Section 4.3. Boolean functions

Let us take another look at the smplest non-trivial Boolean algebra, P({0}) , the power-set
algebra based on a one-element set, chosen here as { 0} . This has two elements, the empty
set U, whichis L (bottom), and theset {0} , whichis T . Let uswrite 2 for this algebra;
thus, 2 ={1,7} , with the total ordering givenby L < T . Itisobvious, either because we are
having a two-element total ordering, or because we are having an algebra of sets, that the
Boolean operations are as follows:

TAT =T TAL =1
1 AT = 1 1Al = 1
TVT =T TVL =T
1 AT =T 1Al = 1
-T = 1 -L =T
Weread T as true, L as fase; weread the operation A asand,v as or, - as not.

In this way, the two-element Boolean algebra becomes an algebra of truth-values, and
becomes the basis of propositional logic. In propositional logic, we analyze sentences into
constituent parts out of which the sentence is built up using the connectives. A (conjunction;
"and"), v (digunction; "or"), - (negation; "not"; the difference to the "minus’ sign, -, is
inessential), and two more: —— (conditional; "if ..., then ...") and <~ (biconditional; "if
and only if").

We also call a sentence of the form A A B aconjunction, itsterms A and B the conjuncts
in the sentence. As indicated in the previous paragraph, the operation of conjunction is the one
that forms AAB outof A, B. Av B isadigunction; A and B areitsdiguncts.

A — B isaconditional; A isitsantecedent, B itssuccedent. A <— B isabiconditional.
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Consider the following sentences:
"n isdivisbleby 2 ,or n isdivisbleby 3."
"n isdivisbleby 2 ,and n isdivisbleby 3."

"If the greatest common divisor of n and 6 isnot 1 ,then n isdivisbleby 2, or
n isdivisble 3 ."

"n isdivisbleby 6 if andonlyif n isdivisbleby 2 and n isdivisbleby 3."
By denoting the sentence " n isdivisbleby 2" by A;

A "n isdivisbleby 2"

def

also

B "n isdivisbleby 3",

def

C

"n isdivisbleby 6",

D

" The greatest common divisor of n and 6 is 1",

the above sentences may be analyzed, respectively, as

E AnrB,

o
@ 1
-

_n
>
<

vy)

[®X
@ 1
-

(-D) —(AvB),

[®X
@ 1
-

C«> (AAB).

[®X
@ 1
-

123



The truth or falsity of the last four composite sentences depend on the truth-values of their
congtituents A, B, C and D. (Of course, the truth-value of eachof A, B, C and D
depend on the value of the n , which we assume to be a fixed, but unspecified, natural
number.)

The dependence of the truth-value of E is exactly according to the truth-table given above
describing the effect of the operation of A (conjunction) on the two truth-values. That isto
say, if A and B arebothtrue sois E = A A B; inany other of the three cases concerning
thevaluesof A and B: (T,1), (1, T), and (T, 1) , thevaueof AAB isfase
This corresponds to the ordinary use of the connective "and".

The truth-value of F = A v B is computed according to the truth-table for v (digunction)
given above. E.g.,if n=6, orif n=2,0rif n=3, AvB is true in fact, according to
the first three lines of that table, in the given order. However, if n =1 ,then Av B isfase
this corresponds to the last line of the table. Notice that digunction as we are describing it here
is non-exclusive "or" ; adigunction is trueif, in particular, both diguncts are true. The
sentence in question is, in more explicit form,

"Either n isdivisbleby 2 ,or n isdivisbleby 3, or both."

Let us note that in mathematics, "or" (digunction) is always intended as non-exclusive "or".
(With exclusive "or" , a digunction would be true just in case precisely one digunct is true.)
This may be seen e.g. on the sentence G that is regarded as being true, no matter what n is.
If n=6, thenthe succedent of the conditional, A v B is true under the non-exclusive
interpretation, but not under the exclusive one.

The connective of negation as used in mathematical language, clearly corresponds to the table
given for it above. If n =5, then D (with D the sentence denoted by D above) is true,
and -D isfdse if n=2, then D isfase and -D istrue.

The connective of the conditional also corresponds to an operation in the two-element algebra
2 asfollows:

T — T T — 1

1
4
1
[

1 — T

1
4

1 — 1

1
4
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This table says that a conditional is true unless the antecedent is true, and the succedent is
false. In particular, the conditional is true whenever the antecedent is false, independently of
the truth-value of the succedent: "false implies everything".

We may verify that this corresponds to the usual mathematical use by considering that the
sentence

that is,
"If n isdivisbleby 6 ,then n isdivisbleby 2",

should be true no matter what thevalueof n is.If n=6, n=2, n=1, we obtain the
sentences

"If 6 isdivisbleby 6 ,then 6 isdivisbleby 2",

"If 2 isdivisbleby 6 ,then 2 isdivisbleby 2",

“If 1 isdivisbleby 6 ,then 1 isdivisbleby 2 ".
These are of the respective forms

T— T, L — T, L —> 1.

As said, ordinary mathematical usage attributes the value true to these forms, in agreement
with the table for the conditional above.

The fact that a conditional is true once the antecedent is false is also reflected in the general
approach to the proof of a conditional, which is that we start by assuming that the antecedent
is true. In fact, we may just as well do so, since if the antecedent is false, the whole
conditional is automatically true, and we can rest in our task of proving the conditional to be
true.
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The conditional can be expressed in terms of negation and digunction:

X >y =(-X) vy (1)

is an identity true for any valuesof x and y in 2 (verify!). Thus, in principle, the
conditional could be dispensed with; sentence G may be paraphrased as

"Either the greatest common divisor of n and 6 is 1, or n isdivisbleby 2, or

n isdivisbleby 3."

The biconditional has the following truth-table:

T<—> T

1
4

T< = L

1
[

L <= T

1
[

1l <= 1

1
[

In other words, the biconditional is true just in case its terms have equal truth-values. The
biconditional can also be expressed in terms of previous connectives:

X <>y = (X—=>Y) Ay —>Xx) (2

(verify!). In fact, this corresponds to our general attitude towards the proof of a biconditional,
which is that it involves the proof of two conditionals.

The equalities (1), (2) may be considered as definitions of the conditional —— and the
biconditional <— asoperationsin an arbitrary Boolean algebra. In case that algebrais
P( B) , the power-set algebra, then, for sets X and Y O B, we have that

X—>Y = (-X) vY
def

and

Xe>Y = ((-XuY)n((-Y)uX) .
def
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Next, we introduce a general construction on Boolean algebras.

Let A= (A, <) beany Boolean algebra, | any set. We consider all functions from | into
A asthe elements of a new Boolean algebra denoted 22[' ; read " 2-to-the-power-1 ", or

more simply, " 2-to-1 ". The underlying set of QLI IS, as we said, AI , the set of all
functions &1 —>A. Theorderingin QLI ,s* , Is defined componentwise from < : for

£ oA

E< ¢ —— &i)<gi) foral iOl .

There are several things to check: firstly, that s* isindeed an order on A" ; further, that this

order has all the requisite properties to make QLI =( AI , s*) a Boolean algebra. In fact, what

* * * * * I

happens is that the Boolean operations T , L , A , v , and - in A areal

computed componentwise: for all &, {0 AI and i 00 , we have:

T (i)

= T,
(i) = 1,
(&nQ (i) = &) A d(i)

(we should have written & /\* {, butitisnot necessary to be that pedantic ...).
(&vQ(i) = &(i) v (i)

(-8 (i) -(&(1))
The proof of all these assertions is easy. For instance, the assertion for A isthat the function

noA

22[' . According to a display on page 80 in Section 3.2, the best way to prove this is showing

that

for which n(i) =&(i) A{(i) foral 10 is infact,themeetof & and { in

for all XDAI ,

X< n e x<&adx<{.
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When we put in the definition of n and that of s* , Wwe get

for all XDAI,
x(i) =&(i)af(i) = x(i) <4(i) and x(i) <{(i)

which, for each 1 0l , isan instance of the same relation on page 80 in Section 3.2 for the
original Boolean algebra 2 .

Let us apply the power-construction to the algebra =2 . The elements of the Boolean

algebra 2I arethe functions | —{ T, 1} ; for & nef T, J.}I , E<niff &(i) <n(i)

for all i el . Alsonotethat since 2 hasjust two elements L and T,and L < T,
(i) <n(i) isequivaenttosayingthatif (i) =1 ,then n(i) =71.

The power-algebra 2I isin fact avery familiar one: it is isomorphic to the power-set algebra

Pl)
21y o2,

Let us specify the isomorphism, in fact, in both directions:

f
ny 2
g

for XeP(l) , f(X) isthefunction | —{T, L} for which

f(X)(u) =7

and

for any function & { T, J_}I , 9(¢&) isthesubset of | givenas

g(é) = {uel | é(u) =T}.
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These mappings f and g respect the orders, and they are inverses of each other; these facts

are easlly checked (exercises). In other words, f isanisomorphism f: P(1) %2' .

Note that, for XOP(1) , f(X) iswhat we call the characteristic function of X.
This representation of power-set algebras provides a direct proof that

any identity that holds in the 2-element algebra 2 holdsin any power-set algebra,
and hence, in any Boolean algebra whatsoever.

The reason is that, as it is seen by inspection, an identity that holds in an algebra 20 holds

also in a power QLI of it; also remember that we said in the previous section that all identities
in set-algebras hold in al Boolean algebras.

Seen in the light of the last statement, the definition of "Boolean algebra” isjust a summary of
what identities hold in the algebra of the two truth-values! Note carefully that, if we take this
"definition” of "Boolean algebra’ as basic, it is not obvious -- although now known by us --
that the Boolean laws are all consequences of the few that we earlier explicitly specified as the
Boolean laws.

When people talk about "Boolean functions’, they mean functions of possibly several
variables, al of which range over theset { T, 1} , and whose valuesareasoin {T, 1} .
(Very often (specially in computer science), we write 1 for T7,and 0 for L ; but we will
stick to the T,1-notation.) If the function f in question has n variables Pl' Ce Pn [we
write P for the variables, since they are seen as "propositions’; in fact, they simply take the
vaues T and T],then f isafunction

fo{na" T 1

forany Py, ..., P O{T, 1}, f(P;,...,P,) isagainanelementof {T, 1} .

n
With the fixed n , note that the number of distinct n-variable Boolean functionsis 2( 27) .
A Boolean function f can be represented by atruth-table listing all possible systems of
argument-values, and the corresponding function-values. For instance, when n=3 , the
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truth-table might be like this (we write P, Q R f or Pl’ P2, P3 ):

f(P,.QR)
1

3)

F F FF 4 4 4 470
F A4 4 F F 4 40
F 4+ A4 F 4 F 431
4 4 4 F F 4 4

Now, regard the set { T, 1} asthe underlying set of 2. Then the n-variable Boolean

functions form the underlying set of the power-algebra 2I , Where | ={T, 1} N In other

words, for afixed n , the n-variable Boolean functions themselves form a Boolean algebra.

Let uswrite P to abbreviate P , ..., P_. The Boolean operations on the power-algebra

1 n-’

n
2( {747 , the Boolean algebra of n-variable Boolean functions, is defined
componentwise:

(f Ag)(P) = f(P) Ang(P),

and similarly for the other operations.

n
We write, more ssimply, BF[ n] for 2({T’ 1) , the Boolean algebra of n-variable
Boolean functions.

The most natural examples for Boolean functions are the Boolean polynomials: these are the
functions that can be written down by repeated use of the basic Boolean operations. For
instance, when n=3 , the following are Boolean polynomials:

(-(((Pv-R A(Qv-R)) aT)) vR

—|(R\/—|Q) .
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The fact that the last does not contain the variable P does not make it illegitimate as a
three-variable polynomial: this one simply does not depend on P .

Boolean polynomials should be seen as analogs to ordinary (algebraic) polynomials. The
differences are that, Boolean polynomials are functions on the truth-values, instead of
numbers; and the basic Boolean operations figure in them, instead of the ordinary arithmetical
operations + , [, etc.

A Boolean polynomial is (or, denotes) a Boolean function: substituting definite truth-values for
the variables, and using the basic Boolean operations on truth-values, we get a definite value
for the polynomial. For instance, here are all the values of the first of the two listed
polynomials:

(-(((Pv-R A(Qv-R)) aT)) vR
+

F F FF 4 4 4 470
F F A4 4 F F 4 40

R
T
1
T
1
T
1
T
1

F 4 F 4 F 4 F

Calculating the value, for instance in the third line, looks like this:

(-(((Pv-R A(Qv-R) A7) vR.

L TTTL T TTTL TT 11
7 21 5 43 6 8

In this, first, we wrote the value of every variable under each occurrence of the variable,
including the value T under the constant T in the polynomial; next, we proceeded to
calculate the values of the part-expressions from the inside out; there are as many as there are
connectives, occurrencesof A, v, and - . The numbers indicate the order in which we go
through all constituent expressions until we reach the total expression in stage 8 ; the fina
result is that above 8, 1.

There is a dight ambiguity in the meaning of the expression "Boolean polynomia”. We
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sometimes mean the formal expression itself, rather than the function denoted by it. However,
the official meaning should remain the function itself; when one wants to refer to the formal
notion, one should say "formal polynomial". This remark is relevant in the light of the fact that
two formally different Boolean polynomials may be equal to each other. In the first of the last
two examples, the values in the value-column coincide with the values of R ; the polynomial
coincides (denotes the same function as) the simple polynomia ("monomia”) R.

Of course, this phenomenon is familiar in the case of ordinary (algebraic) polynomials. E.g,

the two formal polynomial expressions ( x-y) ( x+y) and x2- y2 denote the same

polynomial. We can see this by using the basic algebraic laws. The situation with Boolean
polynomialsis similar. Instead of going through the tables of values (which tend to be very
large even with a moderate number of variables), we may use the Boolean identities to
establish that two formal Boolean polynomials are the same polynomial. For instance, in the
example at hand:

(-(((Pv-R A(Qv-R)) aT)) vR

= (~(((PAQ v-R) AT)) VR (distributive law)

= (-((PAQ v-R) ) vR (unit law)

= (-(PAQ A--R) ) vR (De Morgan)

= (-(PAQ AR ) vR (double negation)

= R (commutative law,

absorption)

In fact, what we said about all identities of Boolean algebras being true in 2 means that every
time two formal Boolean polynomials are the same function on the truthc-values, this fact can
be deduced by using the Boolean identities alone.

Note that the Boolean operations on the Boolean polynomials as Boolean functions are

performed by formally applying the operation in question. For instance, if the three variable
polynomials mentioned above are briefly called f and g, then f Ag is

((~(((Pv-R A(Qv-R) A1) vR) A =(Rv-Q .

What this means is that
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the Boolean polynomials form a subalgebra of BF[ n] .
Consider now the variables P1 , P2 y e Pn themselves as such Boolean functions, in
fact, Boolean polynomials. Pi Is the function that satisfies

Pi(el,...,si,...

here, each €. &, isatruth-value, T or L. (Thisissimilar as when the single variable
say y isregarded as one of the ordinary polynomialsin variables x, y, z .) We clearly have

that

the particular elements Pi of BF[ n] generate the Boolean subalgebra of Boolean
polynomials.

Now, | claim that

the Boolean functions P1 : P2 y e Pn are independent in the Boolean algebra
of all n-element Boolean functions.
What we have to see is that, for any distribution of the values €. . &, in {T, 1} , the

meet-expression

P PZA.../\SP

E1F1 1 & n'n

isdifferent from L in the Boolean algebra of Boolean functions; here, éP means P if
e=71, and -P if e=1. Butif wegivethevaue § to Pi , We get that § Pi takes
thevaue T7: (P)(P=T1) =71; (-P)(P=1) =T1; thus,

(£1P1A£2P2/\...ASnPn)(P1=£1,...,Pn:£n) STATA... AT=T.

Since the function takes the value T at at least one system of arguments, the function is not
the L-function, which is constant L .

Remember that an independent family of n elements generate a Boolean subalgebra of size

n n
2(2 ) . It follows that there are exactly 2(2 ) distinct Boolean polynomials. But the
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n
whole algebra BF[ n] is of the same size, 2(2 ) . It follows that

all Boolean functions are (represented by) Boolean polynomials. In fact, all Boolean
functions can be written as joins of complete meet expressions in terms of the variables.

The expressions Pi and - Pi (or, I5i ) are also called literals. The expression of a Boolean
function as ajoin of distinct complete meets of literals is called the digunctive normal form
(dnf) of the function. We have that every function has a unique dnf: the complete meets of
literals appearing in the dnf are determined as those atoms of BF[ n] that are below the
given function.

Applying duality, one also gets a conjunctive normal form.

The last-stated fact has concerning the existence of the dnf also has a direct proof, together
with a simple method of producing the dnf of a function, based on the truth-table of the
function. The result is this. Consider the truth-table of the n-variable Boolean function f .
Select those lines in the table in which the value of f is T ; say the linesin which thisis the
case are

L. 4, b -
Each line ZJ (j =1, ..., k) hasacertain system of the values of the variables. Let us
denote the value of Pi inline lj by ‘Sji (and not Sij , because | denotes the

K n
"row-number”, i the "column-number"). Thednf of f is \/ /\ & | P, ; orinmore
j=1i =1
detail ,
gllPl A 812P2 A /\SlnPn
v 821P1 A 822P2 A ASZnPn
\% P

v gklpl A £k2P2 A /\SknPn .
Here we used the convention applied before: TP is P, 1P is -P.

To give an example, consider the function whose truth-table is (3). There are five lines where
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thevalueis T . Thednfis
PQ?QV P@?v Isq:iv Is@v f’@i .

The proof that thisis a correct procedure has to show that the dnf constructed assumes the
same values at each system of values for the variables. Now, the dnf is T if and only if one
of itsdigunctsis T . But each digunct corresponds to a line, say lj , Where the value of f
is T . The corresponding digunct is

gjlpl/\gj P2/\.../\SjnPn, 4
and this will take the value T iff each conjunct sj i Pi takes the value T, which isthe
case if and only if Pi takes the value ¢ i - This means that the unique system of
truth-values where the value of (4) is T isprecisely theoneinline 4 ! We have concluded
that the dnf takes the value T exactly in the lines £J ,for j=1,...,k ,whicharedso
exactly the lineswhere f is T . Thisprovesthat the dnf and f areidentical functions.

The dnf of a Boolean function may be extremely large aready in case of a moderate number

of variables. The problem of Boolean realization is to find a possibly small formal Boolean
polynomial representing a given Boolean function.
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