Section 5.3 Entailment in predicate logic

The fundamental problem of quantifier logic isto decide if certain formulas entail another
formula or not:
? OB 0] F Y. D

1 P -

We say that (1) is the case, d)l, <D2, . d)z entail ¥, if the following holds: no matter
how we specify a (non-empty) universe, and interpretations of the relation-symbolsin all of
the formulas d)l, <D2, .0 z,LP , and furthermore, no matter how we give values to all the
free variablesin all the formulas involved, every time when all the premisses d)l, 092, C
d)z evaluateto T, the concluson ¥ aso evaluatesto T .

Let us note that, in (1), the possibility /=0 isallowed. Thismeansthat ¥ isidentically true,
without any premiss, no matter what interpretation, and what values of the free variablesin ¥
(if any) we take. We say that ¥ islogically valid, and write ¥ , if thisis the case.

Of course, there are two possibilities with given premisses (Dl’ 032, C qaz and a given
conclusion ¥ . Either (1) does hold, or it does not. The basic question is how we recognize if
one or the other is the case.

To recognize that (1) does not hold,

? o, O .,<D£I7LKIJ,

1 T2

what we need is an example (counter-example) consisting of an interpretation, and values of
the free variables that make all the premisses *true* and the conclusion *false*.

For instance,
OxOyRxy # COyOxRxy ()

as the following very ssimple example shows:

163

U
R

{1, 2}
{(1,2),(2,1)}.

Now, Ox[yRxy ~ T: for every x0OU, thereis yOU such that xRy : for x=1, we can
take y=2 , andfor x=2, wecantakey=1; but it is not the case that thereisa y[U such
that for all x , xRy : if y=1, then not- 1Ry , andif y=2, then not-2Ry .

Another example showing (2) uses familiar material: welet U=IN, and Rxy ~ x<y . Then,
clearly, OxyRxy ~ T, and Oy[OxXRxy ~ L.

It must be said that it could be very difficult to find a counter-example to an entailment, even
if such exists.

On the other hand, we have

LyOxRxy + OxLyRxy .

This can be shown by a direct "logical argument”, a ssmple mathematical proof, as follows.

We argue in any fixed, but otherwise unspecified, interpretation. Suppose that

yOxRxy ~ T. Thenthereis yOU such that OXR(x,y) ~ T. Letusfix this y . Now, to
show that OxCyRxy ~ T, let xOU be arbitrary. Using y specified above, we have
R(x,y) ~T. Thismeansthat [yR(x,y) ~T. Since x wasarbitrary in U, we have
that OxyRxy ~ 1.

This proof was very easy; in fact, it was trivial. However, once again, it could be very difficult
to prove that a given entailment holds true, even if it isin fact true.

There is a systematic way of showing of an entailment is true -- if it istrue. In fact, if an
entailment holds true, we can deduce it in a specific way. We will explain how thisis done
using the framework of Boolean algebras.

First of al, note that the fact that there are more than one premiss on the left of (1) is not
really essential; (1) isequivalent to

D, AP, A. .. AD

) S

{

164

where we took the conjunction of the premisses to be the new, single, premiss. Also, + ¥ iff
T Y (why?). Let usfix acertain set of relation symbols and variables, and consider the set
of all formulas using these only; let 7 be the set of all formulas. Therefore, what we really
have isabinary relation + called entailment on the set 7 . Now, we observe, very directly,
that the relation - isreflexive, and transitive:

OO,
OrY and YA imply that © - A.

(as before, we use the upper-case Greek letters @, W, A, ... to denote formulas, elements of
7). In other words, + isapreorder on F . However, it isnot an order: it is possible that
OrY and Y+ o, but ®£¥ . For instance, when ® = OxRxx and ¥ = yRyy , thisisthe
case. However, we feel that if ® Y and ¥ |- ® both holdthen ® and ¥ are "essentially
the same”.

The way we make this precise is that we define arelation, denoted =, on formulas, by writing
o=y Fer OrY and YO .

Wesay that ® and ¥ arelogically equivalent if ®=¥ holds. For instance, OxRxx and
OyRyy arelogicaly equivalent. There are logically equivalent formulas that look entirely
different; in fact, it isin general very difficult to decide if two formulas are logically
equivalent or not.

We can see (in fact, just by using that isapreorder) that = is an equivalence relation.
Next, we consider the set of all equivalence classes [®] of this equivalence relation. Let us
denote thisset by 7/=. An element of 7/= isaset of theform [®] with ® an arbitrary
element of F; here, [®] = {WYOF: ®=¥} . Intuitively, we "identify" two formulas when
they are logically equivalent. Thisis very similar to modular arithmetic, in which, after a fixed
modulus n is given, one identifies any two integers a and b , one pretends that they are
equal, if a=b (nod n) .

It is easy to see that the above move turns the preorder (7,) into a(partial) order. That is,

we can define [®] <[¥] tomeanthat ®+Y , and, under this definition, (7/ =, <) isan
order. Moreistrue. (#/ =, <) isaBoolean algebra; in fact, in a natural way, because we

165

have

[O] A[Y] = [®AY] ;
[0] v[Y] = [®wW] ;
-] = [-¢]

the top element of (7/ =, <) equals [T] ;
the bottom element of (7/ =, <) equas [1]

The Boolean algebra (7/ =, <) iscalled the Lindenbaum-Tarski algebra of quantifier logic.
We will refer to it briefly as the L-T-algebra.

When we "do" Boolean algebrain the L-T-algebra, we do not write the symbols [,] for
equivalence class; on the other hand, instead of <, we write -, and instead of =, we write
= . For instance, we have, as a special case of a general fact in Boolean algebras, that

LY &= oOaA-Y = 1 ;
thisisjust the rule
XYy & XA-Yy =1

that we know is true in any Boolean algebra.

However, the L-T-algebra has more structure than just the Boolean structure; this additional
structure is related to the quantifiers. To explain this, we must explain substitution.

Given aformula @, and variables x and y , we can substitute y for x in @ . Let uslook
at thisin an example. In fact, we saw an example for this before. With the formula (5') in
section 5.1:

O(x) = -1(x) AlyOz(Pyzx—(1(y)vi(z)) , 3

we also considered

o(w) = -1(w) AlyOz(Pyzw—(1(y) vi(z)) .

166

Here, ®(w) isobtained by substituting w for x in ®(x) . In general, we write ®[y/ x]
for the result of substituting y for x in ® (® may have more free variables than just x ; it
isalso allowed that x isnot afreevariablein ® at all, inwhichcase ¢[y/ x] =®).
However, we make certain exclusions in the definition of substitution.

First of al, when forming @[y/ x] , we substitute y only for the free occurrences of the
variable x . For instance, if, for some reason, we had

® = -1(x) AlyOz(Pyzx—(1(y)v1i(z)) A X(x=x) ,

(which uses a superfluous conjunct [x(x=x) , andislogically equivalent to the origina
®), then

O[w x] = -1(w) AlyOz(Pyzw—(1(y)vi(z)) A IX(x=X) ;

note that we did not substitute for the bound occurrences of x . Secondly, and more
importantly,

the substitution may not alter the binding pattern of the formula; it may not
introduce new bound occurrences.

Thisis the same as to say that

ifin @, x occursasa free variable in the scope of a quantifier Cy or Oy
with the same variable y that we want to substitute for x , the substitution is not allowed;
O y/ x] isnot defined at all.

For instance, consider the formula CyRxy . The substitution (OyRxy) [y/ x] isnot
defined; in CyRxy , the free variable x isinthe scope of [y , which isthe formula
Rxy . To take a more complicated example, with ® asin (3), ®[y/ x] isnot defined: x
isafree variable in the scope of [y , whichisthe formula Oz(Pyzx— (y=xvz=x) . By
the way, thisis the reason why we wrote ®(w) rather than ®(y) inour original use of @ .

We can explain this exclusion by pointing out that an "illegal” substitution has a meaning that

does not correspond to the intention of substitution. Let's look at the case of ® = [yRxy .
For illustration, take the interpretation U=N , and R=ordinary <. ® says"thereis y such

167

that x<y ".Whenwedo ([yRxy)[z/x] , weget [yRzy , expressing "thereis y such

that z<y ", which is al right: just as the original formula [yRxy , ([yRxy)[z/x] isaso
identically true in the given interpretation. Here, we used a legal substitution: z isnot freein
the scope of [y . However, if wedid (CyRxy)[y/ x] , whichisillegal aswe said above,

the result wold be [CyRyy , which means "thereis y suchthat y<y ", afalse statement in

the given interpretation, something that is not intended by the substitution.

We can also substitute an arbitrary term t for avariable x inaformula @ ; theresult is
written @[t/ x] . Thisisdefined (legal) only if by the substitution
no variable y appearingin t getsinto the scope of a quantifier Oy or [y with

the same variable vy .

However, we never substitute anything for a term if that term is not a variable. Similarly, one
cannot use "quantifiers’ Ot , [unless t isavariable.

We can now express, first in an abstract and succinct way, later in some more detail, the main
fact about quantifiersin the L-T-algebra.

For any formula ¢ , and any variable x , we have

Ox®

AN\ Ot/ x],
t

and

(x®

\/o[t/x]
t

here, t rangesover al terms such that the substitution ®[t/x] islegal; /\ means meet
of the set of all formulas after it, \/ meansjoin.

Remember that the elements of the L-T-algebra are, really, equivalence classes [@] ; in fact,
what we have is

168

[Ox®]

/t\[q’[t/X]],

and

[(@]

\t/[qJ[t/X]] :

but the way we wrote these relations first is nicer.

Now, we will write these relations in a more explicit way:

Rule of Universal Specification (US):

Ox® + o[t/ Xx] ;

Rule of Universal Generalization (UG):

if Y-0,and x isnotfreein ¥ ,then VY |- OxP:

$ provided x isnot freein V.

€<
T|T

Rule of Existential Generalization (EG):

o[t/ x] - XO;

Rule of Existential Specification (ES):

if ®-¥Y and x isnotfreein ¥ ,then IXo VY :

iS S
T
€ €

provided x isnot freein V.

169

It is understood that only legal substitutions can be taken. t denotes an arbitary term.

(The observant student will see that the second, more detailed, statement of, say, the rule for
the universal quantifier is not obvioudy equivalent to what we had in the succinct form. In
fact, universal generalization would, if translated directly from the succinct statement, ook
like this:

Y O[t/x] for all t (suchthatthe substitutionislegal)
Y + xo

It turns out that thisis an equivalent formulation, if we also take into account Universal
Specification).

The main result is that that the above rules for the quantifiers completely describe the
L-T-algebra:

if &Y, then thisfact can be deduced using Boolean algebra, and the four rules for
guantifiers,
-- provided the formulas involved do not contain = (equality); if they do, additional "axioms

of equality" are needed.

This fact is a deep theorem, whose proof cannot be indicated here; it is Kurt Godel's
completeness theorem for first order logic.

Let uslook at some examples for using the above rules, and Boolean algebra.

1. Ox® = Oy(o[y/Xx]) ;

here, ®[y/ x] isassumed to be alega substitution, and y isassumed to be not free or
bound in Ox® .

170

(Example for 1.:

) OxRxz = 0OyRyz ;

but we are not asserting that IxRxy = 0OyRyy , which is actualy false; in this case,
® = Ryz , the second proviso, "y isnot freein @ ", isviolated. Also:

(@iD) Ox[u(RxzARux) = Oy[u(RyzaRuy) .)

Proof of 1. By US,
Ox® o[y/ X] ;
therefore, since y isnot freein Ox®(x) , by UG:
Ox® Oy (o[y/ x]) . (4
Also, we have that

o[y/x][x/y] = &: (10)

thisisbecause y isnot boundin @[y/ x] , the substitution @[y/ x] [x/y] islega, and
al it doesisto restore x where we had x beforein @ . Therefore, applyingto @[y/ x]
what we already proved for @, with therolesof x and y exchanged, we get
Oy(®[y/ x]) FOX(O[y/x][x/y])
which is, by (10), the same as
Oy(o[y/ x]) +Ox® (11)
By (4) and (6), we have
Ox® = Oy(P[y/x])
as desired.

2. Ox(AvTl) = ANvIOxI' provided x isnot freein A

(Example for 2.: Ox(yRyz v Rxz) = [yRyz v OxRxz)

Pr oof. 1 r - Avl by Boolean algebra;

171

2 Ox - T by US (IF[x/x] =T);

3 OxI + AvTl by 1 and 2 (| istransitive);

4 OxI + Ox(AvT) by UG appliedto 3 (x isnotfreein
OxT);

5 ANEAVT by Boolean algebra;

6 AN OxX(AVT) by UG (x isnot freein A, by
assumption);

7 ANvIOxI - Ox(AvID) by 4 and 6, and Boolean algebra
(x<z and y<z imply xvy<z);

8 Ox(Avl) - AvID by US,

9 OX(AvID) AN T by 8 and Boolean algebra: x<yvz

implies xa-z <y : Xx<yvz implies xa-z <(yvz) A-z , and
(yvz)a-z =(yan-z)v(za-z) =(yn-z) vt =ya-z ;thus, xa-z <yn-z<y;

10 OX(AvT) AN - OxI by 9 and UG: x isnot freein the
premiss, sinceit isnot freein Ox(A v) , anditisnot freein A by assumption;
11 Ox(AvID) - AvDxl by 10 and Boolean algebra:

XA-2Z<y implies x<zvy ;

12 Ox(AvIl) = AvIDxl by 7 and 11.
3. IX® = -0x-0
Proof. We prove that
X® v Ox-d =T (12)
and that
XO A OX-® = 1. (13)

By the definition of - as complement in a Boolean algebra, this will mean that -[x-® =
XD .

Toseethat [(X® v Ox-® =71, notethat x isnot freein [x® ; therefore, we may apply 2.
with A=[X® , to get that [(X® v Ox-® =[0x(XD v -®) . Now, ¢+ [X® by ES. But, in
any Boolean algebra, x<y implies yv- x=T . Applying thisto ® as x and [X® as vy,
weget [(X®v-d=T1. Butalso, OxT =71, since UG can be appliedto T + T to get

T +0OxT, whichis OxT =71 . Therefore,

172

(XO v Ox-® =0x([XPv-0P) =0xT=T.

This proves (12).

To show (13), note that Ox-=® |- =@ , thus PAOX-P | PA-D =1, OAOX-D - L. This
implies ® - -0x-®, sincein aBoolean algebra, xAy=1 iff x<-y . By EG, since x is
not freein ~0Ox-®, weget that [(X® - -x-~® . By the same Boolean principle backwards,
we get that [X® A -0x-® L, what we wanted.

In the above deductions the steps taken were not suggested by plausible rules. We have found
deductions of the entailments in question, but there was no explanation given how these
deductions were found. There is a deep reason for this. As a matter of fact, thereisa
fundamental theoretical limitation here: there cannot be any completely algorithmic method of
finding deductions to entailments. This is Church's Theorem on the undecidability of logical
validity, a fundamental limitative result of Mathematical Logic.

The examples shown above are meant as illustrations of what we get when our search for a
deduction is successful, but not of a method of finding a deduction.

On the other hand, there are various ways of organizing the search for a deduction that help in

many practically important cases to find one. These ways belong to the subject area of
Computer Science called Automatic Theorem Proving.

173

