
Section 2.3 Operations on binary relations

Consider the relation R on the set A={0, 1, 2, 3, 4} , considered in Section 2.1, with

network (digraph) representation and adjacency matrix

0 1 1 0 0

0 0 1 0 0

U = [R] = 0 0 1 1 0

0 0 0 0 0[Figure 5 in PDF "Figures 1"] ,
0 0 0 0 0

and another one, called S , on the same set A , with network representation and adjacency

matrix

0 1 0 0 0

0 0 0 0 1

V = [S] =0 0 0 1 1

0 0 0 0 1[Figure 6 in PDF "Figures 1"] .
0 0 0 1 0

The product U ⋅V of the two matrices is

0 1 1 0 0 0 1 0 0 0 0 0 0 1 2

0 0 1 0 0 0 0 0 0 1 0 0 0 1 1

0 0 1 1 0 ⋅ 0 0 0 1 1 = 0 0 0 1 2

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 .

Here, if we recall the definition of matrix multiplication, the (i, j)-entry is computed as

follows. We take k ∈ A , take the product of the (i, k)-entry in U and the (k, j)-entry

in D (here we count rows and columns starting with 0 rather than 1 ), and sum over all

k's. Now, for a fixed k , the product of the (i, k)-entry in U and the (k, j)-entry in V

is 0 unless both factors are non-zero, that is, unless iRk and kSj both hold, in which case

the product is 1 . Therefore, the (i, j)-entry in U ⋅V is the same as the number of k's

such that both iRk and kSj hold. Put in another way, the (i, j)-entry in U ⋅V is the
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number of ways we can pass from i to j by first going along an R-arc, then going along

an S-arc. If we draw the two relations together, taking care to distinguish the R-arcs from the

S-arcs, we get this:

[FIGURE 7 in PDF "Figures 1"]

Now, the (i, j)-entry in U ⋅V is the number of ways we can go from i to j by first

going along a solid arc, then going along a dashed one.

With the matrix U ⋅V , we may consider the network

[FIGURE 8 in PDF "Figures 1"]

with the numbers on the arcs giving the weights with which they appear in the matrix. If we

disregard the weights, the resulting relation T on the set A is

[FIGURE 9 in PDF "Figures 1"]

The adjacency matrix of T is the matrix obtained from U ⋅V by changing every positive

entry into 1 :
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0 0 0 1 1

0 0 0 1 1

[T] = 0 0 0 1 1

0 0 0 0 0

0 0 0 0 0 .

What is the relation T ? iTj holds just in case there is at least one k such that iRk and

kSj ; in other words, iTj holds if and only if it is possible to get from i to j by first

going along an R-arc, then along an S-arc. We call T the composite of the relations R and

S , and denote it by R � S . In general, if

R ⊆ A × A and S ⊆ A × A

are relations on the same set A , then the composite of R and S (in the said order),

R � S ⊆ A × A

is the relation on A for which

x(R � S)z ������� ∃y∈A. xRy & ySz . (1)

(Here, as before, we read ∃y∈A as "there exists y in A such that ...").

We can summarize the connection between composition of relations and adjacency matrices as

follows. As before, we write [R] for the adjacency matrix of R .

The adjacency matrix of R � S is obtained by multiplying the adjacency matrices of R and

S , that is, taking [R] ⋅[S] , and changing all non-zero entries of the product into 1's.

Writing, for any matrix X , X for the matrix obtained from X by changing all non-zero!
entries into 1 , we have the equality

[R � S] = ([R] ⋅[S]) .!

The composition of relations has the following connection with composition of functions. If

f:A ��� �	�	
 A and g:A ��� �	�	
 A , then gf:A ��� �	�	
 A is the composite function; and
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graph(gf) = graph(f) � graph(g) (2)

(!; for graph(f) , see section 1.3). If we considered relations of the more general form

R ⊆ A×B rather than just R ⊆ A×A , the full extent of functional composition could be

reduced to relational composition.

Note the conflict between the notations for composition of functions and that of relations: in

(2), there is a reversal of the order of f and g . These matters are conventional, and

conventions can be changed. For instance, in the textbook which was listed as recommended

reading, composition for relations is defined so that what we wrote as R � S is written as

S � R . The textbook's convention would eliminate the conflict with the notation for the

composition of functions. On the other hand, the convention adopted here has the advantage

that in the defining relation (1), there is no reversal of the order of the variables x and z ;

with the opposite convention, (1) would look stranger (see p. 363, Definiton 6 in the textbook).

Our notation also has the advantage of meshing well with matrix-operations: [R � S]
corresponds to [R] ⋅[S] and not to [S] ⋅[R] as it would under the other convention. The

conflict with the functional composition could also be handled by changing the convention for

the latter, by writing, as some authors do in fact, fg for what we had as gf ; however, this

would mean that (fg)(a)=g(f(a)) ; although this also could be remedied by writing

(a)f for f(a) , which then would make the last thing look like (a)(fg)=((a)f)g ...

.

The relationship (2) can be seen as follows: for any a, c∈A , we have

(a, c) ∈ graph(gf)
�������

(gf)(a) = c
�������

g(f(a)) = c
������� there is b∈A such that f(a)=b and g(b)=c
������� there is b∈A such that

(a, b)∈graph(f) and (b, c)∈graph(g)
�������

(a, c) ∈ graph(f) � graph(g) .

The equivalence of the first line and the last line says that the equality (2) holds (why?).
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Assume now that we have a sequence R , R , ... , R of relations, all on the same0 1 n-1
set A . Then the product

[R ] ⋅[R ] ⋅... ⋅[R ]0 1 n-1

of the adjacency matrices will have the following significance: its (x, y)-entry will be the

number of ways we can pass from the vertex x ∈ A to the vertex y ∈ A in exactly n steps

by first going along an R -arc, then going along an R -arc, then on an R one, etc., finally0 1 2
along an R -arc. The matrixn-1

([R ] ⋅[R ] ⋅... ⋅[R ])0 1 n-1 !

is the adjacency matrix of the relation T on the set A such that xTy holds just in case it is

possible to pass from x to y in a manner described in the previous sentence. This relation

T is called the composite of the relations R , R , ... , R in the given order;0 1 n-1
denoting the composite by R � R � ... � R , we have that0 1 n-1

[R � R � ... � R ] = ([R ] ⋅[R ] ⋅... ⋅[R ]) .0 1 n-1 0 1 n-1 !

The composite R � R � ... � R is the same as taking the composite of two relations at a0 1 n-1
time, starting with the R , and repeating the process, but taking care that every R is takeni i
only once, and their order is respected. E.g.,

R � R � R � R = ((R � R ) � R ) � R = R � ((R � R ) � R ) = ... .0 1 2 3 0 1 2 3 0 1 2 3

This follows immediately from the fact that the corresponding equalities are true for matrices

and their products. This is the same as to say that binary composition of relations is

associative:

(R � S) � T = R � (S � T) ,

as a consequence of the associative law for matrix multiplication.

Addition of adjacency matrices have a connection to union of relations. If R and S are

51



relations on the same set A , then they are subsets of the set A × A , and their union, R � S ,

is again a subset of the same set, that is, R � S is a relation on A . The union of the relations

on [5) called R and S above is given by the network and the adjacency matrix

0 1 1 0 0

0 0 1 0 1

0 0 1 1 1

0 0 0 0 1

[FIGURE 10 in PDF "Figures 1'] 0 0 0 1 0

It is clear that, in general,

[R � S] = ([R] + [S])!

(why?). More generally, if the R 's are binary relations on the same set, then
� ���

R isi iiεI
again one, and

[
� ���

R ] = ( � [R ]) .i i !iεI iεI

We have the distributive laws connecting union and composition:

(R � S) � T = (R � T) � (S � T) ,

T � (R � S) = (T � R) � (T � S) .

These may be verified directly from the definitions, or also by using the adjacency matrices,

and the corresponding laws for matrix operations. When doing the latter, one uses the facts

that for an adjacency matrix X , X = X , and that in general (X ⋅Y) = (X ⋅Y ) and! ! ! ! !
(X+Y) = (X +Y ) .! ! ! !

Let us now consider the composites of a relation R ⊆ A×A with itself, that is, the relations
� 2 � 3 � nR = R � R , R = R � R � R , ... , R = R � R � ... � R ( n factors) ;
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� (n+1) � nR = R � R . We have that

� nxR y iff there is an R-path of length n from x to y ,

where an R-path from x to y is a sequence 〈a , a , ..., a 〉 of elements of A such0 1 n
that a =x , a =y and, for each i<n , a Ra ; n is the length of the path0 n i i+1
〈a 〉 . In other words, a path consists of arcs starting at x , connecting to each otheri i≤n
head to tail, and ending in y ; the length of the path is the number of arcs (rather than the

number of vertices) involved. For the relation U given by the network and by the adjacency

matrix

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0
[FIGURE 11 in PDF "Figures 1"] 0 1 0 0 1

0 0 1 0 0

the powers U have the following representations:

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0� 2U [FIGURE 12 in PDF "Figures 1"] 0 0 1 0 0

1 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0� 3U [FIGURE 13 in PDF "Figures 1"] 1 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0� 4U [FIGURE 14 in PDF "Figures 1"] 0 1 0 0 0

0 0 1 0 0
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0 0 1 0 0

1 0 0 0 0

0 1 0 0 0� 5U [FIGURE 15 in PDF "Figures 1"] 0 0 1 0 0

1 0 0 0 0

� 5 � 2 � 6 � 3 � 7 � 4We see that U = U , from which of course it follows that U = U , U = U ,
� 8 � 2U = U ; in general,

� 3n � 3 � (3n+1) � 4 � (3n+2) � 2U = U , U = U , U = U (n = 1 , 2 , ...).

� 1 � iCounting U itself as U , all the distinct powers are U for i =1, 2, 3, 4 , and
� 2 � 1there is a periodicity with period 3 , starting with U (and not with U ).

It is clear that for any relation R on a finite set A , there can be only finitely many distinct

powers of R , since there are altogether only finitely many relations on A . More particularly,

2�
A×A � ( � A �

)the number of binary relation on A is
���
(A×A) � = 2 = 2 ; there cannot be

� 2 � 3more than this number of powers of R . Hence, the sequence of the powers R, R , R ,

... will be periodic, with a period starting at some power (which may not be easily predicted in

general).

Now, consider the union of all the powers of R :

∞tr � 2 � 3 � iR = R � R � R � ... =
� ���

R .
def i=1

trR is the relation on A for which x and y are in this relation if there is an R-path of

trany (positive, finite) length from x to y . In other words, xR y holds just in case one can

reach y from x along R-arcs; at least one arc has to be involved in going from x to y .
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trU in case of the last example, called U , is given by the network and the adjacency matrix

1 1 1 0 0

1 1 1 0 0

1 1 1 0 0

1 1 1 0 1

[FIGURE 16 in PDF "Figures 1"] 1 1 1 0 0 .

Here, the circle containing the three vertices 0 , 1 and 2 symbolizes that within that circle,

everything is in the relation with everything else; moreover, each remaining element, in this

case 3 or 4 , is related to every one in the circle in the same way; that is, 3 is in the

relation with every one in the circle, but those in the circle are not in the relation with 3 the

other way around, etc.

If the underlying set A of R is finite, in particular, it has n elements, then in the definition

tr trof R above, we may take just the first n terms, and get the same result, R :

ntr � 2 � 3 � n � iR = R � R � R � ... � R =
� ���

R ,
i=1

The reason is that if there is a (finite, positive-length) R-path from x to y , then there is one

with at most n arcs. This is because if one has an R-path with more than n arcs, then there

must be two different arcs in the path that end in the same element; one can cut out the part of

the path between the repeated elements and thereby shorten the path; one can do this as long

as one has a path with more than one n arcs; eventually, one must end up with a path with at

most n arcs, and with the same starting and finishing vertices as the original path, namely, x

and y .

trReturning to a general binary relation R on a set A , R is called the transitive closure of

R . The reason for the name is the fact that

trR is the least transitive relation on A containing R .
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Recall from Section 2.1 that a relation S is transitive if xSy and ySz imply that xSz ;

note that

� 2S is transitive �������
S ⊆ S

(why ?).

tr tr trR is transitive, since xR y , yR z mean that there is an R-path from x to y , and

one from y to z ; putting those two paths together, one gets a path from x to z , showing

trthat xR z . We could have argued in this way too:

∞ ∞tr tr � i � j � 2 � 2R � R =
� ���

R � � ���
R = (R � R � ...) � (R � R � ...)

i=1 j=1

� 2 � 2 � 2= R � (R � R � ...) � R � (R � R � ...) � ...

by the distributive law;

� 2 � 3 � 3 � 4= R � R � ... � R � R � ...
� 2 � 3 � 4= R � R � R � ...
tr⊆ R .

trTo say that R is the least transitive relation containing R means that whenever S is

trtransitive and R ⊆ S , then R ⊆ S . To see this, note that, in general,

if R ⊆ R’ and S ⊆ S’ , then R � S ⊆ R’ � S’ .

So, in our case, R � R ⊆ S � S ⊆ S , the last containment by the transitivity of S . By
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� n � ninduction, R ⊆ S for all n≥1 : from R ⊆ S it follows that
� (n+1) � n � n � nR = R � R ⊆ S � S ⊆ S . Since R ⊆ S for all n ≥ 1 , the union of the the R

tris also contained in S , and this means that R ⊆ S , as we claimed.

Recall that the relation R on A is reflexive if xRx for all x ∈ A . Denoting the equality

relation {(x, x} � x ∈ A} on A by ∆ ,A

∆ = {(x, x} � x ∈ A}A

we have that

R is reflexive ������� ∆ ⊆ R .A

r/tr trFor an arbitrary relation R , the reflexive/transitive closure R is ∆ � R , or if weA
∞� 0 r/tr � iagree on the convention that R = ∆ , then R =
� ���

R . We may say thatA i=0
r/trxR y iff there is an R-path of possibly zero length from x to y ; an R-path of zero

r/trlength is just a vertex, without any arc. R is the least reflexive and transitive relation on

r/tr trA containing R . If R is reflexive, then R = R .

Since reflexive and transitive relations are the same as preorders (see Section 2.1), the

reflexive/transitive closure could also be called the preorder closure.

Note that

∆ � R = R � ∆ = RA A

for all relations R on A .

Now, let us introduce another operation on binary relations on a fixed set A , that of taking

*the converse of a relation. The converse of R , denoted by R , is {(x, y) � (y, x) ∈ R} ;

in other words,
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*xR y
�������

yRx .

In terms of adjacency matrices, this means taking the transpose of the matrix:

* *[R ] = [R] ;

* *we write X for the transpose of the matrix X (usually, X would mean the conjugate

*transpose, but our matrices are all real, so X is in fact the transpose). E.g., the converse of

the relation U considered above is

0 0 1 0 0

1 0 0 1 0

0 1 0 0 1

0 0 0 0 0

[FIGURE 17 in PDF "Figures 1"] 0 0 0 1 0 .

There are certain simple laws on the converse and the other operations:

**R = R ,

* * *(R � S) = S � R

(note the reversal of the order!),

* * *(R � S) = R � S .

* * *These correspond to similar laws on matrices; e.g., (X ⋅Y) = Y ⋅X .

Let us note that all three operations: � , � and * are monotonic, i.e., they are compatible

with ⊆ ; for � this was stated above; for � this is to say that
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R ⊆ R’ & S ⊆ S’
�����

R � S ⊆ R’ � S’ ;
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for * :

* *R ⊆ S
�����

R ⊆ S .

Recall from the last section that the relation R on A is symmetric if xRy implies yRx for

all x, y ∈ A ; note that

*R is symmetric �����
R = R .

r/trIf R is symmetric, then so is R :

∞ ∞ ∞ ∞r/tr * � i * � i * * � i � i r/tr(R ) = (
� ���

R ) =
� ���

(R ) =
� ���

R =
� ���

R = R .
i=0 i=0 i=0 i=0

r/tr r/trSince R is always reflexive and transitive, we get that in case R is symmetric, R

is an equivalence relation.

r/trWhat is the meaning of R for a symmetric irreflexive relation R ? As we said in

Section 2.1, a symmetric relation R may be considered as an undirected graph, with edges

between two (different) vertices just in case the pair of the vertices is in the relation. We have

r/trthat xR y just in case there is a (possibly zero-length) path between x and y ; now,

r/trthere is no need for reference to a direction of the path. In other words, xR y iff x and

r/try are connected by a path in the graph. The equivalence classes of R are the connected

components of the graph R ; every vertex is in precisely one connected component, and two

vertices are in the same connected component iff they are connected by a path.
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