subset of a set of cardinality n is finite, in fact, of cardinality ≤ n .

The three propositions stated above immediately generalize in the following forms:

If h:A ��� ����� B is an injection, � A � ≤ � B � ;

if h:A ��� ����� B is a surjection, � A � ≥ � B � ;

if h:A ��� ����� B is a bijection, � A � = � B � .
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The third proposition expresses the fundamental fact of life according to which if we count a

pile of pebbles on two occasions, and in the meantime, no pebble was added or taken away,

then the numbers arrived at must be the same.

The first proposition is equivalent to the so-called pigeon–hole principle, according to which

if we have put n things into less than n holes, then in at least one hole, we have put

at least two things.

Namely, let the set of the things be A and the set of holes B ; � A � = n and � B � < n ; let

the function f:A ��� ����� B map every thing in A to the hole it is put into; since � A � > � B � ,

f cannot be an injection, that is, there are a ≠ a in A for which f(a ) = f(a ) , i.e.,1 2 1 2
a and a are put into the same hole.1 2

E.g., among thirteen people, there must always be at least two who were born in the same

month. Among thirteen integers, there always are two distinct ones whose difference is

divisible by 12 : there are two that give the same remainder when divided by 12 , and their

difference is divisible by 12 .

If f:A ��� � A is an injective function of a finite set A into itself, then f is a

bijection; if f:A ��� � A is a surjective function of a finite set A into itself, then f is a

bijection.

To see the first assertion, assume that f:A ��� � A is injective. Suppose f is not surjective, to

derive a contradiction. There is some a∈A such that a∉range(f) . Then the same

function f can be considered a function from A to A-{a} ; that is, f:A ��� � A-{a} ; f

so construed is still injective. But then we would have � A � ≤ � A-{a} � , contradicting the

fact that A-{a} is a proper subset of A . This contradiction proves that f must be

surjective.
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The other half of the proposition is proved similarly; now, we take away an element from the

domain, rather than from the codomain.

An application of the last-stated principle is the important proposition that

the congruence ax ≡ b (mod n) is solvable for the unknown x provided

gcd(a, n)=1 .

(For congruences, see section 2.2 in Chapter 2.)

To see this, first of all, recall that we denoted the set of all equivalence classes of the

congruence mod n by � /n , and that we proved that � /n has exactly n elements; in

particular, it is a finite set. Now, consider the mapping f:
�
/n ��� �

�
/n that takes [x] to

[ax] . Is f well-defined? For this, we need that if [x]=[y] , then [ax]=[ay] . But

this is true: see Exercise 2 on page 45 of Chapter 2.

Under the assumption that gcd(a, n)=1 , f is an injective map: if [ax]=[ay] , then

ax≡ay (mod n) , that is, n
�
ax-ay=a(x-y) ; and since gcd(a, n)=1 , that is, a and

n have no common prime factor, we must have that n
�
x-y , which means x≡y (mod n) ,

and so [x]=[y] .

By our last stated principle, f is surjective. This is what we want: the surjectivity of f

means that for any [b]∈ � /n there exists [x]∈ � /n such that f([x])=[b] , that is,

[ax]=[b] , that is, there is x∈ � such that ax≡b (mod n) .

The basic laws of counting connect operations on sets with operations on numbers. Here are

the most important ones; the sets A , B , etc. are assumed to be finite.

� A � B � = � A � + � B � (1)

provided A � B = 0 ( A and B are disjoint),

� A × B � = � A � ⋅ � B � , (2)

A � A �� B � = � B � . (3)
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These laws contain the information that the operations of union, Cartesian product, and

exponentiation, when applied to finite sets, result in finite sets again. The laws can be proved

by appropriate inductions; e.g., the last one by induction on � A � . Let us see how this proof

goes.

Basis Step. � A � = 0 . In this case, A is empty, and there is exactly one function from

AA = 0 to (any set) B . Therefore, � B � = 1 . Also, by the definition of exponentiation of

� A � 0numbers, � B � = � B � = 1 . This shows that the desired equality holds in this case.

Induction Step. � A � = n + 1 , that is, there is a bijection f:[n+1) ��� ����� ����� A . Let

a = f(n) , and let A’ = A - {a} . The function f restricted to the subset [n) of its

domain, g = f � [n) , is now a bijection from [n) to A’ ; in particular, � A’ � = n .
Now, we set up a bijection

A’ ≅ Ag : B × B ��� ����� ����� ����� B

A’as follows: to any pair (s, b) ∈ B × B where s is a function s:A’ ��� ����� B and b∈B ,

g assigns the function t:A ��� ����� B for which

s(x) if x ≠ a (hence, x ε A’)
t(x) =

b if x = a

It is easy to check that g is indeed a bijection. It follows that

A A’ A’� B � = � B × B � = � B � ⋅ � B � (by (2) )

n= � B � ⋅ � B � (by the induction hypothesis,

A’ n� B � = � B � , since � A’ � = n )

n+1 1= � B � (by the laws m =m ,

n+ � n �m = m ⋅m for exponentiation of numbers)

� A �= � B �
as desired.
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An application of the last fact is the proof of the relation

� A ���� (A) � = 2 ,

nor in words, the number of all subsets of an n-element set is 2 . The reason for this is that

the subsets of A are in a one-to-one correspondence with the functions A ��� ����� {0, 1} : if

X ⊆ A , we consider χ :A ��� ����� {0, 1} , the characteristic function of X , defined byX

1 if a ∈ X
χ (a) =X 0 if a ∉ X .

Any function χ:A ��� ����� {0, 1} is the characteristic function of a unique subset X of A ,

namely of X = {a∈A
�

χ(a) = 1} . Thus, we have the bijection

≅ A� (A) ��� ����� ����� ����� ����� ����� {0, 1}

X � � ����� ����� ����� ����� ����� ����� χX

A � A �and therefore, ��� (A) � = � {0, 1} � = 2 as claimed.

The laws (1), (2), (3) are generalized to many-termed unions/sums and Cartesian

products/products as follows. In what follows, I and each A are assumed to be finite sets.i

SSSuuummm rrruuullleee:

� � ��� ��� A � = � � A � provided the A are pairwise disjoint:i i iiεI iεI
A � A = ∅ whenever i, j ∈ I and i ≠ j .i j

PPPrrroooddduuucccttt rrruuullleee:

�	� A � = � � A �i iiεI iεI
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(thus, the use of the same symbol � for the product of numbers and the Cartesian product of

sets is justified). The proofs of these identities are by induction on � I � . (1) is the special

case of the sum rule when � I � = 2 ; (2) is the special case of the sum rule when B = I and

A = {b}×A (essentially, the case of equal-cardinality terms); (3) is the special case of theb
product rule when I = A , and A = B for all i ∈ I .i

The sum rule can be expressed in the following informal way. We have a set A which is

partitioned into certain subsets A , for i∈I , or A is the disjoint union of the A ’s ,i i
meaning that A = � ��� A and the A s are pairwise disjoint. Note that this is the same as toi iiεI
say that every a ∈ A belongs to A for exactly one index i ∈ I . To count the elementsi
of A it suffices to count the elements of each A , and to add up the numbers obtained. Wei

⋅write A = � ��� A to indicate that A is the disjoint union of the A 's .i iiεI

To consider a kind of situation when the sum rule is useful, let f:A ��� ����� B an arbitrary

-1function. Then the sets f ({b}) when b runs over B form a partition of A : every

-1a∈A is in exactly one of the sets f ({b}) , namely the one for which b=f(a) . The sum

-1 -1rule says that � A � = � � f ({b}) � . If we also assume that the sets f ({b}) are
bεB

all of equal cardinality, say m , then this says that � A � = m ⋅ � B � .

The product rule is paraphrased as follows. An element of � A is the result of miiεI
thindependent choices ( m = � I � ), the i choice constrained to lie in the set A . Thei

number of such compound selections consisting of m independent choices is the product of

the numbers of the possibilities of the m individual choices.

The product rule has a generalized form which is the really useful version in practice. In this,

we have selections in which the individual choices are not independent of each other, but the

numbers of them are. We consider a subset A of a Cartesian product � B determined asii<n
follows. The sequence 〈a 〉 from � B belongs to A iff each a belongs to ai i<n i ii<n
certain constraint-set A( 〈a 〉 ) , a subset of B depending on the segment 〈a 〉j j<i i j j<i
of the a preceding a . The essential assumption is that the cardinality of thej i
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constraint-set A( 〈a 〉 ) does not depend on 〈a 〉 , just on i ; let us say, thisj j<i j j<i
cardinality is n :i

� A( 〈a 〉 ) � = n ,j j<i i

at least when 〈a 〉 is properly constrained: a ∈A( 〈a 〉 ) for all j<i .j j<i j k k<j

In this case, � A � = � n . Let us call this rule the ppprrroooddduuucccttt rrruuullleee fffooorrr dddeeepppeeennndddeeennnttt ssseeellleeeccctttiiiooonnnsss.ii<k

The product rule for dependent selections can be proved by induction on k , the length of the

selections made.

Let us take a simple case illustrating the last mentioned rule. Let C be an alphabet of size n ,

*and let us compute the number of strings in C in which there are no identical letters next to

each other. The set of such strings being called A , A is a subset of � C (we identify
i<k

strings with sequences), and 〈a 〉 from � C belongs to A just in case for each ii i<k i<k
in the range 1≤i≤k , we have a ≠ a . In other words, in this casei i-1

A( 〈a 〉 ) = {a∈C
�
a ≠ a }j j<i i-1

if 1≤i≤k , and

A( 〈a 〉 ) = C .j j<0

Thus, the numbers n are: n = n , n = n-1 when 1≤i≤k , and the desired number isi 0 i
k-1n ⋅(n-1) .

It is customary to express the above argument in the following informal way. To have a string

in which there are no two identical letters next to each other, we may take n different letters

as the first letter of the string. But for the second letter, we can take only n-1 , since the first

one is now excluded. This says that the number of compound choices for the first two

positions is n(n-1) . For the third letter we can again choose from n-1 letters, the ones

that are different from the second letter, whatever that was; thus, there are n(n-1)(n-1)

possibilities for the segment in the first three positions. Etc.; the number of such strings of
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k-1length k is n(n-1) .

We can see that the informal argument actually reproves the product rule by induction on k .

Let us determine the cardinality of some important finite sets.

Suppose that � A � = m , � B � = n and m ≤ n . Then the number of injections

≅A ��� ����� ����� ����� B between two given sets A and B is

� (n-i) = n ⋅(n-1) ⋅... ⋅(n-m+2)(n-m+1)
i<m

This can be easily shown by the product rule for dependent selections. First of all, we may

assume without loss of generality that A = [m) . A function A ��� ����� ����� B is a sequence

〈b 〉 with each b ∈ B . The sequence 〈b 〉 is an injection iff for all i < m ,i i<m i i i<m
b differs from b for each j < i . This means that b in 〈b 〉 is constrained toi j i i i<n
lie in the set

B( 〈b 〉 ) = {b∈B
�
b ≠ b for all j < i} .j j<i j

The latter set has cardinality n - i , since the b 's are all distinct (the selection 〈b 〉j j j<i
being "properly constrained"), and hence, there are exactly i of them. We see that the

cardinality of the constraint-set B( 〈b 〉 ) is independent of the segment 〈b 〉 , itj j<i j j<i
depends on i only. The product rule, for the variant for dependent selections, gives that the

desired number is � (n-i) as promised.
i<m

A special case of the last proposition, for the case m = n , is the following.

The number of bijections between two fixed sets of the same cardinality n is n! ; in

particular, the number of permutations of a set of cardinality n is n! .
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Indeed, this follows from the previous proposition, since any injection from a set to another of

the same cardinality is a bijection, as we stated above.

*Note that the injections from [m) into an alphabet A are the same as the strings in A of

length m in which no letter is repeated; the proposition above gives a formula for the number

of such strings.

nLet ( ) (read: " n-choose-k ") denote the number of k-element subsets (more briefly:k
n n nk-subsets) of an n-element set. Clearly, if n < k , then ( ) = 0 . Also, ( ) = ( ) = 1 .k 0 n

We claim that

n n!( ) = � ����� ����� ����� ����� ����� ����� ����� ��� whenever k ≤ n .k k!(n-k)!

To show this, let us fix k and n , k ≤ n . Let the set of all permutations of [n) be

called P , and let the set of all k-subsets of [n) be S . We partition the permutations of

≅[n) into as many disjoint sets as there are k-subsets of [n) . Let σ:[n) ��� ����� ����� ����� [n) be

any permutation; consider the set of values of σ at the first k arguments 0, 1, ... ,

k-1 , that is, the set

X = {σ(0) , σ(1) , ... , σ(k-1)} .σ def

Since σ is one-to-one, X is a k-subset of [n) . Consider the functionσ

f:P ��� ����� ����� ����� ����� S
σ � � ����� ����� ����� X .σ

-1For any k-subset X ∈ S of [n) , f ({X}) consists of those permutations σ for which

X is the given set X ;σ

-1f ({X}) = {σ
�
X =X} .σ
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We claim that

-1� f ({X}) � = k!(n-k)! (4)

independently of X . This equality is based on the following general fact.

⋅ ⋅Suppose A=A ∪A and B=B ∪B , assume that � A � = � B � , � A � = � B � (and, as a1 2 1 2 1 1 2 2
≅consequence, � A � = � B � ), and let us consider the set T of those bijections σ:A ��� � ����� � B for

which σ[A ]=B , that is, σ maps A onto B . Then, writing (temporarily)1 1 1 1
≅Bij(U, V) for the set of all bijections U ��� ����� V , we have a bijective mapping

≅T ��� � � � ����� � � � � Bij(A , B ) × Bij(A , B ) (4')1 1 2 2

σ � � � � � � � � ( σ � A , σ � A ) .1 2

≅The point is that if the bijection σ:A ��� ����� B maps (bijectively) A onto B , then it1 1
necessarily maps the rest of A , A , bijectively onto B , the rest of B . In other words, if2 2
σ∈T , then θ =σ � A ∈Bij(A , B ) and θ =σ � A ∈Bij(A , B ) . Conversely, if1 1 1 1 2 2 2 2
θ ∈Bij(A , B ) , θ ∈Bij(A , B ) , then σ defined by1 1 1 2 2 2

θ (a) if a∈A1 1
σ(a) =

θ (a) if a∈A2 2

≅is a bijection σ:A ��� � ����� � B for which σ � A =θ and σ � A =θ .1 1 2 2

In our application, A=B=[n) , A =[k) , A =[n)-[k) , B =X , B =[n)-X . Then the1 2 1 2
-1set T is what we called f ({X}) . Since � A � =B � =k , � A � =B � =n-k , we have1 1 2 2

� Bij(A , B ) � =k! , � Bij(A , B ) � =(n-k)! . The relation (4') therefore tells us that1 1 2 2
� T � =k! ⋅(n-k)! , as desired. This shows (4).

-1Since for each k-subset X of [n) , f ({X}) is of the same cardinality, namely
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n -1k!(n-k)! , and P is partitioned into ( ) sets f ({X}) , we havek

n� P � = ( ) ⋅k!(n-k)! .k

nBut we know that � P � = n! . The desired expression for ( ) follows by dividing byk
k!(n-k)! .

nThe numbers ( ) are called the binomial coefficients, because their appearance in thek

BBBiiinnnooommmiiiaaalll ttthhheeeooorrreeemmm:::

n n k n-k(x + y) = � ( )x y (n ∈
�

, n ≥ 1) .kk≤n

This equality is immediate when one considers that in the product (x+y)...(x+y) ( n

k n-kfactors), when written out via the distributive law as a sum of monomials x y , the

number of terms with exactly k x-factors (and hence exactly n-k y-factors) is the same as

the number of ways we can select k factors (x+y) out of the n such; the latter number is,

nby definition, ( ) .k

The binomial coefficients satisfy many identities. One such is

n n n+1( ) + ( ) = ( ) .k k+1 k+1

The reason for this is the fact that the set S of k+1-subsets of [n+1) is partitioned into

two disjoint subsets, S and S , according to whether X ε S does or does not contain the1 2
element n . The elements of S are in one-to-one correspondence with the k-subsets of1
[n) : with X ε S , take away from X the fixed element n , and get a k-element subset of1
[n) . S is nothing but the set of all k+1-subsets of [n) . Thus2
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n+1 n n� S � = ( ) , � S � = ( ) , and � S � = ( ) ,k+1 1 k 2 k+1

⋅and since S = S � S , the assertion follows.1 2

The last-proved identity gives a recursive definition of the binomial coefficients. The

successive calculation of the binomial coefficients is suggested by the Pascal triangle:

0( )0
1 1( ) ( )0 1

2 2 2( ) ( ) ( )0 1 2
3 3 3 3( ) ( ) ( ) ( )0 1 2 3

4 4 4 4 4( ) ( ) ( ) ( ) ( )0 1 2 3 4
5 5 5 5 5 5( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 5

.........................

in which every coefficient is the sum of the two immediately above it, and in which all the

values on the two sloping sides are equal to 1 .

Substituting particular values for x and y in the binomial theorem, we get various identities

involving the binomial coefficients. E.g., if we put x = -1 , y = 1 , we obtain

n k n(-1 + 1) = 0 = � (-1) ( ) ( n ≥ 1 ),kk≤n

that is,

n n n n-1 n n n( ) - ( ) + ( ) - ... + (-1) ( ) + (-1) ( ) = 0 .0 1 2 n-1 n

nSince ( ) = 1 , we may rewrite this as0
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n n k+1 n n+1 n( ) - ( ) + ... + (-1) ( ) + ... + (-1) ( ) = 1 ,1 2 k n

that is,

n k+1 n� (-1) ( ) = 1 ( n ≥ 1 ). (5)kk=1

We will make use of the last identity in establishing the so-called sieve principle, or

inclusion/exclusion principle.

The principle mentioned concerns the way one can compute the cardinality of a union of sets.

The sum rule gives the answer when the sets involved are pairwise disjoint. In the general

case, the answer involves the cardinalities of the various intersections of the given sets (which

are all equal to 0 in the disjoint case).

Consider the special case of the union of two sets. We have

� A � A � = � A � + � A � - � A � A � ;1 2 1 2 1 2

the reason is that "when we add up the cardinalities of A and A , we count the elements in1 2
the intersection A � A twice; subtracting the cardinality of the intersection corrects this".1 2

The case of three sets is like this:

� A � A � A � =1 2 3
� A � + � A � + � A � - � A � A � - � A � A � - � A � A � + � A � A � A � .1 2 3 1 2 1 3 2 3 1 2 3

An argument justifying this would say that the corrections afforded by the three subtractions

over-correct precisely for the elements that are in at least two of the double intersections; but

these are exactly the elements which are in the triple intersection; hence, we have to

compensate by adding the cardinality of that triple intersection.

We have to admit that these arguments, although intuitive, fall somewhat short of the ideal of

a clear mathematical proof. Considering that the general case of an arbitrary number of sets is

likely to be more involved, we are drawn to a more serious mathematical approach.
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First of all, let us state the general result:

� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����
n n

��
k+1�

��� ��� A � = � (-1) � � A � A � ... � A �
�

i i i i�
i=1 k=1 1≤i <i <...<i ≤n 1 2 k

��
1 2 k

�
� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ����� ���

or in a more detailed form

� A � A � ... � A � =1 2 n
n
� � A � - � � A � A � + � � A � A � A � - ...i i i i i ii=1 1≤i <i ≤n 1 2 1≤i <i <i ≤n 1 2 31 2 1 2 3

n+1+ (-1) � A � A � ... � A � .1 2 n

Here, e.g. the sum � � A � A � is taken over all pairs (i , i ) of integersi i 1 21≤i <i ≤n 1 21 2
between 1 and n inclusive such that i < i .1 2

To prove this, we introduce the concept of multiset. Let X be a large set so that every set we

may want to consider is a subset of X . A multiset is a function assigning a positive, negative

or zero integer to every element of X ; briefly, a function M from X to � , M:X ��� ����� ����� � .

Intuitively, M is a "set" for which the things in X may be in M with various "multiplicities";

M(x) is the multiplicity of x in M . E.g., with X =
�

, we may consider the multiset M

for which M(n) = 0 for all n ≥ 5 , and M(0)=1 , M(1)=-4 , M(2)=0 , M(3)=1 ,

M(4)=2 . We consider only finite multisets, that is, ones in which only finitely many

elements have a multiplicity different from 0 .

A simple notation for concrete multisets follows the notation for functions; the multiset in the

example may be denoted by

0 1 2 3 4( ) . (6)1 -4 0 1 2
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It is understood that for any x ε X not in the upper row of the notation, the multiplicity is

0 .

⋅Any ordinary set A (a subset of X ) is considered as a multiset A for which

1 if x ε A⋅A(x) =
0 if x ∉ A .

⋅In other words, A is the characteristic function of A as a subset of X . E.g., if

⋅A = {0, 2, 5} , then A is

⋅ 0 1 2 3 4 5A = ( ) .1 0 1 0 0 1

The cardinality of a multiset M , � M � , is, by definition, the sum of the multiplicities of the

elements: � M � = � M(x) ; since we assume that only finitely many M(x) are different
xεX

from 0 , the sum is a well-defined integer. E.g., in the example, � M � = 0 , although M is

far from being the same as the empty set.

Note that for a finite set A , the usual cardinality of A and the cardinality of it as a multiset

⋅are the same: � A � = � A � .

We define addition of multisets by simply adding multiplicities: the multiset M + N is defined

by the equality

(M + N)(x) = M(x) + N(x)
def

In other words, the multiplicity of an element x in the sum-multiset M+N is, by definition,

the sum of the multiplicities of x in M and N .

⋅E.g., for M as above, and for A = {0 , 2 , 5} , M + A is the multiset

0 1 2 3 4 5( ) .2 -4 1 1 2 1

If a is an integer, a ⋅M or more simply aM , (scalar multiplication) is the multiset for

which

216



(aM)(x) = aM(x) .
def

⋅ 0 1 2 3 4 5E.g., the multiset (-1)A for A as above is ( ) .-1 0 -1 0 0 -1

⋅-M means (-1)M , and M - N means M + (-1)N . E.g., with M and A as before, M - A

0 1 2 3 4 5is ( ) .0 -4 -1 1 2 -1

The usual rules concerning addition and scalar multiplication (commutativity, associativity,

etc) familiar from linear algebra are valid for addition and scalar multiplication of multisets,

since they are inherited from those operations on numbers.

We have the following rules connecting cardinality and the operations just introduced:

� M + N � = � M � + � N � ,

� aM � = a � M � .

These are immediate from the definitions. As a consequence, the cardinality of a linear

combination of multisets is the corresponding linear combination of the cardinalities of the

terms.

The main point is the following equality of multisets: for any (ordinary) sets

A , A , ... , A , we have1 2 n

n n⋅ k+1 ⋅( � ��� A ) = � (-1) � (A � A � ... � A ) . (7)i i i ii=1 k=1 1≤i <i <...<i ≤n 1 2 k1 2 k

To prove this, we take an arbitrary xεX , and show that the multiplicity of x in the left-hand

side equals the multiplicity of x in the right-hand side. If x does not belong to any of the

A , that is, the multiplicity of x in the left side is 0 , then it does not belong to any of thei
sets involved in the right side either, and thus its multiplicity on the right, being a sum of 0's ,
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is also 0 . Let us then assume that x does belong to at least one A ; thus, the multiplicityi
of x on the left is 1 . Let those indices � = 1, ..., n for which x ε A be�
� < � < ... < � ; in particular the number of these � 's is m ; m ≥ 1 . Let us also write1 2 m

L = { � , � , ... � } .1 2 mdef

Take an arbitrary selection i < i < ... < i of indices between 1 and n (inclusive) ,1 2 k
and ask what the multiplicity

⋅(A � A � ... � A ) (x) (8)i i i1 2 k

is. Clearly, this is 1 or 0 depending on whether x does or does not belong to the set

A � A � ... � A . On the other hand, x belongs to the latter set if and only if xi i i1 2 k
belongs to each one of the sets A , A , ... A , that is, if each of i , i ,i i i 1 21 2 k
... , i is the same as one of � , � , ... � , that is, ifk 1 2 m

{i , i , ... i } ⊆ L . (9)1 2 k

We have shown that (8) is equal to 1 if (9) holds; otherwise (8) is 0 . Therefore, with a

fixed k between 1 and n , the sum

⋅� (A � A � ... � A ) (x)i i i1≤i <i <...<i ≤n 1 2 k1 2 k

equals the number of selections i < i < ... < i for which (9) holds. But this number is1 2 k
mnothing but the number of k-subsets of L , and this is ( ) . It follows that the right-handk

n k+1 mside of (7), when evaluated at x , equals � (-1) ( ) , which is the same askk=1
m k+1 m m� (-1) ( ) , since ( ) = 0 for k > m . By (5) and m ≥ 1 , the last sum is equal tok kk=1

1 . We have shown that the multiplicity of x on the right in (7) is 1 ; since the multiplicity

on the left is also 1 , we have proved (7).
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Having proved (7), we may take the cardinality of the two multisets in (7). The cardinality of

the left side is the same as the cardinality of the ordinary union-set. The cardinality of the right

side may be taken term by term, as we pointed out above. The cardinalities of the

intersection-multisets are just the cardinalities of the intersections as sets. We get the

right-hand side expression in the framed equality; that equality is thus proved.

Note that the cases of two and of three sets stated earlier are the special cases of the general

formula for n = 2 and n = 3 .
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