RESIDUALLY TORSION-FREE NILPOTENT ONE RELATOR GROUPS

JOHN LABUTE

ABSTRACT. We show that the group $G = \langle x_1, ..., x_m, y_1, ..., y_n | u = v \rangle$ is residually torsion-free nilpotent if $v \in \langle y_1, ..., y_n \rangle$, $v \neq 1$, $u \in A = \langle x_1, ..., x_m \rangle$, $u \in \gamma_d(A)$, u not a proper power mod $\gamma_{d+1}(A)$, where $\gamma_k(A)$ is the k-th term of the lower central series of A.

In memory of Gilbert Baumslag

In [1] Azarov proves that the group

$$G = \langle x_1, \dots x_m, y_1, \dots y_n \mid u = v \rangle$$

is residually a finite p-group for any prime p if $u \in A = \langle x_1, ..., x_m \rangle$ is not a proper power and $v \in B = \langle y_1, ..., y_n \rangle, v \neq 1$.

Let $\gamma_k(A)$ be the k-th term of the lower central series of A. If we strengthen the condition on u by requiring that $u \in \gamma_d(A)$ but not a proper power mod $\gamma_{d+1}(A)$ we obtain the following result which extends a result of Baumslag and Mikhailov (cf. [2], Theorem 5).

Theorem 1. If $u \in \gamma_d(A)$ and u is not a proper power mod $\gamma_{d+1}(A)$ there exists a central series (G_i) in G such that the quotients G_i/G_{i+1} are torsion free and the intersection of the groups G_i is 1. In particular G is residually torsion-free nilpotent.

A sequence of subgroups $G_i (i \ge 1)$ is said to be a central series for G if $G_1 = G$, $G_{i+1} \subseteq G_i$, $[G_i, G_j] \subseteq G_{i+j}$. To construct the required central series we will make use of the Magnus embedding of the free group F = A * B into the Magnus algebra Mof formal power series in the non-commuting variables $X_1, ..., X_m, Y_1, ..., Y_n$ with integer coefficients which sends x_i into $1 + X_i$ and y_i into $1 + Y_i$.

Let e be an integer greater than the integer d in Theorem 1. If

$$f = \sum a_{i_1 \dots i_k} Z_{i_1} \dots Z_{i_k} \in M$$

is a sum of distinct monomials $Z_{i_1} \cdots Z_{i_k}$ with $a_{i_1 \dots i_k} \in \mathbb{Z}$ $(k \ge 0)$ and Z_i an element of $\{X_1, \dots, X_m, Y_1, \dots, Y_n\}$, we define a valuation v on M by

$$v(f) = \min\{a + eb \mid a_{i_1...i_k} \neq 0\}$$

where a and b are respectively the number of the X_i and Y_i in $Z_{i_1} \cdots Z_{i_k}$. In particular we have $v(X_i) = 1, v(Y_i) = e$. By convention $v(0) = \infty$.

For $i \ge 1$ let $M_i = \{f \in M \mid v(f) \ge i\}$ and let $F_i = F \cap (1 + M_i)$ where we have identified F with its image in M. Then (F_i) is a central series for F (cf. [5], sect. 2).

Date: March 8, 2015.

¹⁹⁹¹ Mathematics Subject Classification. 12G10, 20F05, 20F14, 20F40.

I would like to thank Roman Mikhailov for pointing out the work of Azarov.

(Note that if e = 1 in the definition of v we have $F_i = \gamma_i(F)$ by a deep result of Magnus, cf. [5], section 3.) If G_i is the image of F_i in G we will show that (G_i) is the required central series.

Lemma 2. For $i \ge e$ we have $F_i \subseteq \gamma_{[i/e]}(F)$ which shows that $G_i \subseteq \gamma_{[i/e]}(G)$ and hence that $\bigcap G_i = \bigcap \gamma_i(G) = 1$.

This follows from the fact that if i = a + eb then

$$a+b = (ea+eb)/b \ge (a+eb)/e = i/e$$

and the fact that G is residually nilpotent by Azarov's Theorem.

In order to show that the quotients G_i/G_{i+1} are torsion-free we have to bring into play the Lie ring structure on the graded ring $L(G) = \bigoplus_i (G_i/G_{i+1})$. The Lie ring $L(F) = \bigoplus_i (F_i/F_{i+1})$ is free on $\xi_1, ..., \xi_m, \eta_1, ..., \eta_n$ where ξ_i is the image of X_i in F_1/F_2 and η_j is the image of Y_j in F_e/F_{e+1} (cf. [5], section 3). The problem is to determine the kernel of the canonical surjection $L(F) \to L(G)$. Let ρ be the image of $r = uv^{-1}$ in F_d/F_{d+1} . Since $v \in F_{d+1}$, we have that ρ is also the image of u in F_d/F_{d+1} .

Theorem 3. The Lie ring $\mathfrak{g} = L(F)/(\rho)$ is torsion-free.

Theorem 4. The kernel of $L(F) \to L(G)$ is $\mathfrak{r} = (\rho)$.

To prove Theorem 3 we note that since ρ is not a proper multiple of an element of L(F) the Lie algebra $(L(F)/(\rho)) \otimes \mathbb{F}_p$ is a graded Lie algebra over the finite field \mathbb{F}_p defined by a single non-zero relator of degree d. In [3], théorème 2 we prove that the homogeneous component of degree n of this graded algebra has a finite dimension which depends only on n and d. Since p is an arbitrary prime this proves that the homogeneous components of $\mathfrak{g} = L(F)/(\rho)$ are torsion free. The Theorem of Birkhoff-Witt then shows that the enveloping algebra U of \mathfrak{g} has no zero-divisors which can be used to prove that, via the adjoint representation, $\mathfrak{r}/[\mathfrak{r},\mathfrak{r}]$ is a free U module generated by the image of ρ (cf. [3], théorème 1). This fact is the key to proving Theorem 4. The proof given in [4] can be easily be adapted to the valuation v used here. For details cf. [5], sections 2 and 3.

References

- D.N. Azarov, On the Residual Nipotence of Free Products of Free Groups With Cylic Amalgamation, Mathematical Notes, Vol. 64, No. 1, p. 3-7, (1998).
- [2] Gilbert Baumslag and Roman Mikhailov, Residual properties defined by basic commutators, Groups Geom. Dyn. 8, p. 1-22 (2014).
- [3] John P. Labute, Algègres de Lie et pro-p-groupes définis par une seule relation, Inv. Math. 4, p.142-158 (1967).
- [4] John P. Labute, On the Descending Central Series of Groups with a Single Defining Relation, J. Alg. 14, p. 16-23, (1970).
- [5] John P. Labute, The Determination of the Lie Algebra Associated to the Lower Central Series of a Group, Trans. AMS 288 p. 51-57 (1985)

DEPARTMENT OF MATHEMATICS AND STATISTICS, MCGILL UNIVERSITY, BURNSIDE HALL, 805 SHERBROOKE STREET WEST, MONTREAL QC H3A 0B9, CANADA

E-mail address: labute@math.mcgill.ca

 $\mathbf{2}$