Chapter 3 Ordersand lattices

Section 3.1 Orders

Recall from Section 2.1 that an order is areflexive, transitive and antisymmetric relation. We
also pointed out that possibly the most fundamental example for order is the subset-relation on
the powerset P( A) of any set A. Let us emphasize that what we call an order is also often
called partial order.

For A={0, 1}, (P”({0,1}), 0) istheorder

[Figure 18 (in Figures 2)]

Often, an arbitrary order is denoted by the symbol
more briefly, "below". It is to be remembered that
numbers.

, which is read "less than or equal to", or
may not mean the standard order of real

N IN

Recall from section 2.1 (pages 34 and 35; especially Exercise 4) that we have the notion of
irreflexive order; and that each order R (that we may, for emphasis, call areflexive order)

has itsirreflexive version R’ ; and that each irreflexive order S hasits reflexive version
S* . When R istheusual order < ("less-than-or-equal) of the reals, say, then R# is <,
the usual (strict) "less-than" relation; and if S is <, then S* IS <. Moreover, when R is
0, the subset-relation, then R# is 0, the proper-subset relation; and when S is [0, then

S* is 0. In brief: it is a matter of taste whether we talk about a reflexive order, or the
corresponding irreflexive one; we can always pass from one to the other. We will see,
however, that, depending on the situation, one or the other of the reflexive and irreflexive
versions will be preferable to deal with.
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Orders appear in mathematics and "real life" very often. We will see several mathematical
examples. As for redl life, consider a complex manufacturing process; let A be a set of jobs
to bedone; let a < b meanthat job a hasto be done before b . Then < isanirreflexive
order, the precedence order of the process. Another example is a glossary of technical termsin
which the definition of one term may use other terms; now a < b means that the definition
of b depends directly or indirectly on that of term a . The irreflexivity of this definition is
the condition that there are no circular definitions.

Note that in both examples, we may have partial orders: trichotomy (for the irreflexive
versions) is not assumed: it is not necessary that for two different jobs a and b , it be
decided that one of them has to precede the other; their "order" may be immaterial, and not
recorded in the precedence order < . A similar remark holds in the case of dependence of
termsin a glossary.

Let us make the idea of circularity a mathematical one. Let (A, R) be any relation. Recall
from Section 2.3 that an R-path, or smply a path, from x to y isasequence

an, ag, ..., anD of elements such that ag=x, a =y and a; Rai +1 for i<n; nis
the length of the path. We will now insist that the length of a path be positive.

A circuit is a path an, ag, ..., a8, [ of positive length n , with ap=a, . Thus, if | have
aRa , | have a path of length 1 , thereby a circuit. If | have aRbRa , | have a circuit of
length 2 .

A relation is circular if there is at least one circuit (of positive length) in it. Here is the
connection with orders:

The transitive closure of a relation is an irreflexive order if and only if the relation is
not circular.

Indeed, recall from Section 2.3 that xR ry iff thereisan R-path from x to y . To say that

R" isirreflexiveisto say that xR " x never hol ds; this means that there cannot be a path
fromany x toitself, which is the same thing as to say that there are no circuitsin R, that is,

R isnot circular. R is, of course, always transitive; so it is an irreflexive order just in case
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R isnot circular.

To return to the example of the glossary, let R be the relation of "direct dependence": xRy
iff the definition of y directly refersto theterm x . Then the relation < of "direct or
indirect dependence” is nothing but the transitive closure of R. Thiswill be an irreflexive
order iff R isnot circular, that is, if there is no sequence of definitions exhibiting circularity.

Therelation U defined in Section 2.3 (p. 53) iscircular; [0, 1, 2, 00 isacircuitinit. The
transitive closure is the relation on top of p. 55 in Chapter 2; the failure of irreflexivity isin
the encircled set. If we imagine that U depicts the direct dependence in a proposed glossary,
from the transitive closure we can see that one or more of the definitions for terms 0, 1, 2
have to be changed to ensure non-circularity.

The concept of transitive closure is used to give an abbreviated representation of an
(irreflexive) order. The idea is smply that if we know of arelation that it is transitive, and we
know a couple of particular pairs in the relation, then transitivity will give us others, which we
therefore do not have to include in the data bank. To put it more succinctly, an (irreflexive)
order may be represented by any subrelation(!; see Section 2.1)) whose transitive closure is the
order itself.

Let us take an example. Consider the irreflexive order (A, R) = (P2({0, 1, 2}, 0) ; the
relation O is"proper subset”: XOY iff XOY and X # Y. Therelation

[Figure 19]

isnot the sameasour (A, R) , but its transitive closure is. For instance, there is no arrow
from {1} to {0, 1, 2} inthe picture, but one can get from {1} to {0, 1, 2} aong two
arrows.

The usual graphic representation of any (finite) order follows the pattern of the example. As an
additional convention, arrows are often replaced by non-directed edges; this can be done if
there is a global direction such as upward in which all arrows are supposed to point. Thus, the
picture
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[Figure 20] 3

represents an order isomorphic to the last one. In this, x islessthan y just in case one can
reach y from x going always upward along edges. Since thisis not possible for x=3 and
y=4 , 3 isnotlessthan 4 , athough 4 ishigher upthan 3.

The "minimal™ graphic representation of an order is called its Hasse diagram. Actually, the
Hasse diagram of any order is uniquely determined, and can be described mathematically in an
elegant way. We proceed to explain this.

Let (A <) bean order; of course, < denotes the irreflexive version. Let x, y[JA. We say
that y covers x inthegiven order if x<y , butthereisno z suchthat x<z<y ; thatis,
if y isdtrictly above x , but there is no element strictly between the two.

Aswe said, any subrelation R of < whose transitive closure equals the given order,

Rr/tr:< ’ )

can be used to "represent” <. Of course, R = < isa possible choice; however, of course, we

want to have R as small as possible: in the graphic representation, the number of arcs, which

isthe cardinality of R, should be made as small as possible. Let us call a subrelation R of <
for which (3") holds representative. Now, the fact is this.

Assume that ( A<) isafinite order ( A isafinite set). Then
there is a unique minimal element H among the representative subrelationsof <; H
is the "cover" relation derived from <;

XxHy <= vy covers x in (A <) .

By the minimality of H we mean this. H isrepresentative (read 3' for H as R); and if R
IS any representative relation, then HIR: R hasto contain all the pairsthat H contains, and
possibly more.
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To prove the assertion, first, let us see that H is representative, H' " = < indeed. Since H is
asubrelation of <, and < istranstive, we have that H'" 0<. To show the opposite

inclusion, let a, b be arbitrary elements of A such that a<b , to show that aH”b.

Let

a:cl<02<...<cn_1:cn:b (3"
be a chain "connecting” a and b of maximal-possible length; the number n the largest
possible. Chains connecting a to b certainly exist, since the pair a<b issuch achain.
Since < isirreflexive and transitive, C; ;tcj for 1 # ;thus, n< Al , the number of
elementsin A. Therefore, there are atogether finitely many such chains, thus, we can select
one that has the largest possible length [this argument is actually an application of the
proposition, stated and proved later, according to which any non-empty finite order has at |east
one maximal element]. | claim that C; I—|ci +1 (that is, Cj 41 covers c, ) for all
i=1,...,n-1. Indeed, if there were d such that C; <d<c then we could insert d

into the given chain (3"), and get

i +1°

a=Cy<Cy<...C; <d<g; 4<...<C,_,=C,=b

achainfrom a to b which isonelonger than (3") -- a contradiction to the maximal choice

of (3"). But now we have that (3") isan H-path from a to b, showing that aHt b .

We have proved that H is arepresentative relation; it remains to show that if R isany

representative relation, then HO R. Suppose that R is representative, R =< ; assume
that xHy , thatis, y covers x in <; wewant to show that xRy . Since, in particular,

X<y , we have xR ry ; therefore, there exists an R-path

XZUg, Uy, ooy Up g, USY
from x to y: u; Rui +1 foral i=1,...,n-1;and n>2. Since RO<, itfollows
that

X=Uy<Up<...<U 1<U ZY.

If we had n>2 , then we would have some u (namely, u:uz)such that x<u<y , which
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would contradict xHy . Therefore, we must have n=2 ; which means x:ulRuzzy ;we
have shown xRy as promised.

r/tr

Let us note in passing that RM=< implies R =< (why?).

The Hasse diagram of afinite order is the network displaying the cover relation for the order.
It is the most economical way of graphically representing the order.

Let (A <) beareflexive order; let < denote the corresponding irreflexive order. A minimal
element of (A <) isany agA suchthat for all xeA, x<a onlyif x=a . Thisisthe same
thing asto say that x<a never happensfor x in A.A maximal elementisany a for
which a<x never happens for an element x of A. The order represented by he Hasse
diagram

[Figure 21]

has two minimal elements, 0 and 1, and two maximal elements, 5 and 6 . (P(A), 0)
has a unique minimal element, the empty set [ , and a uniqgue maximal element, A itself.
The order (R, <) does not have either a minimal, or amaximal element. (N, <) hasa

unique minimal element, O , but no maximal element.

An order isfinite if its underlying set is finite; the cardinality of an order is the cardinality of
its underlying set (and not the cardinality of the relation as a set of ordered pairs)

Any finite non-empty order has at least one minimal and at least one maximal element.

The proof is by induction of the cardinality of the order [those who have not seen induction
should skip this proof; induction will be discussed towards the end of the course]. If the
cardinality is 1 (the least possible for a non-empty set), the assertion is clearly true. Suppose
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(A <) isan (irreflexive) order, and | A=n+1, n=1.Pick any allA. Therestriction
(A-{a}, <M A-{a})) isagain an order (see Section 2.1); it is of cardinality n . By the
induction hypothesis, it has a minimal element, say b . Either b isaminima element for
the whole (A, <) ;or else, b isnot minima in (A, <) ; but this second case can take
place only if a<b, since b isminima in A-{a} .Inthesecond case, a isminimal in
(A, <) :if, onthe contrary, we had c<a, then, first of al, c#a, andso cUA-{a} , and
secondly, c<a<b impliesthat c<b ; cUA-{a} and c<b together say that b isnot
minimal in A- {a} ; contradiction.

The proof for "maximal” is similar.

In Section 2.1, we defined a (reflexive) total order R as an order in which the dichotomy law
(either xRy or yRx ) holds. Anirreflexive total order isatranstive, irreflexive
(equivalently, strictly antisymmetric) relation satisfying trichotomy (either xRy , or x=y , or
yRX ). We noted that the standard example for total order isthe "less than or equal” relation <
for numbers, and that for irreflexive total order isthe "less than" relation < for numbers.

Total orders, at least in the finite case, are structurally very smple. We have that

any two total orders with the same finite cardinality of their underlying sets are
isomorphic.

The proof is by induction on the size of the total orders. If the sizeis U (the empty order), the
assertion isobvious. Assume (A <), (B, <) aetota orders, |Al=1B|=n+1. Let,
by the previoudly proved assertion, a beaminimal element of (A <) , b aminima
element of (B, <) . Consider therestrictions (A-{a}, <M A-{a})) and

(B-{b}, < M B-{b})) . These are total orders of cardinality n ; hence, by the induction
hypothesis, they are isomorphic. Let

f: (A{a}, <MNA{a})) — >(B-{b},< NB-{b}))
be an isomorphism. Then the function
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gA 5B

f(x) if x#a
X |[—
b if x=a

isan isomorphism g: (A <) %( B, <) (why? Of course, here you will have to use that
theorders < and <’ aretotall).

The last-proved assertion says that for any finite cardinality, there is exactly one total order up
to isomorphism; a concrete representation of the total order of size n is ([ n), <M n)) ;
here, theset [n) is {0, 1,...,n-1} , theset of natura numberslessthan n ; the
irreflexive order <t n) isthe usual order relation < among integers restricted to the set

[n) .

In contrast, there are many non-isomorphic partial orders of the same cardinality (if that
cardinality isgreater than 1 ). If A isany set, then thereisaminimal order on A in which
x <y onlyif x =y ; for theirreflexive formulation, this means that < isthe empty set of
pairs, X <y never happens. Such atrivial order is called discrete; discrete orders are at an
opposite extreme to total orders.

Let (A <) beany order, B asubset of A; consider the restriction relation (B, <I'B) ,
written more smply as ( B, <) . Aswe mentioned in Section 2.1, and asit is obvious,
(B, <) isdsoanorder. If (B, <) isatota order, wesay B isachainin (A <) ;if
(B, ) isadiscrete order, we say B isanantichainin (A, <) . The set
{0,{1},{1,2},{0,1,2}} isachanin 2{0,1,2}); {{0},{1},{2}} isan
antichain in the same (see the picture of ({0, 1, 2}) above).

(We mean the relation [ (suset relation) when we refer tp (B) as an order, unless
otherwise indicated.)

In what follows we put ourselves into a fixed, but arbitrary order (A, <) .

Chains and antichains in an order are in some sense "orthogonal" to each other. One precise
way of putting thisis that
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the intersection of a chain and an antichain can have at most one element.

In fact, this is obvious when one thinks about it (right?).

For afinite order, the length of the order is the largest possible cardinality of any chain in the
order; the width of the order is the cardinality of the largest antichain in the order. The length
of AAC) for |IC| =3 is 4 ,thewidthof itis 3 (seethepictureof P({0, 1, 2})

above); the chain and the antichain pointed out above are in fact of the maximal possible sizes
in the example.

(I have to apologize for a small blemish in this terminology. According to the present
definition, the length of the order P({0, 1, 2}) is 4, because of the maximal-length chain
{0,{0},{0, 1},{0, 1, 2}) , which has four eleements. Unfortunately, the [-path

00{0} 0{0,1} 0{0, 1,2}

has length 3, according to an earlier terminology. This situation is inconvenient, but not
exactly incorrect: in the earlier case, we have a sequence (the path), in the present case, a set
(the chain). I'd like to change the newer length to match the older one, but | would introduce
too many errorsif | did that.)

The graphical display of orders suggests the notion of level in an order. The minimal elements
are on the lowest level; the ones that are "immediately above" minimal ones are on the next
level, etc. To introduce the notion of level precisely, we first define a few other smple
concepts.

With any element x of anorder (A, <) , let x| denote the downsegment of x , that is,
the set of elements y for which y < x . (Of course, the upsegment x7 of x isthe set
{yeA | x <y} .) Theheight of x is, by definition, the length of the downsegment of x . In
other words, the height of an element x is the same as the length of the longest chain ending
in x . For instance, the height of the element 5 in the order under ( 3) is 3, because the
two longest chainsin 5] are {0, 3,5} and {0, 1, 5} , both of length 3 .

The elements of height 1 are exactly the minimal elements of the order. The one with height
2 arethose x that are not minimal, but which are such that every y<x isminimal. In
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general, if the height of x is k , then for every 1<i <k , thereisat least one y<x such
that the height of y is i : just take a maximal-length chain C endingin x ;itslengthis
k ;if

C={y1<Yo< o <Yl 1Y =X}

then the height of Yi is i :itisobvioudy at least i , but it cannot be larger than i , since
that would make a chain ending in x that islonger than k .

The nth level in (A, <) isthe subset of A consisting of the elements of height equal to n .

Thelevelsin ({0, 1, 2,}) are {0} (firstlevel), {{0}, {1}, {2}} (second levd),
{{0,1},{0,2},{1, 2}} (thirdlevel), {{0, 1, 2}} (fourthlevel).

Clearly, the number of non-empty levels of an order is the same as the length of the order; this
is 4 intheexample P([ 3)) or inthe order whose Hasse diagram is (3).

Each level is an antichain. Indeed, if x <y, thenthe height of y is necessarily larger than
that of x , since for any chain ending in X we can make one endingin y whichis 1
longer than the chain ending in x . Therefore, for elements x and y on the same level,

X <y isimpossible, which says that alevel is an antichain. We can now easily see that

every finite order can be extended to a total order on the same underlying set.

Indeed, let the order be ( A, <) . Let usdefine therelation < on A asfollows. For any level
L of (A <) ,choose an arbitrary total order <L on L.Givenany x and y in A, letus
define

X<y & either x and y areonthesamelevel L and XLLY s
def
or X isonalower level than vy .

What this saysis that in the relation < everything on alower level precedes everything on a

higher level; and for two things on the same level, what precedes what is determined by the
individual total order chosen on that level. It is practically obvious, and certainly it is not hard
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to see, that < so defined isatotal order. Also, if x<y , then x ison alower level than y
(as we said above), hence, x<y . Thisshowsthat <0<, < extends <.

In the case of the order under (3) (which isisomorphicto P([ 3)} ), thetotal order < isthe
natural order of the integers < 8 , provided we choose the individual orders <L of the second
and third levels appropriately.

When the order under investigation is a precedence order for a set of jobs, then a total order

extending the given order solves a scheduling problem, namely how to schedule the jobs one
after the other so that every time we do ajob all others that must have been done before are

indeed done.

Returning to the levels of an order, let us repeat that each of them is an antichain. Also, the
underlying set of the order is the digoint union of the levels. We also noted that the number of
levels is the same as the length (the length of the longest chain) of the order. Thus

we have succeeded writing the underlying set of an order as the union of as many
antichains as the length of the order.

We could not have done the same with a smaller number of antichains. If the underlying set is
the union of some antichains, and C is a chain, then no two elements of C may be in the
same antichain (the intersection of a chain and an antichain may have at most one element),
hence, there must be at least as many antichainsto cover C asthere are elements of C. Now
if wetake C to be the longest possible chain, that is, C isthe length of the whole order
itself, we get that the family of antichains covering the order must have at least as many
members as the length of the order.

Now, let us consider the "dual" question of covering (the underlying set of) an order with

chains rather than antichains. The same argument as the one we just gave shows that

it is not possible to cover an order with fewer chains than the width of the order.
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For instance, the order under (3) has width = 3 , as we said above. It is not possible to cover
this order by two chains, since the antichain {1, 2, 3} can not be part of just two chains.
However, it can be covered by three chains:

A={0,1,4,7} v{2,6} v{3,5} .

Indeed, thisis a general fact.

The underlying set of any finite order may be written as the union of exactly as many
chains as the width of the order.

ThisisR. P. Dilworth's theorem. The proof is not as simple as it was for the case of covering
with antichains. It proceeds by induction on the cardinality of the order. If the order has
cardinality O, that is, we are talking about the order on the empty set, the width is 0 , and
the order is covered as the union of O many chains, so the assertion is true in this case. Now,
let the size of the order (A, <) be | Al =n+1,andlet thewidth of (A <) be w. The
induction hypothesisis that for any order of size at most n , the order can be covered by as
many chains as the width of the order.

We dtart by taking a maximal- size chainin (A, <) ,say C.Consder B=A- C, andthe
order inducedon B, <IB. Certainly, IBI<|A|=n+l,thatis |IBl<n, sothe
induction hypothesis appliesto ( B, <I'B) . Now, there are two cases.

Case 1. Thewidthof (B, <I'|B) islessthan w. Then, B may be covered by lessthan w
chains (in (B, <!'|B) , which are the same as chainsin (A, <) entirely within B).
Together with the chain C, this means a covering of A with at most w chains, and in this

case we are done.

Case 2. Thewidthof (B, <!'|B) isequal to w.Let X beanantichainin B of size w.
Consider the following two sets

U={ulA | uz=x forsome x OX} ,

L={Z0A| £{<x forsome £0X} .
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U isthe set of elements of A that are above some element of X ; L isthe set of those
below some element of X.

First note that
UuvlL = A.

The reason is that any alJA is comparable with some x[OX (that is, either a<x , or x<a,
or both), since otherwise one could add a to the antichain X, making it an antichain of size
w+1 , contradicting the fact that w is the maximal size of any antichainin (A, <) . Since
a iscomparable with some element of X, it must be eitherin U orin L.

Note that X itself isapart of both U and L ;infact, UnL=X. Thereason isthat if
yOuUnL , then there are X1 x2DX such that X1SYSX5 thus, X1SX5 and since X is
an antichain, X1X5 But then X 1Sy <X, means that X1ZY=Xs and so yOX.

Next note that
neither U nor L isthewholesat A.

Indeed, the unique minimal element ¢ of thechain C isnotin U, sinceif it were, there
would be x 0 X with ¢ =2x ,but C and X aredigoint, X beingasubsetof B=A- C,
SO ¢ > x , and thiswould mean that x can be attached to the chain C asits least element,
making it longer, in contradiction to the choice of C as the longest chain. Smilarly, the
maximal element of the chain C isnotin L . The upshot isthat both U and L are of
smaller sizesthan A, and thus the induction hypothesis can be applied to them.

Now, we forget about C entirely, and concentrate on the antichain X, as well its upper and
lower shadows U and L . Note that the width of both U and L is w, since the
maximal-size antichain X isa part of both. Using the induction hypothesis, we write U asa
union of w chains Ui (for i=0,...,w1;inshort,i <w),and L astheunionof w
chains Lj (j <w).

Now, looking at U, and in particular an element x 0 X, X must belong to at least one of
the Ui 's, and of course, distinct x's must belong to distinct Ui 's. Since there are as many

Ui 'sas X' s, namely w, each Ui contains exactly one x[UX; cal that x DX
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Now, let usfix i <w. Letthe unique minimal element of the chain Ui be u ; we have
u < X; since X; 0 Ui ;since u U, thereis y 00X with y <u ;itfollowsthat y <X

but X isan antichain, and both X; and y arein X; therefore X =y , and so Xj Sus<

Xi o X =u . We conclude that
the minimal el ement X; of each Ui isin X, and the X; 's are all the distinct
elements of X;

What we said about the Ui 's, after switching "up" and "down", we can say about the Lj 'sas
well. We get that

the maximal element xJ! of each Lj isin X, and the Xj 'sare all the distinct
elements of X.

We can now finish the proof by producing w chains covering A . Take a chain Ui ; find the
chain Lj for which xjf = X; ; then Lj v Ui isachain, since everything in Lj iIs <x,
and everything in Ui is =2 x , where x :xjf =X . Do thisfor each i <w, and get i

chains; these will cover A since the Ui 'scover U and the Lj cover L,and UuL=A.
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