
Chapter 3 Orders and lattices

Section 3.1 Orders

Recall from Section 2.1 that an order is a reflexive, transitive and antisymmetric relation. We

also pointed out that possibly the most fundamental example for order is the subset-relation on

the powerset
�
(A) of any set A . Let us emphasize that what we call an order is also often

called partial order.

For A = {0, 1} , (
�
({0, 1}), ⊆) is the order

[Figure 18 (in Figures 2)]

Often, an arbitrary order is denoted by the symbol ≤ , which is read "less than or equal to", or

more briefly, "below". It is to be remembered that ≤ may not mean the standard order of real

numbers.

Recall from section 2.1 (pages 34 and 35; especially Exercise 4) that we have the notion of

irreflexive order; and that each order R (that we may, for emphasis, call a reflexive order)

#has its irreflexive version R ; and that each irreflexive order S has its reflexive version

* #S . When R is the usual order ≤ ("less-than-or-equal") of the reals, say, then R is < ,

*the usual (strict) "less-than" relation; and if S is < , then S is ≤ . Moreover, when R is

#⊆ , the subset-relation, then R is ⊂ , the proper-subset relation; and when S is ⊂ , then

*S is ⊆ . In brief: it is a matter of taste whether we talk about a reflexive order, or the

corresponding irreflexive one; we can always pass from one to the other. We will see,

however, that, depending on the situation, one or the other of the reflexive and irreflexive

versions will be preferable to deal with.
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Orders appear in mathematics and "real life" very often. We will see several mathematical

examples. As for real life, consider a complex manufacturing process; let A be a set of jobs

to be done; let a � b mean that job a has to be done before b . Then � is an irreflexive

order, the precedence order of the process. Another example is a glossary of technical terms in

which the definition of one term may use other terms; now a � b means that the definition

of b depends directly or indirectly on that of term a . The irreflexivity of this definition is

the condition that there are no circular definitions.

Note that in both examples, we may have partial orders: trichotomy (for the irreflexive

versions) is not assumed: it is not necessary that for two different jobs a and b , it be

decided that one of them has to precede the other; their "order" may be immaterial, and not

recorded in the precedence order � . A similar remark holds in the case of dependence of

terms in a glossary.

Let us make the idea of circularity a mathematical one. Let (A, R) be any relation. Recall

from Section 2.3 that an R-path, or simply a path, from x to y is a sequence

〈a , a , ..., a 〉 of elements such that a =x , a =y and a Ra for i<n ; n is0 1 n 0 n i i+1
the length of the path. We will now insist that the length of a path be positive.

A circuit is a path 〈a , a , ..., a 〉 of positive length n , with a =a . Thus, if I have0 1 n 0 n
aRa , I have a path of length 1 , thereby a circuit. If I have aRbRa , I have a circuit of

length 2 .

A relation is circular if there is at least one circuit (of positive length) in it. Here is the

connection with orders:

The transitive closure of a relation is an irreflexive order if and only if the relation is

not circular.

trIndeed, recall from Section 2.3 that xR y iff there is an R-path from x to y . To say that

tr trR is irreflexive is to say that xR x never holds; this means that there cannot be a path

from any x to itself, which is the same thing as to say that there are no circuits in R , that is,

trR is not circular. R is, of course, always transitive; so it is an irreflexive order just in case
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R is not circular.

To return to the example of the glossary, let R be the relation of "direct dependence": xRy

iff the definition of y directly refers to the term x . Then the relation � of "direct or

indirect dependence" is nothing but the transitive closure of R . This will be an irreflexive

order iff R is not circular, that is, if there is no sequence of definitions exhibiting circularity.

The relation U defined in Section 2.3 (p. 53) is circular; 〈0, 1, 2, 0 〉 is a circuit in it. The

transitive closure is the relation on top of p. 55 in Chapter 2; the failure of irreflexivity is in

the encircled set. If we imagine that U depicts the direct dependence in a proposed glossary,

from the transitive closure we can see that one or more of the definitions for terms 0, 1, 2

have to be changed to ensure non-circularity.

The concept of transitive closure is used to give an abbreviated representation of an

(irreflexive) order. The idea is simply that if we know of a relation that it is transitive, and we

know a couple of particular pairs in the relation, then transitivity will give us others, which we

therefore do not have to include in the data bank. To put it more succinctly, an (irreflexive)

order may be represented by any subrelation(!; see Section 2.1)) whose transitive closure is the

order itself.

Let us take an example. Consider the irreflexive order (A, R) = (
�
({0, 1, 2}, ⊂) ; the

relation ⊂ is "proper subset": X ⊂ Y iff X ⊆ Y and X ≠ Y . The relation

[Figure 19]

is not the same as our (A, R) , but its transitive closure is. For instance, there is no arrow

from {1} to {0, 1, 2} in the picture, but one can get from {1} to {0, 1, 2} along two

arrows.

The usual graphic representation of any (finite) order follows the pattern of the example. As an

additional convention, arrows are often replaced by non-directed edges; this can be done if

there is a global direction such as upward in which all arrows are supposed to point. Thus, the

picture
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[Figure 20] (3)

represents an order isomorphic to the last one. In this, x is less than y just in case one can

reach y from x going always upward along edges. Since this is not possible for x=3 and

y=4 , 3 is not less than 4 , although 4 is higher up than 3 .

The "minimal" graphic representation of an order is called its Hasse diagram. Actually, the

Hasse diagram of any order is uniquely determined, and can be described mathematically in an

elegant way. We proceed to explain this.

Let (A, ≤) be an order; of course, < denotes the irreflexive version. Let x, y∈A . We say

that y covers x in the given order if x<y , but there is no z such that x<z<y ; that is,

if y is strictly above x , but there is no element strictly between the two.

As we said, any subrelation R of < whose transitive closure equals the given order,

r/trR = < , (3')

can be used to "represent" < . Of course, R = < is a possible choice; however, of course, we

want to have R as small as possible: in the graphic representation, the number of arcs, which

is the cardinality of R , should be made as small as possible. Let us call a subrelation R of <

for which (3') holds representative. Now, the fact is this.

Assume that (A,≤) is a finite order ( A is a finite set). Then

there is a unique minimal element H among the representative subrelations of < ; H

is the "cover" relation derived from < ;

xHy ����� y covers x in (A, <) .

By the minimality of H we mean this: H is representative (read 3' for H as R ); and if R

is any representative relation, then H⊆R : R has to contain all the pairs that H contains, and

possibly more.
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trTo prove the assertion, first, let us see that H is representative, H = < indeed. Since H is

tra subrelation of < , and < is transitive, we have that H ⊆ < . To show the opposite

trinclusion, let a, b be arbitrary elements of A such that a<b , to show that aH b .

Let

a = c < c < ... < c = c = b (3")1 2 n-1 n
be a chain "connecting" a and b of maximal-possible length; the number n the largest

possible. Chains connecting a to b certainly exist, since the pair a<b is such a chain.

Since < is irreflexive and transitive, c ≠c for i≠j ; thus, n≤ � A � , the number ofi j
elements in A . Therefore, there are altogether finitely many such chains, thus, we can select

one that has the largest possible length [this argument is actually an application of the

proposition, stated and proved later, according to which any non-empty finite order has at least

one maximal element]. I claim that c Hc (that is, c covers c ) for alli i+1 i+1 i
i=1, ..., n-1 . Indeed, if there were d such that c <d<c , then we could insert di i+1
into the given chain (3"), and get

a = c < c < ... c < d < c < ... < c = c = b1 2 i i+1 n-1 n

a chain from a to b which is one longer than (3") -- a contradiction to the maximal choice

trof (3"). But now we have that (3") is an H-path from a to b , showing that aH b .

We have proved that H is a representative relation; it remains to show that if R is any

trrepresentative relation, then H ⊆ R . Suppose that R is representative, R = < ; assume

that xHy , that is, y covers x in < ; we want to show that xRy . Since, in particular,

trx<y , we have xR y ; therefore, there exists an R-path

x = u , u , ... , u , u = y1 2 n-1 n

from x to y : u Ru for all i=1, ..., n-1 ; and n≥2 . Since R ⊆ < , it followsi i+1
that

x = u < u < ... < u < u = y .1 2 n-1 n

If we had n>2 , then we would have some u (namely, u=u ) such that x<u<y , which2
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would contradict xHy . Therefore, we must have n=2 ; which means x=u Ru =y ; we1 2
have shown xRy as promised.

tr r/trLet us note in passing that R =< implies R =≤ (why?).

The Hasse diagram of a finite order is the network displaying the cover relation for the order.

It is the most economical way of graphically representing the order.

Let (A, ≤) be a reflexive order; let < denote the corresponding irreflexive order. A minimal

element of (A, ≤) is any aεA such that for all xεA , x≤a only if x=a . This is the same

thing as to say that x<a never happens for x in A . A maximal element is any a for

which a<x never happens for an element x of A . The order represented by he Hasse

diagram

[Figure 21 ]

has two minimal elements, 0 and 1 , and two maximal elements, 5 and 6 . (
�
(A), ⊆)

has a unique minimal element, the empty set ∅ , and a unique maximal element, A itself.

The order ( � , ≤) does not have either a minimal, or a maximal element. ( � , ≤) has a

unique minimal element, 0 , but no maximal element.

An order is finite if its underlying set is finite; the cardinality of an order is the cardinality of

its underlying set (and not the cardinality of the relation as a set of ordered pairs)

Any finite non-empty order has at least one minimal and at least one maximal element.

The proof is by induction of the cardinality of the order [those who have not seen induction

should skip this proof; induction will be discussed towards the end of the course]. If the

cardinality is 1 (the least possible for a non-empty set), the assertion is clearly true. Suppose
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(A, <) is an (irreflexive) order, and � A � =n+1 , n≥1 . Pick any a∈A . The restriction

(A-{a}, < � (A-{a})) is again an order (see Section 2.1); it is of cardinality n . By the

induction hypothesis, it has a minimal element, say b . Either b is a minimal element for

the whole (A, <) ; or else, b is not minimal in (A, <) ; but this second case can take

place only if a<b , since b is minimal in A-{a} . In the second case, a is minimal in

(A, <) : if, on the contrary, we had c<a , then, first of all, c≠a , and so c∈A-{a} , and

secondly, c<a<b implies that c<b ; c∈A-{a} and c<b together say that b is not

minimal in A-{a} ; contradiction.

The proof for "maximal" is similar.

In Section 2.1, we defined a (reflexive) total order R as an order in which the dichotomy law

(either xRy or yRx ) holds. An irreflexive total order is a transitive, irreflexive

(equivalently, strictly antisymmetric) relation satisfying trichotomy (either xRy , or x=y , or

yRx ). We noted that the standard example for total order is the "less than or equal" relation ≤
for numbers, and that for irreflexive total order is the "less than" relation < for numbers.

Total orders, at least in the finite case, are structurally very simple. We have that

any two total orders with the same finite cardinality of their underlying sets are

isomorphic.

The proof is by induction on the size of the total orders. If the size is ∅ (the empty order), the

assertion is obvious. Assume (A, <) , (B, <’) are total orders, � A � = � B � = n+1 . Let,

by the previously proved assertion, a be a minimal element of (A, <) , b a minimal

element of (B, <’) . Consider the restrictions (A-{a}, < � (A-{a})) and

(B-{b}, <’ � (B-{b})) . These are total orders of cardinality n ; hence, by the induction

hypothesis, they are isomorphic. Let

≅f : (A-{a}, < � (A-{a})) ��� ����� ����� ����� ����� ����� (B-{b}, <’ � (B-{b}))
be an isomorphism. Then the function
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g:A ��� ����� ����� ����� ����� ����� B

f(x) if x ≠ a
x � � ����� ����� ����� �����

b if x = a

≅is an isomorphism g:(A, <) ��� ����� ����� ����� (B, <’) (why? Of course, here you will have to use that

the orders < and <’ are total!).

The last-proved assertion says that for any finite cardinality, there is exactly one total order up

to isomorphism; a concrete representation of the total order of size n is ([n), < � [n)) ;

here, the set [n) is {0, 1, ..., n-1} , the set of natural numbers less than n ; the

irreflexive order < � [n) is the usual order relation < among integers restricted to the set

[n) .

In contrast, there are many non-isomorphic partial orders of the same cardinality (if that

cardinality is greater than 1 ). If A is any set, then there is a minimal order on A in which

x ≤ y only if x = y ; for the irreflexive formulation, this means that < is the empty set of

pairs, x < y never happens. Such a trivial order is called discrete; discrete orders are at an

opposite extreme to total orders.

Let (A, ≤) be any order, B a subset of A ; consider the restriction relation (B, ≤ � B) ,

written more simply as (B, ≤) . As we mentioned in Section 2.1, and as it is obvious,

(B, ≤) is also an order. If (B, ≤) is a total order, we say B is a chain in (A, ≤) ; if

(B, ≤) is a discrete order, we say B is an antichain in (A, ≤) . The set

{∅, {1}, {1, 2}, {0, 1, 2}} is a chain in
�
({0, 1, 2}) ; {{0}, {1}, {2}} is an

antichain in the same (see the picture of
�
({0, 1, 2}) above).

(We mean the relation ⊆ (suset relation) when we refer tp
�
(B) as an order, unless

otherwise indicated.)

In what follows we put ourselves into a fixed, but arbitrary order (A, ≤) .

Chains and antichains in an order are in some sense "orthogonal" to each other. One precise

way of putting this is that
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the intersection of a chain and an antichain can have at most one element.

In fact, this is obvious when one thinks about it (right?).

For a finite order, the length of the order is the largest possible cardinality of any chain in the

order; the width of the order is the cardinality of the largest antichain in the order. The length

of
�
(C) for � C � = 3 is 4 , the width of it is 3 (see the picture of

�
({0, 1, 2})

above); the chain and the antichain pointed out above are in fact of the maximal possible sizes

in the example.

(I have to apologize for a small blemish in this terminology. According to the present

definition, the length of the order
�
({0, 1, 2}) is 4 , because of the maximal-length chain

{∅, {0}, {0, 1}, {0, 1, 2}) , which has four eleements. Unfortunately, the ⊆-path

∅ ⊆ {0} ⊆ {0, 1} ⊆ {0, 1, 2}

has length 3 , according to an earlier terminology. This situation is inconvenient, but not

exactly incorrect: in the earlier case, we have a sequence (the path), in the present case, a set

(the chain). I'd like to change the newer length to match the older one, but I would introduce

too many errors if I did that.)

The graphical display of orders suggests the notion of level in an order. The minimal elements

are on the lowest level; the ones that are "immediately above" minimal ones are on the next

level, etc. To introduce the notion of level precisely, we first define a few other simple

concepts.

With any element x of an order (A, ≤) , let x � denote the downsegment of x , that is,

the set of elements y for which y ≤ x . (Of course, the upsegment x � of x is the set

{yεA � x ≤ y} .) The height of x is, by definition, the length of the downsegment of x . In

other words, the height of an element x is the same as the length of the longest chain ending

in x . For instance, the height of the element 5 in the order under (3) is 3 , because the

two longest chains in 5 � are {0, 3, 5} and {0, 1, 5} , both of length 3 .

The elements of height 1 are exactly the minimal elements of the order. The one with height

2 are those x that are not minimal, but which are such that every y<x is minimal. In
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general, if the height of x is k , then for every 1≤i<k , there is at least one y<x such

that the height of y is i : just take a maximal-length chain C ending in x ; its length is

k ; if

C={y <y <...<y <y =x}1 2 k-1 k

then the height of y is i : it is obviously at least i , but it cannot be larger than i , sincei
that would make a chain ending in x that is longer than k .

thThe n level in (A, ≤) is the subset of A consisting of the elements of height equal to n .

The levels in
�
({0, 1, 2, }) are {∅} (first level), {{0}, {1}, {2}} (second level),

{{0, 1}, {0, 2}, {1, 2}} (third level), {{0, 1, 2}} (fourth level).

Clearly, the number of non-empty levels of an order is the same as the length of the order; this

is 4 in the example
�
([3)) or in the order whose Hasse diagram is (3).

Each level is an antichain. Indeed, if x < y , then the height of y is necessarily larger than

that of x , since for any chain ending in x we can make one ending in y which is 1

longer than the chain ending in x . Therefore, for elements x and y on the same level,

x < y is impossible, which says that a level is an antichain. We can now easily see that

every finite order can be extended to a total order on the same underlying set.

Indeed, let the order be (A, <) . Let us define the relation � on A as follows. For any level

L of (A, ≤) , choose an arbitrary total order � on L . Given any x and y in A , let usL
define

x � y ����� eeeiiittthhheeerrr x and y are on the same level L and x � y ,Ldef
ooorrr x is on a lower level than y .

What this says is that in the relation � everything on a lower level precedes everything on a

higher level; and for two things on the same level, what precedes what is determined by the

individual total order chosen on that level. It is practically obvious, and certainly it is not hard
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to see, that � so defined is a total order. Also, if x<y , then x is on a lower level than y

(as we said above), hence, x � y . This shows that < ⊆ � , � extends < .

In the case of the order under (3) (which is isomorphic to
�
([3)} ), the total order � is the

natural order of the integers < 8 , provided we choose the individual orders � of the secondL
and third levels appropriately.

When the order under investigation is a precedence order for a set of jobs, then a total order

extending the given order solves a scheduling problem, namely how to schedule the jobs one

after the other so that every time we do a job all others that must have been done before are

indeed done.

Returning to the levels of an order, let us repeat that each of them is an antichain. Also, the

underlying set of the order is the disjoint union of the levels. We also noted that the number of

levels is the same as the length (the length of the longest chain) of the order. Thus

we have succeeded writing the underlying set of an order as the union of as many

antichains as the length of the order.

We could not have done the same with a smaller number of antichains. If the underlying set is

the union of some antichains, and C is a chain, then no two elements of C may be in the

same antichain (the intersection of a chain and an antichain may have at most one element),

hence, there must be at least as many antichains to cover C as there are elements of C . Now

if we take C to be the longest possible chain, that is, C is the length of the whole order

itself, we get that the family of antichains covering the order must have at least as many

members as the length of the order.

Now, let us consider the "dual" question of covering (the underlying set of) an order with

chains rather than antichains. The same argument as the one we just gave shows that

it is not possible to cover an order with fewer chains than the width of the order.
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For instance, the order under (3) has width = 3 , as we said above. It is not possible to cover

this order by two chains, since the antichain {1, 2, 3} can not be part of just two chains.

However, it can be covered by three chains:

A = {0, 1, 4, 7} � {2, 6} � {3, 5} .

Indeed, this is a general fact.

The underlying set of any finite order may be written as the union of exactly as many

chains as the width of the order.

This is R. P. Dilworth's theorem. The proof is not as simple as it was for the case of covering

with antichains. It proceeds by induction on the cardinality of the order. If the order has

cardinality 0 , that is, we are talking about the order on the empty set, the width is 0 , and

the order is covered as the union of 0 many chains, so the assertion is true in this case. Now,

let the size of the order (A, ≤) be � A � = n+1 , and let the width of (A, ≤) be w . The

induction hypothesis is that for any order of size at most n , the order can be covered by as

many chains as the width of the order.

We start by taking a maximal-size chain in (A, ≤) , say C . Consider B = A - C , and the

order induced on B , ≤ � B . Certainly, � B � < � A � = n+1 , that is � B � ≤ n , so the

induction hypothesis applies to (B, ≤ � B) . Now, there are two cases.

Case 1. The width of (B, ≤ � � B) is less than w . Then, B may be covered by less than w

chains (in (B, ≤ � � B) , which are the same as chains in (A, ≤) entirely within B ).

Together with the chain C , this means a covering of A with at most w chains, and in this

case we are done.

CCCaaassseee 222... The width of (B, ≤ � � B) is equal to w . Let X be an antichain in B of size w .

Consider the following two sets

U = {u∈A � u ≥ x for some x ∈ X} ,

L = {
�

∈A � �
≤ x for some

�
∈ X} .
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U is the set of elements of A that are above some element of X ; L is the set of those

below some element of X .

First note that

U � L = A .

The reason is that any a∈A is comparable with some x∈X (that is, either a≤x , or x≤a ,

or both), since otherwise one could add a to the antichain X , making it an antichain of size

w+1 , contradicting the fact that w is the maximal size of any antichain in (A, ≤) . Since

a is comparable with some element of X , it must be either in U or in L .

Note that X itself is a part of both U and L ; in fact, U∩L=X . The reason is that if

y∈U∩L , then there are x , x ∈X such that x ≤y≤x ; thus, x ≤x , and since X is1 2 1 2 1 2
an antichain, x =x . But then x ≤y≤x means that x =y=x , and so y∈X .1 2 1 2 1 2

Next note that

neither U nor L is the whole set A .

Indeed, the unique minimal element c of the chain C is not in U , since if it were, there

would be x ∈ X with c ≥ x , but C and X are disjoint, X being a subset of B = A - C ,

so c > x , and this would mean that x can be attached to the chain C as its least element,

making it longer, in contradiction to the choice of C as the longest chain. Similarly, the

maximal element of the chain C is not in L . The upshot is that both U and L are of

smaller sizes than A , and thus the induction hypothesis can be applied to them.

Now, we forget about C entirely, and concentrate on the antichain X , as well its upper and

lower shadows U and L . Note that the width of both U and L is w , since the

maximal-size antichain X is a part of both. Using the induction hypothesis, we write U as a

union of w chains U (for i=0, ..., w-1 ; in short, i < w ), and L as the union of wi
chains L ( j < w ).j

Now, looking at U , and in particular an element x ∈ X , x must belong to at least one of

the U 's , and of course, distinct x's must belong to distinct U 's . Since there are as manyi i
U 's as x's, namely w , each U contains exactly one x∈X ; call that x : x .i i i
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Now, let us fix i < w . Let the unique minimal element of the chain U be u ; we havei
u ≤ x since x ∈ U ; since u ∈ U , there is y ∈ X with y ≤ u ; it follows that y ≤ x ;i i i i
but X is an antichain, and both x and y are in X ; therefore x = y , and so x ≤ u ≤i i i
x , x = u . We conclude thati i

the minimal element x of each U is in X , and the x 's are all the distincti i i
elements of X ;

What we said about the U 's , after switching "up" and "down", we can say about the L 's asi j
well. We get that

the maximal element x’ of each L is in X , and the x’'s are all the distinctj j j
elements of X .

We can now finish the proof by producing w chains covering A . Take a chain U ; find thei
chain L for which x’ = x ; then L � U is a chain, since everything in L is ≤ x ,j j i j i j
and everything in U is ≥ x , where x = x’ = x . Do this for each i<w , and get ii j i
chains; these will cover A since the U 's cover U and the L cover L , and U � L = A .i j
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