MILD PRO-p-GROUPS AND GALOIS GROUPS
OF p-EXTENSIONS OF Q

JOHN LABUTE

ABSTRACT. In this paper we introduce a new class of finitely presented pro-p-
groups G of cohomological dimension 2 called mild groups. If d(G),r(G) are
respectively the minimal number of generators and relations of G, we give an
infinite family of mild groups G with r(G) > d(G) and d(G) > 2 arbitrary. These
groups can be constructed with G/[G, G] finite, answering a question of Kuzmin. If
G = Gg(p) is the Galois group of the maximal p-extension of Q unramified outside
a finite set of primes S and p # 2, we show that G is mild for a co-final class of
sets S, even in the case p ¢ S.

To John Tate

1. STATEMENT OF RESULTS

1.1. Mild pro-p-groups. Let p be a prime number; for simplicity, we assume that
p is odd. Let G = F/R be a finitely presented pro-p-group with F the free pro-
p-group on xi,...,%T;, and R = (ry,...,r4) the closed normal subgroup generated
by nonidentity elements ri,...,rq € FP[F, F], where [F, F]| is the closed subgroup
generated by the commutators [z,y] = ™'y~ 'zy. Let d(G) = dimg, H' (G, Z/pZ) and
r(G) = dimg, H*(G,Z/pZ). Then d(G),r(G) are respectively the minimal number of
generators and relations for G (cf.[26]). For the above presentation G = F//R we have
d(G) = m. The presentation is said to be minimal if 7(G) = d.

The lower p-central series (Gy)p>1 of a pro-p-group G is defined inductively by
G1 = G, Gpy1 = GE[G,G,]. The quotient groups gr, (G), denoted additively, are
vector spaces over the finite field I, . The graded vector space

gr(G) = @p>181,(G)

has a Lie algebra structure over the polynomial ring I, [r], where multiplication by =
is induced by x — 2P and the bracket operation for homogeneous elements is induced
by the commutator operation in G (cf.[22]).

If &; is the image of z; in gry (F) then gr(F) is the free Lie algebra on &1, ..., &, over
Fy[r]. If r € F, r # 1, and n is largest with r € F,, then n = w(r) is called the filtration
degree of r and the image of r in gr,, (F) is called the initial form of r. Let h; = w(r;)
and let p; € gr),. (F) be the initial form of r;. If ¢ is the ideal of L = gr(F') generated
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by p1,...,pq and g = L/t then t/[r, ] is a module over the enveloping algebra U of g
via the adjoint representation.

Definition 1.1. The sequence p1,...,pq wWith d > 1 is said to be strongly free if Uy is
a free Fp[r]-module and M = t/[v, 1] is a free Ug-module on the images of p1, ..., pg in
M. In this case we say that the presentation G = F/R is strongly free. A pro-p-group
is said to be mild if it has a strongly free presentation.

Let Ug(t) be the Poincaré series of Uy for the natural grading of Uy by finite dimen-
sional vector spaces over Fy,. If p1,..., pq is a strongly free sequence then
1
1—=t)(1 —mt+th + ... 4 tha)’
by Theorem 3.9 with e; = deg(§;) = 1 for all i. If
The term mild group is due to Anick[2]. Mild groups have a lot of nice properties.

Us(t) =

Theorem 1.2. Let G be a mild group and G = F/(r1,...,rq) a strongly free presen-
tation of G with F a free pro-p-group of rank m. Let p; be the initial form of r; and
let R=(r1,...,7q). Then
(a) @2(G) = & (F)/(pr, -, pa).

) R/[R, R] is a free Zy[[G]]-module on the images of r1,...,7q.
(¢) The presentation G = F/R is minimal and cd(G) = 2.

) The enveloping algebra of gr(G) is the graded algebra gr(B) associated to the fil-
tration of B = Z,[[G]] by powers of the augmentation ideal Ker(Z,[|G]] — Z/pZ).
(e) The Poincaré series of gr(B) is 1/(1 —t)(1 —mt + tM 4 ... 4 tha).

A related result is proved in [I8] for discrete groups in the case of the lower central
series. Theorem 1.2 can be proven in greater generality, including p = 2 in some cases
(cf. Theorem [4.1)). A proof for the case p = 2 can be found in [21]. That a mild
group is of cohomological dimension 2 also follows from [15] and Theorem [3.10 (cf.
Theorem [5.1)).

Not much is known about mild groups but we produce a large supply of them
(cf. Corollary [3.5). They also appear strikingly often as Galois groups of maximal
p-extensions of (Q with restricted ramification even when the ramification is tame.

1.2. Galois groups of p-extensions of Q with restricted ramification. Let S be
a finite set of rational primes not containing the prime p and let Gg(p) be the Galois
group of the maximal p-extension of Q unramified outside S. If p # 2, we can assume
that S ={q1,...,¢n} with ¢; = 1 mod p. If p = 2, we have to assume that the infinite
prime lies in S.

In [12],[14] Koch shows that G = Gg(p) has a minimal presentation G = F//R where
F is the free pro-p-group on z1,..., 2T, and R = (ry,...,7,,) with

L _ _ Cis
ri=af a7y Y,y =[] 2)7 mod FP[FF], (4 € Z/pZ,
J#i
where the image of x; in GG is a generator of the cyclic inertia group at a fixed place
£; above ¢; and the image of y; is a lifting of the Frobenius automorphism at ¢;. We
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thus have
ry=adi! H[mi,xj]é“ mod Fj.
i

The image of x; in F/[F, F] = Gs(p)/[Gs(p), Gs(p)] corresponds, under the reciprocity
map, to an idele with component 1 at all places except for the component at g; which
is equal to g;, a primitive root mod ¢;. The image of y; in Gg(p)/[Gs(p), Gs(p)]
corresponds to an idele with component ¢; at the place ¢; and component 1 at the
other places. Then /;; is the image in Z/pZ of any integer r satisfying

G = gj_r mod g;.

We call ¢;; the linking number of the pair (g¢;,¢;). Note that if g is another primitive
root mod ¢; and g; = g° mod g; then the linking number ¢;; would be multiplied by ¢
if g were used instead of g;.

There is an analogy between the arithmetic of Z and the topology of the 3-sphere
Ss3 in which ¢;; plays the role of the linking number of two loops in S3 (cf. [28]). This
analogy is not perfect as we can have {;; # £;;. However, it is this fact that allows
G = Gg(p) to be a mild group for certain S. Our work was greatly influenced by this
analogy and corresponding results for link groups (cf. [24], [19],[2]).

Let T's(p) be the directed graph with vertices the primes of S with a directed edge
¢iq; from g; to g; if £;; # 0. The directed graph I's(p) together with the function ¢ on
S x S with values in Z/pZ defined by £(g;,q;) = ¢;; if i # j and 0 otherwise is called a
linking diagram for S. Using the Cebotarev density theorem, one can show that, for
any given finite directed graph I', there is a set of primes S as above with I'g(p) =T
(cf. Corollary 16.2)).

Example 1.3. If S = {7,13,19}, the edges of I's(3) are (19,7), (7,13), (13,19),
(19,13) and, choosing g7 = 3, g13 = g19 = 2, we have £(19,7) = £(7,13) = £(13,19) =
£(19,13) = 1 with 4(g;, q;) = 0 otherwise.

A linking diagram T" can be assigned to any presentation < x1,...,&m | 71,...,7q¢ >

where
ri =l H[xi,xj]“”' mod Fs  (ai,ai; € Z/pZ,a;; = 0,d < m).
JFi
We shall call such a presentation of Koch type. The vertices of I' are the generators z;
and {(z;,x;) = a;; if i < d and zero otherwise. We have d = m if every vertex of I' is
the source of some edge.

Definition 1.4. We call a linking diagram I' a non-singular circuit if the the following

conditions hold.

(a) There is an ordering vy, ..., v,, of the vertices of I'" such that vive---v,v1 is a
circuit.
(b) If £;; = €(v;,v;) then ¢;; = 0 if ¢, j are odd and

A(v1,v2, ..., 0m) = li2laz - L1 mlm1 — Liml21€32 -+ Ly m—1 F 0.

In this case we also call vivs - - - v,,v1 a non-singular circuit.
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Note that if (a) holds then A(vi,va,...,vy) # 0 if there is an edge v;v; of the
circuit v1va - - - Uyv1 such that vjv; is not an edge of I'. Also note that (a) and (b)
imply that m is even and > 4. For I' = T'g(p) condition (b) is independent of the
choice of primitive roots g; since

Z1m 52716372 . ém,m—l 7& 1,

A
(Ul’UQ’ aUM) 7& 0= gmfl,m gml gl2 £m72,m71

where each ratio in the product is independent of the choice of primitive roots.
If m = |S| > 2 the linking diagram I's(p) can always be enlarged to a non-singular
circuit I'g/(p) with |S’| = 2m (cf. Corollary [6.3).

Example 1.5. For S = {7,19,61,163} the edges of I's(3) are
{(19,7),(7,61), (61,7), (61,19), (19, 61), (19, 163), (7, 163), (163, 7)}
Using the primitive roots 2,2, 2,3 for these primes and setting v; = 61,v9 = 19,v3 =
163,v4 = 7, we find
big = ly) = b1y = log = Loy = l3g = 1,043 = Lsn = —1

with all other ¢;; = 0. Then vivev3zvsv; is a circuit with vivs, v3v1,v3v2 not edges of
I's(3). Hence I's(3) is a non-singular circuit. The initial forms of the relations in the
Koch presentation for Gg(3) are

p1 = 2m&1 + [€1,&a] + [€1, 4]
p2 = [€2,&1] + [€2, &3] + [€2,84]
p3 = 2m&3 + [£3, &4

p1 = —[1,&] — 61, &3]

By virtue of Theorems [3.10/ and [3.12| we obtain that Gg(3) is a mild group . More
generally, these two theorems yield the following result.

Theorem 1.6. A presentation of Koch type is strongly free if p # 2 and the vertices
of its linking diagram T' form a non-singular circuit.

Theorem [1.6 can be proven under other conditions on the linking diagram when the
number of vertices is odd and > 5 (cf. Theorem [3.14).

The groups Gs(p) are very mysterious and their structure is related to the Fontaine-
Mazur Conjecture (cf.[4],[5],[9]). All that was known previously about these groups
was that they were non-analytic for m > 4 and in certain cases for m = 2,3 (cf.
[26],[13],[23]). The group Gg(3) with S = {7,19,61,163} seems to be the first known
example where such a group is of cohomological dimension 2. This group also seems
to be the first known example of a finitely generated pro-p-group G of cohomological
dimension 2 with the same number of generators and relations and G/[G, G] finite. This
answers a question of Kuzmin[16],86. Moreover, it has the property that H/[H, H]| is
finite for any subgroup H of finite index. By Theorem 4.1(g), the rank of the n-th
3-central series quotient of Gg(3) is

2 zn: % S lk/d)2?,

k=1" dlk
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So, as a graded vector space, the Lie algebra associated to the lower 3-central series is
the direct sum of two copies of the Lie algebra associated to the lower 3-central series
of the free pro-3-group on 2 generators.

Theorem [1.6/ produces a lot of mild groups. An interesting example with the same
number of generators and relators is the group

<.’L'17.’L'2,...,(Em | $€[$1,x2]7"' 7xfn71[mmflaxm]7xfn[xmaxl] >>

where m > 4 is even and p is odd. A consequence of Theorem [3.14] and Theorem [3.10
is that the group is mild if m > 5 is odd (cf. Example 3.16).

If S, = SU{p}, it is well known that the cohomological dimension of Gg, (p) is 2
when p is odd; for the case p = 2 see [25]. However, we can also prove that, for p # 2, it
is a mild group under certain conditions on the linking diagram associated to its Koch
presentation. This presentation is the same as that for Gg(p) except for an additional
generator x,,+1 corresponding to a generator of the inertia group at p. Its linking
diagram T'g, (p) is obtained from I's(p) by adding the vertex p which corresponds to
Tm1 and an edge (g, p) for every ¢ € S not congruent to 1 mod p?. The linking number
lyp € Z/pZ is defined by

¢g=(1+p)~f» mod p’.
By definition £,, = 0 for all ¢ € S and ¢,,, = 0.

Theorem 1.7. If p # 2, the pro-p-group Gs, is a mild group if either of the following

two conditions hold:

(A) q; #1 mod p? for all ¢; € S,

(B) There is a prime q € S, ¢ Z 1 mod p* with £(q;,q) # 0 for all ¢; € S distinct from
q.

That condition (A) implies that G, is a mild group follows from Theorems [3.10,
3.18. That condition (B) implies that G's, is a mild group follows from Theorems 3.10,
3.19. If condition (B) is not satisfied then it can be made so by the addition of a single
prime (cf. Proposition [6.1)). It would be interesting to find more general conditions on
I's, which imply that G, is a mild group

2. ALGEBRAIC PRELIMINARIES

In this section we will review the more important algebraic techniques and results
that we use in our paper. The most important of these is the Birkhoff-Witt Theorem.

Theorem 2.1 (Birkhoff-Witt). Let g be a Lie algebra over a commutative ring k and
let ¢ be the canonical mapping of g into its enveloping algebra Uy . If g is a free
k-module with ordered basis (e;)icr then Uy is a free k-module with ordered basis the
family of elements
d(ei,)P(ei) - dlei,,)

withnzo, ’il S’LQSSZn

In particular, if g is a free k-module, the canonical mapping of g into Uy is injective
and we can identify g with a Lie subalgebra of Uy. Let U,, be the k-module generated
by all products z1x2 - -z, with z; € g and m < n. Then U;U; C U,1; and gr(Uy) =
>on £0 U,+1/U, is a commutative associative algebra.
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Corollary 2.2. If g is a free k-module then gr(Uy) is isomorphic to Sq, the symmetric
algebra of g. If, in addition, k is an integral domain then Uy is an integral domain.

Corollary 2.3. Let g be a Lie algebra over k and let h be a Lie subalgebra such that
h and g/b are free k-modules. If V,U are respectively the enveloping algebras of b, g
then U is a free left (right) V-module with basis

fjlf]é”'fjn (nZO,]1§]2§§jn
where (fj)jes is any lifting of an ordered basis for g/h.
The Birkhoff-Witt Theorem has the following converse result.

Theorem 2.4. Let g be a graded Lie algebra over a principal ideal ming k and suppose
that the homogeneous components are finitely generated k-modules. If the enveloping
algebra of g is a free k-module then so is g.

Proof. Let a,b be respectively the kernel and image of the canonical map ¢ of g into
Ug. Then b is a free k-module and so the exact sequence

0—a—g—b—0

splits as k-modules. If 7 is an irreducible element of k& and we let M = M/aM =

M ®y, (k/7k) for any k-module M, we obtain the exact sequence
0—-a—-g—b—0.

But the composite of the two arrows g — b — U, is injective by the Birkhoff-Witt

Theorem over the field k/7k. Hence g — b is injective. This implies that a = 0.

Since this is true for every homogeneous component of a for any 7, we obtain that the

homogenous components of a are all zero as they are finitely generated. This implies
that a = 0 which is what we wanted to prove. O

If A is a graded k-module with homogeneous components A, with A, a finitely
generated free k-module of rank ¢, the Poincaré series of A is the power series

Aty = ent™
n>0

By definition A(t) > 0 if ¢, > 0 for all n. If B is another graded k-module with
homogeneous components free finitely generated k-modules then A(t) > B(¢) if A(t) —
B(t) > 0. We also have (A ® B)(t) = A(t) + B(t) and (A ®y B)(t) = A(t)B(t). If

0—-—A—-B—-C—O0
is exact and C' is also a free k-module then
B(t) = A(t) + C(t).

Proposition 2.5. Let g = ©,>19, be a graded Lie algebra over k with g, (n > 1)
a free k-module of finite rank a,. Then the enveloping algebra Uy of g is a graded
k-module whose homogenous components U, are free k-modules of finite rank and

Uglt) = [ (1=t

n>1
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Proof. By the Birkhoff-Witt Theorem Ug(t) = Sg(t). Since g = $p,>18, We have
S (t)= H S, (tn)

n>1

which implies the result as Sps(t) = (1 —¢)™" for any free k-module M of rank r. O

Now let k = ko[n], the polynomial algebra over the field ky. Let My, be the category
of k-modules M such that M also has the structure of a graded module over kg where
7 sends the homogeneous component M,, into M,, ;. We say that M is of finite type
if each component M,, is finite-dimensional. In the following we let M = M/aM =
M ®y, (k/7k).

Proposition 2.6. Let M € My. Then

(a) M=0 < M/mM =0;

(b) A subset of M generates M <= it generates M modulo mM.
(c

)
) M is a free k-module < multiplication by m is injective <= M is torsion free;
(d) M is a free k-module <= M =2 M ®, k.

For a proof see [22], §1.2.

Corollary 2.7. If M € My, then M(t) < M /(1 —t) with equality <= M is a free
k-module.

Proposition 2.8. Let g be a Lie algebra over ko[mw| which has the structure of a graded
Lie algebra over ko with homogeneous components g, satisfying 7g, C gnt+1. Then g
is a free ko[m|-module if its enveloping algebra Ug is a free ko[n]-module.

The proof of this is the same as the proof of Proposition 2.4 except that only the
irreducible element 7 is required.

3. STRONGLY FREE SEQUENCES

Let k be a principal ideal domain and let L be the free Lie algebra over k£ on
&1, .., &n. We view L as graded algebra where the degree of ; is e; > 1. Let p1,..., pm
be homogeneous elements of L with p; of degree h; and let v = (p1, ..., pq) be the ideal
of L generated by p1,...,pq. Let g = L/t and let U = U, be the enveloping algebra of
g. Then M = t/[r,t] is a U-module via the adjoint representation.

Definition 3.1. The sequence p1, ..., pq is said to be strongly free if

(a) Uy is a free k-module,
(b) M =rt/[r,t] is a free U-module on the images of the p; in M.

By the Birkhoff-Witt Theorem and Proposition 2.4, Uy is a free k-module if and
only if g is a free k-module.

Let V (resp. W) be the enveloping algebra of L (resp. t) and I (resp. J) be the
augmentation ideal of V' (resp. W). If R is the ideal of V' generated by t, we have an
exact sequence

TorlV(k,V) = M — I/RI - V/R — k — 0.
It is obtained from the exact sequence 0 — I — V — k — 0 by tensoring with k = W/J
over W and using the fact that
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(1) If M is a W-module then M ®w (W/J) = M/JM;
(2) R=1tV="Vr
(3) Tory (k,k) = t/[v,t] (ct. [7], Ch. XIIL, §2).

The map M — I/RI is induced by the inclusion v C I. The algebra V is the free
associative algebra over k on &, ...,&,, and I is the direct sum of the left ideals V¢&;.
The U-module I/RI is the direct sum of the free U-submodules Ug; where g; is the
image of & in U = V/R. If g is free as a k-module then V is a free W-module by
Corollary 2.3| since v is a free k-module. In this case we have the exact sequence

0—-M—I/RI -V/R—k—D0.

Expressing M as a quotient U?/N using the relators p;, we obtain the exact sequence of
graded modules whose homogeneous components are finitely generated free k-modules

0= N— @?ZIU[}LJ'] - @;'n:lU[ej} —-U—-k—0

where U[d] = U but with degrees shifted by d; by definition, U[d](t) = t?U(t). We
have N = 0 if and only if M is a free U-module on the images of the p;.
Taking Poincaré series in long exact sequence, we get
N(t) — (" 4o th YU (t) + (1 + -+t U(t) = U(t) +1 = 0.
Solving for U(t), we get U(t) = P(t) + N(t)P(t), where
1

P(t) = .
() 1_(tel+...+tem)+th1_|_..._|_thd

We thus obtain

Proposition 3.2. If p1,...,pq is a strongly free sequence and U is the enveloping
algebra of g = L/(p1,...,pa) then U(t) = P(t). Conversely, if g is a free k-module
and U(t) = P(t) then p1,...,pa is a strongly free sequence. Moreover, if P(t) > 0 then
U(t) > P(t) with equality if and only if p1,...,paq is a strongly free sequence.

The condition P(t) > 0, i.e, the coefficients of the powers of t" are > 0, is a serious
restriction on the the sequences (e;) and (h;). For example, 1/(1—3t+4¢3) is a positive
series whereas 1/(1 — 3t + 5t%) is not. If all e, = 1 and all h; = h > 1 then in [1],
Lemma 3.5 Anick proved that

h

Pit)y>0 = d<m,

where e = 2.718 - - -,

Strongly free sequence were studied by Anick in [I] in the context of algebras over a
field. They are the analogues of regular sequences in commutative algebra. They also
arose in the work of Halperin-Lemaire[10] and in the paper of Koch[15].

In general, it is difficult to determine whether a sequence is strongly free but we can
construct a large supply of them using the elimination theorem. Let L(X) be the free
Lie algebra over k on the set X. Let S be a subset of X and let a be the ideal of L(X)
generated by X —S. Then the elimination theorem [3], §2, Proposition 10 states that
a is a free Lie algebra over k with basis consisting of the elements

ad(o1)ad(o9) - - - ad(o,)(€)
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withn > 0,0, € S, £ € X — S. If B is the enveloping algebra of L(S) = L(X)/a, it
follows that a/[a, a] is a B-free module with basis the images of the elements & with
EeX -5

Theorem 3.3. Suppose that k is a field. Let S be a subset of X = {&1,...,&m} and leta
be the ideal of the free Lie algebra L on X generated by X —S. Let T = {r,...,7:} Ca

whose elements are homogeneous and B-independent modulo [a,a]. If p1,...,pq are
homogeneous elements of a which lie in the k-span of T modulo [a,a] and which are
linearly independent over k modulo [a,a] then the sequence p1,...,pq is strongly free
(in L).

Proof. If ¢ is the ideal of L generated by p1, ..., pq, the elements
ad(o1)ad(02) - ad(,) ;)

with 1 < j <d,n >0, o; € S generate v as an ideal of the Lie algebra a. Suppose that
these elements form part of a basis of the free Lie algebra a. The elimination theorem
then shows that M = t/[r,t] is a free module over the enveloping algebra C of a/t
with the images of these elements as basis. To show that this implies that M is a free
U-module on the images m; of the p; suppose that ZZ u; -m; = 0 with u; € U. By the
Corollary 2.3l every u; can be written in the form

U; = E cl-jw]—

where the w; are distinct products of elements of S. Then
0= Zuzwmi = Zcijwj -mg
i 0,J

which implies that all ¢;; are zero and hence that each u; is zero.

To show that the elements of the form ad(o1)ad(o2)---ad(o,)(p;) are part of a
Lie algebra basis of a it suffices to show that pi,...,pq are B-independent modulo
[a,a]. We now work modulo [a,a]. If H is the k-span of pi, ..., p4, we can find a basis
Y1,y --.,74 of H such that

S
Vi = a0+ Y aiiB;
j=1
where a;,a;; €k, a; #0,d+s=1t,T ={o,...,aq,01,...,0s}. Hui,...,uq € B, we

have 4 d d
Zui Sy = Zaiui s+ Z(Z aijui) ! ﬁj'
i=1 i=1

j=1 i=1
By the B-independence of the elements of T,

d d
ZW'%‘ZO mod [a,a] = Zaiuioai:() mod [a, g
i=1 i=1
and hence that a;u; = 0 so that u; = 0 for all 4 which implies the B-independence of
Y1, -.,74 and hence of p1,..., pq. ]

Remark 3.4. Note that for strongly free sequences p1, ..., pq produced by the above
method, the Lie algebra L/(p1,...,pa) is an extension of two free Lie algebras.



10 JOHN LABUTE

Corollary 3.5. Let{1,...,m} =IUJ withINJ =0, |I| =k and let S = {&; | j € J}.
Then, for any h >0, any subset of the k(m — k)" elements

£j1 "'th 51 = [§j17[§j27"’ 7[§jh7£i”"’H

with j1,...,5n € J, i € I is strongly free as is, modulo [a,a], any linearly independent
subset of the space they span.

Example 3.6. If we take S = {&a,...,&,,} we see that
[51752]7 [§17§3]a ceey [glagm]

is a strongly free sequence. If m > 4 is even and we take S = {&, | n odd} we see that

[51752]7 [52753]7 R [gmflagmL [gmagl]

is a strongly free sequence. We shall show later this this is also true for m > 4 odd (cf.
Example [3.16]).

Note that the above implies the maximum length s(m) of a strongly free sequence
of elements of degree 2 in the free Lie algebra on &1, ..., &, satisfies

mkaxk(m — k) < s(m) < m?/e.

Let t(m) = maxy k(m — k). We have 4 < s(4) < 5. However, s(4) = 5 is not possible
as P(t) is not positive in this case; so s(4) = t(4) = 4. We have 6 < s(5) < 9 and
7,8,9 are not possible; so s(5) = t(5) = 6. In this case, an example of a strongly free
sequence of length 6 is

(€1, &2], (61, &) (€3, &2), [€3, €4, [€5, &2), (€5, €4l
We conjecture that t(m) = s(m) for all m > 4.

Our examples of strongly free sequences over a field can also be obtained using
Anick’s criterion for strong freeness developed in [I], §6. We will need this criterion to
construct examples when the number of variables is 2. Let L be the free Lie algebra
on &1,...,&, with coefficients in the field & and A be the enveloping algebra of L. A
sequence of non-identity monomials sy, ..., aq in the & is said to be combinatorially
free if (1) no monomial o is a submonomial of «; for ¢ # j and (2) if o = w1, o =
uov9 is a proper factorization with u;, v; monomials then uy # vo. Let an ordering of
&1, ...,&n be given and order the monomials lexicographically. By the leading term
of an element w of L we mean the largest monomial appearing in w (with a non-zero
coefficient).

Proposition 3.7 (Anick’s Criterion). The sequence p1,...,pq in L is strongly free if
the sequence of leading terms of these elements is combinatorially free.

Example 3.8. In the case m = 2, any sequence of distinct elements of the form

prs = [ad(&2)"ad (&) &, ad(&2) T rad ()T,

where 7, s > 0, is strongly free since the leading term of p,s for the ordering &; < & is

Ao = E5THETLEIT2¢5%2 and the A, , form a combinatorially free sequence.
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Now let k = ko[r] where ky is a field. We view k as a graded algebra over ko with 7 of
degree 1. Again L is the free Lie algebra over k on &1, . . ., &, with the &; being assigned
the degree e; > 1. Then L has a natural grading by finite-dimensional vector spaces
L,, over kg in which multiplication by 7 sends L,, into L, 4. Let L= L/nL = L® ko
and let py,...,p,, be the images of p1,...,p, in L. The Lie algebra L is the free
Lie algebra over kg on the images of £i,...,&,, which we can and do identify with
E1yoo s ém BT = (py, ..., P,), the enveloping algebra of g = L/t is U = U/nU.

Proposition [3.2/ holds if P(t) is replaced by

_ Pl _ 1
Q(t)_ 1—t (1—t)(1,(t61+...+tem)+th1+...+thd)'

Proposition 3.9. If p1,...,pq is a strongly free sequence and U 1is the enveloping
algebra of g = L/(p1,...,pa) then U(t) = Q(t). Conversely, if g is a free k-module
and U(t) = Q(t) then p1,...,pq is a strongly free sequence. Moreover, if Q(t) > 0 then
U(t) > Q(t) with equality if and only if p1,...,pad is a strongly free sequence.

Theorem 3.10. We have py,...,p, strongly free <= p1,...,pq strongly free.

Proof. (<) From 3.9 we have U 2 U ®, k as ko-modules which implies

U0 = (=000 = Ty s = PO

and hence that py,...,p, is strongly free by Proposition (3.2l

(=) If M = ¢/[r,t] we have an exact sequence of graded vector spaces over kg
0-K—->M->Ule|® - @Uleyn) = U —k— 0.

Taking Poincaré series we get
1
K(t) 7M(t)+(tel ++t€m)U(t)—U(t)+17_t =0
from which we get M(t) = K(t) — (1 — (t* +--- 4+ t°))U(t) +1/(1 — t). Hence
M () B K(t) L 1
L—(ter oo tem) T —(ter oo ptem) (1 —t)(1— (ter +--- +tem))

—U().
Now suppose that py, ..., p, is strongly free. Then, if T is the ideal of L generated by
P1,-- -, P4, We have surjections

Ulhi) @ -+ & Ulhg) — M — /[t
whose composite is an isomorphism. It follows that

M =3/[5,7) 2 Ulh] @ - @ Ulhg),

M) M@ty 1 tht 4. 4 tha
T 11—t 1—t 1—(tr 4o tem)ftht ... ftha’
U(t 1 1
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Using the fact that K(¢) > 0, we get
M (t) S 1 - U(t)
T—(er -4 tem) = (1—=t)(1 — (¢t + -+ tem))  1—t
1 1 1
- 1—t((1—(t61 Fotem) 1= (ter o g tem) ftha +-~-+thd)
(1) L M@
(1—t)(1— (e +---Ftem)) — 1 —(tr 4 ---+tom)’
It follows that K (t) =0, U(t) = U(t)/(1—t) and M(t) = M /(1 —t). Hence U is a free
k-module and M is a free U-module since we have a natural surjection
Uhi)® ---Ulhg) = M

with both sides having the same Poincaré series. O

Corollary 3.11. If p ¢ wL then p is a strongly free sequence consisting of a single
element.

Proof. We use the fact that M — U™ is injective. Hence, if 5 # 0 then M is a
submodule of U™ and is generated by a single non-zero element. So it must be free
since U has no zero-divisors by the Birkhoff-Witt Theorem. |

Let us apply the above results to the relators in Example [1.5. Reducing mod 7 we
get the relators

p1 = [&1,&2] + [€1,&4]

p2 = —[&1, &) + [§2, &3] + [€2, &4l
p3 = [§3,84]

pa = —[€a,&1] — [€4, 3]

in the free Lie algebra over F3 on &1, &2, &3, &4. We apply Theorem [3.3| with S = {&1,&3}

and T = {[&1, &), [€3, 2], [€3, 4], [€1,€4]}. Modulo [a,a], the relators py,...,ps are
linearly independent and lie in the subspace spanned by T'. Hence p1, ..., ps is strongly
free.

Now let L be the free Lie algebraon X = {&1,...,&,} over afield k and let p1, ..., pm

be elements of L with
pi =Y lijl&i, &5).
i
Let T" be the linking diagram whose vertices are &1,...,&, with (§,&;) an edge if j # i
and the linking number ¢;; # 0.

Theorem 3.12. The sequence p1, ..., pm is strongly free if the vertices of T’ form a
non-singular circuit.

Proof. After permuting the vertices we can assume that the path showing that T' is
non-singular is £1&s - - £,,€1. We apply Theorem [3.3| with S = {& | i odd} and T =
{l&,&;] | ¢ odd, j even}. In this case, we have p; in the span H of T modulo [a, a] since
no [&;,&,] appears in p; with 4,j both odd. Let e; = [§;,&41] for 1 <@ < m —1, let
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em = [&m,&1] and complete e, ..

13

., em to a basis of H modulo [a,a]. The transpose of

the coefficient matrix of e1,..., e, in p1,...,pn is
[ €12 0 0 0 _Elm_
—lo1 Lo 0 0 0
0 —l3o  l34 0 0
0 0 —ly3 0 0
0 0 0 S - 0
L 0 0 0 : _Em,mfl Eml |

The determinant of this matrix is
A&, &, 6m) = lizlaz - A1 mlm1 — Limlorlae - Uy 1.
O
Example 3.13. Let S = {181,163,7,61} and let I' = I'g(3). Using the primitive roots
2,2,3,2 for v; = 181, vy = 163, v3 = 7,v4 = 61 respectively, we find
lig =loz = l3g = loy = ly3 = 1,0y = b1y =Lz = —1,l13 =431 =0

so that A(vy,ve,vs,v4) = 1. Hence I'g(3) is a non-singular circuit.

Theorem 3.14. Suppose that m > 5 is odd and {;; =0 fori,j # m and i,j odd. If
by £ 0 and £1&5 -+ - Em—1&1 18 a non-singular circuit then the sequence pi,...,pPm 1S
strongly free.

Proof. We apply Theorem 3.3/with S = {; | i # m, ¢ odd} and T the set of [§;, §;] with
& €85,¢ ¢ 5. In this case, we have p; in the span H of T modulo [a, a] since no [§;, &;]
appears in p; with ¢, both odd and 7,5 # m. Let e; = [&,& 1] for 1 < i < m — 3,
em—1 = [&m—1,&1]s em = [Em,&1] and complete eq, ..., e, to a basis of H modulo [a, a].

The transpose of the coefficient matrix of ey,..., e, in p1,..., pm i
I flg 0 0 _El,m—l _glm_
—lo1 Lo 0 0 0
0 —l3y U3y 0 0
0 0 —{43 0 0
0 0 0 gm—l,l 0
| 0 0 0 0 lm1 |

The determinant of this matrix is £,,1 A(&1, &2, - - -

esis.

,&€m—1) which is non-zero by hypoth-

O

Example 3.15. If we take S = {61,7,163,43,19} then, for the given ordering of S,

we have

U3 = {31 =0,

lig = U39 = lgg = ly3 = U1y = l51 =1,

loy = lo3 =y = ly5 = —1.

Since £(19,61) = 1 and A(61,7,163,43) = —1 Theorem [3.14] applies and Gg(3) is a

mild group.
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Example 3.16. The presentation with defining relators

P1 = [61752]7 P2 = [52763]) p3 = [53764]7 ey Pm—1 = [é-’mflagmme = [§m7£1]

is equivalent to the presentation with p,,_; replaced by
[Em—1,6m] + [Em—1,&1]-
The graph I' associated to this presentation satisfies the conditions of Theorem [3.14

when m > 5 is odd.

One can develop rank criteria for strong freeness based on the size of the set S in
Theorem 13.3. For example, one has the following result for size 2.

Theorem 3.17. Suppose that {150 = €31 = 0. Then p1,...,pm 1s strongly free if the

matriz
[ b5 b s lim 0 0 0 0
0 0 0 0 lo3 Loy los lom
—f371 0 0 0 —{39 0 0 0
0 —A 41 0 0 0 —A 49 0 0
0 0 —l51 0 0 0 —As9 0
L0 0 o s 000 el

of size m x 2(m — 2) has rank m.

Proof. We apply Theorem 3.3 with S = {£;,£;} and
T = {[51763}7 [51)54]a EERE [€I7§m]7 [52753]7 [&2754]7 R [£2a§m]}

The given matrix is the transpose of the coefficient matrix of p, ..., py with respect
to T modulo [a, a]. O

We now consider the case L is the free Lie algebra on X = {¢,...
k and p1,...,pq are d < m elements of L with

pi = Z&‘j (&, &)
J#i
The associated linking diagram I' has vertices i, ..., &y, with (&,&;) an edge if ¢ # j

and the linking number £(;,¢;) = ¢;; # 0. We want to find conditions on I' which
imply the strong freeness of the sequence p1, ..., pq in the case d < m.

,Em } over a field

Theorem 3.18. The sequence p1,. ..
m.

, Pm—1 18 strongly free if £(&;,&m) # 0 for 1 <i <

Proof. We apply Theorem 3.3/ with S = {&,,}, T = {[&,&m] | 1 <i < m}. We get the
required result since p1,...,pm—1 are in a, and modulo [a,a] are a basis for the span
of T. |

Theorem 3.19. Suppose that £(§m—1,&m) # 0 and (&, &m—1) # 0 fori < m — 1.
Then p1,...,pm—1 s a strongly free sequence.
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Proof. We apply Theorem 3.3l with S = {&,,—1} and
T = {[éla £m71]7 [527 £m71]7 ooy [§m727€m71}7 [fmfh gm]}

We get the required result since p1, ..., pm—1 are in a, and modulo [a, a] is a basis for
the span of T'. O

Definition 3.20. We call I rooted at the vertex v if for every vertex w # v there is a
path from w to v.

We don’t know if py,...,pm—1 is a strongly free sequence if T' is rooted at &,,. For
example, we don’t know whether or not the sequence,

P1 = [61753}7 p2 = [52751] + [52754]7 pP3 = [537&4] + [53755]7 P4 = [64365]7

which is rooted at &5, is strongly free. Computer evidence using GAP suggests that it
is.

4. COMPUTING THE LOWER p-CENTRAL SERIES

Let F' be the free pro-p-group on z1,...,2Z,. The completed group algebra A =
Z,[[F]] over the p-adic integers Z, is isomorphic to the Magnus algebra of formal
power series in the non-commuting indeterminates Xy, ..., X,, over Z,. Identifying F'
with its image in A, we have z; = 1 + X; (cf. [26], p. I-7).

If e1,..., e, are integers > 0, we define a valuation w of A in the sense of Lazard
by setting

w( Y iy, Xi o Xi) = inf (0(ai, i) F e o e,

Liyeeolk

where v is the p-valuation of Z, with v(p) = 1. Let
A, ={uec A|lw(u) >n}, gr,(A) = An/Ant1, gr(A) = Bn>o8r,(A4).

Then gr(A) is a graded k-algebra where k is the graded ring F,[n] = gr(Z,) with 7
the image of p in pZ,/p*Z,. If & is the image of X; in gr, (A) then gr(A) is the
free associative k-algebra on &1, ...,&,, with a grading in which &; is of degree e; and
multiplication by 7 increases the degree by 1. The Lie subalgebra L of gr(A) generated
by the &; is the free Lie algebra over k on &, ...,&, by the Birkhoff-Witt Theorem.
Note that when e; = 1 for all ¢ we have A,, = I, where I is the augmentation ideal
(p, X1,...,Xpm) of A.

Forn>1,let F,, = (1+ A,)NF and for z € F let w(x) = w(x — 1) be the filtration
degree of x. Then (F,,) is a decreasing sequence of closed subgroups of F' with the
following properties:

F1:F7 [Fn7Fk]an+k, Ff;an-‘rlv

where [F,, F] is the closed normal subgroup generated by the commutators [u,v] =
uw~ v luy with v € F,,v € F,. Such a sequence of subgroups of a pro-p-group F is
called a p-central series of F'. An important example of a p-central series of a pro-p-
group G is the lower p-central series defined by

G1=G, Gpi1=G2[G, Gl
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If (G,,) is a p-central series of G, let gr, (G) = G,,/Gp+1 with the group operation
denoted additively. Then gr(G) = @,>18r,,(G) is a graded vector space over F,, with a
bracket operation [£, ] which is defined for £ € G,,, n € G, to be the image in gr,, ;. (F)
of [z, y] where x,y are representatives of &, n in gr,, (G), gr;,(G) respectively. Under this
bracket operation, gr(G) is a Lie algebra over F,. The mapping = — 2P induces an
operator P on gr(G) sending gr,, (G) into gr, . ;(G). For homogeneous &, 7, we have

P(E+n) = PE)+ Pn), [PE),n] = P& n])
unless p = 2 and &, 7 € gry(F) in which case

PE+n) = PE)+ Pn)+[&n], [PE),n] = P(&n]) + & & nll.

In the case G = F and F,, = (1 + A,) N F, the mapping = — x — 1 induces an
injective Lie algebra homomorphism of gr(F') into gr(A). Identifying gr(F') with its
image in gr(A), we have P(§) = n€ unless p = 2 and & € gr,(F) in which case

P(¢) = & +n¢.
The Lie algebra gr(F') is the smallest Fp-subalgebra of gr(A) which contains &1, ...&n

and is stable under P. To see this, let X,, be the set of elements x; with e; = n and
define subsets T, inductively as follows: Ty = X; and, for n > 1, T,, = T}, U T/ where

T ={2’ |z €T,1}, T)=X,U{[z,y]|xeT/,yeT), r+s=n}.

If F! is the closed subgroup of F' generated by the Ty with k > n, then (F)) is a
p-central series of F' (cf. [22], §1.2). If gr/(F) is the associated graded Lie-algebra, the
inclusions F C F,, induce a Lie algebra homomorphism gr’'(F) — gr(F). If p # 2 or
if p=2 and e; > 1 for all i, we obtain a sequence of Lie algebra homomorphisms over
Fyp (]
L — gr'(F) — gr(F) — gr(A),

where the homomorphism L — gr'(F) sends & to &, the image of & in gr, (F),
and hence is surjective since the &, generate gr'(F') as a Lie algebra over Fp[r]. The
composite of these homomorphisms sends &; to &; and hence is injective. Thus gr'(F) —
gr(F) is injective from which it follows inductively that F, = F,, for all n and hence
that L = gr(F).

If p =2 and e; = 1 for some 4, we have to replace L by the free mixed Lie algebra on
&1, ..., &y and the result follows by the Birkhoff-Witt theorem for mixed Lie algebras
(cf. [22], §1.2).

The above filtration (F),) is called the (z,e)-filtration of F. If e; = 1 for all i then
(F,,) is the lower p-central series of F'. We will prove Theorem 1.2 in the more general
context of an (z, e)-filtration.

Let r1,...,7q € F and let R = (ry,...,rq) be the closed normal subgroup of F
generated by r1,...,7q. Let p; € grj, be the initial form of r; with respect to the
(z, e)-filtration (F,,) of F. The presentation G = F/(r1,...,rq) is said to be strongly
free with respect to the (z,e)-filtration if p1,..., pq is a strongly free sequence of Lie
polynomials in &, ..., &, with coefficients in F,[x]. In this case, the pro-p-group G is
called mild with respect to the (z, e)-filtration. If G = F/R and G,, is the image of F,
in G = F/R then (Gy),>1 is a p-filtration of G.
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Theorem 4.1. Let F be the free pro-p-group on x1,...,Tm and let G = F/(r1,...,74),
with r; in FP[F,F]| and d > 1. Suppose that the initial forms p1,...,pa of r1,...,74q
are strongly free with respect to the (x, e)-filtration (F,) of F. Let R = (r1,...,7q) and
let Gy, be the image of F,, in G. Then

(a) We have gx(G) = gr(F)/(pu....., pa),

(b) The group R/[R,R] is a free Z,[|G]]-module on the images of r1,...,7q,
(¢) The presentation G = F/R is minimal and cd(G)=2.
(d) The enveloping algebra of gr(G) is the graded algebra associated to the filtration

wp of B = Z,|[G]] induced by the (z,e)-valuation w of Zy[[F]).

e) The algebra Z,([G]] is an integral domain with valuation wp.

f) The Poincaré series of gr(B) is 1/(1 —t)(1 — (t°* + -+ tm) 4 thr 4 4 tha)),
Y If1—(te 4 - ptem) +th 4 the = (1 — aqt)(1 — agt) - -+ (1 — ast) then

dimg, (gra(G)) = 3 % S k) (] + af + -+ al).
k=1 r|k

Proof. Let R, = RN F,, and let gr(R) be the Lie algebra associated to the p-filtration
(R,) of R. Identifying gr(R) with its image in gr(F) the ideal v = (p1,...,pq) is
contained in gr(R). An easy inductive argument shows that © = gr(R) if and only if
the induced homomorphism

0 :¢/[r,v] — gr(R)/[gr(R), gr(R)]
is surjective (and hence bijective). Let U and U’ be respectively the enveloping algebras
of g = gr(F)/v and gr(G) = gr(F)/gr(R). The canonical homomorphism ¢ : U — U’
is surjective and is compatible with 6; which means that for « € ¢/[r,t], u € U we have

O(u-x)=1(u) - 0(x).
Let M = R/[R, R] and let M,, be the image of R,, in M. Then (M,,) is a p-filtration of
M and we have gr(M) = gr(R)/gr([R, R]) where gr([R, R]) is the Lie algebra associated
to the filtration ([R, R],) with [R, R], = [R, R] N F,,. Since gr(M) is an abelian Lie
algebra, we have a canonical surjection

0" : gr(R)/[gr(R), gr(R)] — gr(M)

which is injective in degree n if and only if

gr, ([R, R]) = [gr(R), gr(R)]n.

Let B = Z,[[G]] be the completed group algebra of G over Z, and let B, be the
image of A, in B under the canonical surjection A — B. The graded ring gr(B)
associated to the filtration (B,) is an algebra over F,[r]. If R is the ideal of gr(A)
generated by gr(R) then U’ is canonically isomorphic to gr(A)/R and the kernel of the
canonical homomorphism of gr(A) onto gr(B) contains R. Hence we obtain a surjective
homomorphism

' U — gr(B).
In addition, gr(M) is a gr(B)-module since B,, - My C M, 1 and ¢’ is compatible with
(U
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We now show that 6 and 6’ are bijective. The proof is by induction on the degrees.
Suppose then that § and 6’ are bijective in degrees n < k. Since v, = gr(R), for
n < h =min(hq,...,hy), we may assume that k > h.

(T) 0 is injective in degree k. Since 6 is surjective in degrees < k we have v, = gr, (R).
Hence
[v,t]k = [gr(R), gr(R)]x

which shows that 6 is injective in degree k.
(II) ¢ is bijective in degree k. We have to show that gr;([R, R]) = [gr(R), gr(R)]x-
For this we will construct a closed subgroup H of R generated by a finite number of
elements z1, ..., z; such that

(i) H is a free pro-p-group with basis 21, ..., 2;

(i) If €} = w(z;) is the filtration degree of z; and if H, = H N R, then (H,) is the

(z,¢e')-filtration of H;
(iii) gr,,(H) = gr,(R) for n < k.
If we grant the existence of such a subgroup H we have gr, ([H, H]) = gr,,([R, R])

for n < k and

gro([H, H]) = [gr(H), gr(H)]x
for all n. Thus

gr,([R, R]) = gr),([H, H]) = [gr(H), gr(H)]. = [gr(R), gr(R)]x-

Let us now construct H. We first note that v is a free Lie algebra over Fp[r] since L /¢
is a free Fp[r]-module (cf.[17], Proposition 4). Choose a homogeneous free generating
set for v and let (y,..., (s the elements of this generating set which are of degree < k.
If €} is the degree of ¢; let z; € R.; whose image in 8rer (R) is ¢;. Let H be the closed
subgroup of R generated by z1,...,zs. Then property (iii) holds by construction. To
verify (i) and (ii), let E be the free pro-p-group on the letters z1,...,zs and let (E,)
be the (z,e')-filtration of E. The homomorphism « : F — H defined by a(z;) = z;
sends F, into H,, and, if Z; is the image of z; in grer (E), the induced homomorphism

o gr(E) — gr(H) C gr(R)

sends Z; to (;. But gr(E) is a free Lie algebra over F,[r] with basis Z1,...,%s since
e} > 1 for all 4. Since (j,...,{s is part of a basis for the free Lie algebra v, the
homomorphism «, is injective. It follows that « is injective and hence bijective.

It remains to show a(E,) = H,. Suppose that we have shown that a(Fy) = Hy
for 1 < k < n; this is true for n = 1. Let y € H,41 and suppose that y ¢ H) ;.
Then there exists k& < n such that y € Hy,y ¢ H, ;. Let x € Ej, with a(z) = y.
Then z ¢ Fyyq1 and so € = gri(x) # 0. But a,(§) = 0 since y = a(x) € Hy41. This
contradicts the injectivity of .. So H),, | = H,41 and so, by induction, it follows that
(Hp,) is the (z,¢e')-filtration of H.

(III) 6 is surjective in degree k. To show this it suffices to show that 8” = 6" o 0 is
surjective in degree k. If e; = w(r;), we may assume that e; < e; for ¢ < j and that
e; > k for i > t. Let § be a non-zero element of gr, (M) and let b € M}, be an element
whose image in gr, (M) is 8. If 7; is the image of r; in M,,, we can choose b so that

b:’()l'?l—‘r...—f—’l)t'?h
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where v; € B. Since B; - M; C M;,; we can suppose that the above expression for b
involves only those terms v; - 7; with wg(v;) +e; < k, where wg(v) = sup{n | v € B, }.
Since b ¢ Mj.1, this expression is not empty. Let g be the smallest integer of the
form wp(v;) + e; and let D be the set of integers ¢ with wp(v;) + e; = g. Let u;
be a homogeneous element of U with ¢ (u;) = ©;, where ¢ = ¢/ o ¢ and ; is the
image of v; in gr,(B) with n = g — e;. Let p; be the image of p; in t/[t,t] and let
§ =2 iepui-p; If g <k, wehave 0(§) = 0 which implies that { = 0 since { is of
degree g and 6 is injective in degree g. But this contradicts the fact that v/[r,t] is a
free U-module. Hence g = k and 8 = 6”(¢) which implies the surjectivity of of 8” in
degree k.

From the above it follows that the homomorphism ¢’ : gr(A)/R — gr(B) is bijective.
Since t = gr(R), we have U = gr(A)/R which yields (d) and (e).

From the fact that gr(M) is a free gr(B)-module on the images of 7q,...,7q, it
follows that M is a free B-module on 71, ...,r4 which gives (b). Using this, we obtain

H*(G,Z/pZ) = H'(R,Z/pZ)" = Hom(R/(R, R, Z/pL)" = (Z/pL)",

which implies that d is the minimal number of relations for G. Finally, using the
standard exact sequence

0— R/[R,R] - B™ — B —Z, — 0,

we obtain that the cohomological dimension of G is 2 (cf. [6], p.459). This gives (c).
To get (g) we take logarithms on both sides of the identity

[T =P = (1= ait)(1 = agt) - (1 — aat),

n>1
where by, is the dimension of the n-th homogeneous component of gr(G)/mgr(G), and
use the fact that dimg, gr,(G) = > p_; bk. O

Since the (z,e)-filtration of F is the lower p-central series of F when e; = 1 for
all 7 and the filtration of A is given by powers of the ideal I which is the kernel of
the augmentation homomorphism of Z,[[F]], we obtain that the induced filtration of
B = Z,[|G]] is given by powers of the augmentation ideal J of B. Moreover, our proof
shows that G,, = GN(14I"); in other words, the lower p-central series of G is induced
by the J-adic filtration of Z,[[G]]. This yields Theorem [1.2.

When p = 2 and the initial forms p; of the relators r; in a minimal presentation for
G are of degree 2, that the p; are Lie polynomials with coefficients in Fy[r] is equivalent
to the torsion subgroup of G/[G, G| having exponent > 4. For example, this shows
that the group

(1,22, oy Ty | x%[thg] = xé[xg,xg] =...= xfnfl[xm,l,xm] = mfn[xm7x1] =1)

is a mild pro-2-group if m > 4 since

P1 = [51762]7[’2 = [52,&’)]; ceey Pm = [gmafl]

More generally, the torsion subgroup of G/[G,G] has exponent > 4 if and only if
the initial forms p; are Lie polynomials p, over Fy modulo wgr(F)*, where gr(F)* =
@n>2gr(F). In this case, the given presentation can be shown to be strongly free if
Dis--+,Pq 18 a strongly free sequence over Fy (cf.[21]).
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5. ZASSENHAUS FILTRATIONS

Theorem 4.1] can be extended to the case of filtrations induced by valuations of
the completed group ring F,[[F]]. The Lie algebras associated to these filtrations are
restricted Lie algebras in the sense of Jacobson[11].

Let F be the free pro-p-group on z,...,&,. The completed group algebra A =
F,[[F]] over the finite field F, is isomorphic to the algebra of formal power series in
the non-commuting indeterminates X,..., X,, over I,. Identifying F' with its image
in A, we have z; = 1+ X;.

If e1,..., e, are integers > 0, we define a valuation w of A by setting

’LD( ai1,~~~7ikXi1 "'Xik) = ian (eil ++elk)
il;ik Tiyeensle
Let
Ap={u€ Alw(u) = n}, gr,(4) =A,/Ant1, gr(A) = Bn>ogr,(A).

Then gr(A) is a graded Fj-algebra. If & is the image of X; in gr, (A) then gr(A) is
the free associative [Fp-algebra on &1, ..., &, with a grading in which &; is of degree e;
. The Lie subalgebra L of gr(A) generated by the ¢; is the free Lie algebra over F,
on &1,...,&, by the Birkhoff-Witt Theorem. Note that when e; = 1 for all ¢ we have
A, = I", where I is the augmentation ideal (X1,...,X,,) of A.

A decreasing sequence (G,,) of closed subgroups of a pro-p-group G which satisfies

[Gi,Gj] € Gigj, GY C G

is called a called, after Lazard [22], a p-restricted filtration of G.

For n > 1, let F, = (1+ A,) N F. Then (F,) is a p-restricted filtration of F.
This filtration is also called the Zassenhaus (z, e)-fitration of F'. The mapping = +— xP
induces an operator P on gr(F) sending gr,(F) into gr,, (F). With this operator,
gr(F) is a restricted Lie algebra over F,. If e; = 1 for all 4, the subgroups F,, are the
so-called dimension subgroups mod p. They can be defined by

Fp =<y, [ 1,9 1P | 915 sy €F, 7p° > >

Let r1,...,7q € F and let R = (ry,...,7rq) be the closed normal subgroup of F
generated by ry,...,7q. Let p; € gr,. be the initial form of r; with respect to the
Zassenhaus (x, e)-filtration (F,,) of F. The presentation G = F/(ry,...,rq) is said to
be strongly free with respect to the Zassenhaus (x, e)-filtration if pq, ..., pg is a strongly
free sequence of Lie polynomials in L. In this case, the pro-p-group G is called mild
with respect to the Zassenhaus (z, e)-filtration. If G = F/R and G,, is the image of F,,
in G = F/R then (Gy),>1 is a p-restricted filtration of G.

Theorem 5.1. Let F be the free pro-p-group on 1, ..., Ty, and let G = F/(r1,...,7r4),
with r; in FP[F,F| and d > 1. Suppose that the initial forms p1,...,pq of r1,...,74
are strongly free with respect to the Zassenhaus (x,e)-filtration (F,) of F. Let R =
(ri,...,rq) and let G, be the image of F,, in G. Then

(a) We have gr(G) = gr(F)/(r1,...,74),

(b) The group R/RP[R,R] is a free Fp[[G]]-module on the images of p1,. .., pd,

(¢) The presentation G = F/R is minimal and cd(G)=2.
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(d) The enveloping algebra of gr(G) is the graded algebra associated to the filtration
wp of B =TF,[[G]] induced by the (x,e)-valuation w of A = F,[[F]].

(e) The algebra B is an integral domain and wg is a valuation of B.

(f) The valuation wg of B induces the filtration (G,) of G.

g) The Poincaré series of gr(B) is 1/(1 — (¢ + -+ +tom) +thr . 4 tha),

h) Ife; =1 for alli and a, = dimgr,(G) then

(
(

1 — ¢pm)n 1
H( )

_ =7 a:
nle tm 1—mt+t

Proof. In [15], Koch proves that if ﬁ/@f is a free A/R module on the images of
p1,---spm then gr(I) = A/R, where R is the ideal of A = gr(A) generated by
P1,- - Pm- The former is true if pi, ..., p, lie in L and are strongly free since R/RI

is the image of the free A/R-module t/[t,t] under the injective mapping
§/[, 8 — [/RI

where t is the ideal of the quadratic Lie algebra L generated by p1, ..., pm. This proves

(e).
Now consider the exact sequence

0 —¢/[t,7] — gr(B)™ — gr(B) = F, — 0,

where t is the ideal of L generated by py, ..., pq. Since by assumption, t/[t, ] is a free

gr(B)-module of rank d, we obtain the exact sequence

0 — gr(B)* — gr(B)™ — gr(B) — F, — 0.
By a result of Serre (cf. [22], V, 2.1), we obtain the exact sequence
0—>Bd—>Bm—>B—>Fp—>O.

This yields (g) and, by a result of [6], it proves (b) and (c). If R = (p1,...,pa) is
the ideal of the restricted Lie algebra gr(F') generated by p1, ..., p4, we have canonical
homomorphisms of restricted Lie algebras

gr(F)/R — gr(G) — g’ (G) — gr(B),

where the first arrow is surjective and gr'(G) is the restricted Lie algebra associated to
the Zassenhaus filtration (G’,) of G induced by the filtration wg of B. Since gr(B) is the
enveloping algebra of the restricted Lie algebra gr(F')/R, the Birkhoff-Witt Theorem
for restricted Lie algebras shows that all arrows are injective which yields (a) and (d).
The injectivity of gr(G) — gr'(G) yields G,, = G,, for all n by induction which proves
(f). The assertion (h) follows from (g) and [22], Proposition A.3.10. O

Corollary 5.2. If G is a mild pro-p-group with r(G) > d(G) then G is non-analytic.
This follows from [22], A3.12.1 and the fact the the reciprocal of the Poincaré series

P(t) of gr(B) has a root strictly between 0 and 1 which implies that the coefficients of
P(t) have exponential growth.
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6. EXAMPLES OF MILD GROUPS

The groups G's(p) and G, (p) are a rich source of mild groups due to the following
fact pointed out to us by H. Kisilevsky and J. Sonn.

Proposition 6.1. Let p # 2 and let S be a given set of primes congruent to 1 mod
p. Then a prime ¢ =1 mod p can be found with the additional edges of I'syqqy(p) and
L(sugqp), (p) arbitrarily prescribed.

Proof. Let S ={q1,...,qm}. The proof is based on the fact that the fields

Q(u(pq1)); - - - Qu(pgm), Qu(p), /1) - - - Qulp), ¢/am), Qu(p®))

are linearly disjoint over Q(u(p)). Let E; be the unique extension of Q(u(p)) of degree
p and contained in Q(u(pg;)). If o is a generator Gal(p(pg;)) over Q(u(p)) then Ej is
the fixed field of Uf . Let K be composite of the fields

E1, ..o Ep, Qu(p), /@) - -, Q(u(p), ¢/am), Q(u(p?)).

The field K is Galois over Q and the subgroup H = Gal(K/Q(u,)) of Gal(K/Q) is
the direct product of the Galois groups of these fields over Q(u(p)). These groups are
cyclic of order p. If Fq € Gal(K/Q) is the Frobenius automorphism at the unramified
prime 9 of K and £ lies above the rational prime ¢ then Fn € H if and only if ¢ = 1
mod p.

If Fn € H then the restriction of Fq to F; is the identity if and only if ¢ is a p-th
power mod ¢; and the restriction of F to Q(¢/gs, iu(p)) is the identity if and only if ¢;
is a p-th power mod q. The restriction of Fq to Q(u(p?)) is the identity if and only if
¢ = 1 mod p?. By the Cebotarev density theorem, every g € H is is of the form Fg
for some Q. Therefore, we can extend the directed graph I's(p) or I's, (p) by a single
prime ¢ = 1 mod p with prescribed edges joining the primes of S to ¢ and ¢ to the
primes of S or Sp,. O

Corollary 6.2. Given a finite directed graph T', we have T' = T's(p) for some S.
We don’t know if the linking numbers can be arbitrarily prescribed.

Corollary 6.3. Let p be a prime and S a finite set of primes = 1 mod p. If |S| > 2
then S can be extended to such a set S with |S’| = 2|S| and T's/(p) a non-singular
circutt.

Proof. Let S ={q1,...,qm}. We now extend S by a single prime r; so that g171, r1¢2
are edges with r1¢; not an edge. Now extend the new graph I'gyy,,} by another prime
ro s0 that gory and rogo are the only new edges. Continuing in this way, we see that
we can extend I's to a non-singular circuit I'ss having 2m vertices. If 1 < ¢ < m let
vg;—1 = 1; and vg; = ¢q;. Then vy - - - v9,,v1 is the required non-singular circuit. O

If S ={7,13,19,31} with the primes of S ordered as written, the initial forms of
the relators in the Koch presentation of the group Gg(3) are, modulo T,
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p1 = [§1, 8] — [§1, 84l

p2 = [€2, &3] + [§2, &4,

p3 = [&3,&1] + [€3, 2] — €3, Eal,
p1 = [&1, &l

The circuit &1£2€364&1 is not a non-singular circuit since £3£; is an edge of I'. How-
ever, if we add p4 to p1, make the change of variable
=& (i #£4),6— & +&+&,
and subtract p; from p4, we obtain the equivalent Koch presentation for g =
L/(pla P25 P35 P4)

p1 = [€1,&2],
p2 = &2, &1] + [§2, &3] — [€2, &4l
p3 = [&3, &4l
ps = [€4,&1]

which is strongly free as £1£2€3€4&1 is now a non-singular circuit since ;&3 and £3&;

are not edges of I'. Hence Gg is a mild group. Note that, after adding p; to po and
making the change of variable &3 — &3+ &4, & — &; (i # 3), one obtains that the given
presentation is equivalent modulo 7 to

p1 = [&1, &), p2 = [&2.83], p3 = [&3.&], pa = [€4, &)

We can produce an infinite number of mild groups G with d(G) = r(G) = 2,3. For
example,

(1) the group

a b
<zy | [z, 9], [y, [z, 9w, o [[z,[2,9]], [y, [z, [z, y]]]Jo >
with a > 4,b > 5, u € Fg,v € Fy is mild,
(2) the group

c

< x,y,2 | 2P [z, y]u =1, ypb [z, [z,9]]v, 2P [z, [z, 9]Jw >

with u € F5,v,w € Fy,a>1,b,c>2ismildif p#2o0rifp=2a>1,
(3) the group

c

<y 2 [z o yllu, 0P [z [ yllu, 2 [ [z yllw >
with u,v,w € Fy,a,b,c > 2 is mild.
For any m > 4 we can construct mild pro-p-groups with d(G) = m,
1<7r(G) <s(m) = max k(m — k)
and the initial forms of these relators of degree 2. For example, if p # 2, the pro-p-group
G = (z1,x9, T3, 24,5 | 25|21, 2], 2 [21, 24], 28 |23, T3], T} (23, 4], 28 |25, 2], [w5, 24])
is mild with d(G) =5, r(G) = s(5) = 6. Moreover, we have G/[G, G| finite.
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7. THE GROUP Gg_ (2).

For p = 2, the group Gg_ (2) with Soc = S U {oco} has the Koch presentation
< Xiyeeoy T | 71,00, T > where

= ] lwi o) wi

J#i
with w; € F3.
If ¢ = 1 mod 4 and the initial forms p; of these relators are of degree 2 then the
p; are Lie polynomials in &7,.. ., &, with coefficients in Fs. In this case Theorem [1.2

applies. However, it is not of much use as the linking numbers are symmetric €;; = £;;
by quadratic reciprocity. This implies that

pLt ..t pm =0

and so the sequence p1, ..., p,, is not strongly free. However, the group Gg__(2) could
still be shown to be a mild group by considering the modified presentation obtained by
replacing rp, by 7., = rire - . In this case the initial form of 7], would be of degree
> 2. However, the initial form of r; may not be a Lie polynomial in &3, ..., &, with
coefficients in Fo[r] but this will be true modulo 7. In this case Theorem 4.1] does not
apply but we are able to extend it to cover this case (cf.[21]). However, Theorem [5.1
does apply.

An example of this is furnished by the pro-2-group H having the presentation

< Ty, %0, 23,4 | TS = x73°?, T = x5tT xg = x3t™ x5 = Ty >

This group appears as a subgroup of index 4 of the group on 2 generators =,y and
relations ¥ *¥% = 25 y4 = 1 (cf[5]). This group has a presentation whose initial
forms of the relators are

p1 = [&1, &) + [&1, &3],
p2 = [&2, &3] + [€2, &4l
p3 = (€3, &a] + [§3, &1,
p1 = P& + P& + mP&§ + mPE + (&1, [€2,64]]-

Working modulo 7, these relators become

p1 = [€1,&a] + [1,83],
p2 = (€2, &3] + [§2, &4l
p3 = [€3,&4] + [§3, 61l
pa = [€1, €2, &4]).

We are unable to prove that these elements form a strongly free sequence over Fy with
the methods in this paper but computations using GAP indicate that the Poincaré
series of the enveloping of L/(p1, pa, p3, p4) over Fy is
1
1—4t+ 32 4¢3
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In [27], [24] the case ¢;; = 0 for all 4, j is considered and the initial forms computed
in certain cases in degree 3 modulo squares using the connection between the Rédei
symbols and the Milnor ps-invariants. For example, in the case S = {5,41,61}, they
find that

p1 = [[&1, &), o] + [[€1, &3], &) + [[€2, €3], &1,
p2 = [[flafﬂagQ] + [[51;53]752] + [[52:63]752] + [[52,53]753]’
p3 = [[§1,83], &2 + [[€1, &3], &) + [[€2, &3], §1] + [[€2, &3] €2l + [[€2, &3], &3]

in the restricted Lie algebra associated to the dimension subgroups mod p. Again, we
are unable to prove that these elements form a strongly free sequence with the methods
in this paper but computations using GAP indicate that they are. If they were then
Theorem 5.1 would apply.

8. QUESTIONS

In view of these results and results of [5] which show that certain groups of Koch
type on two generators have subgroups of finite index which behave like mild groups,
we are led to ask the following questions.

Question 1. If |S]| > 4, is Gg(p) of cohomological dimension 27
Question 2. Is Gg(p) virtually of cohomological dimension 2 for all S?
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