Tate's Proof of a Theorem of Dedekind

Let $f \in \mathbb{Z}[X]$ be a monic polynomial with integer coefficients and let $E_f = \mathbb{Q}(x_1, x_2, \ldots, x_n)$ be its splitting field over \mathbb{Q} , where $f = (X - x_1)(X - x_2) \cdots (X - x_n)$. Let $G_f = \operatorname{Gal}(E_f/\mathbb{Q})$ be the Galois group of f. Suppose that p is a prime such that p does not divide the discriminant Δ_f of f, in particular, we suppose that the roots of f are simple. Let \bar{f} be the reduction of f modulo p. Then the roots of \bar{f} are also simple. Let $A_f = \mathbb{Z}[x_1, \cdots, x_n]$ and let P be a prime ideal of A_f such that $P \cap \mathbb{Z} = p\mathbb{Z}$. Such an ideal exists since the fact that A_f is integral over \mathbb{Z} implies that p is not invertible in A_f ; moreover, this ideal is maximal since $P \cap \mathbb{Z}$ is maximal in \mathbb{Z} .

Theorem 1 (Dedekind). There exists a unique element $\sigma_P \in G_f$ such that $\sigma_P(x) \equiv x^p \mod P$ for every $x \in A_f$. Moreover, if $\overline{f} = g_1 g_2 \cdots g_s$ with g_i irreducible over \mathbb{F}_p of degree n_i , then σ_P , when viewed as a permutation of the roots of f, has a cycle decomposition $\sigma_1 \sigma_2 \cdots \sigma_s$ with σ_i of length n_i .

Proof. (due to John Tate) The field $E_{\bar{f}} = A_f/P = \mathbb{F}_p[\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n]$ is a splitting field for \bar{f} , where \bar{x} is the residue class of x modulo P. The group $G_{\bar{f}} = \text{Gal}(E_{\bar{f}}/\mathbb{F}_p)$ is cyclic generated by the automorphism $\bar{x} \mapsto \bar{x}^p$. Let $D_P = \{\sigma \in G_f \mid \sigma(P) = P\}$. This is a subgroup of G_f called the decomposition group at P. Every automorphism $\sigma \in D_P$ induces an automorphism $\bar{\sigma} \in G_{\bar{f}} = \text{Gal}(E_{\bar{f}})$, where $\bar{\sigma}(\bar{x}) = \overline{\sigma(x)}$. The homomorphism $\phi : D_P \to G_{\bar{f}}$ sending σ to $\bar{\sigma}$ is injective. We now show that it is surjective by showing that the fixed field of $\phi(D_P)$ has \mathbb{F}_p as its fixed field.

Let $a \in A_f$. Then, by the Chinese Remainder Theorem, there an element $x \in A_f$ such that $x \equiv a \mod P$ and $x \equiv 0 \mod \sigma^{-1}(P)$ for all $\sigma \in G_f, \sigma \notin D_P$. Then $g = \prod_{\sigma \in G_f} (X - \sigma(x) \in \mathbb{Z}[X])$ and $\bar{g} = X^m \prod_{\sigma \in D_P} (X - \bar{\sigma}(\bar{a})) \in \mathbb{F}_p[X]$. It follows that the conjugates of \bar{a} are all of the form $\bar{\sigma}(\bar{a})$ which implies that the fixed field of $\phi(D_P)$ is \mathbb{F}_p .

Let $\sigma_P \in D_P$ be the unique element such that $\bar{\sigma}_P(\bar{x}) = \bar{x}^p$. Then σ_P is the unique element of G_f such that $\sigma_P(x) \equiv x^p$ for every $x \in A_f$. Since the homomorphism $x \mapsto \bar{x}$ maps the roots of f bijectively onto the roots of \bar{f} we see that the groups D_P and $G_{\bar{f}}$, when viewed as permutation groups of the roots of f, \bar{f} respectively, are also isomorphic as permutation groups. Since the cycle decomposition of $\bar{\sigma}$ is determined by the orbits of the action of $G_{\bar{f}}$ on the roots of \bar{f} and since the group $G_{\bar{f}}$ acts transitively on the roots of each polynomial g_i , we obtain the stated cycle decomposition of σ_P .

If R_f is the ring of integers of E_f , i.e., the elements of E_f which are integral over \mathbb{Z} and Q is a prime ideal of R_f such that $Q \cap \mathbb{Z} = p\mathbb{Z}$ then, as above, one can prove the existence of a unique automorphism $s_Q \in G_f$ such that $s_Q(x) \equiv x^p \pmod{Q}$ for all $x \in R_f$. This automorphism is called the Frobenius automorphism at Q. Since the elements of G_f are uniquely determined by their restriction to A_f , we see that $s_Q = \sigma_P$, where $P = Q \cap A_f$. If Q' is any ideal of R_f such that $Q' \cap \mathbb{Z} = Q \cap \mathbb{Z}$ and $x \in Q'$ then $\prod_{\sigma \in G_f} \sigma(x) \in Q' \cap \mathbb{Z} \subseteq Q$ which shows that $\sigma(x) \in Q$ for some $\sigma \in G_f$. Hence $Q' \subseteq \bigcup_{\sigma \in G_f} \sigma(Q)$. By the following Lemma, we have $Q' \subseteq \sigma(Q)$ and hence $Q' = \sigma(Q)$ for some $\sigma \in G_f$ Since $D_{\sigma(Q)} = \sigma D_Q \sigma^{-1}$, it follows that $s_{Q'} = \sigma Q \sigma^{-1}$. Thus two Frobenius automorphisms at primes over the same prime p of \mathbb{Z} are conjugate. The conjugacy class of s_Q is called the Frobenius class at p. If G is abelian, this class reduces to a single element called the Frobenius automorphism at p.

Lemma 2. Let I be an ideal of a ring A which is contained in the union of prime the ideals P_1, P_2, \ldots, P_n of A. Then $I \subseteq P_i$ for some i.

Proof. Assume the theorem is false and let n be smallest for which the lemma fails. Then n > 1 and $P_i \nsubseteq P_i$ for $i \neq j$. Moreover, I is not contained in the union of fewer prime ideals P_i . Then,

since $I \subseteq \bigcup P_i \iff I = \bigcup I \cap P_i$, we see that $I \cap P_i \nsubseteq P_j$ for $i \neq j$. Let $x_{ij} \in I \cap P_i$, $x_{ij} \notin P_j$ for all $i \neq j$ and let $x_j = \prod_{i \neq j} x_{ij}$. Then $x_j \in I \cap P_i$ for $i \neq j$ but $x_j \notin P_j$ since P_j is prime. Let $x = \sum x_j$. Then $x \in I$ but $x \notin P_j$ for any j since $x_j = x - \sum_{i \neq j} x_i \in P_j$ and $\sum_{i \neq j} x_i \in P_j$. This contradicts the fact that I is contained in the union of the prime ideals P_i .

As an application of Dedekind's Theorem we give a proof of the irreducibility of of the cyclotomic polynomials over \mathbb{Q} .

Theorem 3. The cyclotomic polynomials are irreducible over \mathbb{Q} .

Proof. Let E be the splitting field of $X^n - 1$ over \mathbb{Q} and let G be the galois group of E over Q. We have an injective homomorphism $\pi : G \to (\mathbb{Z}/n\mathbb{Z})^{\times}$, where $\sigma(\zeta) = \zeta^{\pi(\sigma)}$ for any *n*-th root of unity ζ . This homomorphism is surjective if and only if the the *n*-th cyclotomic polynomial Φ_n is irreducible. This is due to the fact that, for any primitive *n*-th root ζ_n , we have $E = \mathbb{Q}(\zeta_n)$, $\Phi_n(\zeta_n) = 0$ and degree $(\Phi_n) = \phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$. If p is any prime not dividing n, the reduction of $X^n - 1 \mod p$ has simple roots. Let σ_p be the Frobenius autopmorphism at p. Then, for any *n*-th root of unity ζ , we have $\sigma(\zeta) = \zeta^p$ since ζ^p is also an *n*-th root of unity. Hence $\pi(\sigma_p) = p \mod n$. But $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is generated by the residue classes of the primes p which do not divide n. Hence π is surjective. \Box

As another application of Dedekind's Theorem let us find a monic polynomial of degree 5 with integer coefficients whose Galois group over Q is S_5 . Our construction is based on the following Lemma:

Lemma 4. If p is prime and H is a subgroup of S_p which contains a p-cycle and a 2-cycle, then $H = S_p$.

Proof. Let τ be a two-cycle in H. After a relabelling of the objects permuted, we may assume $\tau = (12)$. Then a suitable power of a p-cycle in H has the form $\sigma = (12 \cdots)$. After relabelling the objects other than 1, 2, we can assume $\sigma = (123 \cdots p)$. But then $\sigma^i \tau \sigma^{-i} = (i+1,i+2) \in H$ for $0 \leq i \leq p-2$. But these elements generate S_p .

Thus, in virtue of Dedekind's Theorem, it suffices to choose our polynomial so that modulo 2 is is irreducible and modulo 3 is is a product of an ireducible quadratic and three distinct linear factors. Now $X^5 + X^2 + 1$ is irreducible modulo 2 and $X^2 + 1$ is irreducible modulo 3. So we want to choose $f = X^5 + aX^4 + bX^3 + cX^2 + dX + e$ so that f is congruent to $X^5 + X^2 + 1$ modulo 2 and to $(X^2 + 1)X(X - 1)(X + 1) = X^5 - X$ modulo 3. Applying the Chinese Remainder Theorem to the coefficients of f yields a solution a = b = 0, c = e = 3, d = 2 so that $X^5 + 3X^2 + 2X + 3$ has Galois group S_5 over \mathbb{Q} .