McGill University Math 371B: Algebra IV Assignment 2: due Monday, February 1, 1999

A ring A is called a valuation ring if A is an integral domain such that for any non-zero element x of its quotient field we have $x \in A$ or $1/x \in A$. A valuation ring which is a field is called a trivial valuation ring. A discrete valuation ring is an example of a non-trivial valuation ring. Any subring A of a field K such that for any $x \in K^* = K - \{0\}$ we have $x \in A$ or $1/x \in A$ is a valuation ring with quotient field K. Such a subring of K is called a valuation ring of K.

- 1. Show that a valuation ring is a local ring. If F is a field, show that the localization of the polynomial ring F[x, y] at the maximal ideal (x, y) is not a valuation ring.
- 2. Show that a ring is a discrete valuation ring if and only if it is a PID with a single nonzero maximal ideal. Show also that a discrete valuation ring is a maximal element in set of non-trivial valuation rings of its quotient field.
- 3. Show that the non-trivial valuation rings of \mathbb{Q} are the discrete valuation rings $\mathbb{Z}_{(p)}$ where p is a prime of \mathbb{Z} . **Hint**: If M is the maximal ideal of the valuation ring, show that $M \cap \mathbb{Z} = p\mathbb{Z}$ for some prime p of \mathbb{Z} .
- 4. If F is a field, find the non-trivial valuation rings of F(x), the quotient field of the polynomial ring F[x], which contain F. **Hint**: Use the fact that any valuation ring of F(x) contains x or 1/x and that $F[x] \cong F[1/x]$ is a PID.
- 5. (a) If F is a field, show that the polynomial ring F[x] has infinitely many primes (even if K is finite).
 - (b) Give an example of a PID with finitely many primes.
- 6. Let A be a principal ideal domain, let Q be a non-zero prime ideal of the polynomial ring B = A[X] and let $P = Q \cap A$.
 - (a) If P = pA with p a prime of A, show that either Q = pB or Q is the maximal ideal pB + fB with $f \in B$ of degree ≥ 1 and irreducible mod p.
 - (b) If P = 0, show that Q = gB with $g \in B$ irreducible of degree ≥ 1 . Hint: Localize A and B with respect to $S = A \{0\}$.
 - (c) If $f \in B$ is of degree ≥ 1 and irreducible modulo a prime p of A and $g \in B$ is irreducible of degree ≥ 1 , show that $gB \subseteq pB + fB$ iff f divides $g \mod p$. Deduce that gB is maximal iff A has finitely many primes and $g = a_0 + a_1x + \cdots + a_nx^n$ with a_0 a unit of A and a_1, \ldots, a_n divisible by all the primes of A.
 - (d) IF f is algebraically closed, show that the non-zero prime ideals of the polynomial ring F[x, y] are the ideals (x a, y b) and (f) with $a, b \in F$ and f irreducible. Deduce that the maximal ideals of F[x, y] are the point ideals (x a, y b).