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  Notes on the adjoint and on normal operators.  
 
 
In these notes,  V   is a finite dimensional inner product space over  , with given inner 
product  ,u v .    ,  , …  are linear operators on  V .    are subspaces of  

.  When we say “subspace”, we mean one of the fixed space  V .  
,T S *T ,U W

,a bV ,..., , ,...μ λ  denote 
complex numbers.   denote elements of  V .  , ,u v w
 
U   is  T -invariant,  or  U  is invariant under  ,  if  for all  uT U∈ , we have  ( )T u U∈ .  
If  U   is  T -invariant, we have the operator  T  on  U , called the restriction of  T  to  

 , which is defined by  (
U

U )( ) ( )T U u T u=
U

 . Indeed,  T U , since    
whenever  , and the linearity of  T  follows from the linearity of  T .  

:U →U ( )T u U∈
u U∈

 
Note that the total space  V  and the trivial subspace  { }0  are always  T -invariant. 
 
A particular type of  T -invariant subspace is an eigenspace of  .  For anyT μ∈ ,  U  = 

    Ker([ ]E Tμ
def
= T Iμ− )  = { }: ( )u V T u uμ∈ =

)) ( ) ( )u T u T u

 is a  T -invariant subspace:  if  , 

then  , since  T T

u∈U

( )T u U∈ ( ( μ μ= =  . [E Tμ ] { }0≠  precisely when  μ  is an 
eigenvalue of  ;  the non-zero elements of  , if any  (when  T [ ]TEμ μ  is an of  T ), are 
the eigenvectors of  T   for  the eigenvalue  μ .  [ ]E Tμ  is called an eigenspace  of  T  if  

[ ]E Tμ { }0≠ .  
 
We say that  T  and  commute if   T SS S T⋅ = ⋅ . 
 
A basis  P  =   of  V is a diagonalizing basis for  T  (it could also be called an 
“eigenbasis” for T )  if the matrix  [  is diagonal; equivalently, if each basis element  

 is an eigenvector of  T .   

1( ,..., )nP P
]T P

iP
 
 
Theorem 1   For every  T , there is a unique    such that *T ( ), , *( )T u v u T v=  
identically for all  .  ,u v∈V
 
The proof of this theorem is omitted here. It can be found in our textbook:  Theorem 
13.1; proved in Problem 13.4. 
 
(The reason why Theorem 1. true is simple. To determine  , we have to determine 
each  value   ( ) . Fix , and seek  

*T
*T v v *( )w T v= . It has to satisfy ( ), ,T u v u w=   for 
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all  u . The left-hand-side,  ( ),T u v , is a function of  ; in fact, it is a linear function  
, a linear functional, meaning just that the codomain in the field   itself (the 

vector space of dimension =1). Now, it turns out, that just the linearity of    ensures the 
unique existence of   such that  

u
: →F V

F
w ( ) ,F u u w=  for all  u : all linear functionals can be 

represented in the form  | ,u u w→ . If you follow this, and so determine  , the 
second and final step is to show that   is linear, which is easy.) 

*( )vw T=
*T :

( *)

V V→

* **T T

 
 
A very easy but very important consequence of the definition of the adjoint is that the 
adjoint of the adjoit is the original:  T= =

)*

. 
 
Note also the following simple consequence of  Theorem 1.  If   U  is invariant under  
both   T  and  , then the adjoint  (   of the restricted operator  T  equals  

. Indeed, first of all,   is a well-defined operator on the space  U  by the 
assumption that  U  is  -invariant. The equality  

*T T U U
*T U *T U

*T ( )( ), )( )u v u v= , (T* UT U  for  

 follows from the equality  ,u v U∈ ( )T u

U

, , *v u T= ( )v , since  ( =  and  
=T . Thus,  satisfies all the characteristic properties of  the adjoint 

of    ; since, by the theorem, there is only one adjoint to  T ,   must be the 
adjoint of  T .    

)(u)

U

S −

T U ( )T u
( * )( )v

U
T U

T
*(

U

)v *T U
U *T

 
  
Lemma 2    Suppose   and  commute.  Then  any  eigenspace of   T  is  invariant. T

[Eμ

S
 
Proof    Let  U  = . Let  u]T ∈ ; we want to show that  ( )S u U∈  (?).  u  means 
that  

U∈
( )T u uμ . Therefore,  ( = )( )ST u= ( ( )) (S T u S )u ( )S uμ μ= =

( )u
. But  also  

. Thus,  ( ( ) (TS =) u )(T )S u ( ( ))u ( )TST S = =( = ()(ST u) )S uμ , which means that  
 as desired. ( )∈S u U

  
 
Lemma 3    Suppose that  U  is  T -invariant. Then  U  is   -invariant. ⊥ *T
 
Proof    Let  , to show that   , or in other words,  that  w U∈ ⊥ )w U∈ ⊥*(T

, *u T ( )w = 0  for all  u . Let  uU∈ U∈ . We have  , *( ) ( ),w T u w=u T  by the 
definition of the adjoint  .  Since  U  is  T -invariant, we have  ,  and  since  

, we have  
*T ( )T u U∈

w U∈ ⊥ ( ), 0=T u w . Therefore,  , *( ) 0u T w =  as desired.  
 
 
Proposition 4    Suppose  S  is a set of linear operators on  V  such that, for any  

, we have that   and  T   commute, as well as   and  T   commute.  Then ,S T S S *S∈
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there is an orthonormal basis of  V  which is a diagonalizing basis for every   in  S : a 
single common orthonormal diagonalizing basis for all operators in  S  at once.  

S

 
 
Proof    Note that the assumption implies that each  S ∈S  is normal: take  in the 
assumption.  

S T=

 
The proof is by induction on the dimension    of  V . When  n 1n = , then the assertion is 
trivial: any basis   is a diagonalizing basis for any operator on  V . 1( )P
 

′Suppose  , and suppose that the assertion is true for all  inner product spaces  V1n >  of 
dimension less than  . Let  V  be an inner product space of dimension equal to  .  n n
 
There are two cases. In Case 1, we assume that every  T ∈S  is a scalar multiple of the 
identity operator  I  on  V :  T Iμ= ⋅  for some  μ∈ ; equivalently,  [ ]E Tμ =V . Then, 
again, the assertion is trivial, for the same reason as before: every basis of  V  is a 
diagonalizing basis for all  T  .∈S
 
Case 2 is when  Case 1 does not hold. Then: there is  T ∈S  which is not of the form  
T Iμ= ⋅ .  Let  μ∈  be an eigenvalue of  T . There is such μ  by the Fundamental 
Theorem of Algebra: the polynomial  char (T )λ  has at least one root. (This is the point in 
this proof where we use complex scalars in an essential way.) We have assumed that  

. Let  U , and  W . Then  U W[ ]E Tμ ≠ V = [ ]E Tμ U⊥= V⊕ = , and  U { }0≠ , and  

W { }0≠ ; the first inequality because  μ  is an eigenvalue, the second because  U V . 
Therefore,  0 , and  

≠
dim(< )U n< dim( )W n< <  .  0

 
I claim that  both  U  and  W  are invariant under both    and  , for any  . 
Indeed, since  U  is an eigenspaces of  (the chosen) , and  both    and   commute 
with  T , by Lemma 2, we have that  U  is  -invariant and  -invariant. Next, by 
Lemma 3,   W  is  -invariant,  since  U  is  S -invariant; and   W  is  

= -invariant, since  U  is  -invariant.   

S *S
S

*

S
*

U ⊥

∈S
T S

=
S S

U ⊥= *S
S ( *S )* *S
 
We therefore have the situation on both of the subspaces  V U′ =  and  V that we 
have a set of operators   =  {

′ =
′S }: S′ ∈S

V

W
S V  with the property that  for any   

  (with  )  and  T TS S V′ = ′ S ∈S ′ ′=  (with  T ∈S ),   both in  ,    and  
 commute, as well as  (

′S S S= V′ ′
T T V′ = ′ )* *S S V′ ′=  and  T T V′ ′=

*S
 commute, directly 

following from the facts that   and  T  commute as well as   and  T  commute.   S
 
Since, for both  V  and  V ,  we have that  dim(VU′ = W′ = ′ ) n< ,  we can apply the 
induction hypothesis, to conclude that there is a single common orthogonal diagonalizing 
basis    for all operators in  the set  1P { }1 :S U S= ∈S , and another one,  , for  S 2P

{ }2 :S W S= ∈S S .  
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Let  , and  ; let  =( )  and   =(dim( )k = U W l ndim( )l = 1P 1,..., kP P 2P 1,...,k kP P+ + =

1P

2P

).  Since  
, we have that  P P  is a basis of  V . It is an orthogonal 

basis: any two of the first   elements of  P   are orthogonal since    is an orthogonal 
system; any two of the last l  elements of    are orthogonal since    is an orthogonal 
system; and any element among the first  k  and any one among the last  l  are orthogonal 
since the first is in U , the second is in W , and  U .  

U W V⊕ = 1 2 ,P

P

1 ..., )nP P

⊥

(== ∪
k

W
 
Let  S . Every basis vector   is an eigenvector of  :  if  ∈S iP S 1,...,i k= , then   is an 
eigenvector of  ,   (

iP
S U )( i iS U P)P iλ=  for some  iλ ,  and thus  ( )iS P iPiλ=

S
,  and 

similarly for  .  Incidentally, the eigenvalues of   are thus seen to be  1,i k= +

1 k l n

...,k l+ n=

1 ..., ,k k, ,...,λ λ λ λ ++ = , where  1,..., kλ λ  are the eigenvalues of  , and  S U 1,k k..., l nλ λ+ + =  
are the eigenvalues of  S .  W
 
This completes the proof of the Proposition.  
 
Proposition 4 already contains the  
 
 
Theorem 5  (Spectral Theorem for finite dimensional Hilbert spaces)   Every normal 
operator  (on a finite dimensional Hilbert space) has an orthonormal diagonalizing basis.  
 
Proof  Apply Proposition 4 to the set  { }T=S

T
. The hypothesis of  Proposition 4 holds 

since  T  commutes with  T  (obviously), and   commutes with  T  (by the normality 
of  ).   

*
T

  
 
However, we can also use Proposition 4 to prove a stronger result. First, another 
proposition, one that is interesting in itself  -- whose proof uses  Theorem 5. (This is 
interesting because the statement has nothing to do with diagonalization.) 
 
 
Proposition 6    Suppose   is a normal operator,  T  is any operator (on V , of course). 
If   and  T  commute, then   and   commute as well.  

S
S *S T

  
 
Proof    Let,  by Theorem 5,   be an orthonormal diagonalizing basis for  . Therefore,  
for  ,  , we have that  

P S
[ ]D S= P [ ]A T= P ( )n n

ijD d ×=  is diagonal,  0ijd =  whenever  i j≠ , 

and for  , we have  ( )n n
ij

×A a= D A A D⋅ = ⋅

0ijd

. This means that, for any   from  1 to  , 

we have  , which, by 

,i j n

1 1
ik

n n

kj
k k

d a
= =

⋅ =∑ ik kjda ⋅∑ =  whenever  i j≠ , reduces to  
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ii ij ij jjd a a d⋅ = ⋅  . In other words,  ( ) 0ij ii jja d d− =  . Therefore, either   (Case 1), or  
 (Case 2). 

0ija =

0ii jjd d− =
 
Since  P  is orthonormal,  [ * = ] trS D=P ( )n n

jid × .  I claim that   tr trD A A D⋅ = ⋅ . Indeed, 

since  trD   is diagonal, this reduces,  just as before, to the question whether we can see 
that   ( ) 0ii jjd− =ija d . If Case1 holds, this is true. But if Case 2 holds, then the complex 

conjugate of   being  ii jjd d− ii jjd d− , ii jjd d−  equals zero implies that  ii jjd d−  equals 

zero, hence again  ( ) 0jjd− =ij iia d .  
 

tr trD A A D⋅ = ⋅ ,   and  [ ]A T= P [ *] trS D=P  together imply that  * *S T T S⋅ = ⋅  as 
desired.  
 
 
 
Theorem 7 (Generalized Spectral Theorem for finite dimensional Hilbert spaces)   
 
 1)  Suppose that  S  is a set of  commuting normal linear operators on  V : every  

 in  S  is normal, and, for any  S ,S T ∈S ,  and  T   commute.  Then there is an 
orthonormal basis of  V  which is a diagonalizing basis for every   in  S : there is a 
single common orthonormal diagonalizing basis for all operators in  S  at once.  

S
S

 
 2)  In particular, if   and T  are commuting normal operators, then there is an 
orthonormal basis of  V  which is a diagonalizing basis for both   and .  

S
S T

 
 
Proof    This follows from Proposition 4 and  Proposition 6. Indeed, the conditions of  
Proposition 4 are fulfilled.  Let   and   be both from the set  S . Then   and  T  
commute, directly by the assumption of the theorem. But also,   and  T  commute, 
since, by assumption,   is normal,  and  thus, by Proposition 6,  the fact that   and  T  
commute implies that   and  T  commute.  

S T S
*S

S
*S

S

 
 
Proposition 8     1)  ( )  * *S T T S⋅ = ⋅ *

*     2)  ( )  * *S T S T+ = +
     3)  ( )*a T a T⋅ = ⋅ *  
     4)  If   S  and  T  are normal and commute with each other, then 
   4.1)  S  is normal, and T⋅
   4.2)   S  is normal.  T+
     5)  If   T   is normal, so is  a T⋅ . 
     6)  Let    be a polynomial with complex coefficients in any 
number of variables  

1 2( , ,...)f x x

1 2,...,x x . Assume that   are commuting normal operators  1 2, ,...T T
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(  for all  ). Then  Ti j jT T T T⋅ = ⋅ i , 1,2,...i j = = 1 2( , ,...)f T T

( )k
i iPλ

 is a normal operator. 
Moreover,  if  P  is a common orthonormal diagonalizing basis for  , then  P  also 
diagonalizes  T ; if  P =  and  T P

1 2, ,...T T

1( ,..., )nP P ( )k i = ⋅ ,  then  T P( )i i Piλ= ⋅   where  

iλ = .  (1) (2)( ,i if λ λ ,...)
 
 
 
Proof      1):  We have the identity 
 
 ( )( ), (ST u v S ( )T u ), ( )v T u= = , * )) ,( * *)( )u T S v=( )S v , *( *(u T S v=  .  
 
This implies the assertion. 
 
2):  ( )S T v v v+ =( ),u ( ) ( ),S u T u+ ( ), ( ),S u v T u= +  =  

            , ( ) , *( ) , *( ) *( ) ,( * *)( )u S v u T v u S v T v u S T v= + = + = +  . *
 
Again, this implies the assertion.  
 
3):  ( )( ),u ( ( )), ( ), , *( ) , *( )a T v a T u v a T u v a u T v u a T v⋅ = ⋅ = ⋅ = ⋅ = ⋅ , 
which is sufficient.  
 
4.2):   We need to show that  ( ) (( )*) (( )*) ( )ST ST ST ST⋅ = ⋅ .  We have, using  1):   
 
       (

+ ⋅

( )

) (( )*) ( ) ( * *) * *ST ST ST T S STT S⋅ = ⋅ ⋅ =
and 
 
  (( .  )*) ( ) ( * *) ( ) * *ST ST T S ST T S ST⋅ = ⋅ =
 
But since every one of    commutes with every other, as a consequence of 
Proposition 6, the two products are equal.  

, *, , *S S T T

 
4.3):  Using 2) we have   
 
 ,  ( ) ( )* ( ) ( * *) * * *S T S T S T S T S S S T T S T T+ = + ⋅ + = ⋅ + ⋅ + ⋅ + ⋅ *
 
and similarly, 
 
 . * ( ) ( * *) ( ) * * * *S T S T S T S T S S S T T S T T+ ⋅ + = + ⋅ + = ⋅ + ⋅ + ⋅ + ⋅
 
For the same reason as in 4.2), these values are the same.  
 
5):    ( ) (( )*) ( ) ( ( *)) *aT aT aT a T a a T T⋅ = ⋅ = ⋅ ⋅ ⋅  
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and   
         (( )*) ( ) ( ( *)) ( ) *aT aT a T aT a a T T⋅ = ⋅ = ⋅ ⋅ ⋅   
 
Since  T  is normal, these are equal.  
 
 
6): This follows from Theorem 7, by applying  4) and 5) repeatedly, to build up the 
polynomial  .  1 2( , ,...)f x x
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