LINKING NUMBERS AND THE TAME FONTAINE-MAZUR
CONJECTURE

JOHN LABUTE

ABSTRACT. Let p be an odd prime, let S be a finite set of primes ¢ = 1 mod p
but ¢ # 1 mod p? and let Gg be the Galois group of the maximal p-extension of Q
unramified outside of S. If p is a continuous homomorphism of Gg into GL2(Z,)
then under certain conditions on the linking numbers of S we show that p = 1 if
P = 1. We also show that p = 1 if p can be put in triangular form mod p3.

To Helmut Koch on his 80th birthday

1. STATEMENT OF RESULTS

Let p be a rational prime. Let K be a number field, let S be a finite set of
primes of K with residual characteristics # p and let I'g x be the Galois group of the
maximal (algebraic) extension of K unramified outside of S. The Tame Fontaine-
Mazur Conjecture (cf. [1], Conj. 5a) states that every continuous homomorphism

p FS,K — GLn<Zp)

has a finite image. If p is the reduction of p mod p then p is trivial if and only if the
image of p is contained in the standard subgroup

CLM(Z,) = {X € GL,(Z,) | X =1 mod p}

which is a pro-p-group. Hence, if p = 1, the homomorphism p factors through Gg k,
the maximal pro-p-quotient of I'g jr. Since GLS)(ZP) is torsion free, this shows that
when p = 1 the Tame Fontaine-Mazur Conjecture is equivalent to the following
conjecture.

Conjecture 1.1. If p : Ggx — GLW(Z,) is a continuous homomorphism then
p=1

Conversely, the truth of Conjecture 1.1 for any number field K implies the Fontaine-
Mazur Conjecture. In this paper we will prove Conjecture 1.1 when K = Q for certain
sets S.

We now let K = Q and Gg = Ggg. To prove Conjecture 1.1 we can assume that
the primes in S are congruent to 1 mod p since these are the only primes different
from p that can ramify in a p-extension of Q. We will also assume that the primes in .S
are not congruent to 1 mod p?, which is equivalent to G5/[Gg, Gs] being elementary.
In this case we will show that Conjecture 1.1 follows from a Lie theoretic analogue of
it when p is odd. We therefore assume that p # 2 for the rest of the paper.

Date: May 15, 2013.
1991 Mathematics Subject Classification. 11R34, 20E15, 12G10, 20F05, 20F14, 20F40.
TResearch supported in part by an NSERC Discovery Grant.

1



2 JOHN LABUTE

To formulate this analogue let S = {qi,...,qq} and let [g be the finitely presented

Lie algebra over I, generated by &;,...,&; with relators oy, ..., 04 where
oi = b+ Y il6 &)
J#i

with ¢; = (¢; —1)/p mod p and the linking number ¢;; of (g;, g;) defined by ¢; = g;&j
mod ¢; with g; a primitive root mod ¢;. We call [g the linking algebra of S. Up to
isomorphism, it is independent of the choice of primitive roots.

Theorem 1.2. There exists a mapping
( : Homeony (G, GLUV(Z,)) — Hom(ls, gl,,(F,))
such that p =1 <= {(p) = 0.

Corollary 1.3. If the cup-product H'(Gg,F,) x H'(Gs,F,) — H*(Gg,F,) is trivial
then Congecture 1.1 is true for Gs.

Definition 1.4 (Property FFM(n)). A Lie algebra g over a field F' is said to have
Property F'M(n) if every n-dimensional representation of g is trivial.

Theorem 1.5. If lg has Property FM (k) then Conjecture 1.1 is true for n = k.

If |S| < 2 then [g has Property F'M(n) for all n since [g = 0 in this case. However
[s may not have Property FM(2) if |S| > 3; for example, if p = 3, S = {7,31,229}
orif p = 5 and S = {11,31,1021}. However, the number of such S is relatively
small; for example, if p = 7 and the primes in S are at most 10,000, the set S fails to
have Property F'M(2) approximately .2% of the time. The following theorem gives
necessary and sufficient conditions for Property F'M(n) to hold when |S| = 3.

Theorem 1.6. Let m;; = —{;;/c;. If |S| =3 and n < p then Property FM(n) holds
iof and only if one of the following conditions holds:

(a) m;; =0 for some i,j;

(b) my; # 0 for all i,j and my, = mjj, for some i, j, k with i # j;

(c) my; # 0 for all i, j and (my — myy) (Mmgims; — mygymg;) # 0 for some 1, j, k.

These conditions are independent of the choice of primitive roots.

Theorem 1.7. If |S| = 3 and n < p then lg fails to have Property FM(n) if and
only Zf&] 7& O fO?“ (I” Z,j and 613/01 = —523/02, 621/62 = —€31/03, €12/Cl = —532/03.

Theorem 1.8. Let p: Gs — GLa(Z,) be a continuous homomorphism. Then p = 1
if p can be brought to triangular form mod p3.

The pro-p-groups Gg are very mysterious. They are all fab groups, i.e., subgroups
of finite index have finite abelianizations, and for |S| > 4 they are not p-adic analytic.
So far no one has given a purely algebraic construction of such a pro-p-group. We
call a pro-p-group G a Fontaine-Mazur group if every continuous homomorphism of
G into GL,(Z,) is finite. Again, no purely algebraic construction of such a group
exists. In this direction we have the following result.
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Theorem 1.9. Let G be the pro-p-group with generators 1, ..., xa, and relations
xlqu [fﬂl,l'g] = 17 5512762 [.1'2, :C3] = 17 ceey 33§f§7fil[$2m71,2m] = 17 5Ugf§m [:Cvaxl] =1

with ¢; 20 mod p and p > 2, m > 2. Then every continuous homomorphism of G
into GLW(Z,) is trivial if n < p.

2. MILD PRO-p-GROUPS

Let G be a pro-p-group. The descending central series of G is the sequence of
subgroups G,, defined for n > 1 by
Gi1=G, G, =GG,G,)

where G2|G, G,,] is the closed subgroup of G generated by p-th powers of elements
of G,, and commutators of the form [h, k] = h~'k~'hk with h € G and k € G,,. The
graded abelian group
gr(G) = @nzlgrn(G) = @nzlGn/Gn—s—l
is a graded vector space over F, where gr, (G) is denoted additively. We let
tn : Gp — gr,(G)

be the quotient map. Since p # 2, the graded vector space gr(G) has the structure of
a graded Lie algebra over F,[r] where

7TLTL(:E) = Ln-i-l(xp)a [Ln($)a Lm(y)] = Ln-i-m([xyy])'
Let G = F/R where F is the free pro-p-group on xy,...,z4 and R = (ry,...,7y,)
is the closed normal subgroup of F' generated by ry,...,r,, with r; € F;. If
TR = foaj H[J?Z, z;]%% mod Fy
i>1 i<j

and we let & = 11(z1), pr = t2(r) in L = gr(F) then L is the free Lie algebra over

F,[r] on &, ..., & and
Pk = Z a;w& + Z aijr&i, &)
i>1 i<j

Let © be the ideal of L generated by p1, ... pm, let g = L/v and let U be the enveloping
algebra of g. Then t/[t, t] is a U-module via the adjoint representation. The sequence
p1,-- ., Pm is said to be strongly free if (a) g is a torsion-free F,[r]-module and (b)
t/[t,t] is a free U-module on the images of py, ..., p, in which case we say that the
presentation is strongly free.

Theorem 2.1 ([3], Theorem 1.1). If G = F/R is strongly free then v is the kernel of
the canonical surjection gr(F') — gr(G) so that gr(G) = L/.

A finitely presented pro-p-group G is said to be mild if it has a strongly free
presentation.

Let A = Z,[[G]] be the completed algebra of G' and let I = Ker(A — F,) be the
augmentation ideal of Z,[[G]]. Then

gr(A) — @nzlln/1n+1

is a graded algebra over F,[r] where m can be identified with the image of p in
I/I?. The canonical injection of G into A sends G,, into 1 + I™ and gives rise to
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a canonical Lie algebra homomorphism of gr(G) into gr(A) which is injective if and
only if G, =GN (1 +1").
Theorem 2.2 ([3], Theorem 1.1). If G is mild the canonical map gr(G) — gr(A) is

injective and gr(A) is the enveloping algebra of gr(G). Moreover, R/|R, R] is a free
A-module which implies that cd(G) < 2.

We now give a criterion for the mildness of G = Gg when p # 2 and p ¢ S.
The group G has a presentation F(z1,...,x4)/(r1,...,74) where z; is a lifting of a
generator of an inertia group at ¢; and

r; = ab” H[mi,xj]f”' mod I}
J#i
which is due to Helmut Koch ([2], Example 11.11). Using the transpose of the inverse
of the transgression isomorphism
tg: H'(R,F,)" = (R/R’[R, F))* — H*(G,TF,),

the relator r; defines a linear form ¢; on H?*(G,F,)) such that, if x1,...,xq is the
basis of H'(F,F,) = (F/F?[F, F])* with x;(z;) = 0,5, we have ¢;(x; U x;) = —{;; if
i < 7; cf.[2], Theorem 7.23.

The set S is said to be a circular set of primes if there is an ordering ¢, ..., gq of
the set S such that

(a) gmqu # 0for1<i<dand gdl % 0,

(b) £;; =01if i, j are odd,

(c) lialas -+ - La—v1,alar 7 Crmlmm—1 - - - L3201
Theorem 2.3. If S is a circular set of primes then Gg is mild.

Theorem 2.4. The set S can be extended to a set S'Uq where ¢ =1 mod p, ¢ Z 1
mod p* in such a way that the pairs (¢, q), (g, q) with non-zero linking numbers can
be arbitrarily prescribed.

Corollary 2.5. The set S can always extended to a set S" with Gg mild.

See Labute ([3], Theorem 1.1) for the proof of Theorem 2.3 and ([3], Proposition
6.1) for the proof of Theorem 2.4. The proof of Proposition 6.1 in [3] yields the
sharper form stated here.

Theorem 2.6. There exists a finite set S" 2 S consisting of primes ¢ = 1 mod p, q %
1 mod p?* such that Gg: is mild and, if n < p, the Lie algebra g has Property(FM(n))
if ls does.

3. PROOF OF THEOREM 1.2

Let G be a pro-p-group with G/[G, G] = (Z/pZ)* and let p : G — GLY(Z,) be a
continuous homomorphism. Let

CL¥(Z,) = {X € GL,(Z,) | X =1 mod p*}.
Lemma 3.1. Let X =1+ p'A € GLY(Z,), Y =1+ p/B € GLY(Z,) then
[X,Y] = 14+p"™[A, Bl mod p" ! X? = 14p™' A mod p"*?, where [A, B] = AB—BA.
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Lemma 3.2. If p(G) # 1 then p(G) € GL?(Z,).

Proof. Let H = p(G) and let k > 1 be largest with H C GL¥(Z,). Let hy,...hy
be a generating set for H and let h; = I + p*N;. Then [h;, h;] € GLE¥(Z,) which
implies that [H, H] € GL®"(Z,). By assumption, there exists i such that N; # 0
mod p. But
R = (14 p*N,)P =1+ p"'N; mod p**2.
Since N; # 0 modulo p we have hf € [H, H| ounly if £+ 1 > 2k which implies that
k=1. 0
Let G = Gg. Then Gg has the presentation F(z1,...,24)/(r1,...,74) where
ry = b H[xi,xj]eij mod Fj.
JF
Let p(z;) = 1+ pA;. Then modulo p* we have
1= p(?“z) =1 +p2(ciAi + Z&][A“ AJ])
J#
Hence, if 4; is the image of A; in gl,,(F,), we have
i A; + Z lijl Z Z
J#i
Thus ¢(p)(&) = A; defines a Lie algebra homomorphism ¢(p) : [ — sl,(F,). If p =1

then A; = 0 for all i which implies {(p) = 0. Conversely, if p # 1 then by Lemma 3.2
we have A; # 0 for some ¢ which implies ¢(p) # 0.

4. PROOF OF THEOREM 1.8

Without loss of generality, we can assume that G is mild. Let H = p(Gs) and
assume that H = p(Gg) # 1. Note that H is a subgroup of SLy(Z,) since Gs/[Gs, Gs]

: ) . : b .
is finite. After a change of basis, we can assume that the matrices } € H satisfy

d
p®|c and that H is generated by the image of

11
e[ )
Let hq,...,hq be a generating set for H with hy,..., hy_1 € SLS)(ZP) and hy = C
mod p. We have

a4 A b . . _ |paa l+pe

h; 1—pAZ—pLi di‘| for i < d and hy 1_{pcd of |

We also have d > 1 since otherwise H is infinite cyclic which is impossible since
H/[H, H] is finite.

Lemma 4.1. Let X, Y € GLy(Z,) with X =14+pA=1+p {(2 b] and with Y = C

d
mod p. Then

[X,Y]El—i—p{_oc a—zl—c} mod p?.
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Proof. Let N =Y — 1. Then, working mod p?, we have
X,Y] = (14 pA) (1 + N) (14 pA)(1 + N)
(1 —pA)(1 — N+ N? — N*)(1 + pA)(1+ N)
(1 —pA— N +pAN + N? — N¥)(1 4+ pA + N + pAN)
=1+ p[A,N] — pNAN
=1+ p[A, N] — pN[A, N]

:1+p[—c a—d— ]

0 c
OJ
P 0 1] 2
Lemma 4.2. We have hy =1+ p 00 mod p~.
Proof. We have hy =1+ N with N = {pid L+pe } so that mod p?
d
01 2_ |0 ag+ f 3 _
pN = p{o O} N_p{o 0 ],N_O.
Hence we have i) = (14+ N)? =1+ pN mod p*. O

Let M = Zye; + Zyes and let B be the image of A = Z,[[Gs]] in End(M). Let
J=(p,hi—1,...,hg—1) be the augmentation ideal of B. Then JM = Z,e; +Z,p ey
and by induction we have

JEM = prk_lel + 7y, pkeQ

for k > 1. Tt follows that gr(M) = >, J*M/J*" M is a free Fy[r]-module with
basis €, € gr(M),e; € gry(M). Using the fact that

(hi = 1)er = pajer + pcies

with p?|c; we see that gr(h; — 1)e; = a;me;. Since the elements gr(h; — 1), (i < d)
generate gr(B) = >, -, J*/J**! the submodule W = F,[r]e; is invariant under gr(B)
and we obtain a homomorphism

¢1 - gr(B) = End(W) = gl (Fy[7])

with ¢ (gr(h; — 1)) = ma;. We want to show that a; is non-trivial mod p for some
1< d.

Lemma 4.3. If X = 1 4 pA € SL{Y(Z,) then tr(A) = 0 mod p.

Proof. If X = 14 pN € SLU(Z,), we have 1 = det(1 + pN) = 1 + ptr(N) mod p?
which implies that tr(N) = 0 mod p. O

Lemma 4.4. If 1 <i<d and 7a; = ¢1(gr(h; — 1)) = 0 then [h;, ha] € SLY(Z,).

Proof. Since a; = 0 mod p, Lemma 4.3 implies that d; = 0 mod p. The result then
follows from Lemma 4.1. O

Lemma 4.5. If 7a; = ¢1(gr(h; — 1)) = 0 for 1 < i < d then [H, H] C SLY(Z,).
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Proof. The pro-p-group [H, H] is generated, as a normal subgroup of H, by the ele-
ments of the form [h;, h;| and [h;, hg] with i, j < d. Since the elements of the form
[hi, hj] with i, j < d are congruent to 1 mod p? by the proof of Lemma 3.2, the result
follows from Lemma 4.4. O

So if gr(h; — 1) acts trivially on W for 1 < i < d then A% is not in [H, H| by
Lemmas 4.5 and 4.2, contradicting the fact that H/[H, H] is elementary. So the ho-
momorphism ¢; : gr(B) — gly(F,[r]) is non-trivial. Composing ¢, with the canonical
surjection gr(Z,[[Gs]]) — gr(B), we obtain a non-trivial homomorphism

¢ - gr(Zy[|Gs]l) — gl (Fp[m]).

Composing the canonical map « : gr(Gs) — gr(Z,[[Gs]]) with ¢, we get a Lie algebra
homomorphism

gr'(p) : gr(Gs) — gli(Fy[x]).
Since Gg is mild « is injective and gr(Z,[[Gs]]) is the enveloping algebra of gr(Gg)
which implies that gr'(p) # 0 since gr(Gys) generates gr(Z,[[Gs]]).

Now Gg has the presentation F'(z1,...,2q)/(r1,...,7q) Where
r; = ab” H[xi,xj]zif mod Fj.
J#

Since Gg is mild, we have gr(Gg) =< &,...,&u | p1, ... pa > where
pi = i + Z&j [§:: &5l
J#1
In this case, if gr'(p)(&) = mu; then gr'(p)(p;) = mciu; = 0 and so u; = 0 for all i
which contradicts the fact that gr'(p) # 0.

5. PROOF OF THEOREM 1.6

Here |S| = 3 and the relations for [g can be written in the form

&1 = maof&r, &) + mas(éa, &3,
& = ma1[&a, &1] 4+ mas(§2, 3,
&3 = ma1[&s, &) + ms2[&s, &),

where m;; = —{;;/¢c;. Let v : g — g¢l,(F,) be a Lie algebra homomorphism and let
A; =7r(&). Then

Ay = mag[Ay, Ag] + mas[A, As),

Ay = mag1[Ag, Ay] + mas[As, As],

Az = ma1[As, Ay] + msa[As, Ag),
Since r = 0 if Ay, Ay, A3 are linearly dependent we may assume that A;, Ay, A3 are
linearly independent. Note that each of the above relations can be written in the

form A; = [A;, B;] for some B; € gl,(F,). Then, by the following Lemma which was
pointed out to us by Nigel Boston, each matrix A; is nilpotent if n < p.

Lemma 5.1. Let A, B be nxn matrices over F,, with A = [A, B]. Then A is nilpotent
if n < p.
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Proof. Replacing IF,, be a finite extension F,, we may assume that A is upper trian-
gular. Then the trace of A9 !is k-1 with 0 < k < p. But the trace of A" is zero for
any n > 1 since A = [A, B] implies that tr(A") = tr(ABA"' — BA") = 0. It follows
that £ = 0 and hence that the characteristic polynomial of A is X™. 0

Remark. This proof of the above Lemma is due to Julien Blondeau.

If condition (a) holds we can, without loss of generality, assume that mis = 0.
Then A; = [Ay, By] with By = my3As nilpotent which implies ad(B;) nilpotent.
Hence A; = 0 and we are reduced to the case |S| = 2.

If condition (b) holds we can, without loss of generality, assume that mi3 = maos.
Taking a linear combination of the first two equations we obtain

ma

CZAl -+ bA2 = (amlg — bmgl)[Al, AQ] + [CZAl -+ b 3/42, m13A3].
3

my

Choose non-zero a,b € F,, so that ams — bmg; = 0. Then
aAy 4+ bAs = [aA; + bAy, miz A

which implies aA; + bA; = 0 since ad(As) is nilpotent. We can then write the
equations in the form Ay = ¢[As, A3], Ay = d[As, A3], A3 = e[As, A3] from which we
readily get A} = Ay = A3 =0.

If condition (c¢) holds we may, without loss of generality, assume that mas # mi3
and mgema # mgmy2. For non-zero a,b € F), we consider the equation

CLAl +bA2 +A3 = (am12 — bmzl) [Al, AQ] + (am13 — m31) [Al, Ag] + (bmgg — m32) [AQ, Ag}
Let b = mysa/ms; and choose A such that ami3 — ms; = Aa. Then
bm23 — M3o = b <— amlgmgg/mgl — M3o = )\amlg/mgl
= amigmeg — MaaMar = Maz(amyz — mg1)
<= amya(mas — My3) = Maamag — MiaMay

mM32Ma1 — 31112
< a= .
m1z(m23 - m13)

With this choice of a we have
G/Al + bA2 —+ Ag = [)\G/Al + )\bAQ, Ag] = [aAl —+ bA2 -+ Ag, )\Ag]

which implies aA; + bAy + Az = 0 since ad(As) is nilpotent.
If conditions (a), (b), (c) fail then

ms1 M3z
mo1 Mi2

M2 a3

mgza  MMog

__|M21 M3
ms31 Mas

=0

which implies
mz1 = kimar, mga = kimaa, mig = kamaga, miz = kamas, mor = ksmay, Moz = kymas

for some ki, ko, k3 € . This implies that k;k; = 1 for all ¢ # j and hence that k=1
for all ¢. Since, by hypothesis, k; # 1 we must have k; = —1 for all <. Then the
relators for [g are of the form
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51 = a[glv 52] + b[é-la 53]7
& = c[&, & — b, &,
§3 = —c[&3,&1] — a3, &

with a,b,c € Fy. After the transformation & — ¢ '&;, & — a™'&, & — b7 '&s the
relations become

61 - [51752] + [51753]7

& = [§2, 6] — 62, &),
63 = _[63751] - [53752]

But these relations are satisfied if we replace & by A; € gls(F,) with

110 1 110 0 111 1
Ar=—3 [0 0}’ =3 {1 o}’ A=—3 {—1 —1]
which yields an isomorphism of [g with sly(F,).

Thus the only case where Property F'M(n) would fail would be when ¢;; # 0 for
all 7,7 and

513/01 = —523/02, 521/02 = —€31/C3, 512/01 = —532/03-

Note that, since ¢; = g.*&j

;7 mod g;, this is equivalent to

Cc3 C2 3 C1

(¢52¢5")® =1 mod ¢3, (¢5°¢5*)* =1 mod q1, (¢i%¢5')? =1 mod go.

6. PROOF OF THEOREM 2.6

By Theorem 2.4, we can find a set of primes S" = {qi, ..., ¢, } such that ¢, = ¢
and 0} ;. #0if i odd, £}, # 0if © < 2d is even and (5, # 0 with all other £} ; =0
if i or j is odd. If f is a homomorphism of g into gl,(F,) let A; = f(&). Then
a;A; +[A;, Aiyq] = 0 for some non-zero a; if 7 is odd and A; = [A;, B;] for some matrix
B; if i is even. By Lemma 5.1 this implies that A; is nilpotent if 7 is even and hence
that ad(A;) is nilpotent if ¢ is even. But this implies that A; = 0 if ¢ is odd. That
G g is mild follows from the fact that S’ is a circular set of primes.

7. PROOF OF THEOREM 1.9

Let p be a continuous homomorphism of G into GLY(Z,). If p(x;) = 1+ pA; then,
modulo p?, we have p(r;) = 1+ p*(c1 A; + [As, Aip1]) = 0 if i < 2m and

p(TQm) =1 +p2(02mA2m + [AQma AlD = 0.
Hence, if A; is the image of 4; in gl,(F,), we have
Ay + [A1, Ay =0, codo + [Ay, Ag] = 0, -+, com Ao, + [Asm, A1l =0

By Lemma 5.1 we see that ad(A;) is nilpotent for all 7 and hence A; = 0 for all i. But
this implies p = 1 since p # 1 implies A; # 0 for some ¢ by Lemma 3.2.
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