Section 6.2 Dividbility among the integers

Aninteger a €7 isdivisbleby b €7 if thereisaninteger ¢ € 7 suchthat a = bc . Note
that O isdivisible by any integer b, since 0 = b [D . On the other hand, a isdivisible by
O onlyif a=0:from a=0L[t itfollowsthat a =0 . The symbolic way of writing" a is
divisbleby b "is. b|a.Instead of " a isdivisbleby b " wealsosay that" b divides
a",orthat" b isadivisorof a",or" a isamultipleof b" .

Note the obvious
Trangitivity law for divisibility:

alb and bjc = ajc.

Incase b #0, a being divisble by b isthe same asto say that g—isaninteger; we

cannot say this, however, if b =0, since S—is meaningless. In particular, if b|a, then

either a=0, orelse |bl| < al ;in other words, for positive integers a and b such that

a<b, b|a isimpossble (since then O<%<1, and g—cannot be an integer).

Asfar as divisibility is concerned, any integer a and its negative - a behave in the same
way: b|a iff b|-a iff -b|a . Therefore, e.g., when we want to account for all the divisors
of an integer, we may restrict our search to the non-negative numbers. Always, a|a and

a|-a.Moreover, if both aja’ and a’ |a hold, theneither @’ =a or a’ =-a.
In what follows, variables a, b, ...rangeover 7, the set of all integers, unless otherwise
stated.

Givenany a and b suchthat b >0, wemay divide a by b with aremainder: we can
find q and r such that

a=qgb+r, O0<r<b. Q)

E.g.,with a=17, b=5, wehave g=3 and r =2 :
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17=30B+2, 0<2<5.

In (1), q isthequotient, r isremainder when a isdivided by b . The remainder being
equal to O signifies, of course, that b divides a, b|a.

To prove the existence of the quotient/remainder representation, first let us assume that a=0 .
The set X of all non-negative multiples of b that are less than or equal to a is nonempty
(00X), and bounded by a ; thus, by the Greatest Number Principle (see the last section), it
has a maximal element, say gqb . Thuswe have that gbOX but (g+1) bOX (since b#0 ,
gb<(g+1) b). Thismeansthat gb<a<(qg+1) b . Itfollowsthat for r=a-gb, we have the
relationsin (1).

For the case when a<0, wewrite - a = gb+r by what we already know; from this,
a=(-qg-1)b+(b-r) isthedesred decomposition.

The common divisorsof a and b are those integers that divide both a and b .

With any integers a and b, a(n integer) linear combination of a and b isany integer of
theform xa + yb , with x and y also integers (although we usually say "linear

combination" without the qualification "integer", we insist that the coefficients should also be
integers!). Note that

any linear combination of linear combinationsof a and b isa linear combination of
a and b:

if c=xa+yb, d=ua+vb and e =sc +td, then
e=s(xa+yb) +t(ua+vb) =(sx+tu)a+(sy+tv)b.

Also note that
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any common divisor of a and b isadivisor of any linear combination of a and b :

if cla, c|b, thatis a=uc, b=vc, then

xa+yb = xuc +yvc =(xu +yv)c.

Now, if
a=qgb+r, (2
then a isalinear combinationof b and r (since a=qb + 10 ) andalso, since

r=a-gb=10&+(-qg)b, r isalinear combination of a and b . We may conclude
that

under (2), the common divisorsof a and b , and the common divisorsof b and r
are the same.

c isagreatest common divisor (gcd) of a and b if itisacommon divisor of a and b,
and a multiple of every common divisor of a and b at the same time; in other words,
cla and c|b
and
foral d suchthat d|ja and d|b,wehave d|c .

Another way of putting the defining property of ¢ isto say the common divisors of a and
b are the same as the divisors of (the single) ¢ : forany d,

dla and d|b <= d]|c.

Note that it is not clear, at this point, that any pair of numbers a and b has a gcd; we will
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prove this soon. However, one thing is pretty clear, namely that the gcd, if it exists, is
essentially unique: if both ¢ and ¢’ are ged'sof a and b,then c=¢’ or c=-c’ ;
the reason is that, from the definition it follows that both c|c’ and ¢’ |c hold. To make
the gcd completely unique, we agree that gcd( a, b) should denote the non-negative one of
the two possible values.

A remark on the name "greatest common divisor". Assume that both a and b are positive
(the only "interesting” case for gcd( a, b) ). Then c=gcd(a, b) iscertainly the greatest
one among the common divisorsof a and b, sinceit is positive, and it divides all of them.
One might then say that it is obvious that there is a greatest one among these common
divisors, as there is always a greatest one among finitely many integers. However, if we
denote this greatest of the common divisorsby c , it isnot clear that for every common
divisor d of a and b wehave d|c asrequired in the definition of "gcd"; we only have
that d<c , which, of course, is not enough for d|c . Itisimportant to redize that the
definition of "greatest common divisor" imposes a stronger condition than it appears from the
wording of the concept.

These remarks explain why, to prove the existence of the gcd, we have to go through the
considerably more sophisticated argument than just saying "take the largest of the common
divisors'. The argument that follows is not only one of the most important onesin all of
mathematics, but it is aso one of earliest ones: it appears in Euclid's "Elements’, the classic
ancient Greek treatise on mathematics.

Note that if b|a ,then gcd(a, b) =1b|; hence, gcd(0,b) =1Db|.

For the proof of the existence of the gcd, the first remark is that

if a=qgb+r ,then gcd(a, b) =gcd(b,r) , 3

meaning that if one gcd exists, so does the other, and they are equal. The reason is that, in this
case, the common divisors of the pair (a, b) andthoseof (b, r) arethe same, aswe
noted above.

Let a and b be arbitrarily given integers, we want to compute gcd( a, b) . We may
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assumethat b >0 ;if b=0, then gcd(a,0) =|a | assadabove andif b<0,we
may passto - b : gcd(a, b) =gcd(a,-b) . Now, assuming b>0 , we can define, by
recursion, the sequence

8p+ 810 82, 8y Bpyg (3)
by

a = a

andforany i =0, if we have aready defined a and & 4q

and if a; 11 Is greater than O, (3"
a; 4o is defined as the remainder of a; divided by & 4q - In other words, the relations
3 =0 By g+, 058 58 )

hold with suitable q; . When a 41 = 0 , we stop, that is, we do not define a; 4o , and we
put n =i ; thus, the sequence (3') will have been defined. Since the a; s are drictly
decreasing after i =1 (seethe second relation in (4)), by the "principle of the impossibility
of infinite descent” (see the last section), we must reach astage i +1 when a; 4o IS no
longer defined, that is, the condition (3") fails, that is, R 0 . Denotethis i by n.
Therefore, since an+1:0 , we have by (4), for i =n-1, that

an- 1 = qn- 1 mn ' ®)

Now, since a, isadivisor of a1 gcd(an_ 1 an) =a, . The first relation in (4)
tells us that

gcd(ai , 8 +1) = gcd(ai +1° 8 +2) (i+2<n)

(see (3)). Thus, we have that
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gcd(a, b) = gcd(ao, al) = gcd(al, a2) =... = gcd(an_ 1 an) =a,.
We have shown that gcd( a, b) exists, and in fact, have shown how to compute it. We can
summarize the procedure this way: we construct the sequence the first two terms of which are
the given numbers, and in which every term is the remainder when the previous term divides
the term preceding it. The construction terminates when 0O is reached; the term previous to the
zero term is the desired gcd.
E.g., let a=3293, b=4107. Then

3293 = 0x4107 + 3293,

4107 = 1x3293 + 814 ,

3293 =4x814 + 37,

814 = 22x37 .
That is, inthiscase, n =3, a, = 814 and ag = 37 ,and gcd(3293, 4107) =37 .
The procedure described is called the Euclidean algorithm. It was known to the ancient
Greeks; it appears in Euclid's "Elements’. An important fact about it is that it is an efficient
algorithm; for relatively large numbers, it terminates quite fast.
Besides a way of computing the gcd, the Euclidean algorithm also gives us an important
theoretical conclusion:

the gcd of any two numbers a and b isalinear combination of a and b .

To see this, we prove by inductionon i <n that a; isalinear combinationof a and b .
For i =0 and i =1, thisiscertainlytruec a=1[@A+0 and b=0[A+1[b.
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Assuming the result for all indices lessthan i +2 , we have that
qj 42 T8 - 45 @) 4 ©6)

that is, a; 4o is alinear combination of a; and a; +1.Since, by the induction hypothesis,

a; and a 41 are linear combinationsof a and b , it follows that a; 4o isalinear
combination of a and b asdesired.
In the example,

37 = 3293 - 4x814 ,

814 = 4107 - 1x3293,
hence,
gcd(4107, 3293) =37 =3293 - 4x%x(4107 - 1x3293) =(-4) x4107 + 5x3293.
A prime number isany integer p whichisnot aunit, thatis,not 1 or -1, but which is not
divisible by any number other than 1, -1, p and -p . Clearly, p isprimeiff -p is
prime; therefore, it is customary to restrict attention to positive primes; in what follows, by
"prime number" we always mean a positive prime. Restated, p isprimeif p > 1, and the

only positive divisorsof p are 1 and p .

A fundamental property of primesis this:

if p isaprime,and p|ab,theneither p|a,or p|b (or both).

Indeed, assume also that p does not divide a , toshow that p|b . Then gcd(p,a) =1,
since gcd(p, a) isadivisor of p, thereforeit cannot be anything elsebut 1 or p, and it
cannot be p , sincethen p would divide a . Since gcd( p, a) isalinear combination of
p and a,
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1=xp+ya

for suitable integers x and y . Multiplying this equality with b , we get
b =xbp +yab.

Since, by assumption, ab isdivisbleby p, ab =zp for asuitable z , we have
b=(xb+yz)p,

that is, b isdivisibleby p , whichiswhat we wanted to show.
An obvious generalization of the last fact is this:

if p isaprime,and p| [] a; , then p|ai for atleastone i <k .
i <k

We claim:
Every non-zero, non-unit integer has at least one prime divisor.

Let a beanyinteger, a#1, a#-1. Wemay assumethat a>1. Theset X of al
divisorsof a that are greater than 1 isanon-empty set; a itself isan element of it. By the
LNP, let p betheleast element of X. p must be prime; otherwise, there would be a divisor
x of p whichisgreater than 1 but lessthan p; x would be a non-unit divisor of a
smaller than p , contrary to the choice of p . This proves the claim.

There are many prime numbers; in fact, there are infinitely many:
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forany n eN, thereisa prime number greater than n .

Indeed, consider the number n! + 1, andlet p be aprime divisor of this number. p
cannot be < n, sincethen p would be adivisor of n! , and hence also a divisor of

(n! +1) - n! =1, whichisabsurd since p isnot aunit. p isaprime number greater than
n.

Next, we see that
Every non-zero number is the product of prime numbers.

Let n beany positiveinteger. If n =1, n isthe empty product of prime numbers. We
treat the general case by induction, more precisely, by the WOP. Let n > 1 . We know that

n has at least one prime divisor; let p one such; let m= N Since m<n, we may apply

the induction hypothesis, and have that m is the product of prime numbers, m= ]| p; - But
i <k
then, n=mlp,and n=( [] P; ) p, and n isaso aproduct of primes.
i <k

Let us use the notation P; for the i +1% prime; see the end of the last section. With the
fixed meaning of the p; . wemay write every positive n in the form

n:_ﬂpi (7)

with suitable natural exponents a; . Indeed, we know that n isthe product of a certain
number of prime factors; by bringing together the equal factors into powers, and using the
exponent O in case a specific P; does not occur in the product, we get the form mentioned.
E.Q.,

2420 = 20x121 = 22x5x112 = 22x30x51x70x112 -
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now, we cantake k =5 .

Note that, in (7), k isnot unique: it can be taken any number greater than the last i for
which a; #0 ; fordl j , i<j <k, we canthen take aj =0 . Thisis useful, since when we
have two (or more) numbers as n , we can choose the k for the two to be the same.

We have:

Prime factorization is unique:

ifn= Mp' = MNp' . )

then a; :Bi foral i <k.

The proof is by inductionon n (viathe WOP). If n =1, itisclear that a, = Bi =0 for
al i <k .Otherwise, for some i <k , say iO , we have that a; >1;let pP=p; -p
0

0
. B . o . B L
divides n = [] P; ,and since p isprime, p divides at least one P; .Butif i ¢|0,
i <k

BO Bi 0

p does not divide P; (why?). Thus, p must divide p; , which implies that
0
Bi > 1 . Now, dividing (8) by the factor p; ., weget
0 0
ai B
m =] Py = 1 P;
def i<k i <k
where ai = a; for i #i 0" ai = a; -1, and similarly for the Bi . Clearly, m<n .
0 0

By the induction hypothesis, prime factorization for m is unique; hence, ai = Bi for all

i <k. Thismeansthat a; =3 foral i Ziy,and a. =a +1=0 +1=8 ,
I | 0 o o o o
that is, a; :Bi foral i <k, asdesred.
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In terms of prime factorization, divisibility may be characterized as follows:

a. B
if n= [ p.', m=[]p'  ,thennimiff a, <B foral i <k.

y.
The reason issimple: if n|m, then m=n[Z for some £; hence, if £{= [] P; : (with

i <k
possibly a greater k ; extend the range of the a'sand B's by inserting 0's), we have that

a Vi R
m= ] p; Ol p; = TP

By the uniqueness of prime factorization, Bi =ty and since each Y, 2 0, we get that
Bi 2 0 as claimed.
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