Section 3.2 Lattices

Let (A <) bea/(reflexive) order, considered fixed throughout this section. Thus, the symbol
< now means an arbitrary order on the arbitrary set A, rather than the usual
less-than-or-equal relation on numbers.

Asusual, x>y meansthe sameas y<x .

When, as sometimes happens, we also want to refer to the ordinary meaning of < in the same
context with an "arbitrary" order, we have to use a letter like R for the "arbitrary" order.

Thus, you should be able to see what follows also with R replacing <.

Let XOA, asubset of A, and yOA, an element of A.

Definition y isan upper bound of X if for al xOX, wehave x<y . Insymbols

y isanupper bound of X < [Ox.XOX—x<y .

Note the following obvious facts:
If y isan upper bound of X, and y<z ,then z isalsoan upper bound of X.
X isan upper bound of {x} .

Any yUA isan upper bound of 0 . (Note: the empty set [ isasubset of A; thus,
we cantake X tobe [0 .)

Exercise 1. Prove the assertions just made.

The set of all upper bounds of X isdenoted by X7 . Thus, to say that y isan upper bound

of X isthe same asto write yOX7 .

The concept of lower bound is similar; it is obtained by replacing < with >:
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y isanlower bound of X < [Ox.XxOX—x2y .
The set of all lower bounds of X isdenoted by X| .

It isimportant to keep in mind that the expressions X7, X| make an implicit reference to
the order in which they are evaluated.

Example 1. Let A=R, and < the usual less-than-or-equal relationon R . Let
n 123 . . n
X= nESE nCON} ={0, >3 .} . Then y=1 isan upper bound of X since msl

for al nON (infact, nnT1<l ). Infact, yOR isan upper bound of X if and only if y>1
(why?) . In other words,

{1 nON} 7 = {yOR: y=1} .

n+1-
Also,
nnTl: nON} | = {yOR: y<O0}
(why?).
Example 2. Let (A <) berepresented by the Hasse diagram
[Figure 22]

Now, we have

{3,4}1={6,7,8}, {2,3}7={5,6,7,8}, 07r=A, {5,8}1=0,
{5,6}1={1,2,3}, {7,81={1,2,3,4,6}, . =A.
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Definition For any subset Y of A, wesaythat bY istheleast element of Y if
for al yOY, wehave b<y . Smilarly, bOY isthe greatest element of Y if for al yOY,
we have by .

A subset Y of A may or may not have aleast element; but if it has one, the least element is
uniquely determined (why is that?). Similar statements can be made for the "greatest element”.

Example 1 (continued) Theset {yOR: y=1} hasaleast element;itis 1. The
set {yOR: y>1} hasno least element (why?). The subset R of R hasno least element,
and no greatest element (why?). The set { yOR: y<0} hasagreatest element, O ; but
{yOR: y<0} hasno greatest element.

Example 2 (continued) Theset {6, 7,8} hasaleast element, 6 : 6<6 ,
6<7, and 6<8. Theset {5, 6, 7,8} hasnoleast element. 0 hasno least, or greatest,
element, since it has no element at all.

The concept of "least element” has to be compared to that of "minimal element” carefully.

By aminimal element of asubset X of A we mean any element alJX such that for all
xOX, x a:itisnotthecasethat x<a . Theleast element of X iscertainly a minimal
element of X, but not the other way around. For instance, in Example 2, {5, 6, 7, 8} has
two minimal elements, 5 and 6 , but no least element. On the other hand, if a subset X of
A does have a least element, that element is necessarily the unique minimal element of X.

The concept of unigue minimal element agrees with the least element in casethe set A is
finite; but not in general. Consider the following example. Let A=7/x7 , and let R be the
relation on A defined by

(a,b)R(c,d) < a<c and b=d

(here, we used < initsusua sense as the less-than-or-equal relation on numbers). Let
X={(0,b): b0} O0{(1,c):clON} . Theelement (1, 0) isaminima element of X in
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the present order (A, R) .Infact, (1, 0) istheonly minimal elementin X: (1,0) is
the unique minimal element. However, X has no least element in the given order (A, R) .

On the other hand, for afinite order ( A, <) , aunique minimal element of A isthe same as
aleast element of A (can you prove this?). For any total order (A, <) , aminima
(maximal) element is necessarily unique if it exists, and it is the least (the greatest) element of
A (can you prove this?).

Definition Let X beasubset of A.
Thejoinof X, writtenas \/ X, isthe least element of X7, if it exists.
The meet of X, writtenas /\ X, isthe greatest element of X| , if it exists.

Thejoin of X isalso called the supremum, or more briefly the sup of X ; for "meet" we also
say "infimum" or "inf".

Example 1 (continued) Wehave \/ {nnTl: nCON} =1 . Thisis because

{=2:nON} 1 = {yOR: y>1} , and the least element of {yOR: y>1} is 1. On the other
hand, \/ R doesnot exist. Thisisbecause RT =0, and O hasno least element (no

element at all).

We have /\ {nnTl: nCON} =0, since {nnle nON} | = {yOR: y<0} , and the greatest
element of {yOR: y<0} is O.
Example 2 (continued) Wehave \/{3,4} =6, since

{3,4}1={6,7, 8}, andtheleast element of {6, 7, 8} is 6 .On the other hand,
\/ {2, 3} doesnotexist, since {2,3}1={5,6,7,8}, and {5, 6, 7, 8} hasno least
element. \/ 0 doesnot exist, since 07 = A, thetotal set, and A has no greatest element.

Wehave /N {7,8}=6, since {7,8}] ={1, 2, 3,4, 6}, and the greatest element of
{1, 2,3, 4,6} is 6.0ntheother hand, /\ {5, 6} doesnot exigt, since
{5,6}1={1,2,3}, and {1, 2,3} hasnogreatest element. /A 0=1, since 0/=A,
and A hasaleast element, 1.
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Two reformulations of the concepts of "join" (and " meet"):

\/ X = a ifandonlyif X ={a}1.

*) \/ X = a if and only if the following holds:
foral ulA, u2a < [Ox.xOX—u2x

(and similarly for /\ ).

Exercise 2. Prove the two assertions above.

We always have the following facts:

\/{a} =a, N{a} =a.

\/ O, if it exists, is the bottom element of the order; it is denoted by L. Note that
01 isthewhole of A (every element of A isan upper bound of 0 ); thus, 1=\/ O,
being the least element of U7 , it isthe least element of A (if it exists). L is characterized
by the fact that for all alJA, we have 1<a .

Similarly, /\ O, if it exists, is the top element, or greatest element of the order; it is
denoted by T ; we have a<t for al alA.

AA=\/O=1, \/A= AD=T.

If theset X hasaleast element a,then /\ X=a;
if theset X hasagreatest element a , then \/ X=a .

Of course, the converses of the last statements are, in general, false. For instance, in Example

2,wehave /\ {7,8}=6, but 6 isnottheleast elementof {7,8} ; 6 isnotan
element of {7, 8} atall.
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Exercise 3. Prove that

\V X=/\ (X7)
A\ X=\/(X]);

more precisely, in each case, the (value of the) left-hand-side expression exists if and only if
the right-hand-side does, and when they exist, they are equal. (Hint: first prove that, for any
subset XOA, if a= /\ (X1) exists, then a must be the least element of X7 ; and a
similar statement for \/ (X!) . )

When the set X isgiven in the form X:{xi 2101}, where X; IS some expression of the

variable i ranging over some set | , then we may write \/xi for \/ X, and /\xi
i 0l i 0l
for /\ X. Forinstance, if ¥ isaset of some subsetsof A, inother words, every X in ¥

isasubset of A, thentheexpresson \/ ( \/ X) meansthesameas \/{ \/ X XO1} .
Xux

In turn, this means taking the join  \/ X of each set X in the collection 4, and then taking
the join of the set of all the joins so obtained.

Let usrecall that | / ¥ stands for the union of all the sets that are elements of 4. We can
say the same by the formula

xO\ U ¥ <= [IXO&. xOX.
We may also write

xDi\Djlxi = EiDI.xDXi.

Exercise 4. Prove that
VIUD =\ (X,
XX

meaning that if one side exists, so does the other, and they are equal.
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Examples for the last equality:
\/{Xl,XZ,X3} = VA \/{xl,xz},xs} ,

VAXp X Xz X g xgh = VAV A{Xg Xoh VAXg Xy, Xgh)

Special notation:

XVY q&f VX, y}.
xny ggr /NIyl

Note the obvious facts:

if x<y, then xvy =y and xay =x .

Item (*) above becomes, for X={x, y} , thefollowing characterizationsof xvy and xay :

u = xvy u < Xay

u=x and u =y us<x and u<y

These abbreviated statements use the horizontal lines to mean "if and only if". It is understood
that the statements hold true for all u in A.

Definition A latticeisan order (A, <) inwhich \/ X, /\ X existfor al
finite subsets X of A.

A complete latticeisan order (A, <) inwhich \/ X, /\ X exist
for all subsets X of A.

Facts:
la) (A <) isacompletelatticeif and only if /\ X existsfor every subset X of
A.
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1b)  Similarly, (A, <) isacomplete latticeif and only if \/ X existsfor every
subset X of A.

2) If A isafinite set, then (A, <) isalatticeif and only if it is a complete
lattice.

3) Anorder (A <) isalaticeifandonlyif T(= /A D0),1(=\/0),xay,
xvy al existinit, the latter two for all x, yUA.

4a) If A isafinite set, then the order ( A, <) isalatticeif and only if
T(=/\0) andxay existinit, thelatter for all x, yOA.

4b)  The previous statement, with L (= \/ 0) replacing T, and xvy replacing
XAY .

Exercise 5. Prove the facts (Hints. For 1a) and 1b): use exercise 3. For 2): every
subset of afinite set is finite. For 3): use exercise 4 and the examples after it, to obtain the join
or meet of a set of finitely many elements by the successive evaluation of joins of two
elements. For 4a) and 4b): use severa previous things.

Example 3. We modify the Hasse diagram (A, H) given in Example 2 by
removing the element (2, 6) from H, adding the element 9 to A, and adding the pairs
(7,9, (8,9) to H:

[Figure 23]

This represents a lattice (that is, its transitive closure is the irreflexive version of alattice)

whichwe call (A, <) ; now, A={i ON: 1<i <9} .

We can display this fact as follows. First of all, the Hasse diagram shows that we have a
unique maximal element and a unique minimal element:
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Secondly, forany x and y in A that are comparable in the order, that is, either x<y or
y<x , weknow that xAy , xvy both exist (in this case, these values are al equal to either
X or y ). Thus, in checking joins xvy and meets x Ay , we may confine our attention to
incomparable x and y . But also, it is not necessary to consider both xvy and yvx ,
since one of these exists if the other does, and they are equal: they are equal to

\/ {x,y} = \/{y, x} . Therefore, in our example, we make alist of al pairs (x,y) of
incomparable elements x , y for which, aso, x<y inthe usual ordering < of the integers,
the latter condition is to make sure that we do not list both (x,y) and (y, x) .

Here isthe list of incomparable pairs:

(2,3), (2,4), (2,6), (2,8),

(3,4),

(4,5),

(5,6), (5, 8),

(7,8) .
We have
(2,3)1={5,7,9}, 2v3=5; (2,3)l={1}, 2A3=1;
(2,4)1={7,9}, 2v4 =7 ; (2,4) ] ={1} , 2Md =1
(2,6)1={7,9}, 2v6 =7 ; (2,6) ] ={1} , 26 =1 ;
(2,8)1={9}, 2v8=9; (2,8)1={1}, 28 =1;
(3,4)1={6,7,8,9}, 3v4=6; (3,4)1={1}, 3nd=1;
(4,5)1={7,9}, 4v5=17; (4,5, ={1}, 4A5=1;
(5,6)1={7,9}, 5v6=7; (5,6) 1 ={1,3}, 5A6=3;
(5,8)1={9}, 5v8=9; (5,8) 1 ={1,3}, 5A8=3;
(7,8)1={9}, 7v8 =9 ; (7,8)1=1{1,3,4,6}, 7v8 =6 ;

It may be noted that it would have been sufficient to verify the existence of all joins xvy , or
aternatively, of all meets x Ay , because now the underlying set A isfinite (see Exercise 5
above).

Examples for lattices:
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L1. Foranyset B,theorder (P(B), ) of al subsetsof B isalattice. In fact,
in this case, we have

T=8B
1 =10
XAY = XnY
XvY = XUY.

(PAB), 0) isinfact acomplete lattice. We call any lattice of theform (P(B), ) a
power-set |attice.

Particularly important is the casewhen B={0} . Now, A=P({0}} ={0, B} . Now, O=1
and B={0} =71 ;thus, A={T, L} . Thislattice has two elements; it is frequently denoted by
2.

The meet and join tables for 2 are those for "and" (conjunction) and "inclusive or"
(digunction). This interpretation depends on reading T as"true', and L as"false". Here are
the tables:

T 1 T 1
T T T T T 1
1 T 1 1 1 1

L2. Hereisaparticular infinite lattice: (N,

) . Therelation | is"divides"
alb = [cON. alt =b

In this case, we have:

|
1
= O

QO

>

O
1

gcd(a, b)
| cm(a, b)

o8}

<

O
1
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gcd means "greatest common divisor”; | cm means "least common multiple”. (N,
complete lattice. Can you say why?

) isnot a

L3.  There are many lattices formed by certain special subsets, as opposed to all
subsets, of a given set. For instance, let B be any set, and let us consider the set of all
equivalence relations on the set B ; this set is denoted by &£( B) . Since every equivalence
relation is, in particular, a subset of BxB , we have that £(B) U P( BxB) . We may consider
the subset relation 0 restricted to &£( B) ; thisisthe order induced by 00 on &£(B) . It turns
out that (&£( B) ,[J) isalattice; in fact, a complete lattice.

Similarly, the set 7r ( B) of al transitive relations on the set B, again with 0 as the order,
is a complete lattice.

Exercise 6. Prove that L1, L2 and L3 are indeed lattices, with the indicated |attice operations
(when such is given).

(Hint for L3: show that the intersection of any non-empty collection of equivalence relations is
again an equivalence. Conclude that in (£( B) ,00) , the meet of any non-empty set of elements
exists, and is equal to the intersection of those elements. The meet of the empty set of
elements also exists (obvioudy). Finally, use Exercise 3.)

L4. Let V beavector space (over any scalar field). Let Sub(V) be the set of all
subspacesof V. (Sub(V), ) isalattice. We have that, in this case,

T=V
1 = {0}
XAY = XnY

XvY = X+Y ={x+y: xOX yOY}

Exercise 6.1 Prove the assertions just made.



L5. Hereisanimportant, but somewhat special, construction of alattice.

Let us start with two fixed sets, M and N, and arelation T between them: TOMxN (thus,
T is somewhat more general then our relations so far, since not one, but two "underlying sets’
are involved). Let us use the variable U to denote subsetsof M, V for subsetsof N, a

elementsof M, x elementsof N.Givenany UM, VON, we define U ON, V¥ OM by

xOU  e—— Dalu. aTx

alV¥ —— OxOV. aTx

Welet A= {UIM U #=U} . A isasubsetof (M . Theinduced order (A 0) isa
lattice, called the concept lattice derived from TOMxN .

Exercise 7* Prove the |ast-stated assertion.

L6 One of the most important examples for a complete latticeis ([ a, b] , <) ,
where a and b are fixed real numbers such that a<b , [ a, b] isthe closed interval
{xOR: a<x<b} ,and < isthe usual less-than-or-equal relation (we should have written
<M a, b] instead of <, but thiskind of abbreviation was already practiced before). The fact
that ([ a, b], <) isacomplete lattice, for any a and b asdescribed, is responsible for

such fact as the existence of {2 : {2 may be defined as {2= \/ {x[[ a, b] : x2<2} , for

any a and b such that a2<2 and b2>2 :

Laws holding in all lattices:
XAY =Y AX XVY = yvX (commutative laws)
(XAY) AZ =XA(YAZ) (xvy) vz =xv(yvz) (associative laws)
Xv(Xay) =X XA(Xvy) =X (absor ption laws)
XAX = X XVX = X (idempotent laws)
TAX =X TUVX =T IAX = 1 LvX =X (identity laws)
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XSy & XAy =X & XVvy =Y

x<y and usv imply that xAu £ yav and xvu <yw

(xvy) Az = (xaz) v(ynaz)

(xay) vz < (xvz) A(yvz)

Exercise 8. Prove the laws.

Sublattice of a lattice

A sublattice of lattice (A, R) isalattice (B, S) for which B isasubset of A, and for
which the meaningsof T (top) , L (bottom) , and of xAy , xvy for elements x and y in
the (smaller) set B, are the same in the two lattices. When (B, S) isasublattice of

(A R , then, for x, yOB, xRy iff xSy ; but, this condition is not enough to ensure that
(B,S) isasublatticeof (A R) .

At any rate, a sublattice (B, S) of (A, R) iscompletely determined by its underlying set

B . However, if wetake asubset B of A, define S by xSy < xRy foral x, yOB (this
order S on B iscalled the order induced by R on B), then (B, S) isnot necessarily a
sublattice of (A, R) evenif (B, S) isalattice on itsown right.

Example 3 (continued) Now, (A, R) asin Example 3 above.

Let B=(1, 2,4, 7,9} . Thenthe order induced by R on B isgiven by the Hasse diagram
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[Figure 24]

Notice that in the Hasse diagram of (A, R) , thereisno arc from 2 to 7 ; athough, of
course, we have 2R7 . However, in the induced order S, it isnot only the case that 2S7 ,
but we also have that 7 covers 2, since thereisno elementin B between 2 and 7 . This
iswhy we do have an arc from 2 to 7 inthe Hasse diagramof (B, S) .

Next, we verify that (B, S) isalattice, andin fact, a sublattice of (A, R) . Thereisonly
one incomparable pair, up to the order of mention: (2, 4) ; and 2v4=7, 2A4=1 in

(B, S) . When we check what the valuesof 2v4 , 2,4 werein (A R) , we see that these
are 7 and 1, respectively. We can conclude that (B, S) isasublatticeof (A R) .

Next, let B bethesubset B={1, 3, 4, 8,9} of A.Theinduced order (B, S) now is
given by the Hasse diagram

[Figure 25]

Thisis also alattice. However, it is not a sublattice of (A, R) , sincein (B, S) , 3v4=8,
butin (A'S) , 3v4=6.

Let B beasubset of A.Whendoes B determine a sublattice of ( A; <) ; whenis
(B, <t'B) asublattice of (A, <) ? For this,

T, the top element of (A, <) , must belongto B;

1, the bottom element of (A, <) , must belongto B

if x and y in B,then xay ,themeet of x and y in the sense of the lattice
(A, =) , must belongto B;

if x and y in B,then xvy ,thejoinof x and y in the sense of the lattice
(A <) ,must belongto B.

These conditions are also enough: if they hold true, then (B, <I'B) isalattice; infact, T is

the top element of (B, <I'B) ; L isthe bottom element of (B, <IB) ; andif x, yOB, then
XAy , Xvy arethe meet and join, respectively, of {x, y} in (B, <IB) aswell.
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Given any lattice (A, <) , and any subset X of A, we can form the sublattice X0 of
(A, £) generated by X . Theunderlying set B of [X[ istheleast subset B of A for
which

X isasubset of B;

T, thetop element of (A R) , belongsto B;

1, the bottom element of (A, R) , belongsto B;

forany x and y in B, both xAy , xvy computed in the given lattice (A, R)
belongto B again.

The way to obtain X isto build B by (i) throwing in all the elementsof X into B, (ii)
throwingin T and L into B, and (iii) every timewe have x and y already in B for
which xAy and/or xvy isnotyetin B, throwing xAy and/or xvy into B --until B is
closed under said operations.

Example 3 (continued) Wetake (A, R) asin Example 3 again. Let
X={2, 4, 8} . We construct the underlying set B of

XO= 4 2, 4, 8} O= [2, 4, 80

by starting with the elements 2, 4, 8 and 1=1L, 9=T7. Wehave 2v4=7 , therefore
70B. Butthen, since 7 and 8 arebothin B, we must havethat 7A8 = 6 belongsto B.
When we take the set of the elements listed so far, B={2, 4, 8, 1,9, 7, 6} , we seethat for
each of the incomparable pairs of elementsof B, whichare (2,4), (2,6), (2,8) ad
(7, 8) , thejoin and the meet of the two elements of the pair is again an element of B ; this
can be checked by the listing for (A, R) given above. (Of course, when x and y are
comparable elementsof B, then xay , xvy , being elementsof {x, y} , do aready
belongto B.) Thisensuresthat B isclosed under the lattice operationsin (A, R) , and we
conclude that the underlying set of [2,4,801is {2,4,8,1,9,7, 6} .

The Hasse diagram of the lattice [2, 4, 80 is

[Figure 26]
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Let us return to the general situation. When [X[ equals the whole lattice (A, <) , that is,
B=A,wesay that X generatesthe lattice (A, <) ,or,that X isaset of generators for the
lattice (A <) .

In the example, the only elementsof (A, <) missing from [2,4,80 ae 3 and 5.
Adding either of theseto the set {2, 4, 8} resultsin a set of generators for the lattice. For
instance, {2, 3, 4, 8} isaset of generatorsfor (A <), [2,3,4,80=(A <) . The
reason isthat 2v3 =5, andthusall elementsof A arein the underlying set of

(2, 3, 4, 80.

Consider the distributive identity:

2
(xvy) Az = (xaz) v(ynaz)

This may or may not hold in alattice. A lattice is said to be distributive if the distributive

identity holds for al values of the variables x, vy, z .

Example 3 (continued) This lattice is distributive. It is not easy to check this
directly, since the number of triples ( X, y, z) to check is quite large. However, thereis a
characterization, given below, of distributivity that makes the verification somewhat easier.

The most important examples for distributive lattices are the power-set lattices. ( 2( B) , [)
is distributive, since the distributive identity holds for union and intersection of sets:

(XOY) nZ=(XnZ) O(YnZ) .
This was proved in Section 1.2.

Exercise 9. Prove that the inequality (xvy) Az = (xaz) v(yaz) awaysholdsin
any lattice.

We need two auxiliary concepts.
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Let us say that the lattice (B, S) isaweak sublattice of (A, R) if al the conditions for
(B, S) being asublattice of (A, R) are satisfied except possibly the ones for "top" and
"bottom”; that is, it may happen that TOOB or L[B.

Example 3 (continued) For instance, B={ 1, 3, 4, 6} isthe underlying set of a
weak sublattice (B, S) of the lattice of Example 3, because 3A4=1 and 3v4=6 in both
(AR and (B, S) , andtheonly pair of incomparablesin B is (3, 4) . However,
(B, S) isnotan (ordinary) sublattice of (A, R) , sincethetop elementof (B, S) is
679 .

Recall that isomorphic relations share all "mathematical™ properties. For instance, one is a
lattice if and only if the other is; one is distributive if and only if the other is.

To return to distributivity, here are two particular non-distributive | attices:

T T
/ "
/// P //
e z~
//
//

L, X z L

1 y . 2 Y

/// P //
/// X ///
/// \ ///
// //
1 1

In the first lattice, (xvy) az =z and (xaz) v(yaz) = 1 ;inthe second case,
(xvy)az =z and (xXAz) v(yaz) =Xx.

It follows that if either of L1 , L2 isisomorphic to a weak sublattice of alattice (A, <) ,
the latter cannot be distributive: one or the other of the above counterexamples to distributivity
will be present in (A, <) . Itisatheorem that conversely, if (A, <) isanon-distributive
lattice, then either L1 or L2 is isomorphic to a weak sublattice of (A, <) .
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Example 3 (continued) It is not too difficult to see that in this example, neither
L1 nor L2 isisomorphic to a weak sublattice of ( A, <) . Therefore, (A, <) is
distributive. However, when we modify the example by removing the arc (6, 7) from the
Hasse diagram, the resulting lattice (A, R') contains the weak sublattice (B, S) with
B={3, 5, 6, 7,9} , whichisisomorphic to L2 ; therefore, the modified lattice is not
digtributive. Infact, in (A, R) , (5v8) A7T#(5A7) v(8A7) .
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