MATH 247/Winter 2010

Notes on the adjoint and on normal operators.

In these notes, V is a finite dimensional inner product space over \mathbb{C} , with given inner product $\langle u,v \rangle$. T, S, T^* , ... are linear operators on V. U, W are subspaces of V. When we say "subspace", we mean one of the fixed space V. $a,b,...,\mu,\lambda,...$ denote complex numbers. u,v,w denote elements of V.

U is *T*-invariant, or *U* is invariant under *T*, if for all $u \in U$, we have $T(u) \in U$. If *U* is *T*-invariant, we have the operator $T \upharpoonright U$ on *U*, called the *restriction* of *T* to *U*, which is defined by $(T \upharpoonright U)(u) = T(u)$. Indeed, $T \upharpoonright U : U \to U$, since $T(u) \in U$ whenever $u \in U$, and the linearity of $T \upharpoonright U$ follows from the linearity of *T*.

Note that the total space V and the trivial subspace $\{0\}$ are always T-invariant.

A particular type of T-invariant subspace is an *eigenspace* of T. For any $\mu \in \mathbb{C}$, $U = E_{\mu}[T] \stackrel{def}{=} \operatorname{Ker}(T - \mu I) = \{u \in V : T(u) = \mu u\}$ is a T-invariant subspace: if $u \in U$, then $T(u) \in U$, since $T(T(u)) = T(\mu u) = \mu T(u)$. $E_{\mu}[T] \neq \{0\}$ precisely when μ is an *eigenvalue* of T; the non-zero elements of $E_{\mu}[T]$, if any (when μ is an of T), are the *eigenvectors* of T for the eigenvalue μ . $E_{\mu}[T]$ is called an *eigenspace* of T if $E_{\mu}[T] \neq \{0\}$.

We say that T and S commute if $T \cdot S = S \cdot T$.

A basis $\mathcal{P} = (P_1, ..., P_n)$ of *V* is a *diagonalizing basis* for *T* (it could also be called an "eigenbasis" for *T*) if the matrix $[T]_{\mathcal{P}}$ is diagonal; equivalently, if each basis element P_i is an eigenvector of *T*.

Theorem 1 For every *T*, there is a unique T^* such that $\langle T(u), v \rangle = \langle u, T^*(v) \rangle$ identically for all $u, v \in V$.

The proof of this theorem is omitted here. It can be found in our textbook: Theorem 13.1; proved in Problem 13.4.

(The reason why Theorem 1. true is simple. To determine T^* , we have to determine each value $T^*(v)$. Fix v, and seek $w = T^*(v)$. It has to satisfy $\langle T(u), v \rangle = \langle u, w \rangle$ for

all *u*. The left-hand-side, $\langle T(u), v \rangle$, is a function of *u*; in fact, it is a linear function $F: V \to \mathbb{C}$, a *linear functional*, meaning just that the codomain in the field \mathbb{C} itself (the vector space of dimension =1). Now, it turns out, that just the linearity of *F* ensures the unique existence of *w* such that $F(u) = \langle u, w \rangle$ for all *u*: all linear functionals can be represented in the form $u \mapsto \langle u, w \rangle$. If you follow this, and so determine $w = T^*(v)$, the second and final step is to show that $T^*: V \to V$ is linear, which is easy.)

A very easy but very important consequence of the definition of the adjoint is that the adjoint of the adjoit is the original: $(T^*)^* = T^{**} = T$.

Note also the following simple consequence of Theorem 1. If U is invariant under both T and T^* , then the adjoint $(T \upharpoonright U)^*$ of the restricted operator $T \upharpoonright U$ equals $T^* \upharpoonright U$. Indeed, first of all, $T^* \upharpoonright U$ is a well-defined operator on the space U by the assumption that U is T^* -invariant. The equality $\langle (T \upharpoonright U)(u), v \rangle = \langle u, (T^* \upharpoonright U)(v) \rangle$ for $u, v \in U$ follows from the equality $\langle T(u), v \rangle = \langle u, T^*(v) \rangle$, since $(T \upharpoonright U)(u) = T(u)$ and $(T^* \upharpoonright U)(v) = T^*(v)$. Thus, $T^* \upharpoonright U$ satisfies all the characteristic properties of the adjoint of $T \upharpoonright U$; since, by the theorem, there is only one adjoint to $T \upharpoonright U$, $T^* \upharpoonright U$ must be *the* adjoint of $T \upharpoonright U$.

Lemma 2 Suppose T and S commute. Then any eigenspace of T is S – invariant.

Proof Let $U = E_{\mu}[T]$. Let $u \in U$; we want to show that $S(u) \in U$ (?). $u \in U$ means that $T(u) = \mu u$. Therefore, $(ST)(u) = S(T(u)) = S(\mu u) = \mu S(u)$. But also (TS)(u) = (ST)(u). Thus, $T(S(u)) = (TS)(u) = (ST)(u) = \mu S(u)$, which means that $S(u) \in U$ as desired.

Lemma 3 Suppose that U is T-invariant. Then U^{\perp} is T*-invariant.

Proof Let $w \in U^{\perp}$, to show that $T^*(w) \in U^{\perp}$, or in other words, that $\langle u, T^*(w) \rangle = 0$ for all $u \in U$. Let $u \in U$. We have $\langle u, T^*(w) \rangle = \langle T(u), w \rangle$ by the definition of the adjoint T^* . Since U is T-invariant, we have $T(u) \in U$, and since $w \in U^{\perp}$, we have $\langle T(u), w \rangle = 0$. Therefore, $\langle u, T^*(w) \rangle = 0$ as desired.

Proposition 4 Suppose S is a set of linear operators on V such that, for any $S, T \in S$, we have that S and T commute, as well as S^* and T commute. Then

there is an orthonormal basis of V which is a diagonalizing basis for every S in S: a single common orthonormal diagonalizing basis for all operators in S at once.

Proof Note that the assumption implies that each $S \in S$ is normal: take S = T in the assumption.

The proof is by induction on the dimension n of V. When n=1, then the assertion is trivial: any basis (P_1) is a diagonalizing basis for any operator on V.

Suppose n > 1, and suppose that the assertion is true for all inner product spaces V' of dimension less than n. Let V be an inner product space of dimension equal to n.

There are two cases. In Case 1, we assume that every $T \in S$ is a scalar multiple of the identity operator I on $V: T = \mu \cdot I$ for some $\mu \in \mathbb{C}$; equivalently, $E_{\mu}[T] = V$. Then, again, the assertion is trivial, for the same reason as before: every basis of V is a diagonalizing basis for all $T \in S$.

Case 2 is when Case 1 does not hold. Then: there is $T \in S$ which is *not* of the form $T = \mu \cdot I$. Let $\mu \in \mathbb{C}$ be an eigenvalue of T. There is such μ by the Fundamental Theorem of Algebra: the polynomial char_T(λ) has at least one root. (This is the point in this proof where we use complex scalars in an essential way.) We have assumed that $E_{\mu}[T] \neq V$. Let $U = E_{\mu}[T]$, and $W = U^{\perp}$. Then $U \oplus W = V$, and $U \neq \{0\}$, and $W \neq \{0\}$; the first inequality because μ is an eigenvalue, the second because $U \neq V$. Therefore, $0 < \dim(U) < n$, and $0 < \dim(W) < n$.

I claim that both U and W are invariant under both S and S^* , for any $S \in S$. Indeed, since U is an eigenspaces of (the chosen) T, and both S and S^* commute with T, by Lemma 2, we have that U is S-invariant and S^* -invariant. Next, by Lemma 3, $W = U^{\perp}$ is S^* -invariant, since U is S-invariant; and $W = U^{\perp}$ is $S = (S^*)^*$ -invariant, since U is S^* -invariant.

We therefore have the situation on both of the subspaces V' = U and V' = W that we have a set of operators $S' = \{S \upharpoonright V': S \in S\}$ with the property that for any $S' = S \upharpoonright V'$ (with $S \in S$) and $T' = T \upharpoonright V'$ (with $T \in S$), both in S', $S' = S \upharpoonright V'$ and $T' = T \upharpoonright V'$ commute, as well as $(S')^* = S^* \upharpoonright V'$ and $T' = T \upharpoonright V'$ commute, directly following from the facts that *S* and *T* commute as well as S^* and *T* commute.

Since, for both V' = U and V' = W, we have that $\dim(V') < n$, we can apply the induction hypothesis, to conclude that there is a single common orthogonal diagonalizing basis \mathcal{P}_1 for all operators in the set $\mathcal{S}_1 = \{S \mid U : S \in \mathcal{S}\}$, and another one, \mathcal{P}_2 , for $\mathcal{S}_2 = \{S \mid W : S \in \mathcal{S}\}$.

Let $k = \dim(U)$, and $l = \dim(W)$; let $\beta_1 = (P_1, ..., P_k)$ and $\beta_2 = (P_{k+1}, ..., P_{k+l=n})$. Since $U \oplus W = V$, we have that $\beta = \beta_1 \cup \beta_2 = (P_1, ..., P_n)$ is a basis of V. It is an orthogonal basis: any two of the first k elements of β are orthogonal since β_1 is an orthogonal system; any two of the last l elements of β are orthogonal since β_2 is an orthogonal system; and any element among the first k and any one among the last l are orthogonal since the first is in U, the second is in W, and $U \perp W$.

Let $S \in S$. Every basis vector P_i is an eigenvector of S: if i = 1, ..., k, then P_i is an eigenvector of $S \upharpoonright U$, $(S \upharpoonright U)(P_i) = \lambda_i P_i$ for some λ_i , and thus $S(P_i) = \lambda_i P_i$, and similarly for i = k + 1, ..., k + l = n. Incidentally, the eigenvalues of S are thus seen to be $\lambda_1, ..., \lambda_k, \lambda_{k+1}, ..., \lambda_{k+l=n}$, where $\lambda_1, ..., \lambda_k$ are the eigenvalues of $S \upharpoonright U$, and $\lambda_{k+1}, ..., \lambda_{k+l=n}$ are the eigenvalues of $S \upharpoonright W$.

This completes the proof of the Proposition.

Proposition 4 already contains the

Theorem 5 (*Spectral Theorem for finite dimensional Hilbert spaces*) Every normal operator (on a finite dimensional Hilbert space) has an orthonormal diagonalizing basis.

Proof Apply Proposition 4 to the set $S = \{T\}$. The hypothesis of Proposition 4 holds since *T* commutes with *T* (obviously), and *T* * commutes with *T* (by the normality of *T*).

However, we can also use Proposition 4 to prove a stronger result. First, another proposition, one that is interesting in itself -- whose proof uses Theorem 5. (This is interesting because the statement has nothing to do with diagonalization.)

Proposition 6 Suppose S is a normal operator, T is any operator (on V, of course). If S and T commute, then S^* and T commute as well.

Proof Let, by Theorem 5, β be an orthonormal diagonalizing basis for S. Therefore, for $D = [S]_{\beta}$, $A = [T]_{\beta}$, we have that $D = (d_{ij})^{n \times n}$ is diagonal, $d_{ij} = 0$ whenever $i \neq j$, and for $A = (a_{ij})^{n \times n}$, we have $D \cdot A = A \cdot D$. This means that, for any i, j from 1 to n, we have $\sum_{k=1}^{n} d_{ik} \cdot a_{kj} = \sum_{k=1}^{n} a_{ik} \cdot d_{kj}$, which, by $d_{ij} = 0$ whenever $i \neq j$, reduces to

 $d_{ii} \cdot a_{ij} = a_{ij} \cdot d_{jj}$. In other words, $a_{ij}(d_{ii} - d_{jj}) = 0$. Therefore, either $a_{ij} = 0$ (Case 1), or $d_{ii} - d_{ij} = 0$ (Case 2).

Since \mathcal{P} is orthonormal, $[S^*]_{\mathcal{P}} = \overline{D}^{tr} = (\overline{d}_{ji})^{n \times n}$. I claim that $\overline{D}^{tr} \cdot A = A \cdot \overline{D}^{tr}$. Indeed, since \overline{D}^{tr} is diagonal, this reduces, just as before, to the question whether we can see that $a_{ij}(\overline{d}_{ii} - \overline{d}_{jj}) = 0$. If Case1 holds, this is true. But if Case 2 holds, then the complex conjugate of $d_{ii} - d_{jj}$ being $\overline{d}_{ii} - \overline{d}_{jj}$, $d_{ii} - d_{jj}$ equals zero implies that $\overline{d}_{ii} - \overline{d}_{jj}$ equals zero, hence again $a_{ij}(\overline{d}_{ii} - \overline{d}_{ij}) = 0$.

 $\overline{D}^{tr} \cdot A = A \cdot \overline{D}^{tr}$, $A = [T]_{\rho}$ and $[S^*]_{\rho} = \overline{D}^{tr}$ together imply that $S^* \cdot T = T \cdot S^*$ as desired.

Theorem 7 (Generalized Spectral Theorem for finite dimensional Hilbert spaces)

1) Suppose that S is a set of *commuting normal* linear operators on V: every S in S is normal, and, for any $S, T \in S$, S and T commute. Then there is an orthonormal basis of V which is a diagonalizing basis for *every* S in S: there is a single common orthonormal diagonalizing basis for all operators in S at once.

2) In particular, if S and T are commuting normal operators, then there is an orthonormal basis of V which is a diagonalizing basis for both S and T.

Proof This follows from Proposition 4 and Proposition 6. Indeed, the conditions of Proposition 4 are fulfilled. Let *S* and *T* be both from the set S. Then *S* and *T* commute, directly by the assumption of the theorem. But also, S^* and *T* commute, since, by assumption, *S* is normal, and thus, by Proposition 6, the fact that *S* and *T* commute implies that S^* and *T* commute.

Proposition 8 1) $(S \cdot T)^* = T^* \cdot S^*$

- 2) $(S+T)^* = S^* + T^*$
- 3) $(a \cdot T)^* = \overline{a} \cdot T^*$
- 4) If S and T are normal and commute with each other, then 4.1) $S \cdot T$ is normal, and
 - 4.2) S+T is normal.
- **5)** If T is normal, so is $a \cdot T$.

6) Let $f(x_1, x_2,...)$ be a polynomial with complex coefficients in any number of variables $x_1, x_2,...$ Assume that $T_1, T_2,...$ are commuting normal operators

 $(T_i \cdot T_j = T_j \cdot T_i \text{ for all } i, j = 1, 2, ...)$. Then $T = f(T_1, T_2, ...)$ is a normal operator. Moreover, if \mathcal{P} is a common orthonormal diagonalizing basis for $T_1, T_2, ...$, then \mathcal{P} also diagonalizes T; if $\mathcal{P} = (P_1, ..., P_n)$ and $T_k(P_i) = \lambda_i^{(k)} \cdot P_i$, then $T(P_i) = \lambda_i \cdot P_i$ where $\lambda_i = f(\lambda_i^{(1)}, \lambda_i^{(2)}, ...)$.

Proof 1): We have the identity

$$\langle (ST)(u), v \rangle = \langle S(T(u)), v \rangle = \langle T(u), S^*(v) \rangle = \langle u, T^*(S^*(v)) \rangle = \langle u, (T^*S^*)(v) \rangle .$$

This implies the assertion.

2):
$$\langle (S+T)(u), v \rangle = \langle S(u) + T(u), v \rangle = \langle S(u), v \rangle + \langle T(u), v \rangle =$$

= $\langle u, S^*(v) \rangle + \langle u, T^*(v) \rangle = \langle u, S^*(v) + T^*(v) \rangle = \langle u, (S^*+T^*)(v) \rangle$.

Again, this implies the assertion.

3):
$$\langle (a \cdot T)(u), v \rangle = \langle a \cdot (T(u)), v \rangle = a \cdot \langle T(u), v \rangle = a \cdot \langle u, T^*(v) \rangle = \langle u, \overline{a} \cdot T^*(v) \rangle$$
, which is sufficient.

4.2): We need to show that $(ST) \cdot ((ST)^*) = ((ST)^*) \cdot (ST)$. We have, using 1):

$$(ST) \cdot ((ST)^*) = (ST) \cdot (T^* \cdot S^*) = STT^* S^*$$

and

$$((ST)^*) \cdot (ST) = (T^*S^*) \cdot (ST) = T^*S^*ST$$
.

But since every one of S, S^*, T, T^* commutes with every other, as a consequence of *Proposition 6*, the two products are equal.

4.3): Using 2) we have

$$(S+T) \cdot (S+T)^* = (S+T) \cdot (S^*+T^*) = S \cdot S^* + S \cdot T^* + T \cdot S^* + T \cdot T^*,$$

and similarly,

For the same reason as in 4.2), these values are the same.

5): $(aT) \cdot ((aT)^*) = (aT) \cdot (\overline{a}(T^*)) = a \cdot \overline{a} \cdot T \cdot T^*$

and

$$((aT)^*) \cdot (aT) = (\overline{a}(T^*)) \cdot (aT) = \overline{a} \cdot a \cdot T^* \cdot T$$

Since T is normal, these are equal.

6): This follows from Theorem 7, by applying 4) and 5) repeatedly, to build up the polynomial $f(x_1, x_2, ...)$.