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An integer a ε
�

is divisible by b ε
�

if there is an integer c ε
�

such that a = bc . Note

that 0 is divisible by any integer b , since 0 = b ⋅0 . On the other hand, a is divisible by

0 only if a = 0 : from a = 0 ⋅c it follows that a = 0 . The symbolic way of writing " a is

divisible by b " is: b � a . Instead of " a is divisible by b " we also say that " b divides

a ", or that " b is a divisor of a " , or " a is a multiple of b " .

Note the obvious

Transitivity law for divisibility:

a � b and b � c ����� a � c .

aIn case b ≠ 0 , a being divisible by b is the same as to say that � ��� is an integer; web
acannot say this, however, if b = 0 , since � ��� is meaningless. In particular, if b � a , then0

either a=0 , or else � b � ≤ � a � ; in other words, for positive integers a and b such that

a aa<b , b � a is impossible (since then 0< � ��� <1 , and � ��� cannot be an integer).b b

As far as divisibility is concerned, any integer a and its negative -a behave in the same

way: b � a iff b � -a iff -b � a . Therefore, e.g., when we want to account for all the divisors

of an integer, we may restrict our search to the non-negative numbers. Always, a � a and

a � -a . Moreover, if both a � a’ and a’ � a hold, then either a’ = a or a’ = -a .

In what follows, variables a , b , ... range over
�

, the set of all integers, unless otherwise

stated.

Given any a and b such that b > 0 , we may divide a by b with a remainder: we can

find q and r such that

a = qb + r , 0 ≤ r < b . (1)

E.g., with a = 17 , b = 5 , we have q = 3 and r = 2 :
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17 = 3 ⋅5 + 2 , 0 ≤ 2 < 5 .

In (1), q is the quotient, r is remainder when a is divided by b . The remainder being

equal to 0 signifies, of course, that b divides a , b � a .

To prove the existence of the quotient/remainder representation, first let us assume that a≥0 .

The set X of all non-negative multiples of b that are less than or equal to a is nonempty

( 0∈X ), and bounded by a ; thus, by the Greatest Number Principle (see the last section), it

has a maximal element, say qb . Thus we have that qb∈X but (q+1)b∉X (since b≠0 ,

qb<(q+1)b ). This means that qb≤a<(q+1)b . It follows that for r=a-qb , we have the

relations in (1).

For the case when a<0 , we write -a = qb+r by what we already know; from this,

a = (-q-1)b+(b-r) is the desired decomposition.

The common divisors of a and b are those integers that divide both a and b .

With any integers a and b , a(n integer) linear combination of a and b is any integer of

the form xa + yb , with x and y also integers (although we usually say "linear

combination" without the qualification "integer", we insist that the coefficients should also be

integers!). Note that

any linear combination of linear combinations of a and b is a linear combination of

a and b :

if c = xa + yb , d = ua + vb and e = sc + td , then

e = s(xa + yb) + t(ua + vb) = (sx + tu)a + (sy + tv)b .

Also note that
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any common divisor of a and b is a divisor of any linear combination of a and b :

if c � a , c � b , that is a = uc , b = vc , then

xa + yb = xuc + yvc = (xu + yv)c .

Now, if

a = qb + r , (2)

then a is a linear combination of b and r (since a = qb + 1 ⋅r ) and also, since

r = a - qb = 1 ⋅a + (-q)b , r is a linear combination of a and b . We may conclude

that

under (2), the common divisors of a and b , and the common divisors of b and r

are the same.

c is a greatest common divisor (gcd) of a and b if it is a common divisor of a and b ,

and a multiple of every common divisor of a and b at the same time; in other words,

c � a and c � b

and

for all d such that d � a and d � b , we have d � c .

Another way of putting the defining property of c is to say the common divisors of a and

b are the same as the divisors of (the single) c : for any d ,

d � a and d � b � ������� d � c .

Note that it is not clear, at this point, that any pair of numbers a and b has a gcd; we will
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prove this soon. However, one thing is pretty clear, namely that the gcd, if it exists, is

essentially unique: if both c and c’ are gcd's of a and b , then c = c’ or c = -c’ ;

the reason is that, from the definition it follows that both c � c’ and c’ � c hold. To make

the gcd completely unique, we agree that gcd(a, b) should denote the non-negative one of

the two possible values.

A remark on the name "greatest common divisor". Assume that both a and b are positive

(the only "interesting" case for gcd(a, b) ). Then c=gcd(a, b) is certainly the greatest

one among the common divisors of a and b , since it is positive, and it divides all of them.

One might then say that it is obvious that there is a greatest one among these common

divisors, as there is always a greatest one among finitely many integers. However, if we

denote this greatest of the common divisors by c , it is not clear that for every common

divisor d of a and b we have d � c as required in the definition of "gcd"; we only have

that d≤c , which, of course, is not enough for d � c . It is important to realize that the

definition of "greatest common divisor" imposes a stronger condition than it appears from the

wording of the concept.

These remarks explain why, to prove the existence of the gcd, we have to go through the

considerably more sophisticated argument than just saying "take the largest of the common

divisors". The argument that follows is not only one of the most important ones in all of

mathematics, but it is also one of earliest ones: it appears in Euclid's "Elements", the classic

ancient Greek treatise on mathematics.

Note that if b � a , then gcd(a, b) = � b � ; hence, gcd(0, b) = � b � .

For the proof of the existence of the gcd, the first remark is that

if a = qb + r , then gcd(a, b) = gcd(b, r) , (3)

meaning that if one gcd exists, so does the other, and they are equal. The reason is that, in this

case, the common divisors of the pair (a, b) and those of (b, r) are the same, as we

noted above.

Let a and b be arbitrarily given integers; we want to compute gcd(a, b) . We may
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assume that b > 0 ; if b = 0 , then gcd(a, 0) = � a � as said above, and if b < 0 , we

may pass to -b : gcd(a, b) = gcd(a, -b) . Now, assuming b>0 , we can define, by

recursion, the sequence

a , a , a , , a , a (3')0 1 2 n n+1

by

a = a0 def

a = b1 def

and for any i ≥ 0 , if we have already defined a and a ,i i+1

and if a is greater than 0 , (3")i+1

a is defined as the remainder of a divided by a . In other words, the relationsi+2 i i+1

a = q ⋅a + a , 0 ≤ a < a (4)i i i+1 i+2 i+2 i+1

hold with suitable q . When a = 0 , we stop, that is, we do not define a , and wei i+1 i+2
put n = i ; thus, the sequence (3') will have been defined. Since the a ’s are strictlyi
decreasing after i = 1 (see the second relation in (4)), by the "principle of the impossibility

of infinite descent" (see the last section), we must reach a stage i+1 when a is noi+2
longer defined, that is, the condition (3") fails, that is, a = 0 . Denote this i by n .i+1
Therefore, since a =0 , we have by (4), for i=n-1 , thatn+1

a = q ⋅a . (5)n-1 n-1 n

Now, since a is a divisor of a , gcd(a , a ) = a . The first relation in (4)n n-1 n-1 n n
tells us that

gcd(a , a ) = gcd(a , a ) ( i+2 ≤ n )i i+1 i+1 i+2

(see (3)). Thus, we have that
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gcd(a, b) = gcd(a , a ) = gcd(a , a ) = ... = gcd(a , a ) = a .0 1 1 2 n-1 n n

We have shown that gcd(a, b) exists, and in fact, have shown how to compute it. We can

summarize the procedure this way: we construct the sequence the first two terms of which are

the given numbers, and in which every term is the remainder when the previous term divides

the term preceding it. The construction terminates when 0 is reached; the term previous to the

zero term is the desired gcd.

E.g., let a = 3293 , b = 4107 . Then

3293 = 0×4107 + 3293 ,

4107 = 1×3293 + 814 ,

3293 = 4×814 + 37 ,

814 = 22×37 .

That is, in this case, n = 3 , a = 814 and a = 37 , and gcd(3293, 4107) = 37 .2 3

The procedure described is called the Euclidean algorithm. It was known to the ancient

Greeks; it appears in Euclid's "Elements". An important fact about it is that it is an efficient

algorithm; for relatively large numbers, it terminates quite fast.

Besides a way of computing the gcd, the Euclidean algorithm also gives us an important

theoretical conclusion:

the gcd of any two numbers a and b is a linear combination of a and b .

To see this, we prove by induction on i ≤ n that a is a linear combination of a and b .i
For i = 0 and i = 1 , this is certainly true: a = 1 ⋅a + 0 ⋅b and b = 0 ⋅a + 1 ⋅b .
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Assuming the result for all indices less than i+2 , we have that

a = a - q a (6)i+2 i i i+1

that is, a is a linear combination of a and a . Since, by the induction hypothesis,i+2 i i+1
a and a are linear combinations of a and b , it follows that a is a lineari i+1 i+2
combination of a and b as desired.

In the example,

37 = 3293 - 4×814 ,

814 = 4107 - 1×3293 ,

hence,

gcd(4107, 3293) = 37 = 3293 - 4×(4107 - 1×3293) = (-4)×4107 + 5×3293 .

A prime number is any integer p which is not a unit, that is, not 1 or -1 , but which is not

divisible by any number other than 1 , -1 , p and -p . Clearly, p is prime iff -p is

prime; therefore, it is customary to restrict attention to positive primes; in what follows, by

"prime number" we always mean a positive prime. Restated, p is prime if p > 1 , and the

only positive divisors of p are 1 and p .

A fundamental property of primes is this:

if p is a prime, and p � ab , then either p � a , or p � b (or both).

Indeed, assume also that p does not divide a , to show that p � b . Then gcd(p, a) = 1 ,

since gcd(p, a) is a divisor of p , therefore it cannot be anything else but 1 or p , and it

cannot be p , since then p would divide a . Since gcd(p, a) is a linear combination of

p and a ,
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1 = xp + ya

for suitable integers x and y . Multiplying this equality with b , we get

b = xbp + yab .

Since, by assumption, ab is divisible by p , ab = zp for a suitable z , we have

b = (xb + yz)p ,

that is, b is divisible by p , which is what we wanted to show.

An obvious generalization of the last fact is this:

if p is a prime, and p � �
a , then p � a for at least one i < k .i ii<k

We claim:

Every non-zero, non-unit integer has at least one prime divisor.

Let a be any integer, a ≠ 1 , a ≠ -1 . We may assume that a > 1 . The set X of all

divisors of a that are greater than 1 is a non-empty set; a itself is an element of it. By the

LNP, let p be the least element of X . p must be prime; otherwise, there would be a divisor

x of p which is greater than 1 but less than p ; x would be a non-unit divisor of a

smaller than p , contrary to the choice of p . This proves the claim.

There are many prime numbers; in fact, there are infinitely many:
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for any n ε � , there is a prime number greater than n .

Indeed, consider the number n! + 1 , and let p be a prime divisor of this number. p

cannot be ≤ n , since then p would be a divisor of n! , and hence also a divisor of

(n! + 1) - n! = 1 , which is absurd since p is not a unit. p is a prime number greater than

n .

Next, we see that

Every non-zero number is the product of prime numbers.

Let n be any positive integer. If n = 1 , n is the empty product of prime numbers. We

treat the general case by induction, more precisely, by the WOP. Let n > 1 . We know that

nn has at least one prime divisor; let p one such; let m = � ��� . Since m < n , we may applyp
the induction hypothesis, and have that m is the product of prime numbers, m =

�
p . Butii<k

then, n = m ⋅p , and n = (
�
p ) ⋅p , and n is also a product of primes.ii<k

stLet us use the notation p for the i+1 prime; see the end of the last section. With thei
fixed meaning of the p , we may write every positive n in the formi

αin =
�
p (7)ii<k

with suitable natural exponents α . Indeed, we know that n is the product of a certaini
number of prime factors; by bringing together the equal factors into powers, and using the

exponent 0 in case a specific p does not occur in the product, we get the form mentioned.i
E.g.,

2 2 2 0 1 0 22420 = 20×121 = 2 ×5×11 = 2 ×3 ×5 ×7 ×11 ;
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now, we can take k = 5 .

Note that, in (7), k is not unique: it can be taken any number greater than the last i for

which α ≠0 ; for all j , i<j<k , we can then take α =0 . This is useful, since when wei j
have two (or more) numbers as n , we can choose the k for the two to be the same.

We have:

Prime factorization is unique:

α βi iif n =
�
p =

�
p , (8)i ii<k i<k

then α = β for all i < k .i i

The proof is by induction on n (via the WOP). If n = 1 , it is clear that α = β = 0 fori i
all i < k . Otherwise, for some i < k , say i , we have that α ≥ 1 ; let p = p . p0 i i0 0

β βi idivides n =
�
p , and since p is prime, p divides at least one p . But if i ≠ i ,i i 0i<k

ββ i0 0p does not divide p (why?). Thus, p must divide p , which implies thati i0
β ≥ 1 . Now, dividing (8) by the factor p , we geti i0 0

α’ β’i im =
�
p =

�
pi idef i<k i<k

where α’ = α for i ≠ i , α’ = α -1 , and similarly for the β’ . Clearly, m < n .i i 0 i i i0 0
By the induction hypothesis, prime factorization for m is unique; hence, α’ = β’ for alli i
i < k . This means that α = β for all i ≠ i , and α = α’ +1 = β’ +1 = β ,i i 0 i i i i0 0 0 0
that is, α = β for all i < k , as desired.i i
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In terms of prime factorization, divisibility may be characterized as follows:

α βi iif n =
�
p , m =

�
p , then n � m iff α ≤ β for all i < k .i i i ii<k i<k

γiThe reason is simple: if n � m , then m = n ⋅ � for some � ; hence, if � =
�
p (withii<k

possibly a greater k ; extend the range of the α's and β's by inserting 0's), we have that

α γ α +γi i i im =
�
p ⋅

�
p =

�
p .i i ii<k i<k i<k

By the uniqueness of prime factorization, β = α +γ ; and since each γ ≥ 0 , we get thati i i i
β ≥ α as claimed.i i
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