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“generic” case, from instances of the associativity isomorphisms and otheéanon-
ical isomorphisms should commute. It is an important coherence theorem (due to
S. Mac Lane, formulated for the one-object case, that is, for monoejdal categories;
see [ML]) that this stronger condition is a consequence of the official definition,
which is thus nothing but a finite (equational) axiomatization of the totality of
all coherence conditions. /

This suggests that, possibly, the right approach to the definition of weak n-
category is to aim at formulating all coherence conditions at once, regardless
the fact that this might give a very “theoreti(yf’ definition. It would then be
a separate, and still very important, project to find a (hopefully) finite and
concise set of coherence conditions that would be enough to imply all coherence
conditions. .

J. Baez and J. Dolan have produced a very interesting definition of “weak n-
category” [BD2]. The similarity type of the Baez/Dolan n-category is radically
larger than the usual one. In t.hzlsual n-categories, the domain and codomain
of a k + 1-cell are both k- cells; in a Baez/Dolan n-category, there are k + 1-cells
whose domains are arbitrary “pasting diagrams” of k-cells, not the composites of
the latter. In addition, thg’coherence conditions are replaced, and the combinato-
rial complexity eliminated, by the requirement of the existence of cells satisfying
certain universal properties (this phenomenon is well-known from Grothendieck’s
concept of ﬁbrati}ﬁ, relative to the concept of pseudo-functor; see [SGA1]).

The Baez/ Dolan definition for n = 2 can be shown to be closely related to
the concept of “saturated a.nablca.t.egory” mentioned above. However, Baez and
Dolan dg’not use the ana-versions of morphisms, in particular, of “functor”.

As I mentioned in the introduction, the Baez/Dolan definition is only a begin-

ing, albeit a very promising one. Among others, the definition of the Baez/Dolan

/ZJ + 1-category of all n-categories is still missing. I believe that thinking in the
spirit of anafunctors will help give the latter definition. /"

' J \ 8. Dependent types

Dependent types are familiar from [M-L] and [C]; there is a further extensive
8 literature of them. Their use for first-order logic seems to be new, however. First
S Order Logic with Dependent Sorts (FOLDS; I use “sort” in place of “type”) is
STARY a variant of ordinary First Order Logic (FOL); the basic metatheory of FOLDS
{'f 6"?’6 is an extension (generalization) of that of FOL.

A similarity type, or vocabulary, for FOLDS is a one-way category; a small
category L is one-way if it has the following two properties:

(i) L has finite fan-out: for any K € L, there are only finitely many arrows
with domain equal to K.
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(ii) L is reverse well-founded: there is no infinite sequence < K, 23, Kn41>neN
of composable proper (non-identity) arrows (f # lk,) -

Immediate consequences of the definition are the followihg:
(iil) L is skeletal: any two isomorphic objects are identical;
(iv) the only arrow from an object to itself is the identity;

and in fact, as a consequence of (iii) and (iv),

(v) L has no circuit of positive finite length consisting of proper arrows; there
is 10 <Kp 22 Kpi1>n<n With N € N, Ky = Kq, and f, # 1k, (n < N).

It is easy to see that a small category is one-way iff it satisfies (i) and (v); and
if the category is finite, then it is one-way iff it satisfies (ii1) and (iv).

If L is a one-way category, the set Ob(L) of objects is partitioned as in

Ob(L) = U L;

i<t

into non-empty levels L;, for i < £, £ the height of L, £ < w, such that Ly consist
of the objects A for which there is no proper arrow with domain A, and such
that, for 1 > 0, L; consists of those objects A for which all proper arrows A — B
have B € L¢; = U L;, and there is at least one proper arrow A — B with

j<i :
B € L;_;. All proper arrows go from a level to a lower level. Of course, the
height of a finite one-way category is finite. :

For L a one-way category, an L-structure is a functor L — Set.

There is a way of introducing FOLDS that follows Martin-Lof’s idea of dependent
types closely, without any preconceptions about similarity types; this is then seen
to lead precisely to the notion of similarity type we just introduced without prior
motivation (see [M3]).

The recognition of role of finite one-way categories in syntax is due to F. W.
Lawvere, who pointed out their role in connection with the sketch-syntax of
[M1]. Their role in FOLDS is related to their role in the sketch-syntax. I should
note that the use of infinite one-way categories, in the sense used here, is essential
(see below). Here is an example for a FOLDS similarity type, called L.q:
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di =ct
dl 1:: deg = dey, ceg = cey

dtg S dtg, Ctn = dfl,. Ctl = ctg

O

The proper arrows of L., are the arrows shown, and their composites; the
equalities shown identify some of these composites.

Note that any small category C gives rise to an L¢,¢-structure

in a natural way. M(O) is the set of objects of C; M(A) is the set of arrows;
M(d) and M(c) map an arrow to its domain and codomain, respectively. M (T')
is the set of commutative triangles, i.e., tuples

(X, Y, 2, f: XY, g:Y>Z h:X > 2)

such that A = gf. In other words, the elements of M(T') are commutative dia-

grams of the form
Y
/ : \ ’
X k -

M (1) is the set of identity arrows, M (E) is the set of pairs (f, f) of equal arrows.
With 7 standing for (1), M (t,)(7) = f, M(t2)(7) = g, M(t3)(7) = f. The rest of
the definition of M should be clear. Note that M is indeed a functor.

Of course, not every L.q-structure is a category. On the other hand, for two
categories construed as L.q:-structures, a natural transformation from one to
the other is precisely the same as a functor from one category to the other.

Let L be a one-way category; we fix L for a while. The objects of L are called
kinds. Let us write K, for dom(p)(p € Arr(L)). We use the notation K|L for the
set of all proper arrows p: K — K, with domain K. The set K|L will figure as
the arity of the symbol K. In particular, the ones with empty arity are exactly
the level-0 kinds.

We are going to define what sorts are, and what variables of a given sort are;
we will write z : X to denote that the variable z is of sort X. Every sort will be
of the form K(<zp>pek|L), with K a kind (the displayed sort is then said to
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be of the kind K), with variables z, indexed by the elements p of the arity K|L
of K; additional conditions will have to be satisfied. Let k € N, and suppose
we have defined sorts of kinds on levels less than k, and variables of such sorts.
Then, for a kind K on level k, K(<zp>,ekL) is a sort (of the kind K) iff for

each p € K|L, we have z, : Kp(<yp ¢>qek,|L) With p: K — K, (note that K,
is on a lower level than K), and for every q¢ € Kp|L, yp,q = Zgp:

Zp
Kp
4 q
& _
- K = » Kq=Kgp Yp,g = ZTgp
A y

For every sort X = K(<zp>pek|L) thus specified, we declare certain symbols as
variables of sort X; the only important things about this declaration are that (i)
variables of sort X have to be new, so that every variable uniquely determines

its own sort, and that (ii) there are enough (infinitely many) variables of each
sort.

Note that every variable “carries” its own sort with it. This is in contrast with
the practice of most of the relevant literature (see e.g. [C]), where variables are

“locally” declared to be of certain definite sorts, but by themselves, they do not
carry sort information. For a sort

X = K(<2p>pek|K), Var(X)dff{::p :p € K|K};

and if z : X, Dep(z) = Var(X); z depends on the variables in Dep(z).

def

Let L = L4 Since O|L is empty, O(#), with @ the empty sequence of variables,
is a sort; we write simply O. We have A|L = {d, c}; the sorts of the kind A are
of the form A{X3 Y), with X,Y : O; here, X is indexed by d, Y by c.

TIL = {f11f23f3$t1;t2;t3}1 with fl = dtl = dt3} f2 =ct = dt?! f3 = ctp = cl3.
A sort of the kind T will have the form T'(X,Y, Z, f, g, h); applying the condition
in the definition with p = ¢;, we get that f : A(X,Y) must be the case. In
summary, the variables in T'(X,Y, Z, f, g, h) have to line up as in
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We define formulas ¢ and the set Var(p) of the free variables of p by a simul-
taneous induction.

The symbols t (“true”), f (“false”) are formulas; Var(t) = Var(f) = 0.

The sentential connectives A, V, —, -, ¢ can be applied in an unlimited man-
ner; Var( ) for the compound formulas formed using connectives is defined in
the expected way; e.g., Var(o A ) = Var(p) U Var(¢).

Suppose ¢ is a formula, = is a variable such that there is no y € Var(p) with
z € Dep(y). Suppose z : X. Then Vz : X.p, 3z : X.¢p are formulas;

Var(Vz : X.p) = Var(3z : X.p) d:f(Var(go) — {z}) U Dep(z).
All formulas are obtained as described.

Here is an example of a sentence (formula without free variables) over Lcg¢:

VX :ONY : ONZ : ONf: A(X,Y)Vg: A(Y, 2).3h: A(X,2).3t : T(X,Y, Z, f,g, h).t

The sentence, referred to below as (2), expresses the existence of the composite
h: X — Z of composable arrows f : X = Y, ¢g,Y = Z.

The sorts are interpreted in structures as certain sets. Let K be a kind, M an L-
structure. By M[K] we mean the set of all tuples <a,>,ec k| With a, € M(K))
(where p : K — Kj), and such that for every p € K|L and ¢ € K, |L, M(q)(a,) =

ﬂqp G .
ap

G - Kq=Kgp agp = M(q)(ap)

The elements of the set M[K] are called contexts for K in M.

For instance, for L = L¢4:, when K = A and M is M[C] for a category C, then
M[A] is the set of pairs (X,Y) of objects; when K = T, M[T] is the set of all
not necessarily commutative triangles in C.
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The set M(K) is “fibered over” M[K]; M (K) is the disjoint union of sets M K (a),
one for each a = <ap>,ex|L € M[K];

MK (a) dff{a € M(K) : (Mp)(a) = a, for all p € K|L},

the fiber over a (it is clear that for any a € M(K),

adff <(Mp)(a)>pEK|L € M[K]).

Let X = K(<zp>pek|L) be a sort. An interpretation of X in M is given by a
context a = <a,>,ek|L € M[K], with a, assigned to z,, which means the addi-
tional condition ap, = a,/, every time z, = z,/, (p,p’ € K|L); the interpretation
itself is the fiber M K (a) over a.

Returning to the example started above, the interpretation of A(X,Y') is hom¢
(A, B) when A, B are objects assigned to the variables X,Y respectively. The
interpretation of the sort 7'(X,Y, Z, f, g, h) must be given by a (not necessarily
commutative) diagram of the shape

¥
re
X Y ~Z

in C, and of course, if, say, X is the same variable as Y, then the object X must
be the same as Y. The interpretation itself is a singleton set if the displayed
diagram commutes, and the empty set otherwise.

For the full definition of the semantics of FOLDS, we need the concept of context
(of variables). A context is a finite set ) of variables such that, for all y € Y we
have that Dep(y) C V.

For instance, in the case L = L.q, the set {X,Y, Z, f, g, h,t}, under the condi-
tions :

X:0,Y:0,2:0,f:AX,Y),g:A(Y,2),2: A(X,2),t : T(X,Y, Z, f,9,h),

1s a context.
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Note that for any formula ¢, Var(y) is a context.

Let Y be a context, and M an L-structure. We define the set M[Y)], the set of
(legitimate) valuations of } in M.

For a variable y € Y, let us display the sort of y in the notation
y: Ky(<zy,p>pek,|L)-
We define M[Y] =
def

{<a3>yey - H M(K,) : (Mp)(ay) = a; whenever y € Y, p € Ky|L and z = :cy,p} :
yey

The definition says that the elements of M[Y] are compatible valuations of the
variables in ), where “compatibility” refers to the fact that if two variables y
and z from )Y are in a relation of dependence, z € Dep(y), in a particular way
given by the “place” p of the kind Ky, (that is, z = 2, p), then the corresponding
elements of the family have to be related by M(p).

By recursion on the complexity of the formula ¢, we define M[Y : ¢], the in-
terpretation of ¢ in M in the context ), whenever ) is a context such that
Var(p) C V; we will have that M[Y : ] C M[Y].

MYy : t]dffM[y] :
MYy:fil=0,
def
For the propositional connectives, the clauses are the expected ones; e.g.,

<ay>yey € M[Y : ¢ A 0] ﬁ

<ay>yey € M[Y : 4] and <ay>yey € M[Y : 0).
The interpretation of formulas Ve : X.¢, 3z : X.¢ will be according to the read-
ings “for all z in X 9", and “there is z in X such that ¢”. Thus, quantification

in FOLDS is a relativized quantification. Here, the sort X is interpreted as a set
according to what was said above. For the precise clause, we need a bit more

notation.

Let M,Y and a = <ay>yey € M[Y] be as above; assume
Var(Ve : X.¢) = Var(3z : X.¢p) = (Var(p) — {z}) U Dep(z) C V.

Part of Y may be discarded. Let ' =Y — {¢} —{y € Y : ¢ € Dep(y)}. Then,
still, )’ is a context, and Var(Vzy) C V' (the reason is that, since Vz : X.¢ is
well-formed, if y € Var(y), then = ¢ Dep(y)). Also, V' U {z} is a context, and
Var(y) C Y' U{z}.
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Let X = K(<zp>pek|L). Each 2, € )/, s0 @ = <a;,>pek|L is defined, and as
easily seen, @ € M[K]. Therefore, we have the fiber M K (@) of M(K).

Let a = <ay>yey € M[)Y]. Define a’ = <ay>yey'. For any a € MK(a), let
a’[a/z] be <by>yeyiu(s} for which by = ay when y € V', and b, = a. It is
immediately seen that a’[a/z] € M[Y' U {z}]. We define

a€ M[Y:Vz: Xy ala/z] € M[Y' U{z}:¢] forall a € MK(a),
and
a€M[Y:3z: XyY]| & a[a/z] € M[Y' U {z}: 9] for some a € MK(a) .

This completes the definition of the standard, Set-valued semantics of FOLDS.
As usual, we also write M |= p[a] for a € M[Y : ¢].

Returning to the example of L4, the reader will easily write down all axioms
for “category” in the form of sentences over L.4:; the sentence (2) above is an
example. Let us call the resulting finite set of sentences X.4;. Since equality is
not treated as “logical”, Y., includes axioms concerning equality, the kind E.
It will almost, but not quite, be the case that an L.,:-structure M satisfies X,
iff it is of the form M = M|[C] for a category C; for explanation, see below.

o ENDS KERE :

9. Formal systems o

FOLDS may be regarded as a restricted form of ordinary first order logic. Given
a one-way category L, we may consider the multi-sorted first order language
with sorts the objects of L, with unary sorted operation symbols the arrows of
L, and with equality predicates, one for each sort; let us refer to this language as
First Order Logic (FOL) over L. The formulas of FOLDS over L can obviously
be translated into FOL over L. This consideration will immediately imply the
fact that the compactness theorem, a kind of abstract completeness, holds for

FOLDS. P

We have completeness theorems of appropri?te formal systems for FOLDS. Com-
pleteness is stronger than compactness; if is also essential for the purpose of
adopting FOLDS as a language for %n_axiomatic system.

We have the classical and the intuitionistic versions of FOLDS. The third ver-
sion, coherent logic, is a proper part of both classical and intuitionistic logic.
Categorical logic, maiw in the pioneering work of Andre Joyal, has shown the
fundamental theoretical role of coherent logic in relation to both classical and
intuitionistic log}e, for example, in connection with completeness theorems (see
[MR1]). The coherent fragment of FOLDS continues to play a basic role.

/7






