McGill University Math 371B: Algebra IV Assignment 2: due Friday February 20, 1998

Read Text: sections 2.12-2.16

- 1. Let A be a subring of the ring B and suppose that B is integral over A. If P is a prime ideal of A, prove that there is a prime ideal Q of B such that $P = Q \cap A$. Hint: If S = A P, let $A_P = S^{-1}A$, $B_P = S^{-1}B$. First show that B_P is integral over A_P for the canonical homomorphism ϕ of A_P into B_P . Then show that, for any maximal ideal I of B_P , $\phi^{-1}(I) = PA_P$. Finally, show that one can take Q to be the inverse image of I in B with respect to the canonical homomorphism of B into B_P .
- 2. Text: p. 137, #5,6,7.
- 3. Text: p. 140, #1,2,3.
- 4. Text: p. 146, #7,8. **Hint:** Use the identity $(d + \sqrt{d})(d \sqrt{d}) = d(d 1)$.
- 5. Text: p. 149, #2,3.
- 6. Text: p. 150, #11,12.
- 7. Text: p. 151, #17,18,19. **Hint for #18**: First prove that, if R is a ring, $R^{\mathbb{N}}$ is a monoid under the operation $f * g(n) = \sum_{d|n} f(d)g(n/d)$.
- 8. Text: p. 151, #20.
- 9. Text: p. 154, #4.
- 10. Let A be a principal ideal domain, let Q be a non-zero prime ideal of the polynomial ring B = A[X] and let $P = Q \cap A$.
 - (a) If P = pA with p a prime of A, show that either Q = pB or Q = pB + fB with $f \in B$ irreducible mod pB.
 - (b) If P = 0, show that Q = fB with $f \in B$ irreducible of degree ≥ 1 . Hint: Localize A and B with respect to $S = A \{0\}$.