Section 2.3 Operations on binary relations

Consider therelation R ontheset A={0, 1, 2, 3, 4} , considered in Section 2.1, with
network (digraph) representation and adjacency matrix

01100
0 01 0O
U=[RR= 00110
[Figure 5 in PDF "Figures 1"] 00000
0 00 OO

and another one, called S, onthe same set A, with network representation and adjacency
matrix

0O 1 0 0 O

0O 0 0 0 1

v=[S =0 0 0 1 1

[Figure 6 in PDF "Figures 1"] 00001

O 0 01 O

The product ULV of the two matricesis

01100 01000 00012
00100 00001 00011
00110 OOO0OO0O11 = 00012
0O00O0O0O 00001 0O00O0O0O
00O0O0O 00010 0O00O0O0O

Here, if we recall the definition of matrix multiplication, the (i, j ) -entry is computed as
follows. We take k O A, take the product of the (i, k) -entryin U and the (k, j) -entry
in D (here we count rows and columns starting with O rather than 1 ), and sum over all

k's. Now, for afixed k , the product of the (i, k) -entry in U and the (k,])-entryin V
is 0 unless both factors are non-zero, that is, unless | Rk and kSj both hold, in which case
the product is 1 . Therefore, the (i, ) -entry in ULV isthe same as the number of k's
such that both i Rk and kSj hold. Put in another way, the (i, j)-entryin ULV isthe
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number of ways we can passfrom i to j by first going along an R-arc, then going along
an S-arc. If we draw the two relations together, taking care to distinguish the R-arcs from the
S-arcs, we get this:

[FIGURE 7 in PDF "Figures 1"]

Now, the (i, )-entryin ULV isthe number of wayswe cangofrom i to j by first

going along a solid arc, then going along a dashed one.

With the matrix ULV, we may consider the network

[FIGURE 8 in PDF "Figures 1"]

with the numbers on the arcs giving the weights with which they appear in the matrix. If we
disregard the weights, the resulting relation T ontheset A is

[FIGURE 9 in PDF "Figures 1"]

The adjacency matrix of T isthe matrix obtained from UV by changing every positive
entry into 1:
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00011
00011
00011
000O0O
000O0O.

[ T]

What istherelation T? i Tj] holdsjustin casethereisat least one k suchthat i Rk and
kSj ;inother words, i Tj holdsif and only if it is possible to get from i to j by first
going along an R-arc, then along an S-arc. We call T the composite of the relations R and
S, and denoteit by R-S. In generd, if

ROAxA and SOAxA
are relations on the same set A, then the composite of R and S (in the said order),

ReS O AxA
istherelation on A for which

X(ReS)z <= [YyUOA xRy &ySz. Q)

(Here, as before, weread [y[JA as"thereexists y in A suchthat ...").

We can summarize the connection between composition of relations and adjacency matrices as
follows. As before, we write [ R] for the adjacency matrix of R.

The adjacency matrix of ReS is obtained by multiplying the adjacency matrices of R and
S,thatis taking [ R] J S] , and changing all non-zero entries of the product into 1's.
Writing, for any matrix X, X, for the matrix obtained from X by changing all non-zero
entriesinto 1, we have the eq.uality

[ReS] = ([ROS]), .

The composition of relations has the following connection with composition of functions. If
f:A—A and g: A—>A, then gf: A——>A isthe composite function; and
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graph(gf) =graph(f) -graph(g) )

(!; for graph(f) , seesection 1.3). If we considered relations of the more general form
RO AxB rather than just RO AXA , the full extent of functional composition could be
reduced to relational composition.

Note the conflict between the notations for composition of functions and that of relations: in
(2), there isareversal of the order of f and g . These matters are conventional, and
conventions can be changed. For instance, in the textbook which was listed as recommended
reading, composition for relations is defined so that what we wrote as R-S iswritten as
S¢R. The textbook's convention would eliminate the conflict with the notation for the
composition of functions. On the other hand, the convention adopted here has the advantage
that in the defining relation (1), there is no reversal of the order of the variables x and z ;
with the opposite convention, (1) would look stranger (see p. 363, Definiton 6 in the textbook).
Our notation also has the advantage of meshing well with matrix-operations. [ ReS]
correspondsto [R] (JS] andnotto [S] [JR] asit would under the other convention. The
conflict with the functional composition could also be handled by changing the convention for
the latter, by writing, as some authors do in fact, f g for what we had as gf ; however, this
would mean that (fg) (a)=g(f(a)) ; athough this also could be remedied by writing
(a)f for f(a) , which then would make the last thing look like (a) (fg)=((a)f)g ..

The relationship (2) can be seen as follows: for any a, cJA, we have

(a, c) Ograph(gf)
« (9f)(a) =c
« g(f(a)) =c
&= thereis bUA suchthat f(a)=b and g(b)=c
&= thereis bUA such that
(a, b) Ograph(f) and (b, c)Ograph(Q)
<= (a,c) Ograph(f) -graph(g)

The equivalence of the first line and the last line says that the equality (2) holds (why?).
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Assume now that we have a sequence R, R;, ... , R _, of relations, al on the same
set A. Then the product

[Ry] ORI O.. QR ]

of the adjacency matrices will have the following significance: its ( X, y) -entry will be the
number of ways we can pass from the vertex x 0 A tothevertex y O A inexactly n steps
by first going along an Ro-arc, then going along an Rl-arc, then on an R2 one, etc., finally
aongan R _,-arc. The matrix

([Ry) DR O.. OR. 1),

is the adjacency matrix of therelation T ontheset A suchthat xTy holdsjustincaseitis
possible to pass from x to y inamanner described in the previous sentence. This relation
T iscalled the composite of the relations Ry, Ry, ..., R, ; inthegiven order,
denoting the composite by R0°R1°' .. °Rn- 1 we have that

[R0°R1°---°Rn_1] = ([Ro] [I[Rl] a.. [I[Rn-l])!

The composite ROoR1 oL .. °Rn- 1 is the same as taking the composite of two relations at a
time, starting with the RI , and repeating the process, but taking care that every RI is taken
only once, and their order is respected. E.g.,

Ro°Ry*RoRy = ((Ry°Ry) *Ry) eRy = Rye((Ry*Ry) *Rg) = ... .

This follows immediately from the fact that the corresponding equalities are true for matrices
and their products. Thisis the same as to say that binary composition of relations is
associative:

(ReS) oT = Ro(S-T) ,

as a consequence of the associative law for matrix multiplication.

Addition of adjacency matrices have a connection to union of relations. If R and S are
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relations on the same set A, then they are subsets of the set A x A, and their union, Rv S,
IS again a subset of the same set, that is, Ruv S isarelation on A . The union of the relations
on [5) cdled R and S aboveis given by the network and the adjacency matrix

01100
00101
00111
00001
[FIGURE 10 in PDF "Figures 1] 00010

It is clear that, in general,
[RuS] = ([R +[9]),

(why?). More generally, if the RI 's are binary relations on the same set, then | J Fﬂ IS
i &l
again one, and

[URT = (TIRD,

1 €l

We have the distributive laws connecting union and composition:
(RUS)oT = (ReT) v (SeT) ,
To(RuUS) = (TeR) v (T-S) .

These may be verified directly from the definitions, or also by using the adjacency matrices,
and the corresponding laws for matrix operations. When doing the latter, one uses the facts

that for an adjacency matrix X, X, =X, andthat in general ( XLY), = (X, [¥¥,), and
(X+Y) | = (X +Y)), .

Let us now consider the composites of arelation R0 AxA with itself, that is, the relations

02 3

R°“=R:R, R°>=RsRsR, ..., R®M=ReRe... sR (n factors) :
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RO(N*1) _ R°N R We have that

xR°ny iff thereisan R-path of length n from x to y,

where an R-path from x to y isa sequence an, ag,...,a, [J of elements of A such
that ag=X, a,=y and, for each i <n, a; Rai 410 D is the length of the path

Eai q <n - In other words, a path consists of arcs starting at x , connecting to each other
head to tail, and ending in y ; the length of the path is the number of arcs (rather than the
number of vertices) involved. For the relation U given by the network and by the adjacency
matrix

01000
00100
10000
01001
00100

[FIGURE 11 in PDF "Figures 1"]

the powers U have the following representations:

00100
10000
01000
00100
10000

02

U°4  [FIGURE 12 in PDF "Figures 1"]

10000
01000
00100
10000
01000

03

U [FIGURE 13 in PDF "Figures 1"]

01000
00100
10000
01000
00100

o4

U°®  [FIGURE 14 in PDF "Figures 1"]
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00100

10000
o5 01000
U [FIGURE 15 in PDF "Figures 1"] 00100
10000
Weseethat U°° = U°2 . from which of course it follows that b -yes , vl =yl ,
u8=u2:in general,
U°3nzu°3, U<>(3n+1) =U°4, U<>(3n+2) :U°2 (n=1,2,...).

L 4l the distinct powers are Ul for i =1, 2, 3, 4, and

1)_

Counting U itself as U°

there is a periodicity with period 3 , starting with u°2 (and not with U’

It is clear that for any relation R on afinite set A, there can be only finitely many distinct
powers of R, since there are altogether only finitely many relationson A . More particularly,

AXA| _ (1A%

the number of binary relationon A is | P(AxA) | = 73 ; there cannot be

more than this number of powers of R . Hence, the sequence of the powers R, R°2, R°3,

... will be periodic, with a period starting at some power (which may not be easily predicted in
general).

Now, consider the union of all the powersof R:

(o] .
R" = RUR?uvRS3y... = R .
def i=1
R istherelationon A for which x and y arein thisrelation if thereisan R-path of

any (positive, finite) length from x to y . In other words, xR ry holds just in case one can
reach y from x along R-arcs, at least one arc has to be involved in going from x to vy .



tr

U "~ incase of the last example, called U, is given by the network and the adjacency matrix
11100
11100
11100
11101
[FIGURE 16 in PDF "Figures 1"] 11100

Here, the circle containing the three vertices 0, 1 and 2 symbolizes that within that circle,
everything is in the relation with everything else; moreover, each remaining element, in this
case 3 or 4 ,isrelated to every onein the circle in the same way; that is, 3 isin the
relation with every one in the circle, but those in the circle are not in the relation with 3 the
other way around, etc.

If the underlying set A of R isfinite, in particular, it has n elements, then in the definition

of R above, we may take just the first n terms, and get the same result, R

on LY
VR v...vR "= R,
i =1

The reason is that if there is a (finite, positive-length) R-path from x to y , then thereisone
with a most n arcs. Thisis because if one has an R-path with more than n arcs, then there
must be two different arcs in the path that end in the same element; one can cut out the part of
the path between the repeated elements and thereby shorten the path; one can do this as long
as one has a path with more than one n arcs; eventually, one must end up with a path with at
most n arcs, and with the same starting and finishing vertices as the original path, namely, x
and vy .

Returning to a general binary relation R onaset A, R iscaled the transitive closure of
R . The reason for the name is the fact that

tr

R " istheleast transitive relation on A containing R.
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Recall from Section 2.1 that arelation S istransitiveif xSy and ySz imply that xSz ;
note that

S istranstive «—— S°20S

(why ?).

R is trangitive, since xR ry , th "'z mean that there is an R-path from x to y , and

onefrom y to z ; putting those two paths together, one gets a path from x to z , showing

that xRt 2 . We could have argued in this way too:

8

RIGRT = R o URY =(RURZu...)o(RURZ . ..)
=1 ] =1
= RO(RUROZU...) UROZO(RUROZU...) U. ..
by the distributive law;
= ROZUR03U... UR°3UR°4U...
= ROZUR03UR04U...
DRtr

To say that R Is the least trangitive relation containing R means that whenever S is

transtiveand RO S, then Rt Os. To see this, note that, in general,
if ROR and SOS ,then ReSOR S .
So, inour case, ReRO S-S S, thelast containment by the transitivity of S . By
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induction, R°™" 0'S foral n=1: from R°M OS it follows that
RO(N*1) RN ROS.SOS.Snce R°MOS foral n>1 . the union of thethe R°"

isalso contained in S, and this means that Rtr 0 S, aswe claimed.

Recall that the relation R on A isreflexiveif xRx for al x O A. Denoting the equality
relation {(x,x} | x DA} on A by A,,

AA = {(x,x} | xOA}
we have that
R isreflexive AADR.

Rr/tr

For an arbitrary relation R, the reflexive/transitive closure is AA\/Rt r , or if we

0 r/tr

=A then R

agree on the convention that R’ A

0 .

= \JR" . Wemay say that
i =0

er/ t ry iff thereisan R-path of possibly zero length from x to y ; an R-path of zero

r/tr

length is just a vertex, without any arc. R is the least reflexive and trangitive relation on

r/tr

A containing R.If R isreflexive, then R =R

Since reflexive and transitive relations are the same as preorders (see Section 2.1), the
reflexive/transitive closure could also be called the preorder closure.

Note that

A

AoR: ROA

A= R

for al relations R on A.

Now, let us introduce another operation on binary relations on a fixed set A, that of taking

the converse of arelation. The converse of R, denoted by R* Jds {(x,y) | (v, x) OR};
in other words,
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xR*y ~— YRx.

In terms of adjacency matrices, this means taking the transpose of the matrix:
[R] =[R ;

*
we write X* for the transpose of the matrix X (usually, X would mean the conjugate

*
transpose, but our matrices are all real, so X isin fact the transpose). E.g., the converse of
the relation U considered above is

00100
10010
01001
00000
[FIGURE 17 in PDF "Figures 1"] 00010.

There are certain simple laws on the converse and the other operations:

(ReS) =S R
(note the reversal of the order!),
(RUS)* IR* US* :
These correspond to similar laws on matrices; e.g., ( XLY) "= Y* D(*

Let us note that all three operations. - , v and * are monotonic, i.e., they are compatible
with 0 ; for o thiswas stated above; for v thisisto say that
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ROR & SO0S — RvSUOR vS ;
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for * :

* *
ROS — R OS .

Recall from the last section that the relation R on A issymmetric if xRy implies yRx for
al x,y OA; note that

R issymmetric < R* =R.

If R issymmetric, then so is Rr/tr :

rltryx _ o0 nein® _ % oeint el mei ot
(R"") =(UJR") =(R") =R " =1/R =R :
i =0 i =0 i =0 i =0
Since Rr/tr is always reflexive and transitive, we get that in case R is symmetric, Rr/tr

IS an equivalence relation.

What is the meaning of Rr/tr for a symmetric irreflexive relation R? Aswe said in

Section 2.1, a symmetric relation R may be considered as an undirected graph, with edges
between two (different) vertices just in case the pair of the verticesis in the relation. We have

that er/ t ry just in case there is a (possibly zero-length) path between x and vy ; now,
there is no need for reference to a direction of the path. In other words, xR A ry iff x and
y are connected by a path in the graph. The equivalence classes of R ftr are the connected

components of the graph R ; every vertex isin precisely one connected component, and two
vertices are in the same connected component iff they are connected by a path.
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