McGill University Math 571: Higher Algebra 2 Assignment 1: due January 26, 2007

1. Let k be a commutative ring and let A be the free k-module with basis the subsets S of $J_n = \{1, 2, ..., n\}$. If S, T are disjoint subsets of J_n we let

$$\lambda(S,T) = |\{(s,t) \mid s \in S, t \in T, s > t\}|, \quad \epsilon(S,T) = (-1)^{\lambda(S,T)}$$

(a) Show that there is a unique structure of associative k-algebra on A such that for any subsets S, T of $\{1, 2, ..., n\}$ we have

$$ST = \begin{cases} \epsilon(S,T)(S \cup T) & \text{if } S \cap T = \emptyset, \\ 0 & \text{if } S \cap T \neq \emptyset. \end{cases}$$

- (b) Show that A and $\bigwedge k^n$ are isomorphic as k-algebras.
- 2. Let $p \ge 2$ be a natural number and let S be the set of natural number sequences $s = (i_1, i_2, \ldots, i_p)$ with $1 \le i_1, i_2, \ldots, i_p \le n$. The symmetric group S_p acts on S via

$$\sigma(i_1, \cdots, i_p) = (i_{\sigma^{-1}(1)}, \cdots, i_{\sigma^{-1}(p)}).$$

Let

$$S_{0} = \{s \in S \mid s = (i_{1}, i_{2}, \dots, i_{p}), i_{j} = i_{k} \text{ for some } j \neq k\},\$$

$$S_{1} = S - S_{0},\$$

$$S_{2} = \{s = (i_{1}, i_{2}, \dots, i_{p}) \in S_{1} \text{ with } 1 \leq i_{1} < i_{2} < \dots < i_{p}\},\$$

$$S_{3} = \{\sigma s \mid s \in S_{2}, \sigma \in S_{p}, \sigma \neq 1\} = S_{1} - S_{2},\$$

Let M be a free k-module with basis (e_1, \ldots, e_n) and for any $s = (i_1, i_2, \ldots, i_p) \in \mathcal{S}$ let $e_s = e_{i_1} \otimes \cdots \otimes e_{i_p}$. The family of elements e_s with $s \in \mathcal{S}$ is a k-basis for $\bigotimes^p M$. If $s \in \mathcal{S}_1$, $\sigma \in S_p$, let $n_{s,\sigma} = e_s - \epsilon_\sigma e_{\sigma s}$, where ϵ_σ is the sign of the permutation σ . Let $f_s = e_s$ if $s \in \mathcal{S}_0 \cup \mathcal{S}_2$ and $f_s = n_{t,\sigma}$ if $s = \sigma t$ with $t \in \mathcal{S}_2$, $\sigma \in S_p$, $\sigma \neq 1$. Finally, let I_p be the submodule of $\bigotimes^p M$ generated by the family of elements of the form $u_1 \otimes \cdots \otimes u_p$ with $u_i = u_j$ for some $i \neq j$.

- (a) Show that $(f_s)_{s \in S_2 \cup S_0 \cup S_3}$ is a k-basis for $\bigotimes^p M$.
- (b) Show that $n_{s,\sigma} \in I_p$. (Hint: Show that $n_{s,\sigma\tau} = n_{s,\sigma} + \epsilon_{\sigma} n_{\sigma s,\sigma\tau\sigma^{-1}}$.)
- (c) Show that $(f_s)_{s \in S_0 \cup S_3}$ is a k-basis for I_p . (Hint: Show that $n_{\sigma s,\tau} = \epsilon_{\sigma} n_{s,\tau\sigma} \epsilon_{\sigma} n_{s,\sigma}$ and use the fact that I_p is generated by the set $\{e_s \mid s \in S_0\} \cup \{n_{s,\tau} \mid s \in S_1, \tau \text{ a transposition}\}$.)
- (d) Deduce that $(f_s)_{s \in S_2}$ is a k-basis for $\bigotimes^p M \mod I_p$.
- 3. Let M be a free k-module with basis $e = (e_i)_{1 \le i \le n}$. Let $f \in \text{End}(M)$ and let $A = (a_{ij})$ be the matrix of f with respect to the basis e. If $S = \{i_1 < i_2 < \cdots < i_p\}$, $T = \{j_1 < j_2 < \cdots < j_p\}$ are p-element subsets of $\{1, 2, \ldots, n\}$ we let $A_{S,T}$ be the $p \times p$ submatrix $(b_{k\ell})$, where $b_{k\ell} = a_{i_k j_\ell}$, and set $a_{S,T} = \det(A_{S,T})$. We also let $e_S = e_{i_1} \wedge e_{i_2} \wedge \cdots \wedge e_{i_p}$.
 - (a) Show that $\bigwedge^p f(e_S) = \sum_{|T|=p} a_{S,T} e_T$.
 - (b) Show that $\operatorname{Tr}(\bigwedge^p f) = \sum_{|S|=p} a_{S,S}$.
 - (c) If $\lambda \in k$, show that $\det(\lambda f) = \sum_{p=0}^{n} c_p \lambda^{n-p}$, where $c_i = (-1)^p \operatorname{Tr}(\bigwedge^p f)$.

- 4. Let M, N be finitely generated k-modules with M or N projective.
 - (a) Show that the canonical map of $M^* \otimes N^*$ to $(M \otimes N)^*$ which sends $\phi \otimes \phi$ to the linear form $x \otimes y \mapsto \phi(x)\psi(y)$ is an isomorphism.
 - (b) Show that the canonical map of $M^* \otimes N$ into $\operatorname{Hom}_k(M, N)$, sending $\phi \otimes y$ to the k-linear map $x \mapsto \phi(x)y$ is an isomorphism.
- 5. Let p, q be distinct primes, let $K = \mathbb{Q}(\sqrt{p}, \sqrt{q})$ and let $\alpha = \sqrt{p} + \sqrt{q}$.
 - (a) Show that $[K : \mathbb{Q}] = 4$.
 - (b) Show that $K = \mathbb{Q}(\alpha)$. What is the minimal polynomial of α over \mathbb{Q} ?
 - (c) Find all isomorphisms of K into \mathbb{C} .
 - (d) Show that $\mathbb{Q}(\sqrt{p}), \mathbb{Q}(\sqrt{q}), \mathbb{Q}(\sqrt{pq})$ are the only subfields of K which are of degree 2 over \mathbb{Q} .
 - (e) If p, q, r are distinct primes, prove that $[\mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{r}) : \mathbb{Q}] = 8$.

6. Let p be a prime, let $\alpha = \sqrt[4]{p} \in \mathbb{R}$ be the positive fourth root of p and let $K = \mathbb{Q}(\alpha)$.

- (a) Show that $[K : \mathbb{Q}] = 4$.
- (b) Find all isomorphisms of K into \mathbb{C} .
- (c) Show that $\mathbb{Q}(\sqrt{p})$ is the only subfield of K of degree 2 over \mathbb{Q} .
- (d) If q is a prime distinct from p, show that $[\mathbb{Q}(\sqrt[4]{p},\sqrt{q}):\mathbb{Q}]=8.$
- 7. Find the Galois groups of the splitting fields of the following polynomials over \mathbb{Q} .
 - (a) $(X^2 2)(X^2 3)$. (b) $(X^2 - 2)(X^2 - 3)(X^2 - 5)$. (c) $X^4 - 2$. (d) $(X^4 - 2)(X^2 - 3)$. (e) $X^5 - 2$.