
Tate’s Proof of a Theorem of Dedekind

Let f ∈ Z[X] be a monic polynomial with integer coefficients and let Ef = Q(x1, x2, . . . , xn) be
its splitting field over Q, where f = (X − x1)(X − x2) · · · (X − xn). Let Gf = Gal(Ef/Q) be the
Galois group of f . Suppose that p is a prime such that p does not divide the discriminant ∆f of
f , in particular, we suppose that the roots of f are simple. Let f̄ be the reduction of f modulo p.
Then the roots of f̄ are also simple. Let Af = Z[x1, · · · , xn] and let P be a prime ideal of Af such
that P ∩ Z = pZ. Such an ideal exists since the fact that Af is integral over Z implies that p is not
invertible in Af ; moreover, this ideal is maximal since P ∩ Z is maximal in Z.

Theorem 1 (Dedekind). There exists a unique element σP ∈ Gf such that σP (x) ≡ xp mod P
for every x ∈ Af . Moreover, if f̄ = g1g2 · · · gs with gi irreducible over Fp of degree ni, then σP , when
viewed as a permutation of the roots of f , has a cycle decomposition σ1σ2 · · ·σs with σi of length ni.

Proof. (due to John Tate) The field Ef̄ = Af/P = Fp[x̄1, x̄2, . . . , x̄n] is a splitting field for f̄ ,
where x̄ is the residue class of x modulo P . The group Gf̄ = Gal(Ef̄/Fp) is cyclic generated
by the automorphism x̄ 7→ x̄p. Let DP = {σ ∈ Gf | σ(P ) = P}. This is a subgroup of Gf

called the decomposition group at P . Every automorphism σ ∈ DP induces an automorphism
σ̄ ∈ Gf̄ = Gal(Ef̄ ), where σ̄(x̄) = σ(x). The homomorphism φ : DP → Gf̄ sending σ to σ̄ is
injective. We now show that it is surjective by showing that the fixed field of φ(DP ) has Fp as its
fixed field.

Let a ∈ Af . Then, by the Chinese Remainder Theorem, there an element x ∈ Af such that
x ≡ a mod P and x ≡ 0 mod σ−1(P ) for all σ ∈ Gf , σ /∈ DP . Then g =

∏
σ∈Gf

(X − σ(x) ∈ Z[X]
and ḡ = Xm

∏
σ∈DP

(X − σ̄(ā)) ∈ Fp[X]. It follows that the conjugates of ā are all of the form σ̄(ā)
which implies that the fixed field of φ(DP ) is Fp.

Let σP ∈ DP be the unique element such that σ̄P (x̄) = x̄p. Then σP is the unique element of
Gf such that σP (x) ≡ xp for every x ∈ Af . Since the homomorphism x 7→ x̄ maps the roots of
f bijectively onto the roots of f̄ we see that the groups DP and Gf̄ , when viewed as permutation
groups of the roots of f, f̄ respectively, are also isomorphic as permutation groups. Since the cycle
decompostion of σ̄ is determined by the orbits of the action of Gf̄ on the roots of f̄ and since the group
Gf̄ acts transitively on the roots of each polynomial gi, we obtain the stated cycle decomposition of
σP .

If Rf is the ring of integers of Ef , i.e., the elements of Ef which are integral over Z and Q is
a prime ideal of Rf such that Q ∩ Z = pZ then, as above, one can prove the existence of a unique
automorphism sQ ∈ Gf such that sQ(x) ≡ xp (mod Q) for all x ∈ Rf . This automorphism is
called the Frobenius automorphism at Q. Since the elements of Gf are uniquely determined by
their restriction to Af , we see that sQ = σP , where P = Q ∩ Af . If Q′ is any ideal of Rf such
that Q′ ∩ Z = Q ∩ Z and x ∈ Q′ then

∏
σ∈Gf

σ(x) ∈ Q′ ∩ Z ⊆ Q which shows that σ(x) ∈ Q for
some σ ∈ Gf . Hence Q′ ⊆ ⋃

σ∈Gf
σ(Q). By the following Lemma, we have Q′ ⊆ σ(Q) and hence

Q′ = σ(Q) for some σ ∈ Gf Since Dσ(Q) = σDQσ−1, it follows that sQ′ = σQσ−1. Thus two
Frobenius automorphisms at primes over the same prime p of Z are conjugate. The conjugacy class
of sQ is called the Frobenius class at p. If G is abelian, this class reduces to a single element called
the Frobenius automorphism at p.

Lemma 2. Let I be an ideal of a ring A which is contained in the union of prime the ideals
P1, P2, . . . , Pn of A. Then I ⊆ Pi for some i.

Proof. Assume the theorem is false and let n be smallest for which the lemma fails. Then n > 1
and Pi * Pi for i 6= j. Moreover, I is not contained in the union of fewer prime ideals Pi. Then,



since I ⊆ ⋃
Pi ⇐⇒ I =

⋃
I ∩ Pi, we see that I ∩ Pi * Pj for i 6= j. Let xij ∈ I ∩ Pi, xij /∈ Pj

for all i 6= j and let xj =
∏

i6=j xij . Then xj ∈ I ∩ Pi for i 6= j but xj /∈ Pj since Pj is prime. Let
x =

∑
xj . Then x ∈ I but x /∈ Pj for any j since xj = x −∑

i6=j xi ∈ Pj and
∑

i 6=j xi ∈ Pj . This
contradicts the fact that I is contained in the union of the prime ideals Pi.

As an application of Dedekind’s Theorem we give a proof of the irreducibility of of the cyclotomic
polynomials over Q.

Theorem 3. The cyclotomic polynomials are irreducible over Q.

Proof. Let E be the splitting field of Xn − 1 over Q and let G be the galois group of E over Q. We
have an injective homomorphism π : G → (Z/nZ)×, where σ(ζ) = ζπ(σ) for any n-th root of unity ζ.
This homomorphism is surjective if and only if the the n-th cyclotomic polynomial Φn is irreducible.
This is due to the fact that, for any primitive n-th root ζn, we have E = Q(ζn), Φn(ζn) = 0 and
degree(Φn) = φ(n) = |(Z/nZ)×|. If p is any prime not dividing n, the reduction of Xn − 1 mod p
has simple roots. Let σp be the Frobenius autopmorphism at p. Then, for any n-th root of unity ζ,
we have σ(ζ) = ζp since ζp is also an n-th root of unity. Hence π(σp) = p mod n. But (Z/nZ)× is
generated by the residue classes of the primes p which do not divide n. Hence π is surjective.

As another application of Dedekind’s Theorem let us find a monic polynomial of degree 5 with
integer coeficients whose Galois group over Q is S5. Our construction is based on the following
Lemma:

Lemma 4. If p is prime and H is a subgroup of Sp which contains a p-cycle and a 2-cycle, then
H = Sp.

Proof. Let τ be a two-cycle in H. After a relabelling of the objects permuted, we may assume
τ = (12). Then a suitable power of a p-cycle in H has the form σ = (12 · · · ). After relabelling the
objects other than 1, 2, we can assume σ = (123 · · · p). But then σiτσ−i = (i + 1 i + 2) ∈ H for
0 ≤ i ≤ p− 2. But these elements generate Sp.

Thus, in virtue of Dedekind’s Theorem, it suffices to choose our polynomial so that modulo 2
is is irreducible and modulo 3 is is a product of an ireducible quadratic and three distinct linear
factors. Now X5 + X2 + 1 is irreducible modulo 2 and X2 + 1 is irreducible modulo 3. So we want
to choose f = X5 + aX4 + bX3 + cX2 + dX + e so that f is congruent to X5 + X2 + 1 modulo 2
and to (X2 + 1)X(X − 1)(X + 1) = X5 −X modulo 3. Applying the Chinese Remainder Theorem
to the coefficients of f yields a solution a = b = 0, c = e = 3, d = 2 so that X5 + 3X2 + 2X + 3 has
Galois group S5 over Q.


