
Section 5.3 Entailment in predicate logic

The fundamental problem of quantifier logic is to decide if certain formulas entail another

formula or not:

? Φ , Φ , ... Φ � Ψ . (1)1 2 �

We say that (1) is the case, Φ , Φ , ... Φ entail Ψ , if the following holds: no matter1 2 �
how we specify a (non-empty) universe, and interpretations of the relation-symbols in all of

the formulas Φ , Φ , ...Φ ,Ψ , and furthermore, no matter how we give values to all the1 2 �
free variables in all the formulas involved, every time when all the premisses Φ , Φ , ...1 2
Φ evaluate to � , the conclusion Ψ also evaluates to � .�

Let us note that, in (1), the possibility � =0 is allowed. This means that Ψ is identically true,

without any premiss, no matter what interpretation, and what values of the free variables in Ψ
(if any) we take. We say that Ψ is logically valid, and write

� Ψ , if this is the case.

Of course, there are two possibilities with given premisses Φ , Φ , ... Φ and a given1 2 �
conclusion Ψ . Either (1) does hold, or it does not. The basic question is how we recognize if

one or the other is the case.

To recognize that (1) does not hold,

? Φ , Φ , ..., Φ � Ψ ,1 2 �

what we need is an example (counter-example) consisting of an interpretation, and values of

the free variables that make all the premisses *true* and the conclusion *false*.

For instance,

∀x∃yRxy � ∃y∀xRxy , (2)

as the following very simple example shows:

163

U = {1, 2}

R = {(1, 2), (2, 1)} .

Now, ∀x∃yRxy � � : for every x∈U , there is y∈U such that xRy : for x=1 , we can

take y=2 , and for x=2 , we can take y=1 ; but it is not the case that there is a y∈U such

that for all x , xRy : if y=1 , then not-1Ry , and if y=2 , then not-2Ry .

Another example showing (2) uses familiar material: we let U=
�

, and Rxy � x<y . Then,

clearly, ∀x∃yRxy � � , and ∃y∀xRxy ��� .

It must be said that it could be very difficult to find a counter-example to an entailment, even

if such exists.

On the other hand, we have

∃y∀xRxy � ∀x∃yRxy .

This can be shown by a direct "logical argument", a simple mathematical proof, as follows.

We argue in any fixed, but otherwise unspecified, interpretation. Suppose that

∃y∀xRxy � � . Then there is y∈U such that ∀xR(x, y) � � . Let us fix this y . Now, to

show that ∀x∃yRxy � � , let x∈U be arbitrary. Using y specified above, we have

R(x, y) � � . This means that ∃yR(x, y) � � . Since x was arbitrary in U , we have

that ∀x∃yRxy � � .

This proof was very easy; in fact, it was trivial. However, once again, it could be very difficult

to prove that a given entailment holds true, even if it is in fact true.

There is a systematic way of showing of an entailment is true -- if it is true. In fact, if an

entailment holds true, we can deduce it in a specific way. We will explain how this is done

using the framework of Boolean algebras.

First of all, note that the fact that there are more than one premiss on the left of (1) is not

really essential; (1) is equivalent to

Φ � Φ � ... � Φ � Ψ ,1 2 �

164

where we took the conjunction of the premisses to be the new, single, premiss. Also,
� Ψ iff

� � Ψ (why?). Let us fix a certain set of relation symbols and variables, and consider the set

of all formulas using these only; let � be the set of all formulas. Therefore, what we really

have is a binary relation
�

called entailment on the set � . Now, we observe, very directly,

that the relation
�

is reflexive, and transitive:

Φ � Φ ;

Φ � Ψ and Ψ � Λ imply that Φ � Λ .

(as before, we use the upper-case Greek letters Φ , Ψ , Λ , ... to denote formulas, elements of

�). In other words,
�

is a preorder on � . However, it is not an order: it is possible that

Φ � Ψ and Ψ � Φ , but Φ≠Ψ . For instance, when Φ = ∀xRxx and Ψ = ∀yRyy , this is the

case. However, we feel that if Φ � Ψ and Ψ � Φ both hold then Φ and Ψ are "essentially

the same".

The way we make this precise is that we define a relation, denoted ≡ , on formulas, by writing

Φ ≡ Ψ ��������� Φ � Ψ and Ψ � Φ .def

We say that Φ and Ψ are logically equivalent if Φ≡Ψ holds. For instance, ∀xRxx and

∀yRyy are logically equivalent. There are logically equivalent formulas that look entirely

different; in fact, it is in general very difficult to decide if two formulas are logically

equivalent or not.

We can see (in fact, just by using that
�

is a preorder) that ≡ is an equivalence relation.

Next, we consider the set of all equivalence classes [Φ] of this equivalence relation. Let us

denote this set by � /≡ . An element of � /≡ is a set of the form [Φ] with Φ an arbitrary

element of � ; here, [Φ] = {Ψ∈� : Φ≡Ψ} . Intuitively, we "identify" two formulas when

they are logically equivalent. This is very similar to modular arithmetic, in which, after a fixed

modulus n is given, one identifies any two integers a and b , one pretends that they are

equal, if a≡b (mod n) .

It is easy to see that the above move turns the preorder (� ,
�
) into a (partial) order. That is,

we can define [Φ] ≤ [Ψ] to mean that Φ � Ψ , and, under this definition, (� /≡, ≤) is an

order. More is true. (� /≡, ≤) is a Boolean algebra; in fact, in a natural way, because we

165

have

[Φ] � [Ψ] = [Φ � Ψ] ;

[Φ] � [Ψ] = [Φ � Ψ] ;

-[Φ] = [¬Φ]
the top element of (� /≡, ≤) equals [�] ;

the bottom element of (� /≡, ≤) equals [�] .

The Boolean algebra (� /≡, ≤) is called the Lindenbaum-Tarski algebra of quantifier logic.

We will refer to it briefly as the L-T-algebra.

When we "do" Boolean algebra in the L-T-algebra, we do not write the symbols [,] for

equivalence class; on the other hand, instead of ≤ , we write
�

, and instead of = , we write

≡ . For instance, we have, as a special case of a general fact in Boolean algebras, that

Φ � Ψ ��������� Φ � ¬Ψ ≡ � ;

this is just the rule

x ≤ y ��������� x � -y = �

that we know is true in any Boolean algebra.

However, the L-T-algebra has more structure than just the Boolean structure; this additional

structure is related to the quantifiers. To explain this, we must explain substitution.

Given a formula Φ , and variables x and y , we can substitute y for x in Φ . Let us look

at this in an example. In fact, we saw an example for this before. With the formula (5') in

section 5.1:

Φ(x) = ¬1(x) � ∀y∀z(Pyzx ��� (1(y) � 1(z)) , (3)

we also considered

Φ(w) = ¬1(w) � ∀y∀z(Pyzw ��� (1(y) � 1(z)) .

166

Here, Φ(w) is obtained by substituting w for x in Φ(x) . In general, we write Φ[y/x]
for the result of substituting y for x in Φ (Φ may have more free variables than just x ; it

is also allowed that x is not a free variable in Φ at all, in which case Φ[y/x] = Φ).

However, we make certain exclusions in the definition of substitution.

First of all, when forming Φ[y/x] , we substitute y only for the free occurrences of the

variable x . For instance, if, for some reason, we had

Φ = ¬1(x) � ∀y∀z(Pyzx ��� (1(y) � 1(z)) � ∃x(x=x) ,

(which uses a superfluous conjunct ∃x(x=x) , and is logically equivalent to the original

Φ), then

Φ[w/x] = ¬1(w) � ∀y∀z(Pyzw ��� (1(y) � 1(z)) � ∃x(x=x) ;

note that we did not substitute for the bound occurrences of x . Secondly, and more

importantly,

the substitution may not alter the binding pattern of the formula; it may not

introduce new bound occurrences.

This is the same as to say that

if in Φ , x occurs as a free variable in the scope of a quantifier ∃y or ∀y
with the same variable y that we want to substitute for x , the substitution is not allowed;

Φ[y/x] is not defined at all.

For instance, consider the formula ∃yRxy . The substitution (∃yRxy)[y/x] is not

defined; in ∃yRxy , the free variable x is in the scope of ∃y , which is the formula

Rxy . To take a more complicated example, with Φ as in (3), Φ[y/x] is not defined: x

is a free variable in the scope of ∀y , which is the formula ∀z(Pyzx ��� (y=x � z=x) . By

the way, this is the reason why we wrote Φ(w) rather than Φ(y) in our original use of Φ .

We can explain this exclusion by pointing out that an "illegal" substitution has a meaning that

does not correspond to the intention of substitution. Let's look at the case of Φ = ∃yRxy .

For illustration, take the interpretation U=
�

, and R = ordinary < . Φ says "there is y such

167

that x<y ". When we do (∃yRxy)[z/x] , we get ∃yRzy , expressing "there is y such

that z<y ", which is all right: just as the original formula ∃yRxy , (∃yRxy)[z/x] is also

identically true in the given interpretation. Here, we used a legal substitution: z is not free in

the scope of ∃y . However, if we did (∃yRxy)[y/x] , which is illegal as we said above,

the result wold be ∃yRyy , which means "there is y such that y<y ", a false statement in

the given interpretation, something that is not intended by the substitution.

We can also substitute an arbitrary term t for a variable x in a formula Φ ; the result is

written Φ[t/x] . This is defined (legal) only if by the substitution

no variable y appearing in t gets into the scope of a quantifier ∀y or ∃y with

the same variable y .

However, we never substitute anything for a term if that term is not a variable. Similarly, one

cannot use "quantifiers" ∀t , ∃t unless t is a variable.

We can now express, first in an abstract and succinct way, later in some more detail, the main

fact about quantifiers in the L-T-algebra.

For any formula Φ , and any variable x , we have

∀xΦ ≡ � ��� Φ[t/x] ,
t

and

∃xΦ ≡ ����� Φ[t/x] ;
t

here, t ranges over all terms such that the substitution Φ[t/x] is legal; � ��� means meet

of the set of all formulas after it, ����� means join.

Remember that the elements of the L-T-algebra are, really, equivalence classes [Φ] ; in fact,

what we have is

168

[∀xΦ] = � ��� [Φ[t/x]] ,
t

and

[∃xΦ] = ����� [Φ[t/x]] ;
t

but the way we wrote these relations first is nicer.

Now, we will write these relations in a more explicit way:

Rule of Universal Specification (US):

∀xΦ � Φ[t/x] ;

Rule of Universal Generalization (UG):

if Ψ � Φ , and x is not free in Ψ , then Ψ � ∀xΦ :

Ψ � Φ
����������������������������� provided x is not free in Ψ .Ψ � ∀xΦ

Rule of Existential Generalization (EG):

Φ[t/x] � ∃xΦ ;

Rule of Existential Specification (ES):

if Φ � Ψ , and x is not free in Ψ , then ∃xΦ � Ψ :

Φ � Ψ
����������������������������� provided x is not free in Ψ .∃xΦ � Ψ

169

It is understood that only legal substitutions can be taken. t denotes an arbitary term.

(The observant student will see that the second, more detailed, statement of, say, the rule for

the universal quantifier is not obviously equivalent to what we had in the succinct form. In

fact, universal generalization would, if translated directly from the succinct statement, look

like this:

Ψ � Φ[t/x] f o r a l l t (such that the substitution is legal)
���

Ψ � ∀xΦ

It turns out that this is an equivalent formulation, if we also take into account Universal

Specification).

The main result is that that the above rules for the quantifiers completely describe the

L-T-algebra:

if Φ � Ψ , then this fact can be deduced using Boolean algebra, and the four rules for

quantifiers,

-- provided the formulas involved do not contain = (equality); if they do, additional "axioms

of equality" are needed.

This fact is a deep theorem, whose proof cannot be indicated here; it is Kurt Gödel's

completeness theorem for first order logic.

Let us look at some examples for using the above rules, and Boolean algebra.

1. ∀xΦ ≡ ∀y(Φ[y/x]) ;

here, Φ[y/x] is assumed to be a legal substitution, and y is assumed to be not free or

bound in ∀xΦ .

170

(Example for 1.:

(i) ∀xRxz ≡ ∀yRyz ;

but we are not asserting that ∀xRxy ≡ ∀yRyy , which is actually false; in this case,

Φ = Ryz , the second proviso, " y is not free in Φ ", is violated. Also:

(ii) ∀x∃u(Rxz � Rux) ≡ ∀y∃u(Ryz � Ruy) .)

Proof of 1. By US,

∀xΦ � Φ[y/x] ;

therefore, since y is not free in ∀xΦ(x) , by UG:

∀xΦ � ∀y(Φ[y/x]) . (4)

Also, we have that

Φ[y/x][x/y] = Φ : (10)

this is because y is not bound in Φ[y/x] , the substitution Φ[y/x][x/y] is legal, and

all it does is to restore x where we had x before in Φ . Therefore, applying to Φ[y/x]
what we already proved for Φ , with the roles of x and y exchanged, we get

∀y(Φ[y/x]) � ∀x(Φ[y/x][x/y])
which is, by (10), the same as

∀y(Φ[y/x]) � ∀xΦ (11)

By (4) and (6), we have

∀xΦ ≡ ∀y(Φ[y/x])
as desired.

2. ∀x(Λ � Γ) ≡ Λ � ∀xΓ provided x is not free in Λ

(Example for 2.: ∀x(∃yRyz � Rxz) ≡ ∃yRyz � ∀xRxz .)

Proof. 1 Γ � Λ � Γ by Boolean algebra;

171

2 ∀xΓ � Γ by US (Γ[x/x] = Γ);

3 ∀xΓ � Λ � Γ by 1 and 2 (
�

is transitive);

4 ∀xΓ � ∀x(Λ � Γ) by UG applied to 3 (x is not free in

∀xΓ);

5 Λ � Λ � Γ by Boolean algebra;

6 Λ � ∀x(Λ � Γ) by UG (x is not free in Λ , by

assumption);

7 Λ � ∀xΓ � ∀x(Λ � Γ) by 4 and 6 , and Boolean algebra

(x≤z and y≤z imply x � y≤z);

8 ∀x(Λ � Γ) � Λ � Γ by US;

9 ∀x(Λ � Γ) � ¬Λ � Γ by 8 and Boolean algebra: x≤y � z
implies x � -z ≤ y : x≤y � z implies x � -z ≤ (y � z) � -z , and

(y � z) � -z = (y � -z) � (z � -z) = (y � -z) � � = y � -z ; thus, x � -z ≤ y � -z ≤ y ;

10 ∀x(Λ � Γ) � ¬Λ � ∀xΓ by 9 and UG: x is not free in the

premiss, since it is not free in ∀x(Λ � Γ) , and it is not free in ¬Λ by assumption;

11 ∀x(Λ � Γ) � Λ � ∀xΓ by 10 and Boolean algebra:

x � -z≤y implies x≤z � y ;

12 ∀x(Λ � Γ) ≡ Λ � ∀xΓ by 7 and 11.

3. ∃xΦ ≡ ¬∀x¬Φ

Proof. We prove that

∃xΦ � ∀x¬Φ ≡ � (12)

and that

∃xΦ � ∀x¬Φ ≡ � . (13)

By the definition of ¬ as complement in a Boolean algebra, this will mean that ¬∀x¬Φ ≡
∃xΦ .

To see that ∃xΦ � ∀x¬Φ ≡ � , note that x is not free in ∃xΦ ; therefore, we may apply 2.

with Λ=∃xΦ , to get that ∃xΦ � ∀x¬Φ ≡ ∀x(∃xΦ � ¬Φ) . Now, Φ � ∃xΦ by ES. But, in

any Boolean algebra, x≤y implies y � -x= � . Applying this to Φ as x and ∃xΦ as y ,

we get ∃xΦ � ¬Φ ≡ � . But also, ∀x � ≡ � , since UG can be applied to � � � to get

� � ∀x � , which is ∀x � ≡ � . Therefore,

172

∃xΦ � ∀x¬Φ ≡ ∀x(∃xΦ � ¬Φ) ≡ ∀x � ≡ � .

This proves (12).

To show (13), note that ∀x¬Φ � ¬Φ , thus Φ � ∀x¬Φ � Φ � ¬Φ ≡ � , Φ � ∀x¬Φ �
� . This

implies Φ � ¬∀x¬Φ , since in a Boolean algebra, x � y= � iff x≤-y . By EG, since x is

not free in ¬∀x¬Φ , we get that ∃xΦ � ¬∀x¬Φ . By the same Boolean principle backwards,

we get that ∃xΦ � ¬∀x¬Φ �
� , what we wanted.

In the above deductions the steps taken were not suggested by plausible rules. We have found

deductions of the entailments in question, but there was no explanation given how these

deductions were found. There is a deep reason for this. As a matter of fact, there is a

fundamental theoretical limitation here: there cannot be any completely algorithmic method of

finding deductions to entailments. This is Church's Theorem on the undecidability of logical

validity, a fundamental limitative result of Mathematical Logic.

The examples shown above are meant as illustrations of what we get when our search for a

deduction is successful, but not of a method of finding a deduction.

On the other hand, there are various ways of organizing the search for a deduction that help in

many practically important cases to find one. These ways belong to the subject area of

Computer Science called Automatic Theorem Proving.

173

