
Computads and 2 dimensional pasting diagrams

by M Makkai

Introduction

1. This paper is the second installment of a series whose first item is the paper [M]. In [M], a
paper was promised, [M4] in the references section there, with the tentative title "A
2-categorical pasting theorem: revisiting John Power's paper [P1] of the same title". The
present paper is what [M4] has become.

The introduction of [M] should serve as a general introduction to the present paper as well.

The notions of " ω-category" and "computad" come from the work of Ross Street.

The basic notions of and around " ω-category" and "computad" will not be recalled here. By
now, these concepts belong (or should belong ...) to the common knowledge in category
theory. For instance, the reader is not far wrong if he/she takes "computad" to mean "free
ω-category". However, the ways these concepts are formulated in this paper, and the special
notations used when dealing with them, will have to be gleaned from [M], which is intended as
a "foundational" paper for these concepts.

In the introductory first two sections, two things are done. First, we recall the necessary
background material on computads, mainly by citing definitions and results from [M], but also
by introducing new terms and statements which are in [M] only implicitly. The definitions and
results cited are relevant or valid in arbitrary dimensions. The results cited from [M] are
marked by the symbol [M], and numbered in the style [M](i), [M](ii),

Secondly, in sections 1 and 2, we also state some new results. The theorems and propositions
in sections 1 and 2 marked in the style 1.1, 2.1, 2.2, ... will be proved only later in the paper.
On the other hand, similarly numbered corollaries of the above are proved on the spot.

There is one constraint observed in sections 1 and 2: only such new results are stated which
have straightforward conjectured higher-dimensional generalizations, although the results
themselves are claimed and stated only for dimension 2, and occasionally 3.

In section 2, among others, an analog of John Power's theorem, 3.3 Theorem in [P1], "Every
labelling of a pasting scheme has a unique composite", is stated (2.12 Theorem).

In the second part, from section 3 on, the concepts and results of a new "geometric theory" of
computads, presently established only in dimension 2, are presented. After the purely
combinatorial and elementary section 3, concerning what we call "planar arrangements", the
first of two forms of the main result of the paper, Theorem 4.2, is formulated in Section 4.
With the exception of those in section 9, all results of the paper, including the ones stated in
sections earlier than the fourth, are essentially (that is, modulo the basics in [M]) corollaries of
the main result 4.2.

Theorem 4.2 is a reconstruction of the "geometry" of a 2-dimensional pasting diagram (2-pd),
valid for the class of 2-pd's called anchored (for the definition, see below; the terminology has
been suggested by Andre Joyal). The geometry in question is given by postulation in [P1];

The author's research is supported by NSERC Canada and OTKA Hungary

1

here the "geometry" is computed from the algebraic expression of the pd.

2. There are two concerns in the paper, one explicit, the other somewhat implicit: the interest
in general laws on the one hand, and computational procedures on the other.

The "geometry" of a pasting diagram is what we display when we draw the diagram. This is
the primary aspect of the subject: it is what we are given, informally of course, when we start
the investigation (witness the first few sentences of John Power's paper). It is a compelling
idea to follow the hunch that there are general laws and procedures behind the drawing of
categorical diagrams.

The theorems of the first four sections state the laws, proved for a small beginning range of
cases and conjectured for others, of pasting diagrams. The computational procedures of the
subject are shown only later; nevertheless, they are the first motivation for the paper.

For example, 2.2 Theorem, part (c), says that there is a so-called planar arrangement of the
occurrences of the indeterminate 2-cells of a 2-dimensional pasting diagram (pd), under a mild,
but important, restriction on the pd itself. This is our way of stating that a 2-pd can be drawn
in the plane. But in fact, the complete point is not just that this "drawing" exists, but also that
it can be computed. Namely, given a symbolic representation for the 2-pd, in the form that we
call a molecule -- which is just a somewhat normalized syntactical term in the language of
operations for the notion of 2-category -- we can effectively and "naturally" calculate said
planar arrangement.

This concern for calculation explains a certain repetitiveness in the paper. The calculation just
alluded to leads naturally to a tree, depending on the given molecule, that represents the steps
in the calculation. The given molecule stands for a 2-pd that can be defined by numerous other
molecules -- in fact, these latter molecules will all appear at one stage or another in the
construction of the tree attached to the given molecule. The trees induced by these variant
molecules are all different from one another, but they are all, essentially, spanning trees of a
certain graph which is an invariant object attached to the 2-pd itself.

The graph is mentioned early on; 2.4 Corollary is a result, in the "anchored 2D" case, that
gives an abstract description of it. On the other hand, the trees appear only in section 5. They
are used to prove all the results stated in the earlier sections. The trees would have been easy
to avoid altogether, by somewhat reformulating the proofs, if we had been only interested in
the abstract/invariant laws without the calculations. As things are now, in the preparatory
stages of dealing with the computational trees, we are compelled to state variants of a number
of constructs that had been mentioned in the context of the graphs.

Computads and pasting diagrams serve as the basic carriers of the syntax of higher
dimensional categories, weak and strict, as explained, for instance, in the introduction of [M].
This explains the interest in computational aspects of computads: following the lead of Gottlob
Frege and David Hilbert, we adhere to the doctrine that all aspects of pure syntax have to be
calculable and/or decidable.

3. I will now comment on the two main new concepts of the paper, that of planar pasting
prescheme, related to dimension 2, and the more general pasting prescheme relevant in
arbitrary dimensions.

"P
�
anar Pasting PreSchemes", P

�
PPS's for short, are introduced in section 4. John Power has

"pasting schemes" in both [P1] and [P2]. P
�
PPS's are different from Power's concept for

2

dimension 2 in [P1] (and of course, different from that in [P2] too), but serve in similar roles.
The prefix "pre" is there because the term "planar pasting scheme", P

�
PS, is reserved for a

P
�
PPS which is "complete" in a suitable sense. P

�
PPS's have unique composites, by design

(that is, the proof that they do is more direct than in Power's case). The composite is a general
2-cell, also called 2-pasting diagram (2-pd), in (the underlying 2-category of) the underlying
computad.

The main result, 4.2 Theorem, says, in essence, that every 2-pd satisfying a smallish but
essential restriction ("anchored") has a complete P

�
PPS displaying it (the composite of the

P
�
PPS is the given 2-pd). The uniqueness of the displaying P

�
PPS is essentially obvious; but

it is returned to in section 10.

Notice the opposite natures of the general outline here and of that in [P1]. In [P1], the 2D
diagrams are defined as those given by a pasting scheme, and the work to be done is in
showing that they make sense as 2-categorical composites. Here, the 2D diagrams are given in
advance algebraically as 2-categorical composites of indeterminate cells in a computad ("free
2-category"); the work is to show that there are pasting schemes in the new sense that display
them.

The general notion of "Pasting PreScheme", PPS, is introduced in section 9. It is formulated in
arbitrary dimensions. The main result of the paper concerning this concept is that any PPS has
a unique composite (9.3 Proposition). There is no analog in the paper of the hard work done
for the planar pasting schemes, the construction of them for a large class of 2-pd's; this analog
is planned for the future installments of the series.

Although it is not true that every 2D pasting prescheme is planar, the truth is not far from
saying that. The main result of the paper, expressed in terms of the general notion of pasting
prescheme, is that any PPS of an anchored 2-pd has a planar extension, and (therefore, by 4.2
Theorem) there is a unique pasting scheme (complete pasting prescheme) displaying any given
anchored 2-pd, which is in fact planar (see 10.4 Theorem).

§1 Types, shapes and occurrences

Pasting diagrams

Let us codify the concept of "pasting diagram". A pasting diagram (Pd for short) is a pair
(X, Γ) where X is a computad, Γ is a cell of the ω-category X , Γ∈

�
X

�
, and

X=Supp (Γ) . (1)X

The idea is that X is the diagram itself, which pastes (composes) into the composite Γ . So,
in fact, the expression "pasted diagram" would be more suitable. Fortunately, "Pd" is neutral
with respect to the two readings.

The capitalized version "Pd" is used for the concept that contains it's own "context" as (X, Γ)
contains a reference to X . A "pd" uncapitalized is an element of

�
X

�
, with X given in a

larger context.

The equality (1) means that all the indeterminates in X are used in writing Γ . This way of
saying the matter is a correct definition if the cells in a computad are taken to be equivalence

3

classes of terms formed from the indeterminates as "variables" (see [Pe], or [M] where Jacques
Penon's [Pe] definition of computad ("polygraph" in French) via terms is re-stated). On the
other hand, one can define, for any computad X and any Γ∈

�
X

�
, Supp (X) , aX

subcomputad of X , whose indeterminates are the ones "used" in Γ , in a purely algebraic
manner too; see [M].

*The datum Γ , the composite itself, is not a superfluous item. With X generated by the
single 0-cell X , and the single 1-cell f:X � � X , we have infinitely many Γ for which

* m(X , Γ) is a Pd: all the composites f (m=1, 2, 3, ...). The reader will be right if he/she
thinks that we should be interested in when a computad X has a unique composite, meaning
there is a unique Γ for which (X, Γ) is a Pd.

The notations (X, Γ) , (Y, Λ) will always mean Pd's in the sense just codified. We also
write Γ for (X, Γ) , Λ for (Y, Λ) .� �

Let's define the category of pasting diagrams, Pd , to have objects the Pd's, and arrows
f f(X, Γ) ������� � (Y, Λ) those X ������� � Y in Comp for which f(Γ)=Λ . Pd has a forgetful

functor Pd ����� � Comp . (Comp is the category of all (small) computads: see [M]).

The dimension of the Pd (X, Γ) is the dimension of Γ (as a cell of the ω-category X). We
have dim(X,Γ)=max{dim(x):x∈ � X � } .

Pd is the full subcategory of Pd whose objects are the Pd's of dimension n . The notationn
Pd is analogous.≤n

An Indeterminate (Indet for short) will be a Pd x=(X, x) where x∈ � X � , that is, x is an�
indeterminate (=free generator; see [M]) in X . Indet is the full subcategory of Pd
consisting of the Indets.

If (X, x) , (X, y) are Indets with the same underlying computad X , then they are the
same: x=y : this is obvious, since x is the unique maximal-dimensional indet in X . On the
other hand, two different Pd's may have the same underlying computad.

Indet is not only a full subcategory of Pd , but it is a sieve in Pd : if
Γ=(X, Γ) ����� � (Y, y) , and (Y, y) is an indeterminate, then Γ is itself an Indet;� �
f(Γ)=y implies that Γ∈ � X � : this was proved in [M].

Indet is defined as the full subcategory of Indet whose objects x=(X, x) are them/1 -
many-to-one Indets, that is, are such that cx is an indet too. Indet is also a sieve inm/1
Pd .

The Indets play the central role among the Pd's; in fact, in a sense, every Pd can be "replaced"
by an Indeterminate, albeit by one of one-higher dimension. For the Pd Γ=(X, Γ) , consider�

�
the many-to-one Indet Γ=(X[x][y], y) defined, in two steps, by first adjoining to X the�
new indet x of the dimension of Γ with the specification dx=dΓ , cx=cΓ , and then
adjoining y of one higher dimension with dy=Γ , cy=x .

4

�
Γ is, of course, defined up to isomorphism only, although, as usual, we pretend that it is�
strictly specified.

� �
There is an obvious bijection between hom(Γ,Λ) and hom(Γ,Λ) . In fact, we have an� � � �
equivalence of categories

� �
(Γ � � Γ):Pd ����������� � Indet� � m/1

Typing and occurrence

fWe will call the Pd Γ=(X, Γ) separated if for all Λ=(Y,Λ)∈Pd and all Λ ������� � Γ in� � � �
Pd , f is necessarily an isomorphism.

A computope (see [M]) is an Indet (X, x) such that for all Indets (Y, y) and arrows
f(Y, y) ������� � (X, x) , f is necessarily an isomorphism.

We say that the computad X is a computope if there is a, necessarily unique, computope
(X, x) with underlying computad X .

From the fact that Indet is a sieve in Pd , we immediately see that an Indet is a�
computope iff it is a separated Pd, and the Pd Γ is separated if and only if Γ is a� �
computope.

The category of all computopes, Ctp , is defined as the skeletal full subcategory of Comp
itself, whose objects form a full set of representatives of isomorphism types of all the
computopes. (Thus, we allow all computad morphisms f:A � � B for computopes (A, x)
and (B, y) , not just the ones in Indet .)

It is an important fact (see [M]) that Ctp is a finitary one-way category. A category D is
finitary if for all objects X in D , the set {f∈Arr(D): c(f)=X} is finite. D is one-way
if there is no infinite descending chain

f f f0 1 0X ������������� X ������������� ... X ������������� X ������������� ...0 1 n n+1

of non-identity arrows in it. (The finitary-ness of Ctp is not immediate; the one-way quality
is.)

In [M], the following are proved.

Theorem [M] (i) For every Indet x , there is a computope y with a morphism� _
y ��� � x ._ �

(ii) For every Indet x , there are only finitely many non-isomorphic�

5

Indets y having an arrow y � � x to x ._ _ � -

((i) is 11.(4) in [M]; (ii) is stated in the proof of the same 11.(4) as "the isomorphism types of
resolvents of B form a non-empty finite set".)

Corollary For every Pd Γ , there is a separated Pd Λ with a morphism Λ ��� � Γ ; up to� � � �
isomorphism, there are only finitely many such Λ .�

�

To get the Corollary, apply the Theorem to Γ as x .� �

Referring to the Corollary, Λ is called a type for Γ ; a morphism Λ ��� � Γ a specializing� � � �
morphism for Γ .�

We say that the Pd Γ is uniquely typed if�

1) the specializing morphism for Γ from any type of Γ to Γ is unique: for Λ� � � �
f������� �separated, if Λ Γ , then f=g ;� ������� � �g

and

2) the type of Γ is unique up to isomorphism: if Λ , Ξ are separated, and� � �
Λ ����� � Γ ��������� Ξ , we have Λ ≅ Ξ .� � � � �

Note that 1) is equivalent to the seemingly stronger condition

f* ������� �1) for any Λ , if Λ Γ , then f=g .� � ������� � �g

�

The reason is that, given Λ , by the previous Corollary, there are separated Λ and� �
�

hΛ ������� � Λ ; by 1), f � h=g � h ; but h , as any map of Pd's, is surjective on indeterninates; it� �
follows that f=g .

The main motivation for the foregoing notions is the desire to understand the idea of an
occurrence of a generator x∈ � X � in a Pd (X, Γ) .

* mIn the example Γ =(X , f) (m=1, 2, 3, ...) above, it is natural to say that the 0-cell X� m
"occurs m+1 times", and f "occurs m times", because this way of talking will match the

mdrawing of the arrow f as the composite of a diagram:

6

f f f fX ������� � X ������� � X ������� � ... ������� � X . (2)

* *Let Λ =(Y , Λ) be such that Y is generated by the distinct 0-cells X� m m i
(i=1, ..., m, m+1) and the 1-cells f :X � � X . Let Λ =f ⋅... ⋅f . Λ isi i i+1 m 1 m � m
separated. The drawing of Λ is� m

f f f f1 2 3 m-1X ��������� � X ��������� � X ��������� � ... ������������� � X .1 2 3 m

There is a unique map Λ ��� � Γ ; and, up to isomorphism, Λ is the only separated Pd Λ� m � m � m �
with a map Λ � � Γ . These facts allow us to say that the ith occurrence of X in (2) is X ,� � m i
and the ith occurrence of f in (2) is f . We have not only accounted for the number ofi
occurrences of each generator, but have succeeded in defining what an occurrence is.

We may conclude that if the Pd Γ is uniquely typed, by f:Λ ��� � Γ say, the notion of an� � �
occurrence of any given indet x∈ � Γ � , as well as the number of distinct occurrences of x ,�

-1are clarified: an occurrence of x is any element of the set f (x) ; the number of
-1occurrences of x is the cardinality of the set f (x) . The fact that the typing (Λ, f) is�

defined from Γ uniquely up to a unique isomorphism tells us that we will have a sound�
notion of occurrence.

Let us review the low dimensions as to unique typing.

In dimension 0, everything is trivial.

Next, one sees easily that every 1-Pd is uniquely typed.

However, in dimension 2 , it is not difficult to find a Pd that is not uniquely typed. In [M], the
following example is given.

We let X be generated by the indets X , u and v , where dim(X)=0 ,
u������� �dim(u)=dim(v)=2 , and 1 1 . We let Γ=u ⋅v . Since u ⋅v=v ⋅uX ������� � Xv

≅(Eckmann-Hilton), we have the automorphism h:(X, Γ) ��� � (X, Γ) that flips u and v .
Since (X, Γ) is separated, (X, Γ) is its own type, and 1) fails.

Thorsten Palm showed me an example for which 2) fails -- but, unfortunately, I do not
understand it.

On the other hand, every 2-Indet (Indet of dimension 2) is uniquely typed. In fact, if
fx=(X, x) is a 2-Indet, then (Y, y) ������� � (X, x) is a typing for x iff, with the definitions� �

Y =Supp (dy) , f =f
�
Y , dy = (Y , dy) , etc, we have that1 Y 1 1 __ 1

7

(a) ddy≠ccy unless dx or cx , hence dy or cy , is an identity; and
f f1 2(b) dy ��������� � dx and cy ��������� � cx are typings for dx and cx , respectively,__ ��� __ ��� ��� ���

incl incland Y is the pushout of Y ��������������� Y ����������� � Y where Y =Supp ({ddy,ccy}) ,1 3 2 3 Y
with f defined compatibly with the pushout diagram.

�
Since Γ=(X, Γ) is uniquely typed iff the Indet Γ is, we have that not all 3-Indets are� �
uniquely typed.

A large class of 2-Pd's, and the corresponding class of 3-Indets, the so-called 2-anchored ones,
are uniquely typed. We call an indeterminate x anchored if x is of dimension ≤1 , or, if
dim(x)≥2 , cx is a non-identity cell, cx≠1 . A computad X is anchored if all indetsccx
in X are anchored; a Pd (X, Γ) is k-anchored if all indets of dimension k in X are
anchored.

Of course, the dual notion when we disallow identities as domains, rather than codomains, of
indeterminates gives rise to similar conclusions. The "Eckmann-Hilton" example above shows
that bad effect of allowing indeterminates whose domain and codomain are both identities. In
section 4, there will be a (simple) example showing that allowing two indeterminates, one with
an identity domain, the other an identity codomain, is also bad. In other words, one has to
globally exclude either identity domains, or identity codomains, for indets.

One of the main results of the present paper is

1.1 Theorem All 2-anchored 3-Indets, and as a particular case, all anchored 2-Pd's are
uniquely typed.

Shape

The word "shape" instead of that of "type" is appropriate here too.

Let us say that Pd's Γ and Λ have the same shape if they belong to the same connected� �
component of the category Pd ; that is, if there is a zig-zag

Γ=Γ ����� � Γ ��������� Γ ����� � ... ��������� Γ =Λ� � 0 � 1 � 2 � k

of morphisms in Pd .

Let me remind the reader of the fact that Comp , the category of computads, is a locally
finitely presentable category, in particular, it is both complete and cocomplete; see [M]. In
Comp , the colimits are "easy"; but the limits are only inferred from the "aleph-zero
accessibility" of Comp (which is also "easy") plus the existence of the colimits. In particular,
Comp has a terminal object T , the terminal computad, but T is very far from being a trivial
object. For more, see (also) [M].

Using a fixed copy of the terminal computad T , and the morphism ! :X ����� � T , every PdX

8

!Γ=(X, Γ) has a unique morphism Γ ������� � Σ to a Pd Σ where Σ=(Z, Σ) has its- � � � �
underlying computad Z a subcomputad of T . Following Ross Street, we call this Σ the-
shape of Γ . We mean by a shape, in general, a Pd whose underlying computad is a�
subcomputad of T .

Note that this fits the previous terminology: the two meanings of "having the same shape"
coincide -- and in the zig-zag of the first definition, we may always take k=2 .

A type of a Pd is also a type of the shape of the Pd.

If two Pd's have the same type (the same separated Pd is a type of both), then they also have
the same shape. I do not know if the converse holds.

The concepts of "type" and "shape" are, in a sense, dual to each other. Obviously, the "type"
works less smoothly than the "shape". However, this is not simply a drawback of the notion of
"type". The non-uniqueness related to "types" is a real difficulty with the idea of occurrence
that cannot be ignored.

Concrete presheaf categories of computads

The question whether or not various categories of computads are presheaf categories, a
question that has been investigated in the literature, is closely related to the question which
Pd's are uniquely typed. I introduce this subject with some new terminology.

A class C of computads is said to be standard if

1) it is a sieve in Comp : whenever X � � Y is an arrow in Comp , and Y∈C , then
X∈C ; and

fi2) it is closed under coverings in Comp : whenever (X ��������� � Y) is a familyi i∈I
of arrows in Comp , X ∈C for all i∈I , and the derived family of the arrowsi

� f �i(� X � ��������� � � Y �) on the sets of indeterminates is a surjective family, then Y∈C .i i∈I

There are many important examples of standard classes. The total class is an example. So is
the class of anchored computads; for the term, see above (it is an easy fact seen in [M] that if
f:X � � Y is a morphism of computads, and a∈

�
X

�
is not an identity, then f(a) is not an

identity either). The class of positive computads, in which there are no indeterminates with
codomain or domain equal to an identity, is a natural standard class; in fact, it seems that the
pasting schemes of [P] or [S] are meant to be positive.

An important example is the class of many-to-one computads: the class of computads X for
which for every x∈ � X � , dim(x)≥1 , we have that cx is an indeterminate itself. (See, e.g.,
[M] for why many-to-one computads are important.) For any fixed n∈ � , the computads of
dimension at most n is another example.

Given any class C of computads, the Pd's associated with C are those Pd's (X, Γ) for
which X∈C . The class of Pd's associated with C is written as Pd(C) . Similarly, we have

9

Indet(C) , the class of Indets associated with C .

If C is standard, then each of the classes Indet(C) and Pd(C) uniquely determines C .
Namely, X∈C iff for all Γ∈

�
X

�
, (Supp (Γ),Γ)∈Pd(X) iff for all x∈ � X � ,X

(Supp (x),x)∈Indet(C) .X

For a class I of Indets, there is a standard class C with Indet(C)=I , if and only if the
following both hold:

1) whenever x=(X, x)∈I , and y∈ � X � , then y=(Supp (y),y)∈I ;� _ X
2) whenever x∈I , and y ��� � x ��� � z are arrows in Indet , then both y , z� _ � � _ �

belong to I .

Note that 2) can be said equivalently in this way: I is shape-determined: if two indets have
the same shape, and one of them is in I , then so is the other.

1) is a natural "reasonability condition": if we "accept" an indeterminate, we should also
"accept" all indets involved in it.

A standard class of Indets is one that satisfies the last-listed conditions 1) and 2).

We may say that the standard classes of computads, and the standard classes of Pd's are the
ones that are selected by the shapes, or equivalently, the types of indets involved in them.

A concrete category is a pair (A, � - �) where A is a category, � - � is a functor
� - � :A ��� � Set to the category of sets. The concrete categories (A, � - �) , (B, � - �)A B

�
are said to be equivalent if there exists an equivalence of categories E:A ������� � B that is
compatibly with the underlying-set functors: � - � � E ≅ � - � .B A

def op�

DAny category of the form D = Set , with D a small category, is regarded as a
opconcrete category with the underlying-set functor (F∈D)

� ��� F(X) .
X∈Ob(D)

Every subcategory of Comp is regarded as a concrete category with the underlying-set
functor defined as X

� � � X � =the set of indets in X .

We say of a concrete category that it is a concrete presheaf category if it is equivalent to the
�

concrete category D for some small category D .

Any class of computads determines a full subcategory of Comp , and thus a concrete category;
if the class is standard, we call the resulting concrete category a standard category of
computads.

The following is stated with a different wording, and proved, in [M].

Proposition [M] (iii) A standard category C of computads is a concrete
presheaf category if and only if every Indet in Indet(C) is uniquely typed.

10

Remarks 1 The phrase " (X, x) is uniquely typed" is meant here in the exact sense
stated above, without relativization to the subcategory C -- although such relativization
would result in a correct statement too.

2 Modulo Theorem [M] (i), Prop (iii) is elementary category theory, involving the
Yoneda functor and the like. On the other hand, I consider the Theorem [M] (i) on the
existence of typing, quoted above from [M], to be a real theorem, requiring for its proof more
than a superficial look at what it says -- at least until I am shown that I am wrong.

3 Note that we have that Comp itself is not a concrete presheaf category since there are
Pd's that are not uniquely typed. In fact, Comp is not a presheaf category in the usual more
general, "non-concrete", sense either: see [M]. Although I do not know, it may be true that a
standard category of computads that is a presheaf category is necessarily a concrete presheaf
category.

4 The most important example of a standard category of computads which is a concrete
presheaf category is the category of many-to-one computads: the class of computads X for
which for every x∈ � X � , dim(x)≥1 , we have that cx is an indeterminate itself.

5 Since every 2-Indet is uniquely typed, Comp , the category of computads of≤2
dimension at most 2 is a concrete presheaf category. This is an old observation of Steve
Schanuel's.

In case (A, � - �) is a concrete category which is equivalent to a concrete presheaf category
opD(Set , � - �) , the category D involved is determined up to isomorphism by (A, � - �)

itself. This contrasts with the "non-concrete" case when the exponent category D is not
determined even up to equivalence (although its idempotent-splitting completion is).

opDWhen (A, � - �) is equivalent to (Set , � - �) , we call D the type-category for
(A, � - �) .

We would like to call it, rather, the "shape-category"; but it is related to the "types" rather than
the "shapes".

In fact, we can identify what D should be even before we know that (A, � - �) is a concrete
presheaf category. In particular, we define the type category of any standard category C of
computads as C∩Ctp , i.e. the full subcategory of C whose objects consist of exactly one
isomorphic copy for each computope that belongs to C . The type-category, as a subcategory
of Ctp , is always a one-way and finitary category.

(I emphasize again that the notion of computope is an absolute notion: whether or not
something is a computope is decided in Comp , rather than some subcategory of it -- although
if you relativize the definition to the standard subcategory, you still have a correct definition.)

We observe that, if D is the type category of C , then we have a canonical functor E and a
natural transformation ϕ as in

11

opE DC ����������������������� � Set� �
� �

� �
� - � � � � - � ϕ: � - � � E ��������� � � - �C � � C

Set

defined by E(X)=D(i(-), X) , where i:D � � C is the inclusion, and

ϕ (A) : D(A, X) ������� � � X � (x=(A, x) a computope in C).X �
(f:A � � X) � ��� � f(x)

We have (exercise!) that (C, � - �) is a concrete presheaf category if an only if E is anC
equivalence of categories and ϕ is an isomorphism of functors.

What we have said here about concrete presheaf categories and their type categories is general
and simple category theory. On the other hand, the theoretical simplicity of the definition
should not mislead one into believing that it is easy to get a concrete, workable description of
the type-category, or that it is easy to see whether or not the standard category in question is a
concrete presheaf category. For instance, Comp , the category of many-to-one computadsm/1
is a concrete presheaf category; but the "concrete" description of its type-category, the
category of multitopes, whose theoretical definition we now have as Comp ∩Ctp , and them/1
proof that it works as D in the last "exercise", are far from obvious; see [M] and the
references there.

2-anchWe write Comp for the full subcategory of Comp consisting of the computads of≤3
dimension at most 3 all whose 2-indets are anchored. The following is a consequence of 1.1
and (iii).

2-anch1.2 Corollary Comp is a concrete presheaf category.≤3

12

