McGill University Math 371B: Algebra IV Assignment 4: due Wednesday, March 24, 1999

- 1. (a) Show that $\mathbb{Z}[\sqrt{-2}] = \{\alpha = a + b\sqrt{-2} \mid a, b \in \mathbb{Z}\}$ is a Euclidean domain with respect to the norm $N(\alpha) = a^2 + 2b^2$. Find the units of this ring and the factorization of 3, 5, 11, 13, 17, 19, 23, 29, 31.
 - (b) Show that $\mathbb{Z}[\sqrt{-5}]$ is not a PID by showing that $(3, 2 + \sqrt{-5})$ is not a principal ideal. Show also that $2 + \sqrt{-5}$ is irreducible but not prime.
- 2. (a) Show that $X^n 3$ is irrducible over $\mathbb{Z}[\sqrt{-2}]$ for $n \ge 1$.
 - (b) Factor the polynomial $X^4 + X^3 X^2 + 6$ over \mathbb{Q} .
- 3. Find the invariant factors of the integral matrix

6	2	3	0	
2	3	-4	1	
-3	3	1	2	•
	2	-3	5	

Find an internal direct sum decomposition of the \mathbb{Z} -module \mathbb{Z}^4/N where N is the submodule of Z^4 generated by the rows of A.

4. If $A = \mathbb{Z}[i]$ is the ring of Gaussian integers, find the structure of the A-module $M = A^3/N$ where N is the submodule of A^3 generated by

$$f_1 = (1, 3, 6), f_2 = (2 + 3i, -3i, 12 - 18i), f_3 = (2 - 3i, 6 + 9i, -18i)$$

Show that M is finite of order 352512.

5. Verify that the characteristic polynomial of the matrix

1	0	0	0]
0	1	0	0
-2	-2	0	1
-2	0	-1	-2

is a product of linear factors over \mathbb{Q} . Determine the rational and Jordan canonical forms for A over \mathbb{Q} and find matrices P such that PAP^{-1} is in canonical form.