Mathematical Logic/MATH 318/Fall 2005 Midterm examination October 17, 2005

All six problems [1], [2], [3], [4], [5] and [6] are worth the same marks.

[1] We let the set A be $A = \{1, 2, 3, 4, 5\}$. We list specifications of relations R_1, \ldots, R_7 on the set A. Decide in each case if there is a relation answering the specification. When the answer is "yes", give an example of a relation in question. Give reasons for both positive and negative answers.

 R_1 is an equivalence relation and a reflexive order on A at the same time.

 R_2 is a total irreflexive order on A such that $S \subseteq R_2$, where $S = \{(1, 2), (3, 1), (4, 1), (5, 3), (5, 4)\}$.

 R_3 is a total irreflexive order on A such that $U \subset R_2$, where $U = \{(1, 2), (3, 1), (2, 5), (4, 1), (5, 3), (5, 4)\}$.

 R_4 is the Hasse diagram of an irreflexive order Q on A with the property that there are exactly two incomparable pairs $\{i, j\}$ for Q ($\{i, j\}$ is an *incomparable pair for Q* if $(i, j) \notin Q$, $(j, i) \notin Q$ and $i \neq j$).

 R_5 is the Hasse diagram of a lattice on A which is not distributive.

 R_6 is a transitive relation on A such that $R_6 \neq \emptyset$, and for any $(i, j) \in R_6$, $R_6 - \{(i, j)\}$ is not transitive.

 R_7 is a symmetric and antisymmetric relation on A which is also not transitive.

In all parts of this problem, A is the set $A = \{1, 2, 3, 4, 5, 6, 7\}$, and S is the [2] following relation on the set A :

$$S = \{ (1, 5), (1, 7) \\ (2, 5), \\ (3, 2), (3, 7), \\ (4, 2), (4, 7) \\ (6, 1), (6, 2), (6, 3), (6, 4) \\ (7, 5) \} .$$

Give the transitive closure S^{tr} in the form $S^{tr}=S \cup U$, where U is a **(i)** suitable set of pairs. (I note that S^{tr} turns out to be irreflexive.)

Give the Hasse diagram H of S^{tr} , in the usual graphic form, and also as a **(ii)** set of ordered pairs. (Recall that H is a relation on the set A). Is H equal to S?

Let $\leq = S^{\texttt{tr}} \cup \Delta_{\texttt{A}}$, the reflexive version of the irreflexive order $S^{\texttt{tr}}$. Show (iii) that $(A; \leq)$ is *not* a lattice.

Find a single pair (a, b) in H (for H, see (ii)) such that (iv) $\stackrel{\circ}{H} \stackrel{\text{def}}{=} H - \{(a, b)\}$ is the Hasse diagram of a lattice. Verify in detail that $\stackrel{\circ}{H}$ is indeed the

Hasse diagram of a lattice.

Hints: drawing the digraphs of S and S^{tr} will help. Do not hesitate to draw, and possibly redraw, digraphs according to need.

[3] Define the concept of "Boolean algebra".

Remarks: The concept of "order" is *not necessary* to define; it can be used as given. However, every further term used in the definition should be given its own definition in full. Do not use logical formulas in your answer; the definitions should be given in ordinary (mathematical) English.

[4] Let *X* be the Boolean expression

 $X \ = \ (\ (A \to (B \lor C) \) \land (C \to (A \lor B) \) \) \longrightarrow (\ (B \to A) \land (\ (A \lor B) \to C) \) \ .$

(i) Give a disjunctive form for X; make it as short as you can.

The following two parts (ii), (iii) may be done in either order.

- (ii) Show that $X \equiv AC \lor \overline{B}$.
- (iii) Give the disjunctive normal form for X.
- [5] The subsets A, B, and C of \mathbb{R}^2 are given as follows:

$$A = [x^{2} + y^{2} < 1], \qquad B = [x^{2} + y^{2} < 4], \qquad C = [y > 0].$$

(i) Determine the atoms of $\langle A, B, C \rangle$ (the Boolean subalgebra generated by the three sets, of the power-set algebra $(\mathcal{P}(\mathbb{R}^2); \subseteq)$) as Boolean expressions of A, B, C. Also, indicate the atoms graphically, as rough pictures in the Cartesian coordinate system of \mathbb{R}^2 .

(ii) What is the cardinality (the number of elements) of the Boolean algebra $\langle A, B, C \rangle$?

(iii) For the given values of A, B, and C, the expression X from Problem [3] is a particular element of $\langle A, B, C \rangle$. Write X as a join of atoms of $\langle A, B, C, D \rangle$.

(iv) Draw (roughly) X as a set in the Cartesian coordinate system of \mathbb{R}^2 .

(v) (for bonus marks) Decide if $\langle A, B, C \rangle = \langle A, B, X \rangle$; justify your answer.

[6] (i) By an informal argument, prove that the following inference, involving the natural numbers x and y, is correct.

"Assume that the statements (a), (b) and (c) hold:

(a) If x > 5, then y is even.

(b) If y > 5, then x is even.

(c) $x \cdot y$ is odd.

It follows that

 $(\mathbf{d}) \qquad x \cdot y \leq 25 \; . \; "$

(ii) Turn your argument into a formal proof:

(e) rewrite the statements (a), (b) and (c) as Boolean expressions; use letters denoting suitable ingredients of the statements;

(f) use these Boolean expressions as premisses, and provide additional premisses based on facts you used, maybe implicitly, in (i);

(g) using the standard Boolean calculation, verify the Boolean entailment whose premisses are the ones mentioned in (f), and whose conclusion is the letter standing for (d).