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Abstract. We give effective necessary and sufficient conditions for a quadratically
defined 2-relator pro-p-group to be mild and apply these results to give examples
of 2-extensions with restricted ramification over an imaginary quadratic base field
for which the associated Galois group is a mild 2-relator pro-2-group.

1. Introduction

Let G be a finitely presented pro-p-group and let H i(G) = H i(G,Z/pZ). Then
d = d(G) = dimH1(G) is the minimal number of generators of G and r = r(G) =
dimH2(G) is the minimal number of relators. Suppose that the cup product map

H1(G)⊗H1(G) −→ H2(G)

is surjective. In this case we say that G is quadratically defined. By duality, we
get an injective mapping

ι : H2(G)∗ −→ H1(G)∗ ⊗H1(G)∗

and hence an embedding of W = H2(G)∗ into the tensor algebra A = T (V ) of
V = H1(G)∗ over Fp. Let B = A/(W ), where (W ) is the ideal of A generated by
W . Then B is a finitely presented graded algebra over Fp with d generators and r
quadratic relators; it is called the holonomy algebra of G. If bn = dimBn, the n-th
homogeneous component of B, the formal power series

B(t) =
∑
n≥0

bnt
n

is the Poincaré series of B. We have B(t) ≥ (1− dt+ rt2)−1, cf. [1]. The pro-p-group
G is called mild if the above inequality is an equality in which case the algebra B is
also called mild. A basis of W is called strongly free if B = A/(W ) is mild.

Mild pro-p-groups have strong properties; for example, they are of cohomological
dimension 2 and the Lie algebra associated to various central series of such groups
can be computed, cf. [3], [5], [6].

Theorem 1. A quadratically defined 2-relator pro-p-group is mild if p 6= 2.
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This is not the case when p = 2. However, we have the following result which
gives an effective algorithm for determining the mildness of a quadratically defined
pro-2-group.

Theorem 2. A quadratically defined 2-relator pro-2-group is mild if and only if the
codimension of the annihilator of H1(G) under the cup-product is > 2 and ι(H2(G)∗)
contains no non-zero square of an element of T (H1(G)∗).

2. Computation of the Holonomy Algebra

Let G = F/R = 〈x1, . . . , xd | r1, r2〉 be a finitely presented pro-p-group with
r1, r2 ∈ F p[F, F ]. Then d(G) = d. The completed Fp-algebra of the free pro-p-
group F can be identified with the algebra of non-commutative formal power series
in X1, . . . , Xd over Fp. Under this identification, xi = 1 +Xi. If r ∈ R we have

r =
d∏

i=1

x2ciii

∏
i<j

[xi, xj]
cij mod F 4[F, F ]2[F, [F, F ]] if p = 2,

r =
∏
i<j

[xi, xj]
cij mod F p[F, [F, F ]] if p 6= 2

so that

r =
d∑

i=1

ciiX
2
i +

∑
i<j

cij[Xi, Xj] mod terms of degree > 2 if p = 2,

r =
∑
i<j

cij[Xi, Xj] mod terms of degree > 2 if p 6= 2.

Using the transpose of the inverse of the transgression isomorphism

tg : H1(R)F = (R/Rp[R,F ])∗ −→ H2(G),

the relator r defines a linear form φr on H2(G) such that, if χ1, . . . , χd is the basis of
H1(F ) = (F/F p[F, F ])∗ with χi(xj) = δij, we have φr(χi ∪ χj) = cij if i ≤ j, setting
cii = 0 if p 6= 2; cf.[9], Prop. 3.9.13. If we identify xi with its image in V = F/F p[F, F ]
the algebra A = T (V ) can be identified with the free associative algebra on x1, . . . , xd
over Fp. Moreover,

ρ = ι(φr) =
d∑

i=1

ciix
2
i +

∑
i<j

cij[xi, xj] if p = 2,

ρ = ι(φr) =
∑
i<j

cij[xi, xj] if p 6= 2

which shows that ρ lies in ∧2V if p 6= 2. If p = 2 then ρ lies in Sq(V ), the symmetric
square of V , which is defined to be the subspace of V ⊗ V generated by elements of
the form x⊗ x, x⊗ y + y ⊗ x. Under our identification, ∧2V is the 2-component L2

of the Lie subalgebra L of A generated by x1, . . . , xd and

Sq(V ) =
d∑

i=1

F2x
2
i + L2
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if p = 2. Let cji = cij for i < j if p = 2 and cji = −cij, cii = 0 if p 6= 2. Setting
X to be the 1× d matrix [x1, . . . , xd], we obtain a symmetric d× d matrix C = [cij]
such that ρ = XCX t. This matrix is the matrix of the bilinear form b on H1(G)
defined by b(χ, ψ) = φr(χ ∪ ψ). The automorphism f of V defined by X 7→ XP ,

where P ∈ GLd(F2), extends to an automorphism f̂ of A whose restriction to Sq(V )

if p = 2 and to L2 if p 6= 2 sends the element ρ to f̂(ρ) = XPCP tX t.

Proposition 1. Let φi be the linear form on H2(G) associated to ri and let ρi =
ι(φi). Then G is quadratically defined and r(G) = 2 if and only if ρ1, ρ2 are linearly
independent over Fp, in which case, the holonomy algebra of G is A/(ρ1, ρ2) which
implies that G is mild if and only if the sequence ρ1, ρ2 is strongly free.

3. The classification problem

Let Q be the set of graded Fp-algebras of the form A/(ρ1, ρ2) with ρ1, ρ2 linearly
independent elements of Sq(V ) if p = 2 and L2 if p 6= 2. Two algebras A/(ρ1, ρ2),
A/(ρ′1, ρ

′
2) ∈ Q are isomorphic if and only if there is an automorphism f of V and

Q ∈ GL2(Fp) such that [
ρ′1
ρ′2

]
= Q

[
f̂(ρ1)

f̂(ρ2)

]
The vector space L2 has dimension

(
d
2

)
with basis

{xij = [xi, xj] | 1 ≤ i < j ≤ d}
which we order lexicographically. If p = 2 the symmetric square Sq(V ) has dimension
(d2 + d)/2 over F2 with explicit basis

x21 < · · · < x2d < x12 < x13 < · · · < x23 < x24 < · · · < xd−1,d.

Each relator ρi is determined by its coordinates Y = [ci1, . . . , cis] ∈ Fs
p with respect to

this basis; here s =
(
d
2

)
if p 6= 2 and s = (d2+2)/2 if p = 2. If f(xj) =

∑d
i=1 pijxi then,

in terms of these coordinates the automorphism f̂ sends Y to Y P̂ , where P̂ ∈ GLs(Fp)
is determined by

f̂(xij) =
∑
r<s

(pripsj + psiprj)xrs

f̂(x2i ) =
d∑

j=1

p2jix
2
j +

∑
r<s

pripsixrs if p = 2.

Each algebra in Q is determined by specifying a 2 × s matrix over Fp. Determining
the isomorphism classes of elements of Q reduces to determining the orbit space of
2 × s matrices C over Fp under the action of Γ = GL2(Fp) × GLd(Fp) where, for
(Q,P ) ∈ GL2(Fp)×GLd(Fp),

(Q,P )C = QCP̂ t.

In the case p = 2, d = 4 computations with symbolic algebra package Magma [8]
yield the following result.

Theorem 3. There are 54 orbits of Q under the action of Γ. The size of each orbit
together with a representative is given in Appendix A.
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An orbit is called mild if it has a strongly free representative. If one representative
is strongly free then so are all the others.

4. Determining the mild orbits in the case p = 2, d = 4

Theorem 4. The orbits 19, 20, 21, 49, 50, 51, 52, 53, 54 are the only non-mild orbits
when d = 4, p = 2.

These orbits are non-mild since the 4-th term of their Poincaré series is either 49
or 50 instead of 48.

To prove strong freeness for all but one of the remaining orbits we use Anick’s
criterion which is developed in [1], §6. In order to state Anick’s criterion we have
to define the notion of a combinatorially free sequence. A sequence of non-identity
monomials α1, . . . , αd in x1, . . . , xd is said to be combinatorially free if (1) no monomial
αi is a submonomial of αj for i 6= j and (2) if αi = u1v1, αj = u2v2 is a proper
factorization with ui, vi monomials then u1 6= v2. Let an ordering of x1, . . . , xd be given
and order the monomials lexicographically. By the leading term of a homogeneous
polynomial w ∈ A we mean the largest monomial appearing in w (with a non-zero
coefficient).

Proposition 2 (Anick’s Criterion). A sequence ρ1, . . . , ρm of homogeneous elements
of A of degree > 0 is strongly free if the sequence of leading terms of these elements
is combinatorially free.

As an example consider orbit 5 which is represented by

ρ1 = x21 + [x1, x2], ρ2 = [x1, x3].

The leading terms for the ordering x1 < x2 < x3 < x4 are x2x1, x3x1 which are
combinatorially free. The remaining orbits, except for orbit 28 are handled in this
way.

To handle orbit 28 we need a more powerful criterion for mildness that was ob-
tained by Patrick Forré [3]. There he proves a result on how sequences in A can be
modified in a certain way such that strongly free sequences remain strongly free by
assigning different weights e = (e1, e2, e3, e4) to the basis X = (x1, x2, x3, x4). Dealing
with different gradings (X, e) at the same time together with Anick’s criterion, this
gives an alternative proof of the cup product criterion for cohomological dimension 2
(especially for pro-2-groups, c.f. [6], Th. 1.1).

Proposition 3 (Forré’s Theorem). Let w1 + v1, . . . , wr + vr be a sequence of homoge-
nous elements of A. Then this sequence is strongly free in A if there is a grading
(X, e) such that

(a) w1, . . . , wr is a strongly free sequence of e-homogeneous elements of A,
(b) for each e-homogeneous component u of vj, we have dege u > dege(wj).

Proof. For a proof we refer to [3], Cor. 3.8 and 3.10. �

Orbit 28 is represented by ρ1 = x21 + [x1, x3], ρ2 = x22 + [x1, x2]. For the (X, e)-
grading with e1 = 2, e2 = 3, e3 = e4 = 1 the e-homogeneous terms of lowest degree of
ρ1, ρ2 are [x1, x3], [x1, x2] whose highest terms for the ordering x1 < x2 < x3 < x4 are
x3x1, x2x1, a combinatorially free sequence.
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5. An Algorithm for Strong Freeness

Theorem 5. The Γ-orbit of an algebra in Q contains a representative B = A/(ρ1, ρ2)
with ρ1, ρ2 in exactly one of the following forms with L,L1, L2 ∈ L2, L1, L2 6= 0:

(I) ρ1, ρ2 ∈ L2, ρ1, ρ2 6= 0, ρ1 6= cρ2;
(II) ρ1 = x21 + L1, ρ2 = L2, with L1 6= L2;

(III) ρ1 = x21, ρ2 ∈ L2, ρ2 6= 0;
(IV) ρ1 = x21 + L1, ρ2 = x22 + L2 with L1 + L2 6= 0, [x1, x2] or L1 = L2 6= [x1, x2];
(V) ρ1 = x21 + [x1, x2], ρ2 = x22 + [x1, x2];

(VI) ρ1 = x21, ρ2 = x22 + L.

The orbit is mild if and only if it is of type (I), (II) or (IV).

Proof. Let B : H1(G)→ H2(G) be the linear mapping defined by B(χ) = χ∪χ and
let t = codimKer(B). Let s be the codimension of the annihilator of H1(G) under
the cup-product. Note that p 6= 2 can only occur for type (I).

The representative ρ1, ρ2 is of type (I) if and only if t = 0 in which case s ≥ 3.
After a change of variables we can assume that the largest term of ρ2 is [xk, xd]. Let
a[xi, xj] with i < j be the largest term of ρ1. After possibly subtracting from ρ1 a
scalar multiple of ρ2 we may assume that [xi, xj] 6= [xk, xd]. To prove mildness we use
Anick’s criterion. If j = d then the highest monomials in ρ1, ρ2 are xdxi, xdxk which
are combinatorially free. If j < d, j 6= k, the highest monomials are xjxi, xdxk which
are combinatorially free. If j < d, j = k then, for the ordering of x1, . . . , xd in which
xd < xk are largest, the highest monomials are xkxi, xkxd which are combinatorially
free. Hence type (I) is mild.

We are in types (II) or (III) if and only if t = 1 in which case we may assume,
without loss of generality, that ρ1 = x21 + L1, ρ2 = L2 with L1, L2 ∈ L2. If L1 = 0 we
are in type (III); if L1 = L2 then after subtracting ρ2 from ρ1 we fall in type (III). To
show that type (III) is not mild let R be the ideal of A generated by ρ1, ρ2 and let I
be the augmentation ideal of A. Since [x1, ρ1] = 0 we see that x1ρ1 ≡ 0 mod RI and
hence that R/RI is not a free B-module on the images of ρ1, ρ2. This implies that
ρ1, ρ2 are not strongly free, cf. [3]. If ρ1, ρ2 are of type (II) we prove mildness exactly
as for type (I).

We are in type (IV), (V), or (VI) if and only if t = 2. Type (VI) is not-mild which is
proven in the same way as for type (III). Type (V) is not mild since [x2, ρ1]+[x1, ρ2] =
0.

Now suppose that ρ1, ρ2 are of type (IV) with L1 = L2 = L. If we add ρ2 to ρ1 and
replace x1 by x1 +x2 we get ρ1 = x21 + [x1, x2], ρ2 = x22 +L′ with L′ 6= [x1, x2]. Hence,
after a change of variables, we can assume that the largest term of L′ is [xk, xd] with
d > 2. The highest monomials in ρ2, ρ2 are x2x1, xdxk which are combinatorially free
if k 6= 2. If k = 2 we apply Forré’s Theorem with e1 = 3, e2 = 2, ed = 1, eh = 2 for
h 6= 1, 2, d. In this case the homogeneous components of lowest degree for ρ1, ρ2 are
[x1, x2], [x2, xd] whose highest monomials for the ordering in which x1 < xd < x2 are
the combinatorially free monomials x2x1, x2xd.

Now suppose that ρ1, ρ2 are of type (IV) with L1 6= L2, L1 +L2 6= [x1, x2]. Without
loss of generality, we can assume the largest term of ρ2 is [xk, xd] with d > 2. Let
[xi, xj] with i < j be the largest term of ρ1.
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Suppose first that [xi, xj] 6= [xk, xd]. If j = d or j 6= d, k 6= j the highest monomials
of ρ1, ρ2 are xjxi, xdxk which are combinatorially free. If j 6= d and k = j 6= 2 then,
for the ordering in which the largest variables are xd < xj, the highest monomials are
xkxi, xkxd which are combinatorially free. If j 6= d, k = j = 2 then

ρ1 = x21 + [x1, x2], ρ2 = x22 +
d∑

h=2

ah[x1, xh] +
d−1∑
h=3

bh[x2, xh] + [x2, xd].

If we apply Forré’s Theorem with e1 = 3, e2 = 2, ed = 1, eh = 2 for h 6= 1, 2, d,
the homogeneous components of lowest degree for ρ1, ρ2 are [x1, x2], [x2, xd] whose
highest monomials for the ordering in which x1 < xd < x2 are the combinatorially
free monomials x2x1, x2xd.

Now suppose that [xi, xj] = [xk, xd]. If i = k > 2 then, after adding ρ2 to ρ1 and
replacing x1 by x1 + x2, the largest term of ρ1 is a non-zero element of L2 which is
not equal to [xk, xd], the largest term of ρ2. This reduces us to the previous case in
which that ρ1, ρ2 were strongly free. Now suppose i = k = 2. We have

ρ1 = x21 +M1 + [x2, xd], ρ2 = x22 +M2 + [x2, xd].

Since L1+L2 6= 0, [x1, x2] exactly one of M1, M2, say M1, has a term [x1, xh] or [x2, xh]
with h 6= 1, 2, d which we can assume to be the latter if both appear. If we change
the ordering by making xh largest, the highest monomials are xhx2, xdx2 which are
combinatorially free. In the same way we can prove that ρ1, ρ2 are combinatorially
free if i = k = 1. �

Theorems 1 and 2 follow immediately from this result.

6. Examples of mild extensions

Let k be a totally imaginary number field and S a finite set of primes of k. The
pro-2-group GS(2) = Gal(kS(2)/k), i.e. the Galois group of the maximal 2-extension
of k unramified outside S, contains interesting information on the arithmetic of k. In
the case where the set of primes S2 of k above 2 is contained in S - the wild case - it
has been known for a long time that GS(2) is of cohomological dimension less than
or equal to 2, see [9].

In the tame case, where S∩S2 = ∅ and in the mixed case, where ∅ ( S∩S2 ( S2,
only little had been known about the structure of GS(2) until recently. The results
of [6] on mild pro-2-groups apply to an arithmetic result of Schmidt [10] which in
turn yields a theorem that deals with all the above cases: For any given finite set S ′

of primes of k, there exists a finite set T of primes of k of odd norm such that for
S = S ′ ∪ T , the group GS(2) is of cohomological dimension 2. A natural question
in this context is whether one can even prove the stronger property of mildness of
GS(k) in some situations, in particular when we are given presentations that are not
of Koch-type. In the following, we will give some examples of mild pro-2-groups with
4 generators and 2 relators occuring as GS(2) for imaginary quadratic number fields,
making use of our classification.

Finally we will also give an arithmetic example of a non-mild 4-generator 2-relator
pro-2 group, which occurs as GS(2) over a cubic field. A good reference for a general
discussion of the calculations we will carry out explicitly in our examples is section
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11.4 of [4]. We will use the same notation and refer to this for more background and
details.

Example 1. Let k = Q(
√
−7), S = {p, p, q}, where p = (1+

√
−7

2
) and p = (1−

√
−7

2
)

are the primes of k above 2 and q = (2 +
√
−7) is one of the primes of k above 11.

Then GS(2) is a mild pro-2-group on 4 generators and 2 relators corresponding to
orbit 39 in the list given in Appendix A.

Proof. The ideal class group of k is trivial, and we have

V∅ = {α ∈ k× | α ∈ Ulk
×2
l for all primes l of k}/k×2 ∼= {±1},

where kl denotes the completion of k at l and Ul denotes the unit group of kl. Since
−1 is not a square in Q2 = kp, we have

VS = {α ∈ k× | α ∈ k×2l for l ∈ S, α ∈ Ulk
×2
l for l 6∈ S}/k×2 = 1.

Let US be the subgroup of the idele group Ik consisting of those ideles whose compo-
nents for l ∈ S are 1 and for l 6∈ S are units. Then we have an exact sequence

0 −−−→ {±1} −−−→
∏

l∈S Ul/U
2
l −−−→ Ik/(USI

2
kk
×) −−−→ 0

and an isomorphism

Ik/(USI
2
kk
×) ∼= GS(2)/GS(2)2.

In particular, the generator rank of GS(2) is given by

dimF2 Up/U
2
p + dimF2 Up/U

2
p + dimF2 Uq/U

2
q − 1 = 2 + 2 + 1− 1 = 4.

We set αp,1 = 5, αp,2 = −1, αp,1 = 5, αp,2 = −1, αq = −1. Then {αp,1, αp,2},
{αp,1, αp,2} and {αq} are bases of Up/U

2
p , Up/U

2
p and Uq/U

2
q , respectively. Let P be

fixed prime divisor of p in kS. Let τp,1 be an element of the inertia group of P whose re-
striction to the maximal abelian subextension L/k of kS(2)/k equals (α̂p,1, L/k), where
α̂p,1 denotes the element of the idele group Ik of k whose p-component equals αp,1 and
all other components are equal to 1. In an analogous way we define τp,2, τp,1, τp,2, τq.
Then {τp,1, τp,2, τp,1, τp,2, τq} is a non-minimal set of generators of GS(2). We have to
determine which one of the generators we can omit. In the group Ik/(USI

2
kk
×) we

have the identity

−1 ≡ α̂p,2α̂p,2α̂q mod USI
2
kk
×,

and therefore

τq ≡ τp,2τp,2 mod GS(2)2

So we can omit τq, and {τp,1, τp,2, τp,1, τp,2} is a minimal set of generators of GS(2).
Now we have to deal with the relators. By [4], we have relators rp, rp, rq (which we
will determine shortly) of which we can omit any. We omit rq, hence GS(2) has a
minimal presentation (as pro-2-group)

GS(2) = 〈τp,1, τp,2, τp,1, τp,2 | rp = rp = 1〉.

We have yet to determine rp and rp. We set πp = 1+
√
−7

2
and πp = 1−

√
−7

2
. Let σp be a

lift of the Frobenius automorphism of P (with respect to the maximal subextension
of kS/k in which P is unramified) whose restriction to L/k is given by (π̂p, L/k). In
an analogous way, we define σp. We calculate the following Hilbert symbols in kp:
(αp,1, αp,2) = 1, (αp,1, πp) = −1, (αp,2, πp) = −1. For the Hilbert symbols in kp we



8 MICHAEL R. BUSH, JOCHEN GÄRTNER, JOHN LABUTE AND DENIS VOGEL

obtain (αp,1, αp,2) = 1, (αp,1, πp) = −1, (αp,2, πp) = −1. This means that rp is given
by

rp = σ2
pτ

2
p,2[τp,1, σp],

and the relator rp is given by

rp = σ2
pτ

2
p,2[τp,1, σp]

(note that there is a mistake in [4] concerning the signs of the Hilbert symbols, as a
consequence the squares of Frobenius are missing there). Computations in Magma
[8] show that

π̂p ≡ α̂p,1α̂p,2 mod USI
2
kk
×,

and
π̂p ≡ α̂p,1α̂p,2α̂q mod USI

2
kk
×.

so
σp ≡ τp,1τp,2 mod GS(2)2,

and
σp ≡ τp,1τp,2τq ≡ τp,1τp,2τp,2τp,2 ≡ τp,1τp,2 mod GS(2)2.

We obtain that

rp = σ2
pτ

2
p,2[τp,1, σp] ≡ (τp,1τp,2)

2τ 2p,2[τp,1, τp,1τp,2]

≡ τ 2p,2τ
2
p,1τ

2
p,2[τp,1, τp,1][τp,1, τp,2][τp,1, τp,2] mod GS(2)3

and

rp = σ2
pτ

2
p,2[τp,1, σp] ≡ (τp,1τp,2)

2τ 2p,2[τp,1, τp,1τp,2]

≡ τ 2p,1[τp,1, τp,1][τp,1, τp,2][τp,1, τp,2] mod GS(2)3.

Therefore, GS(2) has a presentation by generators x1, x2, x3, x4 and relators whose
initial forms ρ1, ρ2 are given by

ρ1 = x22 + x23 + x24 + [x1, x3] + [x1, x4] + [x3, x4],

ρ2 = x21 + [x1, x3] + [x1, x4] + [x3, x4]

One can check that this presentation belongs to orbit 39 and hence is mild. In fact,
applying the automorphism f given by f(x1) = x2, f(x2) = x2+x4, f(x3) = x1+x3+
x4, f(x4) = x2 + x3, yields the representative given for orbit 39 in Appendix A. �

Example 2. Let k = Q(
√
−7), S = {p, p, q}, where p = (1+

√
−7

2
) and p = (1−

√
−7

2
)

are the primes of k above 2 and q is the unique prime of k above 3. Then GS(2) is a
mild pro-2-group on 4 generators and 2 relators corresponding to orbit 17.

Proof. We proceed in the same way as in Example 1, except that we set αq = ζ8
where ζ8 denotes a primitive eighth root of unity in kq. Then {τp,1, τp,2, τp,1, τp,2, τq}
is a non-minimal set of generators of GS(2). In the group Ik/(USI

2
kk
×) we have the

identity
−1 ≡ α̂p,2α̂p,2 mod USI

2
kk
×,

and therefore
τp,2 ≡ τp,2 mod GS(2)2

So we can omit τp,2, and {τp,1, τp,2, τp,1, τq} is a minimal set of generators of GS(2).
By [4], we have relators rp, rp, rq, and we can omit any of them. We choose to omit
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rp. We have yet to determine rp and rq. We set πp = 1+
√
−7

2
and πq = 3 and define σp

and σq as in Example 1. The relator rp is given as in Example 1 by

rp = σ2
pτ

2
p,2[τp,1, σp].

The relator rq is given by

rq = τN(q)−1
q [τq, σq] = τ 8q [τq, σq].

Using Magma [8] we obtain that

π̂p ≡ α̂p,1α̂p,2α̂q mod USI
2
kk
×,

and

π̂q ≡ α̂p,1α̂p,2α̂p,1α̂p,2 mod USI
2
kk
×.

Hence,

σp ≡ τp,1τp,2τq ≡ τp,2τp,1τq mod GS(2)2,

and

σq ≡ τp,1τp,2τp,1τp,2 ≡ τp,1τp,1 mod GS(2)2.

It follows that

rp = σ2
pτ

2
p,2[τp,1, σp] ≡ (τp,2τp,1τq)

2τ 2p,2[τp,1, τp,2τp,1τq]

≡ τ 2p,1τ
2
q [τp,1, τp,2][τp,1, τp,1][τp,1, τq][τp,2, τp,1][τp,2, τq][τp,1, τq] mod GS(2)3

and

rq = τ 8q [τq, σq] ≡ [τq, τp,1τp,1] ≡ [τq, τp,1][τq, τp,1] mod GS(2)3.

Therefore, GS(2) has a presentation by generators x1, x2, x3, x4 and relators whose
initial forms ρ1, ρ2 are given by

ρ1 = x23 + x24 + [x1, x2] + [x1, x3] + [x1, x4] + [x2, x3] + [x2, x4] + [x3, x4],

ρ2 = [x1, x4] + [x3, x4]

Applying Anick’s criterion with x4 < x3 < x2 < x1, we see that GS(2) is mild.
More precisely, applying the automorphism f given by f(x1) = x1 + x4, f(x2) =
x1 + x3, f(x3) = x1 + x2 + x4, f(x4) = x2 + x4 we obtain the representative for orbit
17 in Appendix A. �

Example 3. Let k = Q( 3
√

3), S = {p, p, q}, where q denotes the real prime of k and

p = ( 3
√

3 − 1) and p = (1 + 3
√

3 + 3
√

3
2
) are the primes of k above 2. Then GS(2) is

pro-2-group on 4 generators and 2 relators corresponding to the non-mild orbit 54.

Proof. First let us remark that since the field k is not totally imaginary and S
contains the real prime of k, complex conjugation induces a non-trivial 2-torsion
element in GS(2). In particular, it follows that GS(2) has infinite cohomological
dimension and therefore cannot be mild. In the following we show that d(GS(2)) =
4, r(GS(2)) = 2 and in fact GS(2) belongs to orbit 54. Again k has trivial ideal class
group, and it follows that a F2-basis for V∅ is given by the residue classes of −1,−ε
modulo k×2, where ε = 4 + 3 3

√
3 + 2 3

√
3
2

is a fundamental unit. Clearly −1,−ε are
not squares in kq = R and furthermore ε is not a square in kp = Q2. Hence it follows
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that VS = 1. The primes p and p have inertia degrees 1 and 2 respectively and by
chapter 11 of [4] it follows that d(GS(2)) = 4, r(GS(2)) ≤ 2. We set

αp,1 := 5, αp,2 := −1, αp,1 := 1 + 4
3
√

3, αp,2 := −1, αp,3 := ε, αq := −1.

Then the sets {αp,1, αp,2}, {αp,1, αp,2, αp,3}, {αq} are bases of Up/U
2
p , Up/U

2
p and Uq/U

2
q

respectively. As in the previous examples we may choose a corresponding non-minimal
set of generators {τp,1, τp,2, τp,1, τp,2, τp,3, τq} of GS(2). By class field theory the identi-
ties of ideles

−1 ≡ α̂p,2α̂p,2α̂q,2 mod USI
2
kk
×,

ε ≡ α̂p,2α̂p,3 mod USI
2
kk
×

yield

τp,2 ≡ τp,3 ≡ τp,2τq mod GS(2)2

and hence {τp,1, τp,1, τp,2, τq} is a minimal set of generators of GS(2). By [4], we have
relators rp, rp, rq, and we can omit any of them. We choose to omit rp. The relator rq
belonging to the infinite prime is given by

rq = τ 2q .

We set πp = 3
√

3− 1 and define σp as in Example 1 and 2. We calculate the following
Hilbert symbols in kp: (αp,1, αp,2) = 1, (αp,1, πp) = −1, (αp,2, πp) = 1. Therefore rp is
given by

rp = τ 2p,2[τp,1, σp] ≡ τ 2p,2τ
2
q [τp,1, σp][τp,2, τq] mod GS(2)3.

Note that, contrary to the previous examples, the Hilbert symbol (αp,2, πp) being
trivial implies that there is no square of the Frobenius.

Using Magma [8] we find that

π̂p ≡ α̂p,1 mod USI
2
kk
×,

so

σp ≡ τp,1 mod GS(2)2

and we obtain

rp ≡ τ 2p,2τ
2
q [τp,1, τp,1][τp,2, τq] mod GS(2)3.

Therefore GS(2) admits a presentation by generators x1, x2, x3, x4 and two relators
with initial forms ρ1, ρ2 given by

ρ1 = x23 + x24 + [x1, x2] + [x3, x4],

ρ2 = x24.

By making the successive substitutions x1 ↔ x4, x2 ↔ x3, x2 7→ x1 + x2 one checks
that this presentation belongs to orbit 54. �
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Appendix A. List of orbit representatives for the case p = 2,
d = 4.

This is a list of orbit representatives followed by the size and type of the orbit for
the case p = 2, d = 4.

(1) [x1, x2], [x1, x3], 630, (I)
(2) [x1, x2], [x3, x4], 1680, (I)
(3) [x1, x2], [x1, x4] + [x2, x3], 1260, (I)
(4) [x1, x2] + [x3, x4], [x1, x3] + [x2, x4] + [x3, x4], 336, (I)
(5) x21 + [x1, x2], [x1, x3] , 1890, (II)
(6) x21 + [x1, x2], [x3, x4], 10080, (II)
(7) x21 + [x1, x2], [x1, x2] + [x3, x4], 10080, (II)
(8) x21 + [x1, x2], [x1, x4] + [x2, x3], 7560, (II)
(9) x21 + [x1, x3], [x2, x3], 7560, (II)

(10) x21 + [x1, x3] + [x2, x4], [x2, x3], 15120, (II)
(11) x21 + [x1, x3] + [x2, x4], [x1, x2] + [x2, x4] + [x3, x4], 15120, (II)
(12) x21 + [x1, x4] + [x2, x3], [x1, x2], 3780, (II)
(13) x21 + [x1, x4] + [x2, x3], [x1, x2] + [x3, x4], 181440, (II)
(14) x21 + [x2, x3], [x1, x3], 3780, (II)
(15) x21 + [x2, x3], [x1, x4], 10080, (II)
(16) x21 + [x2, x3], [x1, x4] + [x2, x4], 30240, (II)
(17) x21 + [x3, x4], [x2, x4], 15120, (II)
(18) x21 + [x3, x4], [x1, x2] + [x1, x4] + [x2, x3], 15120, (II)
(19) x21, [x1, x2], 630, (III)
(20) x21, [x2, x3], 2520, (III)
(21) x21, [x1, x4] + [x2, x3], 2520, (III)
(22) x21 + [x1, x2], x

2
2 + [x1, x3], 3780, (IV)

(23) x21 + [x1, x2], x
2
2 + [x3, x4], 10080, (IV)

(24) x21 + [x1, x2], x
2
2 + [x1, x2] + [x3, x4], 10080, (IV)

(25) x21 + [x1, x2], x
2
2 + [x1, x4] + [x2, x3], 7560, (IV)

(26) x21 + [x1, x2] + [x3, x4], x
2
2 + [x1, x3] + [x2, x4] + [x3, x4], 60480 (IV)

(27) x21 + [x1, x2] + [x2, x3], x
2
2 + [x1, x3] + [x2, x4] + [x3, x4], 60480, (IV)

(28) x21 + [x1, x3], x
2
2 + [x1, x2], 7560, (IV)

(29) x21 + [x1, x3], x
2
2 + [x2, x3], 2520, (IV)

(30) x21 + [x1, x3], x
2
2 + [x2, x4], 15120, (IV)

(31) x21 + [x1, x3], x
2
2 + [x1, x4] + [x2, x4], 30240, (IV)

(32) x21 + [x1, x3] + [x2, x4], x
2
2 + [x1, x3] + [x1, x4] + [x2, x3], 5040, (IV)

(33) x21 + [x1, x3] + [x3, x4], x
2
2 + [x1, x3] + [x2, x3] + [x2, x4], 120960, (IV)

(34) x21 + [x1, x4], x
2
2 + [x3, x4], 60480, (IV)

(35) x21 + [x1, x4], x
2
2 + [x1, x3] + [x2, x4], 15120, (IV)

(36) x21 + [x1, x4], x
2
2 + [x2, x3] + [x3, x4], 30240, (IV)

(37) x21 + [x1, x4], x
2
2 + [x1, x3] + [x2, x3] + [x2, x4] + [x3, x4], 30240, (IV)

(38) x21 + [x1, x4] + [x2, x3], x
2
2 + [x1, x3] + [x2, x3] + [x2, x4], 5040, (IV)

(39) x21 + [x1, x4] + [x2, x4], x
2
2 + [x1, x3] + [x2, x3] + [x3, x4], 60480, (IV)

(40) x21 + [x1, x4] + [x2, x4], x
2
2 + [x1, x3] + [x1, x4] + [x2, x3], 30240, (IV)

(41) x21 + [x2, x3], x
2
2 + [x1, x3], 7560, (IV)
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(42) x21 + [x2, x3], x
2
2 + [x1, x3] + [x2, x3], 5040, (IV)

(43) x21 + [x2, x3], x
2
2 + [x1, x4] + [x2, x3], 30240, (IV)

(44) x21 + [x2, x4], x
2
2 + [x1, x3], 15120, (IV)

(45) x21 + [x2, x4], x
2
2 + [x2, x3], 15120, (IV)

(46) x21 + [x3, x4], x
2
2 + [x1, x4], 60480, (IV)

(47) x21 + [x3, x4], x
2
2 + [x2, x3] + [x2, x4] + [x3, x4], 60480, (IV)

(48) x21 + [x3, x4], x
2
2 + [x1, x2] + [x1, x4] + [x2, x3] + [x2, x4] + [x3, x4], 60480, (IV)

(49) x21 + [x1, x2], x
2
2 + [x1, x2], 210, (V)

(50) x21, x
2
2, 630, (VI)

(51) x21, x
2
2 + [x1, x3], 3780, (VI)

(52) x21, x
2
2 + [x1, x4] + [x2, x3], 7560, (VI)

(53) x21, x
2
2 + [x2, x3], 7560, (VI)

(54) x21, x
2
2 + [x3, x4], 20160, (VI)
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