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Notes on the adjoint and on normal operators.

In these notes, V s a finite dimensional inner product space over C, with given inner
product (u,v). T,S, T",... arelinear operatorson V. U, W are subspaces of

V . When we say “subspace”, we mean one of the fixed space V . a,b,...,z,4,... denote
complex numbers. u,v,w denote elements of V .

U is T -invariant, or U isinvariantunder T, if forall ueU ,h wehave T(u)eU.
If U is T -invariant, we have the operator T [U on U, called the restriction of T to
U , whichis defined by (TJU)(u) = T(u) .Indeed, TJU:U —-U,since T(u)eU
whenever ueU , and the linearity of T [U follows from the linearity of T .

Note that the total space V and the trivial subspace {0} are always T -invariant.

A particular type of T -invariant subspace is an eigenspace of T. ForanyueC, U =
def

E,[T] = Ker(T—ul) ={ueV:T(u)=uu} isa T -invariant subspace: if ueU,
then T(u)eU,since T(T(u))=T(uu)=pT(u) . E,[T]= {0} precisely when ux isan
eigenvalue of T ; the non-zero elements of E [T], ifany (when x isanof T),are
the eigenvectors of T for the eigenvalue x. E, [T] is called an eigenspace of T if

E,[T]={0}.
Wesaythat T and S commuteif T-S=S-T.

Abasis P = (P,..,P) of V isadiagonalizing basis for T (it could also be called an
“eigenbasis” for T) if the matrix [T], is diagonal; equivalently, if each basis element
P is an eigenvector of T.

Theorem 1 Forevery T, thereisaunique T* such that (T (u),v)=(u,T*(v))
identically for all u,veV.

The proof of this theorem is omitted here. It can be found in our textbook: Theorem
13.1; proved in Problem 13.4.

(The reason why Theorem 1. true is simple. To determine T *, we have to determine
each value T*(v).Fix v,andseek w=T*(v). It has to satisfy (T (u),v)=(u,w) for



all u. The left-hand-side, <T(u),v>, is a function of u; in fact, it is a linear function

F :V — C, alinear functional, meaning just that the codomain in the field C itself (the
vector space of dimension =1). Now, it turns out, that just the linearity of F ensures the

unique existence of w such that F(u) :<u,w> for all u:all linear functionals can be
represented in the form u |- (u,w). If you follow this, and so determine w=T *(v), the
second and final step is to show that T*:V —V s linear, which is easy.)

A very easy but very important consequence of the definition of the adjoint is that the
adjoint of the adjoit is the original: (T*)*=T**=T .

Note also the following simple consequence of Theorem 1. If U is invariant under
both T and T*, then the adjoint (T [U)* of the restricted operator T [U equals

T*[U . Indeed, firstof all, T*[U is a well-defined operator on the space U by the
assumption that U is T *-invariant. The equality ((T [U)(u),v)=(u,(T*IU)(v)) for
u,veU follows from the equality (T (u),v)=(u,T*(v)}),since (T [U)(u)=T(u) and
(T*TU)(v)=T *(v). Thus, T*J U satisfies all the characteristic properties of the adjoint

of T U ;since, by the theorem, there is only one adjointto T[U, T*[U must be the
adjointof T[U .

Lemma2 Suppose T and S commute. Then any eigenspace of T is S —invariant.

Proof Let U = E/[T].Let ueU ;wewanttoshowthat S(u)eU (?). ueU means
that T(u)=pu . Therefore, (ST)(u)= S(T(u))=S(uu)= uS(u).But also

(TS)(u) =(ST)(u). Thus, T(S(u))=(TS)(u)=(ST)(u)=xS(u), which means that

S(u) eU as desired.

Lemma3 Suppose that U is T -invariant. Then U* is T *-invariant.

Proof Let weU™,toshowthat T*(w)eU~ , orin other words, that
(u,T*(w))=0 forall ueU .Let ueU.Wehave (u,T*(w))=(T(u),w) by the
definition of the adjoint T *. Since U is T -invariant, we have T(u)eU, and since
weU™, wehave (T(u),w)=0. Therefore, (u,T*(w))=0 as desired.

Proposition 4 Suppose S is a set of linear operators on V such that, for any
S,TeS,wehavethat S and T commute, aswellas S” and T commute. Then



there is an orthonormal basis of V which is a diagonalizing basis for every S in S:a
single common orthonormal diagonalizing basis for all operators in S at once.

Proof  Note that the assumption implies that each S € S is normal: take S =T in the
assumption.

The proof is by induction on the dimension n of V .When n=1, then the assertion is
trivial: any basis (P,) is a diagonalizing basis for any operator on V .

Suppose n>1, and suppose that the assertion is true for all inner product spaces V' of
dimension less than n. Let V be an inner product space of dimension equal to n.

There are two cases. In Case 1, we assume that every T € S is a scalar multiple of the
identity operator |1 on V: T =py-1 forsome weC;equivalently, E [T]=V . Then,

again, the assertion is trivial, for the same reason as before: every basis of V isa
diagonalizing basis forall T € S.

Case 2 is when Case 1 does not hold. Then: thereis T .S which is not of the form
T=u-1. Let xeC beaneigenvalue of T . Thereissuch g by the Fundamental

Theorem of Algebra: the polynomial char; (1) has at least one root. (This is the point in
this proof where we use complex scalars in an essential way.) We have assumed that
E,[T]#V.Let U=E,[T] and W =U".Then U®W =V ,and U ={0}, and

W = {O} ; the first inequality because  is an eigenvalue, the second because U =V .
Therefore, 0 <dim(U)<n,and O<dim(W)<n .

| claim that both U and W are invariant under both S and S*,forany Se.S.
Indeed, since U is an eigenspaces of (the chosen) T, and both S and S* commute
with T, by Lemma 2, we have that U is S -invariantand S*-invariant. Next, by
Lemma3, W =U"is S*-invariant, since U is S-invariant;and W =U" is

S =(S*)*-invariant, since U is S*-invariant.

We therefore have the situation on both of the subspaces V'=U and V'=W that we
have a set of operators S’ = {S 'V': S eS} with the property that for any

S'=STV" (with SeS) and T'=T |V’ (with TeS), bothin §', S'=S|]V' and
T'=T[V' commute, aswell as (S)*=S*[V'and T'=T [V’ commute, directly
following from the facts that S and T commute aswellas S* and T commute.

Since, for both V'=U and V'=W , we have that dim(V')<n, we can apply the
induction hypothesis, to conclude that there is a single common orthogonal diagonalizing

basis /4 forall operators in theset S;={S|U: Se .S}, and another one, /3, for
S,={SIW: seS}.



Let k=dimU),and I=dimW);let 4=(P,..,R) and £,=(R.,...P,_,)- Since
U®W =V ,wehavethat P=HuUl,=(R,...,P,) isabasisof V .Itisan orthogonal
basis: any two of the first k elements of /£ are orthogonal since £ is an orthogonal
system; any two of the last | elements of /£ are orthogonal since /, is an orthogonal

system; and any element among the first k and any one among the last | are orthogonal
since the firstisin U , the second isin W,and U LW .

Let S e .S . Every basis vector P, isan eigenvector of S: if i=1..,k,then P isan
eigenvectorof STU, (STU)(P)=AP forsome A, andthus S(P)=AP, and
similarly for i=k+1,....k+1=n. Incidentally, the eigenvalues of S are thus seen to be

Ay s Mg Ao » Where A, A, are the eigenvalues of STU ,and A, ,,.... 4.,
are the eigenvalues of STW .

This completes the proof of the Proposition.

Proposition 4 already contains the

Theorem 5 (Spectral Theorem for finite dimensional Hilbert spaces) Every normal
operator (on a finite dimensional Hilbert space) has an orthonormal diagonalizing basis.

Proof Apply Proposition 4 to the set S = {T} . The hypothesis of Proposition 4 holds

since T commutes with T (obviously), and T * commutes with T (by the normality
of T).

However, we can also use Proposition 4 to prove a stronger result. First, another
proposition, one that is interesting in itself -- whose proof uses Theorem 5. (This is
interesting because the statement has nothing to do with diagonalization.)

Proposition 6 Suppose S is anormal operator, T is any operator (on V , of course).
If S and T commute, then S* and T commute as well.

Proof Let, by Theorem 5, /£ be an orthonormal diagonalizing basis for S . Therefore,
for D=[S],, A=[T],,wehavethat D =(d;)™ isdiagonal, d; =0 whenever i= j,
and for A=(a;)™", we have D-A=A-D. This means that, forany i, j from 1to n,

we have Y d,-a; = D &, d,,which, by d; =0 whenever i= j, reduces to
k=1 k=1



d;-a; =g;-d; . Inother words, a;(d;—d;)=0 . Therefore, either a; =0 (Case 1), or
d; —d; =0 (Case 2).

Since / is orthonormal, [$*], =D"= (d;)™". Iclaimthat D“-A=A-D". Indeed,

since D" is diagonal, this reduces, just as before, to the question whether we can see
that a;(d;—d;)=0.If Casel holds, this is true. But if Case 2 holds, then the complex

d; —d; equals zero implies that d; —d; equals

conjugate of d; —d; being d;-d;,
zero, hence again  a; (d, —Jﬂ) =0.

D"-A=A-D", A=[T], and [S*], =D" together imply that S*T =T -S* as
desired.

Theorem 7 (Generalized Spectral Theorem for finite dimensional Hilbert spaces)

1) Suppose that S is a set of commuting normal linear operators on V : every
S in S isnormal, and, forany S,Te.S, S and T commute. Then there is an
orthonormal basis of V which is a diagonalizing basis for every S in S :thereisa
single common orthonormal diagonalizing basis for all operators in S at once.

2) In particular, if S and T are commuting normal operators, then there is an
orthonormal basis of V which is a diagonalizing basis for both S and T .

Proof This follows from Proposition 4 and Proposition 6. Indeed, the conditions of
Proposition 4 are fulfilled. Let S and T be both fromtheset . Then S and T
commute, directly by the assumption of the theorem. But also, S* and T commute,
since, by assumption, S isnormal, and thus, by Proposition 6, the factthat S and T
commute implies that S* and T commute.

Proposition8 1) (S-T)* = T*.S*
2) (S+T)* = S*+T*
3) (a-T)*=a-T*
4) If S and T are normal and commute with each other, then
4.1) S-T isnormal, and
4.2) S+T isnormal.
5 If T isnormal,sois a-T.
6) Let f(x,X,,...) beapolynomial with complex coefficients in any

number of variables x,X,,.... Assume that T,T,,... are commuting normal operators



(T,-T,=T,-T, forall i,j=12,..). Then T = f(T,T,,...) isanormal operator.
Moreover, if £ isacommon orthonormal diagonalizing basis for T,,T,,..., then £ also
diagonalizes T ;if pP=(P,..,P,) and T,(P)=4%-P, then T(P)=4-P where
A=A, 49).).

Proof 1): We have the identity
((ST)(u),v)=(ST()),v)=(T(u),S*(v)) = (U, T*(S*(v))) = (u,(T *S*)(v)) .
This implies the assertion.

2): ((S+T)(u),vy=(SU)+T (u),v)=(S(u),v)+(T (u),v) =
= (U, S*(V))+{U,T*(V)) = (U, S*(V)+T *(v)) = (U, (S*+T*)(V)) .

Again, this implies the assertion.

3): ((a-T)u),v)=(a-(TW),v)=a-(T(u),v)=a-(uT*v))=(u,a-T*(v)),

which is sufficient.

4.2): We need to show that (ST)-((ST)*) = ((ST)*)-(ST). We have, using 1):

(ST)-((ST)*) = (ST)-(T*.S*) = STT*S*
and

((ST)*)-(ST) = (T*S*)-(ST) = T*S*ST.

But since every one of S,S*,T,T* commutes with every other, as a consequence of
Proposition 6, the two products are equal.

4.3): Using 2) we have
(S+T)-(S+T)*=(S+T)-(S*+T*)=S-S*+S-T*+T -S*+T -T *,
and similarly,
(S+T)*(S+T)=(S*+T*)-(S+T)=S*S+S*T+T*S+T*T.
For the same reason as in 4.2), these values are the same.

5): (@T)-((@T)*)=(T)-(a(m*)=a-a-T-T*



and
((aT)¥)-(aT) = (@(T*)-(aT)=a-a-T*T

Since T is normal, these are equal.

6): This follows from Theorem 7, by applying 4) and 5) repeatedly, to build up the
polynomial f(x;,X,,...).



