McGill University Math 371B: Algebra IV Assignment 1: due Friday January 30, 1998

Read Text: sections 2.9,2.10,2.11.

- 1. Let S be a compact subset of \mathbb{R} and let C(S) be the \mathbb{R} -algebra of continuous real-valued functions on S. For every $s \in S$ let $\epsilon_s : S \to \mathbb{R}$ be the mapping defined by $\epsilon_s(f) = f(s)$.
 - (a) Show that ϵ_s is a homomorphism of \mathbb{R} -algebras whose kernel M_s is a maximal ideal of C(S). The ideal M_s is called a point ideal of C(S).
 - (b) Show that every maximal ideal of C(S) is a point ideal and that every \mathbb{R} -algebra homomorhism of C(S) into \mathbb{R} is equal to ϵ_s for some $s \in S$. **Hint:** Text, p. 111, #14.
- 2. (a) Text: p. 118, #5. If ϕ is the canonical mapping of R into RS^{-1} sending a to a/1, show also that for any homomorphism ψ_0 of R into a ring R' in which the elements of S are sent into invertible elements of R' there is a unique homomorphism ψ of RS^{-1} into R' such that $\psi_0 = \phi \psi$. (This property characterizes RS^{-1} .)
 - (b) Let $B = AS^{-1}$, where A is a ring and S is a submonoid of A, and let $\phi : A \to B$ be the canonical homomorphism. If I is a prime ideal of A which does not meet S, show that J = IB is a prime ideal of B such that $I = \phi^{-1}(J)$. Show also that every prime ideal J of B is equal to IB with $I = \phi^{-1}(J)$ and that the canonical mapping of $(A/I)(\phi_1(S))^{-1}$ into B/J is an isomorphism, where ϕ_1 is the canonical mapping of A onto A/I.
- 3. Text: p. 126, #1,2.
- 4. Text: p. 133, #2.
- 5. Text: p. 133, #3.
- 6. Text: p. 133, #4,5.
- 7. Text: p. 133, #9.
- 8. Text: p. 133, #10.
- 9. Text: p. 133, #11.
- 10. Text: p. 133, #14.