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Abstract. We show that the group G = ⟨x1, ..xm, y1, ..yn | u = v⟩ is residually
torsion-free nilpotent if v ∈ ⟨y1, ..yn⟩, v ̸= 1, u ∈ A = ⟨x1, ..xm⟩, u ∈ γd(A), u not a
proper power mod γd+1(A), where γk(A) is the k-th term of the lower central series
of A.

In memory of Gilbert Baumslag

In [1] Azarov proves that the group

G = ⟨x1, ..xm, y1, ..yn | u = v⟩
is residually a finite p-group for any prime p if u ∈ A = ⟨x1, ..xm⟩ is not a proper
power and v ∈ B = ⟨y1, ..yn⟩, v ̸= 1.

Let γk(A) be the k-th term of the lower central series of A. If we strengthen the
condition on u by requiring that u ∈ γd(A) but not a proper power mod γd+1(A) we
obtain the following result which extends a result of Baumslag and Mikhailov (cf. [2],
Theorem 5).

Theorem 1. If u ∈ γd(A) and u is not a proper power mod γd+1(A) there exists
a central series (Gi) in G such that the quotients Gi/Gi+1 are torsion free and the
intersection of the groups Gi is 1. In particular G is residually torsion-free nilpotent.

A sequence of subgroups Gi(i ≥ 1) is said to be a central series for G if G1 = G,
Gi+1 ⊆ Gi, [Gi, Gj] ⊆ Gi+j. To construct the required central series we will make use
of the Magnus embedding of the free group F = A ∗ B into the Magnus algebra M
of formal power series in the non-commuting variables X1, ..Xm, Y1, ..Yn with integer
coefficients which sends xi into 1 +Xi and yi into 1 + Yi.

Let e be an integer greater than the integer d in Theorem 1. If

f =
∑

ai1...ikZi1 · · ·Zik ∈ M

is a sum of distinct monomials Zi1 · · ·Zik with ai1...ik ∈ Z (k ≥ 0) and Zi an element
of {X1, . . . , Xm, Y1, . . . , Yn}, we define a valuation v on M by

v(f) = min{a+ eb | ai1...ik ̸= 0}
where a and b are respectively the number of the Xi and Yi in Zi1 · · ·Zik . In particular
we have v(Xi) = 1, v(Yi) = e. By convention v(0) = ∞.

For i ≥ 1 let Mi = {f ∈ M | v(f) ≥ i} and let Fi = F ∩ (1 +Mi) where we have
identified F with its image in M . Then (Fi) is a central series for F (cf. [5], sect. 2).
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(Note that if e = 1 in the definition of v we have Fi = γi(F ) by a deep result of
Magnus, cf. [5], section 3.) If Gi is the image of Fi in G we will show that (Gi) is the
required central series.

Lemma 2. For i ≥ e we have Fi ⊆ γ[i/e](F ) which shows that Gi ⊆ γ[i/e](G) and
hence that

∩
Gi =

∩
γi(G) = 1.

This follows from the fact that if i = a+ eb then

a+ b = (ea+ eb)/b ≥ (a+ eb)/e = i/e

and the fact that G is residually nilpotent by Azarov’s Theorem.

In order to show that the quotients Gi/Gi+1 are torsion-free we have to bring into
play the Lie ring structure on the graded ring L(G) = ⊕i(Gi/Gi+1). The Lie ring
L(F ) = ⊕i(Fi/Fi+1) is free on ξ1, ..ξm, η1, ..ηn where ξi is the image of Xi in F1/F2

and ηj is the image of Yj in Fe/Fe+1 (cf. [5], section 3). The problem is to determine
the kernel of the canonical surjection L(F ) → L(G). Let ρ be the image of r = uv−1

in Fd/Fd+1. Since v ∈ Fd+1, we have that ρ is also the image of u in Fd/Fd+1.

Theorem 3. The Lie ring g = L(F )/(ρ) is torsion-free.

Theorem 4. The kernel of L(F ) → L(G) is r = (ρ).

To prove Theorem 3 we note that since ρ is not a proper multiple of an element
of L(F ) the Lie algebra (L(F )/(ρ)) ⊗ Fp is a graded Lie algebra over the finite field
Fp defined by a single non-zero relator of degree d. In [3], théorème 2 we prove that
the homogeneous component of degree n of this graded algebra has a finite dimension
which depends only on n and d. Since p is an arbitrary prime this proves that the
homogeneous components of g = L(F )/(ρ) are torsion free. The Theorem of Birkhoff-
Witt then shows that the enveloping algebra U of g has no zero-divisors which can be
used to prove that, via the adjoint representation, r/[r, r] is a free U module generated
by the image of ρ (cf. [3], théorème 1). This fact is the key to proving Theorem 4.
The proof given in [4] can be easily be adapted to the valuation v used here. For
details cf. [5], sections 2 and 3.
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