McGill University Math 571: Higher Algebra 2 Assignment 3: due March 30, 2007

- 1. (a) Let $K = \mathbb{Q}(\sqrt{d})$ where $d \in \mathbb{Z}$, d < 0. Show that K cannot be embedded in a cyclic extension L of \mathbb{Q} of degree divisible by 4. **Hint:** If [L, K] = 2 and $\operatorname{Gal}(L/\mathbb{Q}) = \langle \sigma \rangle$, first show that $L = K(\alpha)$ where $\alpha^2 \in K$ and $\sigma(\alpha) = b\alpha$ with $b \in K$. Then show that $N_{K/\mathbb{Q}}(b) = -1$.
 - (b) Let $f(X) = X^4 + 4X^2 + 2$. Show that f(X) has a cyclic Galois group over \mathbb{Q} .
- 2. Let $f(X) \in \mathbb{Q}(X)$ be of degree n > 2 and let K be a splitting field of f(X) over \mathbb{Q} . Suppose that the Galois group of f(X) is S_n .
 - (a) Show that f(X) is irreducible over \mathbb{Q} .
 - (b) If $f(\alpha) = 0$ show that the only automorphism of $\mathbb{Q}(\alpha)$ is the identity.
 - (c) If $n \ge 4$, show that $\alpha^n \notin \mathbb{Q}$.
- 3. Let G be a finite group and A a $\mathbb{Z}[G]$ -module. Define $N : A \to A$ by $N(a) = \sum_{\sigma \in G} \sigma(a)$ so that N is left multiplication by $\sum_{\sigma \in G} \sigma$. Let A_N be the kernel of N and NA be the image of N. If $G = \langle \sigma \rangle$, define $D : A \to A$ to be left multiplication by $\sigma 1$ so that $D(a) = \sigma a a$. Let DA denote the image of A.
 - (a) Show that N and D are $\mathbb{Z}[G]$ -module homomorphisms.
 - (b) Let $P_n = \mathbb{Z}[G]$ for $n \ge 0$ and let $f_n : P_n \to P_{n-1}$ be D if n is odd, N if n > 0 is even. If $f_0 : \mathbb{Z}[G] \to \mathbb{Z}$ is defined by $f_0(\sum_{\sigma \in G} a_{\sigma}\sigma) = \sum_{\sigma \in G} a_{\sigma}$, show that the sequence

 $\cdots \to P_n \to P_{n-1} \to \cdots \to P_1 \to P_0 \to \mathbb{Z} \to 0,$

defined by the maps f_n , is exact.

- (c) Using (b), show that $H^n(G, A) = A_N/DA$ if n is odd and A^G/NA if n > 0 is even.
- 4. Let k be a finite field and K a finite extension of K with G = Gal(K/k).
 - (a) Show that the norm map $N_{K/k}: K^* \to k^*$ is surjective.
 - (b) Show that $H^n(G, K^*) = 0$ for $n \ge 1$.
- 5. Find the Galois group over \mathbb{Q} of the following polynomials.
 - (a) $X^4 + 2X^2 + X + 3;$
 - (b) $X^5 4X + 2;$
 - (c) $X^6 12X^4 + 15X^3 6X^2 + 15X + 12$.