McGill University Math 370A: Algebra III Midterm Test (Part 2): due Monday, November 9, 1998

- 5. The purpose of this exercise is to prove that $Aut(Q_8) \cong S_4$.
 - (a) Show that the subgroup of S_4 generated by (14)(23), (24)(13) is a normal subgroup of S_4 which is isomorphic to $C_2 \times C_2$. This group is called the Klein 4-group and is denoted by V_4 .
 - (b) Identifying S_3 with the permutations of $\{1, 2, 3, 4\}$ which fix 4, show that $S_4 = V_4S_3$ and that $V_4 \cap S_3 = 1$.
 - (c) Deduce that $S_4 = V_4 \rtimes_{\phi} S_3$, where ϕ is determined by the action of S_3 on V_4 by inner automorphisms.
 - (d) Using the presentation $Q_8 = \langle a, b | a^4 = b^4 = 1, a^2 = b^2, bab^{-1} = a^{-1} \rangle$, show that there are automorphisms σ, τ of Q_8 such that, setting c = ab, we have $\sigma(a) = b, \sigma(b) = c, \sigma(c) = a, \tau(a) = b^{-1}, \tau(b) = a^{-1}$;
 - (e) Show that $K = \langle \sigma, \tau \rangle$ is a subgroup of Aut(Q₈) of order 6 and that there is an isomorphism $g: K \to S_3$ with $g(\sigma) = (123), g(\tau) = (12);$
 - (f) If $H = \text{Inn}(Q_8)$ is the group of inner automorphisms of Q_8 , show that $H \triangleleft \text{Aut}(Q_8)$, that $\text{Aut}(Q_8) = \text{HK}$ and that $H \cap K = 1$. Deduce that $\text{Aut}(Q_8) = \text{H} \rtimes_{\rho} \text{K}$, where ρ is determined by the action of K on H via inner automorphisms.
 - (g) If $\overline{a}, \overline{b}, \overline{c}$ are respectively conjugation by a, b, c, show that there is an isomorphism

$$f: H \to V_4$$
 with $f(\overline{a}) = (14)(23), f(\overline{b}) = (24)(13), f(\overline{c}) = (34)(12).$

- (h) Show that, for all $k \in K$, we have $\phi(g(k)) = f\rho(k)f^{-1}$.
- (i) Using the results of assignment 3, deduce that $Aut(Q_8) \cong S_4$.