
The Regular Representation

Let (G, ·) be a monad. For any g ∈ G let gL : G → G be the mapping defined by gL(x) = gx; this
mapping is called left translation by g. If we let M(G) denote the set of all mappings of G into
itself then M(G) is a monoid under composition of mappings, the neutral element being the identity
mapping of G. Let ρL : G → M(G) be the mapping defined by ρL(g) = gL. This mapping is called
the left regular representation of G. If we replace left translations gL by right translations gR,
where gR(x) = xg, we get the right regular representation ρR of G.

If G has an identity element then both the left and right regular representation are injective.
Indeed, if gL = hL then g · 1 = h · 1 which gives h = g; similarly, gR = hR implies eg = eh and hence
h = g.

Theorem 1. The monad (G, ·) is a semi-group iff (gh)L = gLhL for all g, h ∈ G.

Proof. We have (gh)L = gLhL iff gh(x) = g(hx) for all x ∈ G.

Let GL = ρL(G) = {gL|g ∈ G}.
Corollary 2. If the monad G has a neutral element then G is a monoid iff GL is closed under
composition of mappings, i.e., gLhL ∈ GL for all g, h ∈ G.

Proof. If gLhL = kL then gh = g(h · 1) = k · 1 = k.

Thus, if (G, ·, 1) is a monoid, GL is a subset of M(G) containing 1G and the product of any two
elements in GL. Such a subset of M(G) is called a monoid of transformations of G. It is a monoid
under composition of mappings, with neutral element 1G. Moreover ρL : (G, ·, 1) ∼→ (GL, ◦, 1G). We
thus get the following result:

Theorem 3 (Cayley’s Theorem for Monoids). Every monoid is isomorphic to a monoid of
transformations.

If G is a group, GL is a permutation group on G and so is a group under composition of mappings.
This gives

Theorem 4 (Cayley’s Theorem). Every group is isomorphic to a permutation group.

The following theorem is a sharpening of Cayley’s Theorem:

Theorem 5. Every group is the group of symmetries of some structured set.

Our proof rests on the following Lemma:

Lemma 6. Let (G, ·, 1) be a monoid. Then GL = {f ∈ M(G)|fgR = gRf for all g ∈ G}.
Proof of Lemma. Let (G, ·, 1) be a monoid. If g, h ∈ G then gLhR = hRgL, i.e., left translations
commute with right translations. Indeed, gLhR(x) = g(xh) = (gx)h = hRgL(x) for any x ∈ G.
Conversely, if f ∈ M(G) and fgR = gRf for all g ∈ G then f(xg) = f(x)g for all x, g ∈ G. Setting
x = 1, we get f(g) = f(1)g for all g ∈ G. Thus f = hL with h = f(1).

Proof of Theorem. Let s be the family (gR)g∈G. Then s ∈ ℘(G×℘(G×G)). However, we want the
first occurence of G in this structure to be external so that f ∈ M(G) implies that f∗(g, (h, k)) =
(g, (f(h), f(k)). Then, if f ∈ SG, we have f∗(s) = s ⇐⇒ f∗(gR) = gR. But f∗(gR) = fgRf−1, so
that f∗(s) = s iff fgRf−1 = gR for all g ∈ G, i.e., iff fgR = gRf for all g ∈ G. By the lemma, this
is equivalent to f ∈ GL.
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Remark (The Graph of a Group). If s is the structure in the above proof and (a, (b, c)) is an
element of s, then (b, c) can be viewed as an oriented edge joining the points b, c of G and a as a
label for this edge. Thus (G, s) can be viewed as an graph whose edges are labeled by the elements
of G. The symmetries of this graph are the permutations of G which send oriented edges to oriented
edges and which do not change the label of an edge. If G is generated by a subset S of G, i.e, every
element of G is a products of elements of S and their inverses, we can reduce the number of edges by
taking only those edges labeled by an element of S. This does not change the group of symmetries
(why?). This graph is called the graph of G with respect to the generating set S and is denoted by
Γ(G,S).

We now give an example of the use of the regular representation to show that an operation on a
set is associative. By Theorem 1, it suffices to show that gLhL = (gh)L for all g, h ∈ G. If |G| = n,
this requires 4n3 multiplications in G. If there is a neutral element, this reduces to 4(n − 1)3 and
to 2(n− 1)3 if, in addition, the operation is commutative. However, one can reduces the number of
multiplications required by reducing the number of products gLhL. This is due to the fact that one
can associativity in M(G) and any identities in GL to great advantage. This is illustrated in the
following problem.

Problem 1. Show that the following table defines a group structure on G = {a, b, c, d, e, f, g, h}.

a b c d e f g h
a a b c d e f g h
b b h d f a g c e
c c g h b d a e f
d d c e h f b a g
e e a g c h d f b
f f d a e g h b c
g g f b a c e h d
h h e f g b c d a

Solution. From the table we see that a is a neutral element and that GL ⊆ SG. One also sees
immediately that each element is invertible. It remains to check the associative law. We have

aL = 1, bL =
(

a b c d e f g h
b h d f a g c e

)
, b2

L =
(

a b c d e f g h
h e f g b c d a

)
= hL,

b3
L = hLbL =

(
a b c d e f g h
e a g c h d f b

)
= eL, b4

L = eLbL = 1,

cL =
(

a b c d e f g h
c g h b d a e f

)
, c2

L =
(

a b c d e f g h
h e f g b c d a

)
= hL,

c3
L = hLcL =

(
a b c d e f g h
f d a e g h b c

)
= fL, c4

L = fLcL = 1.

This yields the six elements of GL

aL, bL, b2
L = c2

L = hL, b3
L = eL, cL, c3

L = fL.
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We now multiply these elements on the left by bL, b2
L = hL, b3

L = eL and get the following elements

aL, bL, b2
L = c2

L = hL, b3
L = eL, cL, c3

L = fL,

bLcL =
(

a b c d e f g h
d c e h f c b g

)
= dL, bLc3

L =
(

a b c d e f g h
g f b a c e h d

)
= gL,

b2
LcL =

(
a b c d e f g h
f d a e g h b c

)
= fL, b2

Lc3
L =

(
a b c d e f g h
c g h b d a e f

)
= cL,

b3
LcL =

(
a b c d e f g h
g f b a c e h d

)
= gL, b3

Lc3
L =

(
a b c d e f g h
d c e h f b a g

)
= dL

which is equal to GL. Since GL consists precisely of the elements of the form bi
Lcj

L, we have GL

closed under composition iff GL is closed under left translation by cL. But

cLbL =
(

a b c d e f g h
g f b a c e h d

)
= gL = bLc3

L

which implies by induction that
cLbi

L = bi
Lc3i

L .

This is true in any monoid and the proof is left to the reader. Thus

cLbi
Lcj

L = bi
Lcj+3i

L .

Hence GL is closed under composition and G is a group. The reader will verify that only 208
multiplications in G were required as opposed to the 1, 372 multiplications which would have been
required to verify the associative law directly.

Remark. The group G in the above example is the quaternion group and GL is denoted by Q8.
The subscript 8 refers to the fact that it is a permutation group of degree 8, i.e., a subgroup of S8.
The reader is invited to construct the graph of this group using the generating set S = {b, c}. The
reader is also invited to prove that Q8 is not isomorphic to a subgroup of Sn if n < 8, which shows
that the above graph is the simplest one whose group of symmetries is isomorphic to Q8.
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