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Abstract. In this paper we introduce a new class of finitely presented pro-p-
groups G of cohomological dimension 2 called mild groups. If d(G), r(G) are
respectively the minimal number of generators and relations of G, we give an
infinite family of mild groups G with r(G) ≥ d(G) and d(G) ≥ 2 arbitrary. These
groups can be constructed with G/[G, G] finite, answering a question of Kuzmin. If
G = GS(p) is the Galois group of the maximal p-extension of Q unramified outside
a finite set of primes S and p 6= 2, we show that G is mild for a co-final class of
sets S, even in the case p /∈ S.

To John Tate

1. Statement of Results

1.1. Mild pro-p-groups. Let p be a prime number; for simplicity, we assume that
p is odd. Let G = F/R be a finitely presented pro-p-group with F the free pro-
p-group on x1, . . . , xm and R = (r1, . . . , rd) the closed normal subgroup generated
by nonidentity elements r1, . . . , rd ∈ F p[F, F ], where [F, F ] is the closed subgroup
generated by the commutators [x, y] = x−1y−1xy. Let d(G) = dimFp H1(G,Z/pZ) and
r(G) = dimFp H2(G,Z/pZ). Then d(G), r(G) are respectively the minimal number of
generators and relations for G (cf.[26]). For the above presentation G = F/R we have
d(G) = m. The presentation is said to be minimal if r(G) = d.

The lower p-central series (Gn)n≥1 of a pro-p-group G is defined inductively by
G1 = G, Gn+1 = Gp

n[G,Gn]. The quotient groups grn(G), denoted additively, are
vector spaces over the finite field Fp . The graded vector space

gr(G) = ⊕n≥1grn(G)

has a Lie algebra structure over the polynomial ring Fp[π], where multiplication by π
is induced by x 7→ xp and the bracket operation for homogeneous elements is induced
by the commutator operation in G (cf.[22]).

If ξi is the image of xi in gr1(F ) then gr(F ) is the free Lie algebra on ξ1, . . . , ξm over
Fp[π]. If r ∈ F , r 6= 1, and n is largest with r ∈ Fn then n = ω(r) is called the filtration
degree of r and the image of r in grn(F ) is called the initial form of r. Let hi = ω(ri)
and let ρi ∈ grhi

(F ) be the initial form of ri. If r is the ideal of L = gr(F ) generated
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by ρ1, . . . , ρd and g = L/r then r/[r, r] is a module over the enveloping algebra Ug of g
via the adjoint representation.

Definition 1.1. The sequence ρ1, . . . , ρd with d ≥ 1 is said to be strongly free if Ug is
a free Fp[π]-module and M = r/[r, r] is a free Ug-module on the images of ρ1, . . . , ρd in
M . In this case we say that the presentation G = F/R is strongly free. A pro-p-group
is said to be mild if it has a strongly free presentation.

Let Ug(t) be the Poincaré series of Ug for the natural grading of Ug by finite dimen-
sional vector spaces over Fp. If ρ1, . . . , ρd is a strongly free sequence then

Ug(t) =
1

(1− t)(1−mt + th1 + . . . + thd)
,

by Theorem 3.9 with ei = deg(ξi) = 1 for all i. If
The term mild group is due to Anick[2]. Mild groups have a lot of nice properties.

Theorem 1.2. Let G be a mild group and G = F/(r1, . . . , rd) a strongly free presen-
tation of G with F a free pro-p-group of rank m. Let ρi be the initial form of ri and
let R = (r1, . . . , rd). Then
(a) gr(G) = gr(F )/(ρ1, . . . , ρd).
(b) R/[R, R] is a free Zp[[G]]-module on the images of r1, . . . , rd.
(c) The presentation G = F/R is minimal and cd(G) = 2.
(d) The enveloping algebra of gr(G) is the graded algebra gr(B) associated to the fil-

tration of B = Zp[[G]] by powers of the augmentation ideal Ker(Zp[[G]] → Z/pZ).
(e) The Poincaré series of gr(B) is 1/(1− t)(1−mt + th1 + . . . + thd).

A related result is proved in [18] for discrete groups in the case of the lower central
series. Theorem 1.2 can be proven in greater generality, including p = 2 in some cases
(cf. Theorem 4.1). A proof for the case p = 2 can be found in [21]. That a mild
group is of cohomological dimension 2 also follows from [15] and Theorem 3.10 (cf.
Theorem 5.1).

Not much is known about mild groups but we produce a large supply of them
(cf. Corollary 3.5). They also appear strikingly often as Galois groups of maximal
p-extensions of Q with restricted ramification even when the ramification is tame.

1.2. Galois groups of p-extensions of Q with restricted ramification. Let S be
a finite set of rational primes not containing the prime p and let GS(p) be the Galois
group of the maximal p-extension of Q unramified outside S. If p 6= 2, we can assume
that S = {q1, . . . , qm} with qi ≡ 1 mod p. If p = 2, we have to assume that the infinite
prime lies in S.

In [12],[14] Koch shows that G = GS(p) has a minimal presentation G = F/R where
F is the free pro-p-group on x1, . . . , xm and R = (r1, . . . , rm) with

ri = xqi−1
i [x−1

i , y−1
i ], yi ≡

∏

j 6=i

x`ij
j mod F p[F, F ], `ij ∈ Z/pZ,

where the image of xi in G is a generator of the cyclic inertia group at a fixed place
Qi above qi and the image of yi is a lifting of the Frobenius automorphism at qi. We
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thus have
ri ≡ xqi−1

i

∏

j 6=i

[xi, xj ]`ij mod F3.

The image of xi in F/[F, F ] = GS(p)/[GS(p), GS(p)] corresponds, under the reciprocity
map, to an idele with component 1 at all places except for the component at qi which
is equal to gi, a primitive root mod qi. The image of yi in GS(p)/[GS(p), GS(p)]
corresponds to an idele with component qi at the place qi and component 1 at the
other places. Then `ij is the image in Z/pZ of any integer r satisfying

qi ≡ g−r
j mod qj .

We call `ij the linking number of the pair (qi, qj). Note that if g is another primitive
root mod qj and gj ≡ gc mod qj then the linking number `ij would be multiplied by c
if g were used instead of gj .

There is an analogy between the arithmetic of Z and the topology of the 3-sphere
S3 in which `ij plays the role of the linking number of two loops in S3 (cf. [28]). This
analogy is not perfect as we can have `ij 6= `ji. However, it is this fact that allows
G = GS(p) to be a mild group for certain S. Our work was greatly influenced by this
analogy and corresponding results for link groups (cf. [24], [19],[2]).

Let ΓS(p) be the directed graph with vertices the primes of S with a directed edge
qiqj from qi to qj if `ij 6= 0. The directed graph ΓS(p) together with the function ` on
S × S with values in Z/pZ defined by `(qi, qj) = `ij if i 6= j and 0 otherwise is called a
linking diagram for S. Using the Čebotarev density theorem, one can show that, for
any given finite directed graph Γ, there is a set of primes S as above with ΓS(p) = Γ
(cf. Corollary 6.2).

Example 1.3. If S = {7, 13, 19}, the edges of ΓS(3) are (19, 7), (7, 13), (13, 19),
(19, 13) and, choosing g7 = 3, g13 = g19 = 2, we have `(19, 7) = `(7, 13) = `(13, 19) =
`(19, 13) = 1 with `(qi, qj) = 0 otherwise.

A linking diagram Γ can be assigned to any presentation < x1, . . . , xm | r1, . . . , rd >
where

ri ≡ xp ai
i

∏

j 6=i

[xi, xj ]aij mod F3 (ai, aij ∈ Z/pZ, aii = 0, d ≤ m).

We shall call such a presentation of Koch type. The vertices of Γ are the generators xi

and `(xi, xj) = aij if i ≤ d and zero otherwise. We have d = m if every vertex of Γ is
the source of some edge.

Definition 1.4. We call a linking diagram Γ a non-singular circuit if the the following
conditions hold.

(a) There is an ordering v1, . . . , vm of the vertices of Γ such that v1v2 · · · vmv1 is a
circuit.

(b) If `ij = `(vi, vj) then `ij = 0 if i, j are odd and

∆(v1, v2, . . . , vm) = `12`23 · · · `m−1,m`m1 − `1m`21`32 · · · `m,m−1 6= 0.

In this case we also call v1v2 · · · vmv1 a non-singular circuit.
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Note that if (a) holds then ∆(v1, v2, . . . , vm) 6= 0 if there is an edge vivj of the
circuit v1v2 · · · vmv1 such that vjvi is not an edge of Γ. Also note that (a) and (b)
imply that m is even and ≥ 4. For Γ = ΓS(p) condition (b) is independent of the
choice of primitive roots gj since

∆(v1, v2, . . . , vm) 6= 0 ⇐⇒ `1m

`m−1,m

`21
`m1

`32
`12

· · · `m,m−1

`m−2,m−1
6= 1,

where each ratio in the product is independent of the choice of primitive roots.
If m = |S| ≥ 2 the linking diagram ΓS(p) can always be enlarged to a non-singular

circuit ΓS′(p) with |S′| = 2m (cf. Corollary 6.3).

Example 1.5. For S = {7, 19, 61, 163} the edges of ΓS(3) are

{(19, 7), (7, 61), (61, 7), (61, 19), (19, 61), (19, 163), (7, 163), (163, 7)}
Using the primitive roots 2, 2, 2, 3 for these primes and setting v1 = 61, v2 = 19, v3 =
163, v4 = 7, we find

`12 = `21 = `14 = `23 = `24 = `34 = 1, `43 = `41 = −1

with all other `ij = 0. Then v1v2v3v4v1 is a circuit with v1v3, v3v1, v3v2 not edges of
ΓS(3). Hence ΓS(3) is a non-singular circuit. The initial forms of the relations in the
Koch presentation for GS(3) are

ρ1 = 2πξ1 + [ξ1, ξ2] + [ξ1, ξ4]

ρ2 = [ξ2, ξ1] + [ξ2, ξ3] + [ξ2, ξ4]

ρ3 = 2πξ3 + [ξ3, ξ4]

ρ4 = −[ξ4, ξ1]− [ξ4, ξ3].

By virtue of Theorems 3.10 and 3.12 we obtain that GS(3) is a mild group . More
generally, these two theorems yield the following result.

Theorem 1.6. A presentation of Koch type is strongly free if p 6= 2 and the vertices
of its linking diagram Γ form a non-singular circuit.

Theorem 1.6 can be proven under other conditions on the linking diagram when the
number of vertices is odd and ≥ 5 (cf. Theorem 3.14).

The groups GS(p) are very mysterious and their structure is related to the Fontaine-
Mazur Conjecture (cf.[4],[5],[9]). All that was known previously about these groups
was that they were non-analytic for m ≥ 4 and in certain cases for m = 2, 3 (cf.
[26],[13],[23]). The group GS(3) with S = {7, 19, 61, 163} seems to be the first known
example where such a group is of cohomological dimension 2. This group also seems
to be the first known example of a finitely generated pro-p-group G of cohomological
dimension 2 with the same number of generators and relations and G/[G,G] finite. This
answers a question of Kuzmin[16],§6. Moreover, it has the property that H/[H, H] is
finite for any subgroup H of finite index. By Theorem 4.1(g), the rank of the n-th
3-central series quotient of GS(3) is

2
n

∑

k=1

1
k

∑

d|k

µ(k/d)2d.
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So, as a graded vector space, the Lie algebra associated to the lower 3-central series is
the direct sum of two copies of the Lie algebra associated to the lower 3-central series
of the free pro-3-group on 2 generators.

Theorem 1.6 produces a lot of mild groups. An interesting example with the same
number of generators and relators is the group

〈x1, x2, . . . , xm | xp
1[x1, x2], · · · , xp

m−1[xm−1, xm], xp
m[xm, x1] >〉

where m ≥ 4 is even and p is odd. A consequence of Theorem 3.14 and Theorem 3.10
is that the group is mild if m ≥ 5 is odd (cf. Example 3.16).

If Sp = S ∪ {p}, it is well known that the cohomological dimension of GSp(p) is 2
when p is odd; for the case p = 2 see [25]. However, we can also prove that, for p 6= 2, it
is a mild group under certain conditions on the linking diagram associated to its Koch
presentation. This presentation is the same as that for GS(p) except for an additional
generator xm+1 corresponding to a generator of the inertia group at p. Its linking
diagram ΓSp(p) is obtained from ΓS(p) by adding the vertex p which corresponds to
xm+1 and an edge (q, p) for every q ∈ S not congruent to 1 mod p2. The linking number
`qp ∈ Z/pZ is defined by

q ≡ (1 + p)−`qp mod p2.
By definition `pq = 0 for all q ∈ S and `pp = 0.

Theorem 1.7. If p 6= 2, the pro-p-group GSp is a mild group if either of the following
two conditions hold:
(A) qi 6≡ 1 mod p2 for all qi ∈ S,
(B) There is a prime q ∈ S, q 6≡ 1 mod p2 with `(qi, q) 6= 0 for all qi ∈ S distinct from

q.
That condition (A) implies that GSp is a mild group follows from Theorems 3.10,

3.18. That condition (B) implies that GSp is a mild group follows from Theorems 3.10,
3.19. If condition (B) is not satisfied then it can be made so by the addition of a single
prime (cf. Proposition 6.1). It would be interesting to find more general conditions on
ΓSp which imply that GSp is a mild group

2. Algebraic Preliminaries

In this section we will review the more important algebraic techniques and results
that we use in our paper. The most important of these is the Birkhoff-Witt Theorem.
Theorem 2.1 (Birkhoff-Witt). Let g be a Lie algebra over a commutative ring k and
let φ be the canonical mapping of g into its enveloping algebra Ug . If g is a free
k-module with ordered basis (ei)i∈I then Ug is a free k-module with ordered basis the
family of elements

φ(ei1)φ(ei2) · · ·φ(ein)
with n ≥ 0, i1 ≤ i2 ≤ · · · ≤ in.

In particular, if g is a free k-module, the canonical mapping of g into Ug is injective
and we can identify g with a Lie subalgebra of Ug. Let Un be the k-module generated
by all products x1x2 · · ·xm with xi ∈ g and m ≤ n. Then UiUj ⊆ Ui+j and gr(Ug) =
∑

n 6=0 Un+1/Un is a commutative associative algebra.
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Corollary 2.2. If g is a free k-module then gr(Ug) is isomorphic to Sg, the symmetric
algebra of g. If, in addition, k is an integral domain then Ug is an integral domain.

Corollary 2.3. Let g be a Lie algebra over k and let h be a Lie subalgebra such that
h and g/h are free k-modules. If V,U are respectively the enveloping algebras of h, g
then U is a free left (right) V -module with basis

fj1fj2 · · · fjn (n ≥ 0, j1 ≤ j2 ≤ · · · ≤ jn

where (fj)j∈J is any lifting of an ordered basis for g/h.
The Birkhoff-Witt Theorem has the following converse result.

Theorem 2.4. Let g be a graded Lie algebra over a principal ideal ring k and suppose
that the homogeneous components are finitely generated k-modules. If the enveloping
algebra of g is a free k-module then so is g.

Proof. Let a, b be respectively the kernel and image of the canonical map φ of g into
Ug. Then b is a free k-module and so the exact sequence

0 → a → g → b → 0

splits as k-modules. If π is an irreducible element of k and we let M = M/πM =
M ⊗k (k/πk) for any k-module M , we obtain the exact sequence

0 → a → g → b → 0.

But the composite of the two arrows g → b → Ug is injective by the Birkhoff-Witt
Theorem over the field k/πk. Hence g → b is injective. This implies that a = 0.
Since this is true for every homogeneous component of a for any π, we obtain that the
homogenous components of a are all zero as they are finitely generated. This implies
that a = 0 which is what we wanted to prove. �

If A is a graded k-module with homogeneous components An with An a finitely
generated free k-module of rank cn the Poincaré series of A is the power series

A(t) =
∑

n≥0

cntn.

By definition A(t) ≥ 0 if cn ≥ 0 for all n. If B is another graded k-module with
homogeneous components free finitely generated k-modules then A(t) ≥ B(t) if A(t)−
B(t) ≥ 0. We also have (A⊕B)(t) = A(t) + B(t) and (A⊗k B)(t) = A(t)B(t). If

0 → A → B → C → O

is exact and C is also a free k-module then

B(t) = A(t) + C(t).

Proposition 2.5. Let g = ⊕n≥1gn be a graded Lie algebra over k with gn (n ≥ 1)
a free k-module of finite rank an. Then the enveloping algebra Ug of g is a graded
k-module whose homogenous components Un are free k-modules of finite rank and

Ug(t) =
∏

n≥1

(1− tn)−an .
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Proof. By the Birkhoff-Witt Theorem Ug(t) = Sg(t). Since g = ⊕n≥1gn we have

Sg(t) =
∏

n≥1

Sgn(tn)

which implies the result as SM (t) = (1− t)−r for any free k-module M of rank r. �

Now let k = k0[π], the polynomial algebra over the field k0. Let Mk be the category
of k-modules M such that M also has the structure of a graded module over k0 where
π sends the homogeneous component Mn into Mn+1. We say that M is of finite type
if each component Mn is finite-dimensional. In the following we let M = M/πM =
M ⊗k (k/πk).

Proposition 2.6. Let M ∈Mk. Then
(a) M = 0 ⇐⇒ M/πM = 0;
(b) A subset of M generates M ⇐⇒ it generates M modulo πM .
(c) M is a free k-module ⇐⇒ multiplication by π is injective ⇐⇒ M is torsion free;
(d) M is a free k-module ⇐⇒ M ∼= M ⊗k0 k.

For a proof see [22], §1.2.

Corollary 2.7. If M ∈ Mk then M(t) ≤ M/(1 − t) with equality ⇐⇒ M is a free
k-module.

Proposition 2.8. Let g be a Lie algebra over k0[π] which has the structure of a graded
Lie algebra over k0 with homogeneous components gn satisfying πgn ⊆ gn+1. Then g
is a free k0[π]-module if its enveloping algebra Ug is a free k0[π]-module.

The proof of this is the same as the proof of Proposition 2.4 except that only the
irreducible element π is required.

3. Strongly Free Sequences

Let k be a principal ideal domain and let L be the free Lie algebra over k on
ξ1, . . . , ξm. We view L as graded algebra where the degree of ξi is ei ≥ 1. Let ρ1, . . . , ρm

be homogeneous elements of L with ρi of degree hi and let r = (ρ1, . . . , ρd) be the ideal
of L generated by ρ1, . . . , ρd. Let g = L/r and let U = Ug be the enveloping algebra of
g. Then M = r/[r, r] is a U -module via the adjoint representation.

Definition 3.1. The sequence ρ1, . . . , ρd is said to be strongly free if
(a) Ug is a free k-module,
(b) M = r/[r, r] is a free U -module on the images of the ρi in M .

By the Birkhoff-Witt Theorem and Proposition 2.4, Ug is a free k-module if and
only if g is a free k-module.

Let V (resp. W ) be the enveloping algebra of L (resp. r) and I (resp. J) be the
augmentation ideal of V (resp. W ). If R is the ideal of V generated by r, we have an
exact sequence

TorW
1 (k, V ) → M → I/RI → V/R→ k → 0.

It is obtained from the exact sequence 0 → I → V → k → 0 by tensoring with k = W/J
over W and using the fact that
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(1) If M is a W -module then M ⊗W (W/J) = M/JM ;
(2) R = rV = V r;
(3) TorW

1 (k, k) = r/[r, r] (cf. [7], Ch. XIII, §2).
The map M → I/RI is induced by the inclusion r ⊆ I. The algebra V is the free

associative algebra over k on ξ1, . . . , ξm and I is the direct sum of the left ideals V ξi.
The U -module I/RI is the direct sum of the free U -submodules Ugi where gi is the
image of ξi in U = V/R. If g is free as a k-module then V is a free W -module by
Corollary 2.3 since r is a free k-module. In this case we have the exact sequence

0 → M → I/RI → V/R→ k → 0.

Expressing M as a quotient Ud/N using the relators ρi, we obtain the exact sequence of
graded modules whose homogeneous components are finitely generated free k-modules

0 → N → ⊕d
j=1U [hj ] → ⊕m

j=1U [ej ] → U → k → 0

where U [d] = U but with degrees shifted by d; by definition, U [d](t) = tdU(t). We
have N = 0 if and only if M is a free U -module on the images of the ρi.

Taking Poincaré series in long exact sequence, we get

N(t)− (th1 + · · ·+ thd)U(t) + (te1 + · · ·+ tem)U(t)− U(t) + 1 = 0.

Solving for U(t), we get U(t) = P (t) + N(t)P (t), where

P (t) =
1

1− (te1 + · · ·+ tem) + th1 + · · ·+ thd
.

We thus obtain

Proposition 3.2. If ρ1, . . . , ρd is a strongly free sequence and U is the enveloping
algebra of g = L/(ρ1, . . . , ρd) then U(t) = P (t). Conversely, if g is a free k-module
and U(t) = P (t) then ρ1, . . . , ρd is a strongly free sequence. Moreover, if P (t) ≥ 0 then
U(t) ≥ P (t) with equality if and only if ρ1, . . . , ρd is a strongly free sequence.

The condition P (t) ≥ 0, i.e, the coefficients of the powers of tn are ≥ 0, is a serious
restriction on the the sequences (ei) and (hj). For example, 1/(1−3t+4t3) is a positive
series whereas 1/(1 − 3t + 5t3) is not. If all ei = 1 and all hi = h > 1 then in [1],
Lemma 3.5 Anick proved that

P (t) ≥ 0 =⇒ d <
mh

(h− 1)e
,

where e = 2.718 · · · .
Strongly free sequence were studied by Anick in [1] in the context of algebras over a

field. They are the analogues of regular sequences in commutative algebra. They also
arose in the work of Halperin-Lemaire[10] and in the paper of Koch[15].

In general, it is difficult to determine whether a sequence is strongly free but we can
construct a large supply of them using the elimination theorem. Let L(X) be the free
Lie algebra over k on the set X. Let S be a subset of X and let a be the ideal of L(X)
generated by X − S. Then the elimination theorem [3], §2, Proposition 10 states that
a is a free Lie algebra over k with basis consisting of the elements

ad(σ1)ad(σ2) · · · ad(σn)(ξ)
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with n ≥ 0, σi ∈ S, ξ ∈ X − S. If B is the enveloping algebra of L(S) = L(X)/a, it
follows that a/[a, a] is a B-free module with basis the images of the elements ξ with
ξ ∈ X − S.

Theorem 3.3. Suppose that k is a field. Let S be a subset of X = {ξ1, . . . , ξm} and let a
be the ideal of the free Lie algebra L on X generated by X−S. Let T = {τ1, . . . , τt} ⊂ a
whose elements are homogeneous and B-independent modulo [a, a]. If ρ1, . . . , ρd are
homogeneous elements of a which lie in the k-span of T modulo [a, a] and which are
linearly independent over k modulo [a, a] then the sequence ρ1, . . . , ρd is strongly free
(in L).

Proof. If r is the ideal of L generated by ρ1, . . . , ρd, the elements

ad(σ1)ad(σ2) · · · ad(σn)(ρj)

with 1 ≤ j ≤ d, n ≥ 0, σi ∈ S generate r as an ideal of the Lie algebra a. Suppose that
these elements form part of a basis of the free Lie algebra a. The elimination theorem
then shows that M = r/[r, r] is a free module over the enveloping algebra C of a/r
with the images of these elements as basis. To show that this implies that M is a free
U -module on the images mi of the ρi suppose that

∑

i ui ·mi = 0 with ui ∈ U . By the
Corollary 2.3 every ui can be written in the form

ui =
∑

cijwj

where the wj are distinct products of elements of S. Then

0 =
∑

i

ui ·mi =
∑

i,j

cij wj ·mi

which implies that all cij are zero and hence that each ui is zero.
To show that the elements of the form ad(σ1)ad(σ2) · · · ad(σn)(ρj) are part of a

Lie algebra basis of a it suffices to show that ρ1, . . . , ρd are B-independent modulo
[a, a]. We now work modulo [a, a]. If H is the k-span of ρ1, . . . , ρd, we can find a basis
γ1, . . . , γd of H such that

γi = aiαi +
s

∑

j=1

aijβj

where ai, aij ∈ k, ai 6= 0, d + s = t, T = {α1, . . . , αd, β1, . . . , βs}. If u1, . . . , ud ∈ B, we
have

d
∑

i=1

ui · γi =
d

∑

i=1

aiui · αi +
s

∑

j=1

(
d

∑

i=1

aijui) · βj .

By the B-independence of the elements of T ,
d

∑

i=1

ui · γi = 0 mod [a, a] =⇒
d

∑

i=1

aiui · αi = 0 mod [a, a]

and hence that aiui = 0 so that ui = 0 for all i which implies the B-independence of
γ1, . . . , γd and hence of ρ1, . . . , ρd. �

Remark 3.4. Note that for strongly free sequences ρ1, . . . , ρd produced by the above
method, the Lie algebra L/(ρ1, . . . , ρd) is an extension of two free Lie algebras.
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Corollary 3.5. Let {1, . . . , m} = I∪J with I∩J = ∅, |I| = k and let S = {ξj | j ∈ J}.
Then, for any h ≥ 0, any subset of the k(m− k)h elements

ξj1 · · · ξjh · ξi = [ξj1 , [ξj2 , · · · , [ξjh , ξi]] · · · ]]

with j1, . . . , jh ∈ J , i ∈ I is strongly free as is, modulo [a, a], any linearly independent
subset of the space they span.

Example 3.6. If we take S = {ξ2, . . . , ξm} we see that

[ξ1, ξ2], [ξ1, ξ3], . . . , [ξ1, ξm]

is a strongly free sequence. If m ≥ 4 is even and we take S = {ξn | n odd} we see that

[ξ1, ξ2], [ξ2, ξ3], . . . , [ξm−1, ξm], [ξm, ξ1]

is a strongly free sequence. We shall show later this this is also true for m > 4 odd (cf.
Example 3.16).

Note that the above implies the maximum length s(m) of a strongly free sequence
of elements of degree 2 in the free Lie algebra on ξ1, . . . , ξm satisfies

max
k

k(m− k) ≤ s(m) < m2/e.

Let t(m) = maxk k(m − k). We have 4 ≤ s(4) ≤ 5. However, s(4) = 5 is not possible
as P (t) is not positive in this case; so s(4) = t(4) = 4. We have 6 ≤ s(5) ≤ 9 and
7, 8, 9 are not possible; so s(5) = t(5) = 6. In this case, an example of a strongly free
sequence of length 6 is

[ξ1, ξ2], [ξ1, ξ4], [ξ3, ξ2], [ξ3, ξ4], [ξ5, ξ2], [ξ5, ξ4].

We conjecture that t(m) = s(m) for all m ≥ 4.

Our examples of strongly free sequences over a field can also be obtained using
Anick’s criterion for strong freeness developed in [1], §6. We will need this criterion to
construct examples when the number of variables is 2. Let L be the free Lie algebra
on ξ1, . . . , ξm with coefficients in the field k and A be the enveloping algebra of L. A
sequence of non-identity monomials α1, . . . , αd in the ξi is said to be combinatorially
free if (1) no monomial αi is a submonomial of αj for i 6= j and (2) if αi = u1v1, αj =
u2v2 is a proper factorization with ui, vi monomials then u1 6= v2. Let an ordering of
ξ1, . . . , ξm be given and order the monomials lexicographically. By the leading term
of an element w of L we mean the largest monomial appearing in w (with a non-zero
coefficient).

Proposition 3.7 (Anick’s Criterion). The sequence ρ1, . . . , ρd in L is strongly free if
the sequence of leading terms of these elements is combinatorially free.

Example 3.8. In the case m = 2, any sequence of distinct elements of the form

ρrs = [ad(ξ2)rad(ξ1)s+1ξ2, ad(ξ2)r+1ad(ξ1)s+1ξ2],

where r, s ≥ 0, is strongly free since the leading term of ρrs for the ordering ξ1 < ξ2 is
λr,s = ξr+1

2 ξs+1
1 ξr+2

2 ξs+2
1 and the λr,s form a combinatorially free sequence.
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Now let k = k0[π] where k0 is a field. We view k as a graded algebra over k0 with π of
degree 1. Again L is the free Lie algebra over k on ξ1, . . . , ξm with the ξi being assigned
the degree ei ≥ 1. Then L has a natural grading by finite-dimensional vector spaces
Ln over k0 in which multiplication by π sends Ln into Ln+1. Let L = L/πL = L⊗k k0

and let ρ1, . . . , ρm be the images of ρ1, . . . , ρm in L. The Lie algebra L is the free
Lie algebra over k0 on the images of ξ1, . . . , ξm which we can and do identify with
ξ1, . . . , ξm. If r = (ρ1, . . . , ρd), the enveloping algebra of g = L/r is U = U/πU .

Proposition 3.2 holds if P (t) is replaced by

Q(t) =
P (t)
1− t

=
1

(1− t)(1− (te1 + · · ·+ tem) + th1 + · · ·+ thd)
.

Proposition 3.9. If ρ1, . . . , ρd is a strongly free sequence and U is the enveloping
algebra of g = L/(ρ1, . . . , ρd) then U(t) = Q(t). Conversely, if g is a free k-module
and U(t) = Q(t) then ρ1, . . . , ρd is a strongly free sequence. Moreover, if Q(t) ≥ 0 then
U(t) ≥ Q(t) with equality if and only if ρ1, . . . , ρd is a strongly free sequence.

Theorem 3.10. We have ρ1, . . . , ρd strongly free ⇐⇒ ρ1, . . . , ρd strongly free.

Proof. (⇐) From 3.9 we have U ∼= U ⊗k0 k as k0-modules which implies

U(t) = (1− t)Q(t) =
1

1− (te1 + · · ·+ tem) + th1 + · · ·+ thd
= P (t)

and hence that ρ1, . . . , ρd is strongly free by Proposition 3.2.

(⇒) If M = r/[r, r] we have an exact sequence of graded vector spaces over k0

0 → K → M → U [e1]⊕ · · · ⊕ U [em] → U → k → 0.

Taking Poincaré series we get

K(t)−M(t) + (te1 + · · ·+ tem)U(t)− U(t) +
1

1− t
= 0

from which we get M(t) = K(t)− (1− (te1 + · · ·+ tem))U(t) + 1/(1− t). Hence

M(t)
1− (te1 + · · ·+ tem)

=
K(t)

1− (te1 + · · ·+ tem)
+

1
(1− t)(1− (te1 + · · ·+ tem))

− U(t).

Now suppose that ρ1, . . . , ρd is strongly free. Then, if r is the ideal of L generated by
ρ1, . . . , ρd, we have surjections

U [h1]⊕ · · · ⊕ U [hd] → M → r/[r, r]

whose composite is an isomorphism. It follows that

M ∼= r/[r, r] ∼= U [h1]⊕ · · · ⊕ U [hd],

M(t) ≤ M(t)
1− t

=
1

1− t
· th1 + · · ·+ thd

1− (te1 + · · ·+ tem) + th1 + · · ·+ thd
,

U(t) ≤ U(t)
1− t

=
1

1− t
· 1
1− (te1 + · · ·+ tem) + th1 + · · ·+ thd

·
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Using the fact that K(t) ≥ 0, we get

M(t)
1− (te1 + · · ·+ tem)

≥ 1
(1− t)(1− (te1 + · · ·+ tem))

− U(t)
1− t

=
1

1− t
(

1
(1− (te1 + · · ·+ tem)

− 1
1− (te1 + · · ·+ tem) + th1 + · · ·+ thd

)

=
M(t)

(1− t)(1− (te1 + · · ·+ tem))
≥ M(t)

1− (te1 + · · ·+ tem)
.

It follows that K(t) = 0, U(t) = U(t)/(1− t) and M(t) = M/(1− t). Hence U is a free
k-module and M is a free U -module since we have a natural surjection

U [h1]⊕ · · ·U [hd] → M

with both sides having the same Poincaré series. �

Corollary 3.11. If ρ /∈ πL then ρ is a strongly free sequence consisting of a single
element.

Proof. We use the fact that M → U
m

is injective. Hence, if ρ 6= 0 then M is a
submodule of U

m
and is generated by a single non-zero element. So it must be free

since U has no zero-divisors by the Birkhoff-Witt Theorem. �

Let us apply the above results to the relators in Example 1.5. Reducing mod π we
get the relators

ρ1 = [ξ1, ξ2] + [ξ1, ξ4]

ρ2 = −[ξ1, ξ2] + [ξ2, ξ3] + [ξ2, ξ4]

ρ3 = [ξ3, ξ4]

ρ4 = −[ξ4, ξ1]− [ξ4, ξ3]

in the free Lie algebra over F3 on ξ1, ξ2, ξ3, ξ4. We apply Theorem 3.3 with S = {ξ1, ξ3}
and T = {[ξ1, ξ2], [ξ3, ξ2], [ξ3, ξ4], [ξ1, ξ4]}. Modulo [a, a], the relators ρ1, . . . , ρ4 are
linearly independent and lie in the subspace spanned by T . Hence ρ1, . . . , ρ4 is strongly
free.

Now let L be the free Lie algebra on X = {ξ1, . . . , ξm} over a field k and let ρ1, . . . , ρm

be elements of L with
ρi =

∑

j 6=i

`ij [ξi, ξj ].

Let Γ be the linking diagram whose vertices are ξ1, . . . , ξn with (ξi, ξj) an edge if j 6= i
and the linking number `ij 6= 0.

Theorem 3.12. The sequence ρ1, . . . , ρm is strongly free if the vertices of Γ form a
non-singular circuit.

Proof. After permuting the vertices we can assume that the path showing that Γ is
non-singular is ξ1ξ2 · · · ξmξ1. We apply Theorem 3.3 with S = {ξi | i odd} and T =
{[ξi, ξj ] | i odd, j even}. In this case, we have ρi in the span H of T modulo [a, a] since
no [ξi, ξj ] appears in ρi with i, j both odd. Let ei = [ξi, ξi+1] for 1 ≤ i ≤ m − 1, let
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em = [ξm, ξ1] and complete e1, . . . , em to a basis of H modulo [a, a]. The transpose of
the coefficient matrix of e1, . . . , em in ρ1, . . . , ρn is























`12 0 0 · · · 0 −`1m

−`21 `23 0 · · · 0 0
0 −`32 `34 · · · 0 0
0 0 −`43 · · · 0 0
...

...
...

...
...

0 0 0 · · · `m,m−1 0
0 0 0 · · · −`m,m−1 `m1























.

The determinant of this matrix is

∆(ξ1, ξ2, . . . , ξm) = `12`23 · · · `m−1,m`m1 − `1m`21`32 · · · `m,m−1.

�

Example 3.13. Let S = {181, 163, 7, 61} and let Γ = ΓS(3). Using the primitive roots
2, 2, 3, 2 for v1 = 181, v2 = 163, v3 = 7, v4 = 61 respectively, we find

`12 = `23 = `34 = `21 = `43 = 1, `41 = `14 = `32 = −1, `13 = `31 = 0

so that ∆(v1, v2, v3, v4) = 1. Hence ΓS(3) is a non-singular circuit.

Theorem 3.14. Suppose that m ≥ 5 is odd and `ij = 0 for i, j 6= m and i, j odd. If
`m1 6= 0 and ξ1ξ2 · · · ξm−1ξ1 is a non-singular circuit then the sequence ρ1, . . . , ρm is
strongly free.

Proof. We apply Theorem 3.3 with S = {ξi | i 6= m, i odd} and T the set of [ξi, ξj ] with
ξi ∈ S, ξj /∈ S. In this case, we have ρi in the span H of T modulo [a, a] since no [ξi, ξj ]
appears in ρi with i, j both odd and i, j 6= m. Let ei = [ξi, ξi+1] for 1 ≤ i ≤ m − 3,
em−1 = [ξm−1, ξ1], em = [ξm, ξ1] and complete e1, . . . , em to a basis of H modulo [a, a].
The transpose of the coefficient matrix of e1, . . . , em in ρ1, . . . , ρm is























`12 0 0 · · · −`1,m−1 −`1m

−`21 `23 0 · · · 0 0
0 −`32 `34 · · · 0 0
0 0 −`43 · · · 0 0
...

...
...

...
...

0 0 0 · · · `m−1,1 0
0 0 0 · · · 0 `m1























.

The determinant of this matrix is `m1∆(ξ1, ξ2, . . . , ξm−1) which is non-zero by hypoth-
esis. �

Example 3.15. If we take S = {61, 7, 163, 43, 19} then, for the given ordering of S,
we have

`13 = `31 = 0, `12 = `32 = `34 = `43 = `14 = `51 = 1, `21 = `23 = `41 = `45 = −1.

Since `(19, 61) = 1 and ∆(61, 7, 163, 43) = −1 Theorem 3.14 applies and GS(3) is a
mild group.
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Example 3.16. The presentation with defining relators

ρ1 = [ξ1, ξ2], ρ2 = [ξ2, ξ3], ρ3 = [ξ3, ξ4], . . . , ρm−1 = [ξm−1, ξm], ρm = [ξm, ξ1]

is equivalent to the presentation with ρm−1 replaced by

[ξm−1, ξm] + [ξm−1, ξ1].

The graph Γ associated to this presentation satisfies the conditions of Theorem 3.14
when m ≥ 5 is odd.

One can develop rank criteria for strong freeness based on the size of the set S in
Theorem 3.3. For example, one has the following result for size 2.

Theorem 3.17. Suppose that `12 = `21 = 0. Then ρ1, . . . , ρm is strongly free if the
matrix























`13 `14 `15 · · · `1m 0 0 0 · · · 0
0 0 0 · · · 0 `23 `24 `25 · · · `2m

−`31 0 0 · · · 0 −`32 0 0 · · · 0
0 −`41 0 · · · 0 0 −`42 0 · · · 0
0 0 −`51 · · · 0 0 0 −`52 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · −`m1 0 0 0 · · · −`m2























of size m× 2(m− 2) has rank m.

Proof. We apply Theorem 3.3 with S = {ξ1, ξ2} and

T = {[ξ1, ξ3], [ξ1, ξ4], . . . , [ξ1, ξm], [ξ2, ξ3], [ξ2, ξ4], . . . , [ξ2, ξm]}.

The given matrix is the transpose of the coefficient matrix of ρ1, . . . , ρm with respect
to T modulo [a, a]. �

We now consider the case L is the free Lie algebra on X = {ξ1, . . . , ξm} over a field
k and ρ1, . . . , ρd are d < m elements of L with

ρi =
∑

j 6=i

`ij [ξi, ξj ].

The associated linking diagram Γ has vertices ξ1, . . . , ξm with (ξi, ξj) an edge if i 6= j
and the linking number `(ξi, ξj) = `ij 6= 0. We want to find conditions on Γ which
imply the strong freeness of the sequence ρ1, . . . , ρd in the case d < m.

Theorem 3.18. The sequence ρ1, . . . , ρm−1 is strongly free if `(ξi, ξm) 6= 0 for 1 ≤ i <
m.

Proof. We apply Theorem 3.3 with S = {ξm}, T = {[ξi, ξm] | 1 ≤ i < m}. We get the
required result since ρ1, . . . , ρm−1 are in a, and modulo [a, a] are a basis for the span
of T . �

Theorem 3.19. Suppose that `(ξm−1, ξm) 6= 0 and `(ξi, ξm−1) 6= 0 for i < m − 1.
Then ρ1, . . . , ρm−1 is a strongly free sequence.
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Proof. We apply Theorem 3.3 with S = {ξm−1} and

T = {[ξ1, ξm−1], [ξ2, ξm−1], . . . , [ξm−2, ξm−1], [ξm−1, ξm]}.
We get the required result since ρ1, . . . , ρm−1 are in a, and modulo [a, a] is a basis for
the span of T . �

Definition 3.20. We call Γ rooted at the vertex v if for every vertex w 6= v there is a
path from w to v.

We don’t know if ρ1, . . . , ρm−1 is a strongly free sequence if Γ is rooted at ξm. For
example, we don’t know whether or not the sequence,

ρ1 = [ξ1, ξ3], ρ2 = [ξ2, ξ1] + [ξ2, ξ4], ρ3 = [ξ3, ξ4] + [ξ3, ξ5], ρ4 = [ξ4, ξ5],

which is rooted at ξ5, is strongly free. Computer evidence using GAP suggests that it
is.

4. Computing the Lower p-Central Series

Let F be the free pro-p-group on x1, . . . , xm. The completed group algebra A =
Zp[[F ]] over the p-adic integers Zp is isomorphic to the Magnus algebra of formal
power series in the non-commuting indeterminates X1, . . . , Xm over Zp. Identifying F
with its image in A, we have xi = 1 + Xi (cf. [26], p. I-7).

If e1, . . . , em are integers > 0, we define a valuation w of A in the sense of Lazard
by setting

w(
∑

i1,...,ik

ai1,...,ikXi1 · · ·Xik) = inf
ii,...,ik

(v(ai1,...,ik) + ei1 + · · ·+ eik),

where v is the p-valuation of Zp with v(p) = 1. Let

An = {u ∈ A | w(u) ≥ n}, grn(A) = An/An+1, gr(A) = ⊕n≥0grn(A).

Then gr(A) is a graded k-algebra where k is the graded ring Fp[π] = gr(Zp) with π
the image of p in pZp/p2Zp. If ξi is the image of Xi in grei

(A) then gr(A) is the
free associative k-algebra on ξ1, . . . , ξm with a grading in which ξi is of degree ei and
multiplication by π increases the degree by 1. The Lie subalgebra L of gr(A) generated
by the ξi is the free Lie algebra over k on ξ1, . . . , ξm by the Birkhoff-Witt Theorem.
Note that when ei = 1 for all i we have An = In, where I is the augmentation ideal
(p,X1, . . . , Xm) of A.

For n ≥ 1, let Fn = (1+An)∩F and for x ∈ F let ω(x) = w(x− 1) be the filtration
degree of x. Then (Fn) is a decreasing sequence of closed subgroups of F with the
following properties:

F1 = F, [Fn, Fk] ⊆ Fn+k, F p
n ⊆ Fn+1,

where [Fn, Fk] is the closed normal subgroup generated by the commutators [u, v] =
u−1v−1uv with u ∈ Fn, v ∈ Fk. Such a sequence of subgroups of a pro-p-group F is
called a p-central series of F . An important example of a p-central series of a pro-p-
group G is the lower p-central series defined by

G1 = G, Gn+1 = Gp
n[G,Gn].
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If (Gn) is a p-central series of G, let grn(G) = Gn/Gn+1 with the group operation
denoted additively. Then gr(G) = ⊕n≥1grn(G) is a graded vector space over Fp with a
bracket operation [ξ, η] which is defined for ξ ∈ Gn, η ∈ Gk to be the image in grn+k(F )
of [x, y] where x, y are representatives of ξ, η in grn(G), grk(G) respectively. Under this
bracket operation, gr(G) is a Lie algebra over Fp. The mapping x 7→ xp induces an
operator P on gr(G) sending grn(G) into grn+1(G). For homogeneous ξ, η, we have

P (ξ + η) = P (ξ) + P (η), [P (ξ), η] = P ([ξ, η]).
unless p = 2 and ξ, η ∈ gr1(F ) in which case

P (ξ + η) = P (ξ) + P (η) + [ξ, η], [P (ξ), η] = P ([ξ, η]) + [ξ, [ξ, η]].

In the case G = F and Fn = (1 + An) ∩ F , the mapping x 7→ x − 1 induces an
injective Lie algebra homomorphism of gr(F ) into gr(A). Identifying gr(F ) with its
image in gr(A), we have P (ξ) = πξ unless p = 2 and ξ ∈ gr1(F ) in which case

P (ξ) = ξ2 + πξ.

The Lie algebra gr(F ) is the smallest Fp-subalgebra of gr(A) which contains ξ1, . . . ξm

and is stable under P . To see this, let Xn be the set of elements xi with ei = n and
define subsets Tn inductively as follows: T1 = X1 and, for n > 1, Tn = T ′n ∪ T ′′n where

T ′n = {xp | x ∈ Tn−1}, T ′′n = Xn ∪ {[x, y] | x ∈ T ′′r , y ∈ T ′′s , r + s = n}.
If F ′n is the closed subgroup of F generated by the Tk with k ≥ n, then (F ′n) is a
p-central series of F (cf. [22], §1.2). If gr′(F ) is the associated graded Lie-algebra, the
inclusions F ′n ⊆ Fn induce a Lie algebra homomorphism gr′(F ) → gr(F ). If p 6= 2 or
if p = 2 and ei > 1 for all i, we obtain a sequence of Lie algebra homomorphisms over
Fp[π]

L → gr′(F ) → gr(F ) → gr(A),
where the homomorphism L → gr′(F ) sends ξi to ξ′i, the image of ξi in gr′ei

(F ),
and hence is surjective since the ξ′i generate gr′(F ) as a Lie algebra over Fp[π]. The
composite of these homomorphisms sends ξi to ξi and hence is injective. Thus gr′(F ) →
gr(F ) is injective from which it follows inductively that F ′n = Fn for all n and hence
that L = gr(F ).

If p = 2 and ei = 1 for some i, we have to replace L by the free mixed Lie algebra on
ξ1, . . . , ξm and the result follows by the Birkhoff-Witt theorem for mixed Lie algebras
(cf. [22], §1.2).

The above filtration (Fn) is called the (x, e)-filtration of F . If ei = 1 for all i then
(Fn) is the lower p-central series of F . We will prove Theorem 1.2 in the more general
context of an (x, e)-filtration.

Let r1, . . . , rd ∈ F and let R = (r1, . . . , rd) be the closed normal subgroup of F
generated by r1, . . . , rd. Let ρi ∈ grhi

be the initial form of ri with respect to the
(x, e)-filtration (Fn) of F . The presentation G = F/(r1, . . . , rd) is said to be strongly
free with respect to the (x, e)-filtration if ρ1, . . . , ρd is a strongly free sequence of Lie
polynomials in ξ1, . . . , ξm with coefficients in Fp[π]. In this case, the pro-p-group G is
called mild with respect to the (x, e)-filtration. If G = F/R and Gn is the image of Fn

in G = F/R then (Gn)n≥1 is a p-filtration of G.
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Theorem 4.1. Let F be the free pro-p-group on x1, . . . , xm and let G = F/(r1, . . . , rd),
with ri in F p[F, F ] and d ≥ 1. Suppose that the initial forms ρ1, . . . , ρd of r1, . . . , rd
are strongly free with respect to the (x, e)-filtration (Fn) of F . Let R = (r1, . . . , rd) and
let Gn be the image of Fn in G. Then
(a) We have gr(G) = gr(F )/(ρ1, . . . , ρd),
(b) The group R/[R,R] is a free Zp[[G]]-module on the images of r1, . . . , rd,
(c) The presentation G = F/R is minimal and cd(G)=2.
(d) The enveloping algebra of gr(G) is the graded algebra associated to the filtration

wB of B = Zp[[G]] induced by the (x, e)-valuation w of Zp[[F ]].
(e) The algebra Zp[[G]] is an integral domain with valuation wB.
(f) The Poincaré series of gr(B) is 1/(1− t)(1− (te1 + · · ·+ tem) + th1 + . . . + thd)).
(g) If 1− (te1 + · · ·+ tem) + th1 + . . . + thd = (1− α1t)(1− α2t) · · · (1− αst) then

dimFp(grn(G)) =
n

∑

k=1

1
k

∑

r|k

µ(k/r)(αr
1 + αr

2 + · · ·+ αr
s).

Proof. Let Rn = R ∩ Fn and let gr(R) be the Lie algebra associated to the p-filtration
(Rn) of R. Identifying gr(R) with its image in gr(F ) the ideal r = (ρ1, . . . , ρd) is
contained in gr(R). An easy inductive argument shows that r = gr(R) if and only if
the induced homomorphism

θ : r/[r, r] → gr(R)/[gr(R), gr(R)]

is surjective (and hence bijective). Let U and U ′ be respectively the enveloping algebras
of g = gr(F )/r and gr(G) = gr(F )/gr(R). The canonical homomorphism ψ : U → U ′

is surjective and is compatible with θ; which means that for x ∈ r/[r, r], u ∈ U we have

θ(u · x) = ψ(u) · θ(x).

Let M = R/[R,R] and let Mn be the image of Rn in M . Then (Mn) is a p-filtration of
M and we have gr(M) = gr(R)/gr([R, R]) where gr([R, R]) is the Lie algebra associated
to the filtration ([R,R]n) with [R, R]n = [R, R] ∩ Fn. Since gr(M) is an abelian Lie
algebra, we have a canonical surjection

θ′ : gr(R)/[gr(R), gr(R)] → gr(M)

which is injective in degree n if and only if

grn([R, R]) = [gr(R), gr(R)]n.

Let B = Zp[[G]] be the completed group algebra of G over Zp and let Bn be the
image of An in B under the canonical surjection A → B. The graded ring gr(B)
associated to the filtration (Bn) is an algebra over Fp[π]. If R is the ideal of gr(A)
generated by gr(R) then U ′ is canonically isomorphic to gr(A)/R and the kernel of the
canonical homomorphism of gr(A) onto gr(B) contains R. Hence we obtain a surjective
homomorphism

ψ′ : U ′ → gr(B).

In addition, gr(M) is a gr(B)-module since Bn ·Mk ⊆ Mn+k and θ′ is compatible with
ψ′.



18 JOHN LABUTE

We now show that θ and θ′ are bijective. The proof is by induction on the degrees.
Suppose then that θ and θ′ are bijective in degrees n < k. Since rn = gr(R)n for
n < h = min(h1, . . . , hd), we may assume that k ≥ h.

(I) θ is injective in degree k. Since θ is surjective in degrees < k we have rn = grn(R).
Hence

[r, r]k = [gr(R), gr(R)]k
which shows that θ is injective in degree k.
(II) θ′ is bijective in degree k. We have to show that grk([R, R]) = [gr(R), gr(R)]k.
For this we will construct a closed subgroup H of R generated by a finite number of
elements z1, . . . , zs such that

(i) H is a free pro-p-group with basis z1, . . . , zs;
(ii) If e′i = ω(zi) is the filtration degree of zi and if Hn = H ∩ Rn then (Hn) is the

(z, e′)-filtration of H;
(iii) grn(H) = grn(R) for n < k.

If we grant the existence of such a subgroup H we have grn([H,H]) = grn([R, R])
for n ≤ k and

grn([H, H]) = [gr(H), gr(H)]n
for all n. Thus

grk([R,R]) = grk([H, H]) = [gr(H), gr(H)]k = [gr(R), gr(R)]k.

Let us now construct H. We first note that r is a free Lie algebra over Fp[π] since L/r
is a free Fp[π]-module (cf.[17], Proposition 4). Choose a homogeneous free generating
set for r and let ζ1, . . . , ζs the elements of this generating set which are of degree < k.
If e′i is the degree of ζi let zi ∈ Re′i whose image in gre′i

(R) is ζi. Let H be the closed
subgroup of R generated by z1, . . . , zs. Then property (iii) holds by construction. To
verify (i) and (ii), let E be the free pro-p-group on the letters z1, . . . , zs and let (En)
be the (z, e′)-filtration of E. The homomorphism α : E → H defined by α(zi) = zi

sends En into Hn and, if zi is the image of zi in gre′i
(E), the induced homomorphism

α∗ : gr(E) → gr(H) ⊂ gr(R)

sends zi to ζi. But gr(E) is a free Lie algebra over Fp[π] with basis z1, . . . , zs since
e′i > 1 for all i. Since ζ1, . . . , ζs is part of a basis for the free Lie algebra r, the
homomorphism α∗ is injective. It follows that α is injective and hence bijective.

It remains to show α(En) = Hn. Suppose that we have shown that α(Ek) = Hk

for 1 ≤ k ≤ n; this is true for n = 1. Let y ∈ Hn+1 and suppose that y /∈ H ′
n+1.

Then there exists k ≤ n such that y ∈ H ′
k, y /∈ H ′

k+1. Let x ∈ Ek with α(x) = y.
Then x /∈ Ek+1 and so ξ = grk(x) 6= 0. But α∗(ξ) = 0 since y = α(x) ∈ Hk+1. This
contradicts the injectivity of α∗. So H ′

n+1 = Hn+1 and so, by induction, it follows that
(Hn) is the (z, e′)-filtration of H.

(III) θ is surjective in degree k. To show this it suffices to show that θ′′ = θ′ ◦ θ is
surjective in degree k. If ei = ω(ri), we may assume that ei ≤ ej for i ≤ j and that
ei > k for i > t. Let β be a non-zero element of grk(M) and let b ∈ Mk be an element
whose image in grk(M) is β. If ri is the image of ri in Mei , we can choose b so that

b = v1 · r1 + . . . + vt · rt,
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where vi ∈ B. Since Bi ·Mj ⊆ Mi+j we can suppose that the above expression for b
involves only those terms vi · ri with wB(vi)+ ei ≤ k, where wB(v) = sup{n | v ∈ Bn}.
Since b /∈ Mk+1, this expression is not empty. Let g be the smallest integer of the
form wB(vi) + ei and let D be the set of integers i with wB(vi) + ei = g. Let ui

be a homogeneous element of U with ψ′′(ui) = vi, where ψ′′ = ψ′ ◦ ψ and vi is the
image of vi in grn(B) with n = g − ei. Let ρi be the image of ρi in r/[r, r] and let
ξ =

∑

i∈D ui · ρi. If g < k, we have θ(ξ) = 0 which implies that ξ = 0 since ξ is of
degree g and θ is injective in degree g. But this contradicts the fact that r/[r, r] is a
free U -module. Hence g = k and β = θ′′(ξ) which implies the surjectivity of of θ′′ in
degree k.

From the above it follows that the homomorphism ψ′ : gr(A)/R→ gr(B) is bijective.
Since r = gr(R), we have U = gr(A)/R which yields (d) and (e).

From the fact that gr(M) is a free gr(B)-module on the images of r1, . . . , rd, it
follows that M is a free B-module on r1, . . . , rd which gives (b). Using this, we obtain

H2(G,Z/pZ) ∼= H1(R,Z/pZ)F ∼= Hom(R/[R, R],Z/pZ)F ∼= (Z/pZ)d,

which implies that d is the minimal number of relations for G. Finally, using the
standard exact sequence

0 → R/[R, R] → Bm → B → Zp → 0,

we obtain that the cohomological dimension of G is 2 (cf. [6], p.459). This gives (c).
To get (g) we take logarithms on both sides of the identity

∏

n≥1

(1− tn)bn = (1− α1t)(1− α2t) · · · (1− αdt),

where bn is the dimension of the n-th homogeneous component of gr(G)/πgr(G), and
use the fact that dimFp grn(G) =

∑n
k=1 bk. �

Since the (x, e)-filtration of F is the lower p-central series of F when ei = 1 for
all i and the filtration of A is given by powers of the ideal I which is the kernel of
the augmentation homomorphism of Zp[[F ]], we obtain that the induced filtration of
B = Zp[[G]] is given by powers of the augmentation ideal J of B. Moreover, our proof
shows that Gn = G∩ (1+In); in other words, the lower p-central series of G is induced
by the J-adic filtration of Zp[[G]]. This yields Theorem 1.2.

When p = 2 and the initial forms ρi of the relators ri in a minimal presentation for
G are of degree 2, that the ρi are Lie polynomials with coefficients in F2[π] is equivalent
to the torsion subgroup of G/[G, G] having exponent ≥ 4. For example, this shows
that the group

〈x1, x2, . . . , xm | x4
1[x1, x2] = x4

2[x2, x3] = · · · = x4
m−1[xm−1, xm] = x4

m[xm, x1] = 1〉
is a mild pro-2-group if m ≥ 4 since

ρ1 = [ξ1, ξ2], ρ2 = [ξ2, ξ3], . . . , ρm = [ξm, ξ1].

More generally, the torsion subgroup of G/[G,G] has exponent ≥ 4 if and only if
the initial forms ρi are Lie polynomials ρi over F2 modulo πgr(F )∗, where gr(F )∗ =
⊕n≥2gr(F ). In this case, the given presentation can be shown to be strongly free if
ρ1, . . . , ρd is a strongly free sequence over F2 (cf.[21]).
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5. Zassenhaus Filtrations

Theorem 4.1 can be extended to the case of filtrations induced by valuations of
the completed group ring Fp[[F ]]. The Lie algebras associated to these filtrations are
restricted Lie algebras in the sense of Jacobson[11].

Let F be the free pro-p-group on x1, . . . , xm. The completed group algebra Ā =
Fp[[F ]] over the finite field Fp is isomorphic to the algebra of formal power series in
the non-commuting indeterminates X1, . . . , Xm over Fp. Identifying F with its image
in Ā, we have xi = 1 + Xi.

If e1, . . . , em are integers > 0, we define a valuation w̄ of Ā by setting

w̄(
∑

i1,...,ik

ai1,...,ikXi1 · · ·Xik) = inf
ii,...,ik

(ei1 + · · ·+ eik).

Let
Ān = {u ∈ Ā | w̄(u) ≥ n}, grn(Ā) = Ān/Ān+1, gr(Ā) = ⊕n≥0grn(Ā).

Then gr(Ā) is a graded Fp-algebra. If ξi is the image of Xi in grei
(Ā) then gr(Ā) is

the free associative Fp-algebra on ξ1, . . . , ξm with a grading in which ξi is of degree ei

. The Lie subalgebra L̄ of gr(Ā) generated by the ξi is the free Lie algebra over Fp
on ξ1, . . . , ξm by the Birkhoff-Witt Theorem. Note that when ei = 1 for all i we have
Ān = Īn, where Ī is the augmentation ideal (X1, . . . , Xm) of Ā.

A decreasing sequence (Gn) of closed subgroups of a pro-p-group G which satisfies

[Gi, Gj ] ⊆ Gi+j , Gp
i ⊆ Gpi.

is called a called, after Lazard [22], a p-restricted filtration of G.
For n ≥ 1, let Fn = (1 + Ān) ∩ F . Then (Fn) is a p-restricted filtration of F .

This filtration is also called the Zassenhaus (x, e)-fitration of F . The mapping x 7→ xp

induces an operator P on gr(F ) sending grn(F ) into grpn(F ). With this operator,
gr(F ) is a restricted Lie algebra over Fp. If ei = 1 for all i, the subgroups Fn are the
so-called dimension subgroups mod p. They can be defined by

Fn =< [y1, [· · · [yr−1, yr] · · · ]]p
s
| y1, . . . , yr ∈ F, rps ≥ n > .

Let r1, . . . , rd ∈ F and let R = (r1, . . . , rd) be the closed normal subgroup of F
generated by r1, . . . , rd. Let ρi ∈ grhi

be the initial form of ri with respect to the
Zassenhaus (x, e)-filtration (Fn) of F . The presentation G = F/(r1, . . . , rd) is said to
be strongly free with respect to the Zassenhaus (x, e)-filtration if ρ1, . . . , ρd is a strongly
free sequence of Lie polynomials in L̄. In this case, the pro-p-group G is called mild
with respect to the Zassenhaus (x, e)-filtration. If G = F/R and Gn is the image of Fn

in G = F/R then (Gn)n≥1 is a p-restricted filtration of G.

Theorem 5.1. Let F be the free pro-p-group on x1, . . . , xm and let G = F/(r1, . . . , rd),
with ri in F p[F, F ] and d ≥ 1. Suppose that the initial forms ρ1, . . . , ρd of r1, . . . , rd

are strongly free with respect to the Zassenhaus (x, e)-filtration (Fn) of F . Let R =
(r1, . . . , rd) and let Gn be the image of Fn in G. Then
(a) We have gr(G) = gr(F )/(r1, . . . , rd),
(b) The group R/Rp[R,R] is a free Fp[[G]]-module on the images of ρ1, . . . , ρd,
(c) The presentation G = F/R is minimal and cd(G)=2.
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(d) The enveloping algebra of gr(G) is the graded algebra associated to the filtration
wB̄ of B̄ = Fp[[G]] induced by the (x, e)-valuation w̄ of Ā = Fp[[F ]].

(e) The algebra B̄ is an integral domain and wB̄ is a valuation of B̄.
(f) The valuation wB̄ of B̄ induces the filtration (Gn) of G.
(g) The Poincaré series of gr(B̄) is 1/(1− (te1 + · · ·+ tem) + th1 + . . . + thd).
(h) If ei = 1 for all i and an = dim grn(G) then

∏

n≥1

(1− tpn)
1− tn

an

=
1

1−mt + td
.

Proof. In [15], Koch proves that if R̄/R̄Ī is a free Ā/R̄ module on the images of
ρ1, . . . , ρm then gr(Γ̄) = Ā/R̄, where R̄ is the ideal of Ā = gr(Λ̄) generated by
ρ1, . . . , ρm. The former is true if ρ1, . . . , ρm lie in L̃ and are strongly free since R̄/R̄Ī
is the image of the free Ā/R̄-module r̃/[̃r, r̃] under the injective mapping

r̃/[̃r, r̃] → Ī/R̄Ī

where r̃ is the ideal of the quadratic Lie algebra L̃ generated by ρ1, . . . , ρm. This proves
(e).

Now consider the exact sequence

0 → r̄/[̄r, r̄] → gr(B̄)m → gr(B̄) → Fp → 0,

where r̄ is the ideal of L̄ generated by ρ1, . . . , ρd. Since by assumption, r̄/[̄r, r̄] is a free
gr(B̄)-module of rank d, we obtain the exact sequence

0 → gr(B̄)d → gr(B̄)m → gr(B̄) → Fp → 0.

By a result of Serre (cf. [22], V, 2.1), we obtain the exact sequence

0 → B̄d → B̄m → B̄ → Fp → 0.

This yields (g) and, by a result of [6], it proves (b) and (c). If R = (ρ1, . . . , ρd) is
the ideal of the restricted Lie algebra gr(F ) generated by ρ1, . . . , ρd, we have canonical
homomorphisms of restricted Lie algebras

gr(F )/R → gr(G) → gr′(G) → gr(B̄),

where the first arrow is surjective and gr′(G) is the restricted Lie algebra associated to
the Zassenhaus filtration (G′n) of G induced by the filtration wB̄ of B. Since gr(B̄) is the
enveloping algebra of the restricted Lie algebra gr(F )/R, the Birkhoff-Witt Theorem
for restricted Lie algebras shows that all arrows are injective which yields (a) and (d).
The injectivity of gr(G) → gr′(G) yields Gn = G′n for all n by induction which proves
(f). The assertion (h) follows from (g) and [22], Proposition A.3.10. �

Corollary 5.2. If G is a mild pro-p-group with r(G) ≥ d(G) then G is non-analytic.

This follows from [22], A3.12.1 and the fact the the reciprocal of the Poincaré series
P (t) of gr(B̄) has a root strictly between 0 and 1 which implies that the coefficients of
P (t) have exponential growth.
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6. Examples of Mild Groups

The groups GS(p) and GSp(p) are a rich source of mild groups due to the following
fact pointed out to us by H. Kisilevsky and J. Sonn.

Proposition 6.1. Let p 6= 2 and let S be a given set of primes congruent to 1 mod
p. Then a prime q ≡ 1 mod p can be found with the additional edges of ΓS∪{q}(p) and
Γ(S∪{q})p(p) arbitrarily prescribed.

Proof. Let S = {q1, . . . , qm}. The proof is based on the fact that the fields

Q(µ(pq1)), . . .Q(µ(pqm),Q(µ(p), p
√

q1), . . . ,Q(µ(p), p
√

qm),Q(µ(p2))

are linearly disjoint over Q(µ(p)). Let Ei be the unique extension of Q(µ(p)) of degree
p and contained in Q(µ(pqi)). If σj is a generator Gal(µ(pqj)) over Q(µ(p)) then Ej is
the fixed field of σp

j . Let K be composite of the fields

E1, . . . , Em,Q(µ(p), p
√

q1), . . . ,Q(µ(p), p
√

qm),Q(µ(p2)).

The field K is Galois over Q and the subgroup H = Gal(K/Q(µp)) of Gal(K/Q) is
the direct product of the Galois groups of these fields over Q(µ(p)). These groups are
cyclic of order p. If FQ ∈ Gal(K/Q) is the Frobenius automorphism at the unramified
prime Q of K and Q lies above the rational prime q then FQ ∈ H if and only if q ≡ 1
mod p.

If FQ ∈ H then the restriction of FQ to Ei is the identity if and only if q is a p-th
power mod qi and the restriction of FQ to Q( p

√
qi, µ(p)) is the identity if and only if qi

is a p-th power mod q. The restriction of FQ to Q(µ(p2)) is the identity if and only if
q ≡ 1 mod p2. By the Čebotarev density theorem, every g ∈ H is is of the form FQ

for some Q. Therefore, we can extend the directed graph ΓS(p) or ΓSp(p) by a single
prime q ≡ 1 mod p with prescribed edges joining the primes of S to q and q to the
primes of S or Sp. �

Corollary 6.2. Given a finite directed graph Γ, we have Γ = ΓS(p) for some S.

We don’t know if the linking numbers can be arbitrarily prescribed.

Corollary 6.3. Let p be a prime and S a finite set of primes ≡ 1 mod p. If |S| ≥ 2
then S can be extended to such a set S′ with |S′| = 2|S| and ΓS′(p) a non-singular
circuit.

Proof. Let S = {q1, . . . , qm}. We now extend S by a single prime r1 so that q1r1, r1q2

are edges with r1q1 not an edge. Now extend the new graph ΓS∪{r1} by another prime
r2 so that q2r2 and r2q2 are the only new edges. Continuing in this way, we see that
we can extend ΓS to a non-singular circuit ΓS′ having 2m vertices. If 1 ≤ i ≤ m let
v2i−1 = ri and v2i = qi. Then v1 · · · v2mv1 is the required non-singular circuit. �

If S = {7, 13, 19, 31} with the primes of S ordered as written, the initial forms of
the relators in the Koch presentation of the group GS(3) are, modulo π,
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ρ1 = [ξ1, ξ2]− [ξ1, ξ4],

ρ2 = [ξ2, ξ3] + [ξ2, ξ4],

ρ3 = [ξ3, ξ1] + [ξ3, ξ2]− [ξ3, ξ4],

ρ4 = [ξ1, ξ4].

The circuit ξ1ξ2ξ3ξ4ξ1 is not a non-singular circuit since ξ3ξ1 is an edge of Γ. How-
ever, if we add ρ4 to ρ1, make the change of variable

ξi 7→ ξi (i 6= 4), ξ4 7→ −ξ4 + ξ1 + ξ2,

and subtract ρ1 from ρ4, we obtain the equivalent Koch presentation for g =
L/(ρ1, ρ2, ρ3, ρ4)

ρ1 = [ξ1, ξ2],

ρ2 = [ξ2, ξ1] + [ξ2, ξ3]− [ξ2, ξ4],

ρ3 = [ξ3, ξ4],

ρ4 = [ξ4, ξ1]

which is strongly free as ξ1ξ2ξ3ξ4ξ1 is now a non-singular circuit since ξ1ξ3 and ξ3ξ1

are not edges of Γ. Hence GS is a mild group. Note that, after adding ρ1 to ρ2 and
making the change of variable ξ3 7→ ξ3 + ξ4, ξi 7→ ξi (i 6= 3), one obtains that the given
presentation is equivalent modulo π to

ρ1 = [ξ1, ξ2], ρ2 = [ξ2, ξ3], ρ3 = [ξ3, ξ4], ρ4 = [ξ4, ξ1].

We can produce an infinite number of mild groups G with d(G) = r(G) = 2, 3. For
example,

(1) the group

< x, y | xpa
[[x, y], [y, [x, y]]]u, ypb

[[x, [x, y]], [y, [x, [x, y]]]]v >

with a ≥ 4, b ≥ 5, u ∈ F6, v ∈ F8 is mild,
(2) the group

< x, y, z | xpa
[x, y]u = 1, ypb

[z, [z, y]]v, zpc
[x, [z, y]]w >

with u ∈ F3, v, w ∈ F4, a ≥ 1, b, c ≥ 2 is mild if p 6= 2 or if p = 2, a > 1,
(3) the group

< x, y, z|xpa
[z, [x, y]]u, ypb

[z, [z, y]]u, zpc
[x, [z, y]]w >

with u, v, w ∈ F4, a, b, c ≥ 2 is mild.

For any m ≥ 4 we can construct mild pro-p-groups with d(G) = m,

1 ≤ r(G) ≤ s(m) = max
k

k(m− k)

and the initial forms of these relators of degree 2. For example, if p 6= 2, the pro-p-group

G = 〈x1, x2, x3, x4, x5 | xp
1[x1, x2], x

p
2[x1, x4], x

p
3[x3, x2], x

p
4[x3, x4], x

p
5[x5, x2], [x5, x4]〉

is mild with d(G) = 5, r(G) = s(5) = 6. Moreover, we have G/[G,G] finite.
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7. The Group GS∞(2).

For p = 2, the group GS∞(2) with S∞ = S ∪ {∞} has the Koch presentation
< x1, . . . , xm | r1, . . . , rm > where

ri = xqi−1
i

∏

j 6=i

[xi, xj ]`ij wi

with wi ∈ F3.
If qi ≡ 1 mod 4 and the initial forms ρi of these relators are of degree 2 then the

ρi are Lie polynomials in ξ1, . . . , ξm with coefficients in F2. In this case Theorem 1.2
applies. However, it is not of much use as the linking numbers are symmetric `ij = `ji
by quadratic reciprocity. This implies that

ρ1 + . . . + ρm = 0

and so the sequence ρ1, . . . , ρm is not strongly free. However, the group GS∞(2) could
still be shown to be a mild group by considering the modified presentation obtained by
replacing rm by r′m = r1r2 · · · rm. In this case the initial form of r′m would be of degree
> 2. However, the initial form of r′i may not be a Lie polynomial in ξ1, . . . , ξm with
coefficients in F2[π] but this will be true modulo π. In this case Theorem 4.1 does not
apply but we are able to extend it to cover this case (cf.[21]). However, Theorem 5.1
does apply.

An example of this is furnished by the pro-2-group H having the presentation

< x1, x2, x3, x4 | x5
1 = xx3x2

1 , x5
2 = xx4x3

2 , x5
3 = xx1x4

3 , x5
4 = xx2x1

4 > .

This group appears as a subgroup of index 4 of the group on 2 generators x, y and
relations xy2xyxy = x5, y4 = 1 (cf.[5]). This group has a presentation whose initial
forms of the relators are

ρ1 = [ξ1, ξ2] + [ξ1, ξ3],

ρ2 = [ξ2, ξ3] + [ξ2, ξ4],

ρ3 = [ξ3, ξ4] + [ξ3, ξ1],

ρ4 = πPξ1 + πPξ2 + πPξ3 + πPξ4 + [ξ1, [ξ2, ξ4]].

Working modulo π, these relators become

ρ1 = [ξ1, ξ2] + [ξ1, ξ3],

ρ2 = [ξ2, ξ3] + [ξ2, ξ4],

ρ3 = [ξ3, ξ4] + [ξ3, ξ1],

ρ4 = [ξ1, [ξ2, ξ4]].

We are unable to prove that these elements form a strongly free sequence over F2 with
the methods in this paper but computations using GAP indicate that the Poincaré
series of the enveloping of L/(ρ1, ρ2, ρ3, ρ4) over F2 is

1
1− 4t + 3t2 + t3

.
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In [27], [24] the case `ij = 0 for all i, j is considered and the initial forms computed
in certain cases in degree 3 modulo squares using the connection between the Rédei
symbols and the Milnor µ2-invariants. For example, in the case S = {5, 41, 61}, they
find that

ρ1 = [[ξ1, ξ2], ξ2] + [[ξ1, ξ3], ξ3] + [[ξ2, ξ3], ξ1],

ρ2 = [[ξ1, ξ2], ξ2] + [[ξ1, ξ3], ξ2] + [[ξ2, ξ3], ξ2] + [[ξ2, ξ3], ξ3],

ρ3 = [[ξ1, ξ3], ξ2] + [[ξ1, ξ3], ξ3] + [[ξ2, ξ3], ξ1] + [[ξ2, ξ3], ξ2] + [[ξ2, ξ3], ξ3]

in the restricted Lie algebra associated to the dimension subgroups mod p. Again, we
are unable to prove that these elements form a strongly free sequence with the methods
in this paper but computations using GAP indicate that they are. If they were then
Theorem 5.1 would apply.

8. Questions

In view of these results and results of [5] which show that certain groups of Koch
type on two generators have subgroups of finite index which behave like mild groups,
we are led to ask the following questions.

Question 1. If |S| ≥ 4, is GS(p) of cohomological dimension 2?
Question 2. Is GS(p) virtually of cohomological dimension 2 for all S?
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