
Chapter 4 Boolean algebras and Propositional Logic

Section 4.1 Boolean algebras

Let (A, ≤) be a lattice, let x, y ε A . We say that y is a complement of x if

x � y = � , x � y = � .

The concept comes from the algebra of sets. If (A, ≤) = (
�
(B), ⊆) , the lattice of subsets

of B , then to say that Y is a complement of X in the lattice-theoretic sense just introduced

is the same as to say that Y is the complement of X in the simple sense: Y = B - X (see

Chapter 1, Section 1.2, p. 12: "laws for complements").

If y is a complement of x , then x is a complement of y : the definition essentially

symmetric in x and y , since y � x=x � y and y � x=x � y .

The complement is not necessarily unique. E.g., in both displayed lattices on p. 90 of Chapter

3, both x and z are complements of y . However,

in a distributive lattice, the complement is unique: if y and z are both complements

of the same element x , then y = z .

Indeed,

(x � y) � z = (x � z) � (y � z)

by the distributive law. But

x � y = � and x � z = �

by the assumption on y and z . Substituting, we get
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� � z = � � (y � z) ,

that is, by � � u = u (see p. 85, Chapter 3),

z = y � z ,

which means (see the laws on p. 85, Chapter 3)

z ≤ y .

The roles of z and y are completely symmetric; hence, by interchanging them in the above

argument, we get

y ≤ z .

Of course, we can now conclude that z = y , as promised.

The complement does not necessarily exist in a lattice even if the lattice is distributive. E.g.,

any total ordering with a maximal and a minimal element is a distributive lattice (exercise;

show that, in this case, x � y=min(x, y) , where min(x, y)=x when x≤y , and

min(x, y)=y when y≤x ; and x � y=max(x, y) , with max(x, y) defined similarly to

min(x, y) ). However, if x is an element in such a total order which is not the maximal,

nor the minimal, element, then x cannot have a complement; if y is any element, then

x � y = max(x, y) = � implies that y = � , and x � y = min(x, y) = � implies that

y = � , thus x � y = � and x � y = � cannot hold at the same time.

A Boolean algebra is a distributive lattice in which every element has a complement. Since in

a Boolean algebra, the distributice law holds, by what we saw above, the complement of any

given element is uniquely determined; the complement of x is denoted by -x , or also by
�

x , or even ¬x .

A complete Boolean algebra is a complete lattice which is distributive, and in which every

element has a complement; that is, a complete lattice which is a Boolean algebra at the same

time.
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Let us note that in any distributive lattice, the dual version of the distributive law also holds:

x � (y � z) = (x � y) � (x � z) ;

here, we reversed the roles of the operations � and � with respect to the original version of

the distributive law. For the proof, we start by the right-hand side, apply the (first form of the)

distributive law to it twice, and use the absorption laws at two places, until we arrive at the

left-hand side:

= x---------
(x � y) � (x � z) = ((x � y) � x) � ((x � y) � z) = x � ((x � z) � (y � z)) =

= x---------
= x � (x � z) � (y � z) = x � (y � z)

Since lattices can be described by operations and identities, without mentioning the ordering

relation (namely, by saying that the items � , � , � , � satisfy the associative, commutative,

absorption, idempotent and identity laws), we can alternatively describe Boolean algebras by

the lattice operations � , � , � , � , together with the operation of complementation, - , and

require that these satisfy the lattice identities just mentioned, the distributive law (ensuring that

the lattice is distributive), and the two laws of complements:

x � (-x) = � , x � (-x) = � .

It turns out that this latter definition is slightly redundant. Alternatively, we have:

Boolean algebras may equivalently be defined by the following laws:

the associative laws:

x � (y � z) = (x � y) � z

x � (y � z) = (x � y) � z

the commutative laws:

x � y = y � x
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x � y = y � x

both distributive laws

x � (y � z) = (x � y) � (x � z)

x � (y � z) = (x � y) � (x � z)

the identity laws:

x � � = x , x � � = x .

the laws of complements:

x � (-x) = � , x � (-x) = � .

The original definition, which says that a Boolean algebra is an ordered set with certain

properties, namely:

the top and bottom elements exist;

the meet and join of any two elements exist;

the complement of any element exists;

the first distributive law ( x � (y � z) = (x � y) � (x � z) ) holds;

is preferable, however.

The powerset-lattice
�
(B) is a complete Boolean algebra. We pointed out before that it is a

complete distributive lattice; and above, we pointed out that any X ε
�
(B) has a

complement, namely -Y = B � ��� Y . Following this example, in any Boolean algebra, we

denote the unique complement of x by -x .

By what we said about the symmetry in the relation " y is a complement of x " translates

into the statement that

--x = x ,

the law of double negation.

In the case of the powerset-algebra
�
(B) , in Section 1.2 we talked about the difference

X - Y of two sets X, Y ε
�
(B) . It is clear that X - Y = X � (-Y) . Generalizing this

operation, we define, in any Boolean algebra,
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x - y = x � (-y) ;
def

x - y is called the difference of x and y . One can easily verify that

x - y = x - (x � y) ,

and

(x - y) � (x � y) = x , (x - y) � (x � y) = � .

(exercise).

Note that, in the case of a powerset algebra, the last two equalities mean that x is the disjoint

union of x - y and x � y , which is an obvious fact. Another useful fact about the

difference is this:

x ≤ y ����� x - y = � .

Indeed, if x≤y , then x-y = x � (-y) ≤ y � (-y) = � , that is, x-y = � . On the other

hand, if x-y = � , then x � (-y) = � , hence,

x = x � � = x � (y � -y) = (x � y) � (x � (-y)) = (x � y) � � = x � y ;

which means that x≤y .

Let us verify De Morgan's laws

-(x � y) = (-x) � (-y) , -(x � y) = (-x) � (-y)

in any Boolean algebra; these laws were stated in Section 1.2 for sets. To prove the first law,

we show that the element (-x) � (-y) = -x � -y is the complement of x � y ; that is,

(x � y) � (-x � -y) = � (1)
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and

(x � y) � (-x � -y) = � . (2)

Using distributivity in its dual form, we have

(x � y) � (-x � -y) =

= (x � (-x � -y)) � (y � (-x � -y))

= ((x � -x) � -y) � ((y � -y) � -x)

(by associativity and commutativity)

= ( � � -y) � ( � � -x)

= � � � (since � � anything = � )

= � (idempotence) .

The proof of (2) is, essentially, the "dual" of that of (1): "interchange � and � ". In fact, (2)

is a consequence of (1), the latter applied in the "dual algebra". Let us explain the use of

duality in some generality first.

Note that

if (A, ≤) is a Boolean algebra, then so its converse (A, ≥) .

(the converse was mentioned in section 2.3; of course, x≥y means the same as x≤y .) In

fact, if (A, ≤) is a lattice, then (A, ≥) is also a lattice, in which the join operation is the

same as the meet operation in (A, ≤) , the meet in (A, ≥) is the join in (A, ≤) . Since

(A, ≤) is distributive, the dual distributive law holds in (A, ≤) , which means that the

original law of distributivity holds in (A, ≥) (and of course, as a consequence, also the dual

law holds in (A, ≥) ). In other words, (A, ≥) is a distributive lattice. Finally, note that the

top element of (A, ≥) is the bottom element of (A, ≤) , and the bottom of (A, ≥) is the
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top of (A, ≤) ; therefore, if we take x and its complement -x in (A, ≤) , the two

equations defining complements when read them in (A, ≥) become

x � -x = � , x � -x = �

that is, -x is again the complement of x in (A, ≥) .

We have shown that if (A, ≤) is a Boolean algebra, then so is its converse (A, ≥) , and in

fact, the top, bottom, meet, join and complement in the converse are the same as, respectively,

the bottom, top, join, meet and complement in the original algebra. Thus, if we have shown

some identity involving these operations to hold in any Boolean algebra, then the dual identity,

obtained by changing top, bottom, meet, join to bottom, top, join and meet, respectively, and

leaving complements alone, is again true in any Boolean algebra: the meaning of an equality

in a Boolean algebra is the same as the meaning of its dual in the converse algebra.

Now, the dual of the identity (1) is

(x � y) � (-x � -y) = � .

This is not quite the same as (2). However, since it is true for all values of the variables, we

may replace x with -x , y with -y , and still have a true identity:

(-x � -y) � (--x � --y) = � .

Since --x = x , --y = y , we get

(-x � -y) � (x � y) = � ,

which is, up to commutativity, the same as (2).

We have shown the first De Morgan identity. The second one is the dual of the first one;

therefore the second one holds as well.

Recall the notion of isomorphism from Chapter 2, Section 2.1. Recall that two isomorphic

relations are "essentially the same" as far as "mathematically interesting" properties are

concerned. For instance, it is easy to see that for two isomorphic relations, if one of them is a
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lattice, so is the other; if one of them is a Boolean algebra, so is the other.

We are going to show that

Theorem

every finite Boolean algebra is isomorphic to a powerset algebra (
�
(B), ⊆) ;

Paraphrasing, we may say that, up to isomorphism, all finite Boolean algebras are represented

as powerset algebras.

In yet other words, we may say that the notion of Boolean algebra completely captures the

notion of subset and the operations of union and intersection on subsets, at least as far as finite

sets are concerned.

It should be noted, however, that there are many infinite Boolean algebras, even complete

ones, that are very different from powerset algebras.

Towards proving the theorem, let us define an atom in any Boolean algebra, or in any order

for that matter, to be any element on the second level in the order. This means, in the case of a

Boolean algebra, that an atom a is not the bottom element, but there is no x such that

� <x<a . In other words, a is an atom iff x≠ � , and from x≤a it follows that either

x= � , or x=a . An atom is "indivisible" (which is the original meaning of the word "atom"): it

does not have any "proper part".

Recall the notion of height of an element introduced in Section 3.1 in any finite order. Assume

that our Boolean algebra is finite. Then an atom is an element whose height is exactly 2 ; the

unique element of height 1 is � .

Note that the atoms in (
�
(B), ⊆) are exactly the singletons {u} , with uεB . In other

words, the elements of the set B are, in a sense, represented in the set-algebra (
�
(B), ⊆) ,

namely by the atoms of the algebra. We claim that
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in any finite Boolean algebra (A, ≤) , every element is the join of the atoms below it:

x =
�����

{aεA � a≤x & a is an atom} . (3)

Certainly, since A is a finite set, the join is the join of a finite set, therefore, it exists. To

prove the equality, let us denote the join on the right-hand side by y . Since y is the join of

some elements each of which is ≤ x , we have that y ≤ x . Now, consider the element

z = x - y .

What we want is that z = � ; indeed, if z = x - y = � , then x ≤ y ; and since y ≤ x is

true, the desired equality x=y follows.

Now, assume that z ≠ � , to derive a contradiction. In that case, the height, in the sense of

Section 3.1, of z is at least 2 . But then, as we noted in Section 3.1, there is at least one

element b of height exactly 2 which is under z ; in other words, there is an atom b such

that b ≤ z . Before proceeding, let us mark down this last, frequently used, conclusion:

In a finite Boolean algebra, every non-bottom element has at least one atom below it.

Now, since b ≤ z , we have that

b � y ≤ z � y = � ,

that is,

b � y = � .

If n is the number of atoms that are ≤ x , and a for i < n are all the distinct atoms ≤ xi
, then

y = a � a � ... � a ,0 1 n-1

and so

� = b � y = b � (a � a � ... � a ) =0 1 n-1
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= (b � a ) � (b � a ) � ... (b � a ) ;0 1 n-1

thus, b � a ≤ � , and b � a = � for all i<n . But this means thati i

the atom b is different from each of the atoms a ;i

if we had b=a , then b � a = b ≠ � . On the other hand, since z≤x and b≤z , we havei i
that b≤x and b is an atom; by the definition of the a 's as all the atoms below x saysi
that

the atom b is equal to a for some i<n .i

The last two displayed sentences contradict each other. We have shown that z ≠ � leads to a

contradiction; therefore, we have z = � , and thus y=x as desired.

Let us point out another fact concerning atoms. In any Boolean algebra,

any two distinct atoms are disjoint, and any two disjoint atom are distinct:

if a , b are atoms, then

a ≠ b ������� a � b = � . ;

This is almost obvious. Suppose first that a≠b . Since a is an atom, and a � b ≤ a , the

only possibilities for a � b are a � b= � and a � b = a . But the latter means that a ≤ b ;

since a ≠ � , and b is an atom, this means a = b , which we assumed was not the case. So,

a � b= � must be the case. Conversely, assume a � b= � . Since a≠ � , a=b would mean

a � b=a≠ � . Thus, a≠b .

Note that, in the case of the complete powerset-algebra (
�
(B), ⊆) , the atom {u} is ≤

the set X ∈
�
(B) just in case uεX ; thus, the atoms that are ≤ X correspond exactly to the

elements of X . The equality (3) says, in this case, that any set X is the union of all

singletons {u} with uεX , an obvious fact.

Let now (A, ≤) be any finite Boolean algebra, let B the set of all atoms of (A, ≤) . We
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define two mappings

f
� � ����� ����� ����� ����� ����� ����� ����� ���

�
A

�
(B)�

� ����� ����� ����� ����� ����� ����� ����� �����
g

as follows:

f
x � � ����� ����� ����� ����� ����� ����� ��� � {aεA � a≤x & a is an atom}

and

�����
X �

� ����� ����� ����� ����� ����� ����� ����� X .g

In words: with any element x of the given Boolean algebra, f associates the set of atoms

below x ; with any set X of atoms, g associates the join of X .

We claim that the mappings f is an isomorphism of orderings, with g its inverse (which

then becomes an isomorphism itself):

f� � ����� ����� ����� ����� ����� ����� ����� ���
�

(A, ≤) (
�
(B), ⊆) ;�

� ����� ����� ����� ����� ����� ����� ����� �����
g

g � f = 1 , f � g = 1 . (4?)A B

Recall what we have to show, besides (4), for our claim; see (1) on page 37 in Section 2.1. We

have to have

x ≤ y ������� f(x) ⊆ f(y) (4'?)

The most difficult part is (4?); we will grant this for the moment, and prove the rest; in this we

will use (4); finally, we will prove (4).

First, we show

102



x ≤ y ������� f(x) ⊆ f(y) (4.1?)

and

X ⊆ Y ������� g(X) ≤ g(Y) (4.2?)

for all x, y∈A and X, Y∈
�
(B) .

If x≤y , and a≤x , then clearly, a≤y . This implies directly that the implication (4.1)

holds. (4.2) is the same as to say that

X ⊆ Y �����
�����

X ≤
�����

Y

which is clear (why?). To see (4'), the left-to-right implication in (4') is (4.1); for the other

implication:

f(x) ⊆ f(y) ����� g(f(x)) ≤ g(f(y)) ����� x ≤ y .� �

(4.2) (4)

Now, for (4). The first equality under (4) is exactly the assertion under (3) (why?). Finally, let

us show that f � g = 1 . This means that for any set X of atoms, if x=
�����

X , thenB

{aεA � a≤x & a is an atom} = X .

Now, clearly, the right-hand side is contained in the left-hand side (why?). Conversely, to

show that the left-hand side is contained in the right-hand side, let a be an atom such that

a≤x , to show that aεX . Since x =
�����

X , we have a ≤
�����

X , that is a �
�����

X = a . Let

X = {b � i<n} . We havei

a = a � (b � b � ... � b ) = (a � b ) � (a � b ) � ... � (a � b ) . (5)0 1 n-1 0 1 n-1

In particular, each a � b ≤ a . Since a is an atom, either a � b = � or a � b = a . Iti i i
cannot be that for all i , a � b = � , since then the union on the right-hand side of (5)i
would be � , and a ≠ � . Therefore, for at least one i , a � b = a . But then a ≤ b ,i i
and thus, since b is an atom, and a ≠ � , we must have a = b . This means that a isi i
an element of X , which was our goal to show.
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This completes the proof of the Theorem.

One consequence of the theorem is that a finite Boolean algebra (A, ≤) must have a

cardinality which is a power of 2 ;

n� A � = 2 for some n ε � ;

in fact,

nif the cardinality of the set of atoms of a Boolean algebra A is n , then � A � =2 .

This is clear, since two isomorphic algebras have underlying sets of the same cardinality, and
� B �� �

(B) � = 2 .

0Thus, we have Boolean algebras of cardinalities 1 = 2 (the degenerate Boolean algebra, the

1 2 3 4power-set of the empty set;
�
(∅) = {∅} ), 2 = 2 , 4 = 2 , 8 = 2 , 16 = 2 , ...,

but none of powers in between.
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